Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Forecasting zero-inflated price changes with a Markov switching mixture model for autoregressive and heteroscedastic time series

Titelangaben

Verfügbarkeit überprüfen

Kömm, Holger ; Küsters, Ulrich:
Forecasting zero-inflated price changes with a Markov switching mixture model for autoregressive and heteroscedastic time series.
In: International Journal of Forecasting. 31 (2015) 3. - S. 598-608.
ISSN 0169-2070 ; 1872-8200

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1016/j.ijforecast.2014.10.008

Kurzfassung/Abstract

The weekly changes in prices of several German milk-based commodities exhibit not only traditional patterns such as mean dependence and volatility clustering, but also a high frequency of zero changes that cannot be explained by well-known ARIMA-GARCH models. We therefore develop a new mixture model which combines the elements of zero-inflated models that are common in microeconometrics and intermittent demand forecasting with a traditional ARIMA(1,1,0)-GARCH(1,1) model. We describe the model components, the data generation processes, the maximum likelihood estimation techniques, and the generation of forecasting distributions and point forecasts by resampling techniques. The model is applied to a low frequency weekly time series of skimmed whey powder (SWP). Competing submodels are compared using the Akaike information criterion (AIC). Furthermore, in addition to the evaluation of the out-of-sample forecasting performance, several coverage and independence tests are also computed.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Agriculture; ARIMA models; GARCH models; Mixture models; Price forecasting; Time series; Volatility forecasting; Zero-inflated models
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Statistik > Lehrstuhl für Statistik und Quantitative Methoden der Wirtschaftswissenschaften
Weitere URLs:
DOI / URN / ID:10.1016/j.ijforecast.2014.10.008
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:13361
Eingestellt am: 01. Jul 2013 12:22
Letzte Änderung: 02. Jan 2022 17:53
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/13361/
AnalyticsGoogle Scholar