Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren


A seamless phase II/III design with sample-size re-estimation


Verfügbarkeit überprüfen

Bischoff, Wolfgang ; Miller, Frank:
A seamless phase II/III design with sample-size re-estimation.
In: Journal of biopharmaceutical statistics. 19 (2009) 4. - 595- 609 .
ISSN 1054-3406 ; 1520-5711


A main objective in clinical trials is to find the best treatment in a given finite class of competing treatments and then to show superiority of this treatment against a control treatment. Traditionally, the best treatment is estimated in a phase II trial. Then in an independent phase III trial, superiority of this treatment, estimated as best in the first trial, is to be shown against the control treatment by a size agr test. In this paper we investigate a competing adaptive two-stage test procedure for a seamless phase II/III trial. We assume that the variance is unknown and include therefore the calculation of the total sample size based on the first-stage-variance estimation. We derive formulae for the expected number of patients. These formulae depend on the unknown variance only, not on the other unknown parameters. Using a prior for the unknown variance, we can determine the two-stage test procedure of size agr and power 1 - β that is optimal in that it needs a minimal number of observations. The results are illustrated by a numerical example that indicates the superiority of the adaptive procedure over the traditional approach.

Weitere Angaben

Schlagwörter:Adaptive design; Bayes procedure; Clinical trial; Expected number of patients; Group-sequential test; Seamless phase II/III trial; Two-stage design; Unknown variance
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Statistik und Stochastik
Verlag:Taylor & Francis
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
Eingestellt am: 22. Jul 2009 16:09
Letzte Änderung: 01. Feb 2010 11:10
URL zu dieser Anzeige:
AnalyticsGoogle Scholar