Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Higher order monotonic (multi-) sequences and their extreme points

Titelangaben

Verfügbarkeit überprüfen

Ressel, Paul:
Higher order monotonic (multi-) sequences and their extreme points.
In: Positivity. 17 (Juni 2013) 2. - S. 333-340.
ISSN 1385-1292 ; 1572-9281

Volltext

Kurzfassung/Abstract

Functions on the half-line which are non-negative and decreasing of a higher order have a long tradition. When normalized they form a simplex whose extreme points are well-known. For functions on N0 = {0, 1, 2, . . .} the situation is different. Since an n-monotone sequence is in general not the restriction of an n-monotone function on R+ (apart from n = 1 and n = 2), it is not even clear at the beginning if the normalized n-monotone sequences form a simplex. We will show in this paper that this is actually true, and we determine their extreme points. A corresponding result will also be proved for multi-sequences. The main ingredient in the proof will be a relatively new characterization of so-called survival functions of probability measures on (subsets of) Rn, in this case on Nn0.

Weitere Angaben

Publikationsform:Artikel
Zusätzliche Informationen:DOI 10.1007/s11117-012-0169-5
Schlagwörter:n-monotone ; Extreme point ; Survival function
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Stochastik (bis 2016)
Weitere URLs:
Peer-Review-Journal:Ja
Verlag:Springer International Publishing AG
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:9993
Eingestellt am: 18. Jul 2012 07:35
Letzte Änderung: 10. Jun 2016 12:11
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/9993/
AnalyticsGoogle Scholar