Titelangaben
Ressel, Paul:
Finite Exchangeability, Lévy-Frailty Copulas and Higher-Order Monotonic Sequences.
In: Journal of theoretical probability. 26 (September 2013) 3.
- S. 666-675.
ISSN 0894-9840 ; 1572-9230
Volltext
Link zum Volltext (externe URL): http://www.springerlink.com/content/r48w6835853645... |
Kurzfassung/Abstract
This paper deals with a surprising connection between exchangeable distributions on {0, 1}n and the recently introduced Lévy-frailty copulas, the link being provided by a new class of multivariate distribution functions called linearly order symmetric. The characterisation theorem for Lévy-frailty copulas is given a new and short (non-combinatorial) proof, and a related result is shown for exchangeable Marshall–Olkin distributions. A common thread in all these considerations is higher order monotonic functions on integer intervals of the form {0, 1, . . . , n}.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | Finite exchangeability ; Lévy-frailty copula ; Marshall–Olkin distribution ; n-(absolutely)-monotone function |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Stochastik (bis 2016) |
DOI / URN / ID: | 10.1007/s10959-011-0389-9 |
Peer-Review-Journal: | Ja |
Verlag: | Springer |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 9989 |
Letzte Änderung: 10. Jun 2016 11:30
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/9989/