Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Probability Vector Estimation under Constraints by Discounting

Titelangaben

Verfügbarkeit überprüfen

Wirsching, Günther ; Fischer, Hans:
Probability Vector Estimation under Constraints by Discounting.
Eichstätt : Katholische Universität Eichstätt-Ingolstadt, Mathematisch-Geographische Fakultät, 2011. - 26 S. - (Preprint-Reihe Mathematik ; 2011-4)

Volltext

[img]
Vorschau
Text (PDF)
Veröffentlichungsstatus: Entwurf
Verfügbar unter folgender Lizenz: Creative Commons: Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Creative Commons: Namensnennung, nicht kommerziell, Weitergabe unter gleichen Bedingungen (CC BY-NC-SA 4.0) .

Download (844kB) | Vorschau

Kurzfassung/Abstract

The focus of this paper is on using observations to estimate an unknown probability vector p = (p1,...,pN) supposed to underlie a multinomial process. In some technical applications, e.g., parameter estimation for a hidden Markov chain, numerical stability can be guaranteed only if we assume each estimate for a probability conforming to the constraint of being always above a positive threshold depending on the particular technical application. Aiming at such estimates we present a fast discounting algorithm which comprises ad-hoc methods known as absolute discounting, linear discounting, and square-root discounting as special cases. In order to base discounting on probabilistic principles, we adopt a Bayesian approach, and we show that, presupposing an arbitrary nonvanishing prior, minimizing the maximum-norm of a certain risk vector defined by a one-sided loss function leads to a new consistent estimator.
It turns out to be quite natural to derive from this an (in general inconsistent) estimator meeting the above described constraints. Using asymptotic statistics, we show that a good approximation to this estimator can be reached by means of our fast discounting algorithm in context with an appropriate adjustment of square-root discounting.

Weitere Angaben

Publikationsform:Preprint, Working paper, Diskussionspapier
Schlagwörter:Discounting; one-sided risk; Bayesian parameter estimation; asymptotic methods; Markov chain parameter estimation
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Algebra (bis 2009)
Mathematisch-Geographische Fakultät > Mathematik > Fachvertretung Didaktik der Mathematik
Titel an der KU entstanden:Ja
KU.edoc-ID:6889
Eingestellt am: 04. Mai 2011 08:52
Letzte Änderung: 17. Jul 2012 15:52
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/6889/
AnalyticsGoogle Scholar