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Introduction

When looking up the word ‘confidence” in the Oxford Dictionaries Online, one gets two mean-
ings:

1. The feeling or belief that one can have faith in or rely on someone or something.
2. The telling of private matters or secrets with mutual trust.

As usual in speech recognition, in this paper I restrict attention to part of the first meaning,
namely to “the belief that one can rely on something”.

To get a feeling for this concept, assume that we have an automatic speech recognition sys-
tem which is configured with a language model giving Bayesian prior probabilities to certain
word sequences. If a user says something to the system, the system will produce a set of possi-
ble phrases the user may have said. Ideally, each phrase comes equipped with a score that can
be interpreted as Bayesian posterior probability of that phrase, given the language model and
the utterance. This Bayesian posterior probability measures the “degree of belief that a user
uttered a specific phrase”, whence it is a measure for confidence.

This paper studies the mathematical structures of this confidence measure and connects it
to a reasonable measure for uncertainty. A thorough analysis of logical operations leads to
semiring structures for these measures. The two arising semirings turn out to be isomorphic,
and also isomorphic to the well-known max-plus algebra [1]. In addition, it is proved that, for
any two of these semirings, the set of semiring isomorphisms between them is a one-parameter

family.

1 Logical analysis of confidence and uncertainty

In automatic speech recognition, one often is confronted with the problem that the automaton
is not quite sure about what it understood. Assume that a recognition result r consists of a set
of phrases ¢y, . .., ¢, such that each phrase comes with its Bayesian posterior probability

pn = pg,(r) € [0,1]

such that ) p; < 1. If ) p; < 1, adjoin an additional empty phrase ¢y meaning “nothing
understood” with probability

n

pozl—Zpi.

i=1
Here an example which occurs every day in Bavaria’s bakeries. The client says something, and
the recognition result r of the salesperson may consist of the following three phrases:

7

¢1: “Zwei Semmeln, bitte.” (“Two buns, please.”), (p1 = 0.4),

1



¢2: “Drei Semmeln, bitte.” (“Three buns, please.”), (p2 = 0.5),
Po: “..” (po = 0.1).

In this setting, the confidence of a phrase ¢ in a recognition result r can be defined by

The degree of belief that phrase ¢ had been said,
cpr) =1 . - = Py(r)-
given recognition result r.

There are two natural logical operations on the set of possible recognition results: the exclusive
disjunction, denoted by “x-or”, and the conjunction, which we denote by “&”. We derive some
formulas which describe how these logical operations affect the confidence measure.

First consider x-or, which refers to a decision: Assume that you have two recognition results
r1 and 12, and that you are to decide which one results from a recognition of an uttered phrase
¢. Then, clearly, you would take the one in which ¢ has the higher confidence. Hence, it is
reasonable to set

cg(r1 x-orry) 1= {

= max{cy(r1),ce(r2)} 1)

Next consider the conjunction “&”, fix a phrase ¢, and suppose that we have two recogni-
tion results r1 and r,. We are looking for the degree of belief that at least one of the recognition
results r; and 7, comes from recognizing phrase ¢. To get this confidence of “ry &r,”, denote
for the moment by A; the event that r; comes from recognizing ¢, and by A, the event that r;
comes from recognizing ¢. If we assume that events A; and A; are stochastically independent,
the probability of A; U A, can be computed as follows:

p(A1UA2) = p(A1) + p(A2) — p(A1)p(A2)
= pp(r1) + py(r2) — pe(r1)py(r2).

Hence, the total confidence that some phrase ¢ had been intended, when two stochastically
independent recognition results are given, is

The degree of belief that phrase ¢ had been said,
given two mutually exclusive recognition results 1 and 7.

co(r1 &) := {

= cp(r1) +cp(r2) —cp(r1) - cp(r2). ()

Let us now shift attention to uncertainty, which we define as the probabilistic complement
of confidence, which is, for a phrase ¢ and a recognition result r, the quantity

The degree of belief that phrase ¢ had been said, }

given two stochastically independent recognition results rq and 7.

up(r) :==1—ce(r) =1—py(r)
B { The uncertainty about phrase ¢ being said,}

given recognition result 7.

Here the x-or reads

The uncertainty about phrase ¢ being said,

ugp(ry x-orry) := ] ) .
given two mutually exclusive recognition results r; and ;.

=min{uy(r1),ue(r2)}, 3)
and the “&” is
(11 &r) The uncertainty about phrase ¢ being said,
up(r1&ry) 1=
LAbRaE given two stochastically independent recognition results r; and 7».

= ug(r1) - up(r2). 4



2 The algebraic structures

Recall that a monoid is an algebraic structure M = (M, o, ¢e) consisting of a set M, a binary
operation
o:MxM-—M,

and a special element e € M, subject to two conditions:
(M.1) o is associative,i.e.,Vx,y,z € M: (xoy)oz=1xo(yoz).
(M.2) eis a neutral element for o,i.e., Vx € M: eox =xoe = x.

A monoid M is called commutative iff Vx,y € M : xoy = y o x. Note that it is an immediate
consequence from the two-sided definition of neutrality (M2) that a binary operation admits at
most one neutral element.

A semiring is an algebraic structure

S=(S,3,0,®,1)

consisting of a set S, two binary operations @ and ® on S, and two special elements 0,1 € S,
subject to the following four conditions:

(S.1) (S,®,0) is a commutative monoid.
(S.2) (S\ {0}, ®,1) is a monoid.
(S.3) The two laws of distributivity hold:
Vx,y,z€S: x@(ydz)=x0y) & (x®z2),
Vx,yz€S: (xdy)Rz=(x®z)® (y®z).
(54) Vxe€S:0®x=0. “0annihilates S.”
A semiring S is called idempotent if, in addition to (5.1)—(S.4), its first operation is idempotent:
(55) VxeS: xdx=nx.

A semiring S is called commutative if, in addition to (5.1)—~(S.4), its second operation is commu-
tative:

S6) Vx,yeS: xQy=y®ux.

Clearly, in a commutative semiring, it suffices to postulate only one of the distributivity
laws, as the other then follows by commutativity. In contrast to the definition of the algebraic
structure ring, for a semiring it is necessary to postulate the annihilation axiom (5.4), because
the monoid structure with respect to the first binary operation @& does not suffice to prove
annihilation.

Note that axiom (S.2) implies that 0 # 1. This will turn out to be an important point to be
taken into account when constructing a semirng.

Given two (not necessarily commutative) semirings

A = (A/ @A/ OA/ ®A/ ]-A) and B = (B/ @]B/O]B/ ®]B/ 1]B)/
a homomorphism ¢ : A — B is amap ¢ : A — B satisfying
(H.1) ¢(0p) = Op.
(H2) ¢(1a) = 1.
(H3) Vx,y € A: ¢p(x@ay) = ¢(x) O ¢(y)-

H4) Vx,ye A: p(x@ay) = ¢(x) @B P(y).

If ¢ happens to be bijective, it follows that its inverse ¢! is also a homomorphism of semirings.
A bijective homomorphism of semirings is called an isomorphism of semirings.
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3 Three isomorphic commutative, idempotent semirings

In this section, it is shown that the two binary operations exclusive disjunction and conjunction on
confidences yield a semiring structure. Indeed, there are three distinct semirings, the confidence
semiring, the uncertainty semiring, and the max-plus-algebra, and it is proved here that these are
pairwise isomorphic. Moreover, it is shown that the set of isomorphisms between any two of
them is a one-parameter family. The families of isomorphismus are constructed explicitly.

The construction of a semiring modeling uncertainty starts with the unit interval [0, 1],
where a number u € [0,1] should express the uncertainty about the validity of some asser-
tion. According to (3), x-or is modeled by the binary operation min, and, according to (4), the
multiplication of numbers in [0, 1] models logical conjunction.

In this algebraic setting, the point 1 € [0, 1] would be a neutral element both with respect
to min, and with respect to multiplication. Hence, in order to come to a semiring, we have to
adjoin a further element co and appropriate conventions to make it the 0 of the semiring. It
turns out that the conventions

Vu € [0,1] : min{oo,u} = min{u,c0} =u, u-00=o00-u =00,
ensure both neutrality with respect to min and the annihilation axiom. Commutativity, asso-
ciativity, and the distrubitivity law
Vu,0v,we€ [0,1]U{oo}: min{u-v,u-w} = u-min{v,w}
are consequences of elementary algebra of real numbers. Now we are ready to define the
uncertainty semiring as the algebraic structure
U := ([0,1] U {co}, min, o0, -, 1).

To construct a semiring which models confidence, start again with the unit interval [0, 1],
and assume that a number from this interval expresses the degree of belief that, given a feature
and an utterance, the utterance intended to convey a value to the given feature. As described
in (1) and (2), exclusive or and conjunction lead to the binary operations

cUd :=max{c,d} for exclusive or,

cMNd:=c+d—cd for conjunction.

Similar to the structure modeling uncertainty, the number 0 € [0, 1] is neutral with respect to
both operations, whence, in order to get a semiring, we have to include an additional zero,
namely —oo. By definition, the confidence semiring is the algebraic structure

T:= ({—o0}U[0,1],U, —00,M,0); (5)
here “T” stands for “trust”. To see that this is indeed a semiring, consider the involution map
1:]0,1]U{c0} — {—c0}U[0,1], (c):=1—c. (6)
This map is clearly bijective, and it fulfills /(c0) = —oc0 and ¢(0) = 1, and
((min{c,d}) = max{«(c),«(d)} = 1(c) U(d),

Ve, de[0,1]U{oo}: c-d)=1-cd=(1-c)+(1—-d)—(1—-c)(1—4d)
=1(c)+u(d) — 1(c)i(d) = 1(c) Mu(d),
where, in case ¢ = o0 or d = oo, the arithmetic rule (—o0) + 00 = 00+ (—00) = —o0 is to

be applied. This proves both that the algebraic structure (5) is indeed a semiring, and that
t: U — T is an isomorphism of semirings.
Finally, the max-plus algebra is the idempotent, commutative semiring

M = ({—c0} U [0, 0], max, —co, +,0);

note that in this semiring, the above mentioned arithmetic rule is just the annihilation axiom.
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Theorem 1 The uncertainty semiring U, the confidence semiring T, and the max-plus algebra M, are
pairwise isomorphic. Moreover, the sets of isomorphisms are as follows:

Iso(UM) = {x=—alnu|a >0}, IsoM,U) ={u=e"|a>0}, (7)
Iso(T,M) = {x = —BIn(1—¢) | >0}, Iso(M,T)= {c —1—e B> o}, 6)
Iso(U,T)={c=1—u" |y >0}, Iso(T,U)={u=(1-¢)"|v>0}, ()

where it is understood that u € U, c € T, and x € M.

Proof Suppose that ¢ : U — M is a semiring homomorphism. By definition, ¢ satisfies
(H.1)-(H.4); in particular,
Vu,ve|0,1]:  ¢(min{u,v}) = max{p(u),$(v)}, and ¢(u-v)=¢(u)+ ¢(v).

The first equation implies that ¢ : [0,1] — [0, 0] is non-increasing, while the second equation
is just the functional equation of the logarithm. Denoting be e = Y5 & ~ 2.7182 the Eulerian
number, and fixing the number
1
= (P <€> S [0,00[,

we conclude from the functional equation that ¢(u) = —aIn(u) whenever u = (%)p for some
rational number p. As the set of rational powers of ! is a dense set in [0, 1], monotonicity of ¢
implies that

Vue€l0,1]:  ¢(u) = —alnu.

As, by (H.1) and (H.2), ¢ must satisfy
$(0) =oo,  P(o0) = —0c0,

it follows that ¢ is a bijective map [0,1] U oo — {—oc0} U [0, 00] iff & > 0, whence (7).

To see (8), observe that a semiring homomorphism ¢ : T — M is an isomorphism iff
por: U — Mis an isomorphism, where ¢ is the involution map (6). Consequently, p : T — M
is an isomorphism iff there is a real number g > 0 such that

Vee [0,1:  ¢(c) = —BIn(1l —c).
To determine the isomorphisms ¢ : T — U, fix some real number « > 0, and put
P :U—->M, ¢u(u):=—alnu.

Then ¢ := ¢, o ¢ is an isomorphism T — M. This implies by (8) that there is a positive real
number § such that
Vee [0,1: y(c) = —BIn(1l—c).

Using 0 = ¢, ! o ¢, we get
Ve e [0,1[  o(c) = 19 = (1 — ¢)*P,
Putting y := ap, this gives the second equation of (9). The first equation is obtained from this

by solving u = (1 —¢)? for ¢, giving ¢ = 1 — u(1/7), As y runs through the positive reals, also
1/ runs through the positive reals, leading to the first equation of (9). u
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