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1 Die Formel

Auf dem N-dimensionalen Vektorraum RN ist die p-Norm der Vektoren wie folgt gegeben:

∀ ~x =

 x1
...

xN

 ∈ RN : ‖~x‖p :=

(
N

∑
n=1
|xn|p

)1/p

. (1)

Sofern p eine reelle Zahl > 0 ist, ist diese Formel ohne weiteres auswertbar. Das Thema dieser
Note ist, schlaglichtartig ein paar Hintergründe, mathematische Eigenschaften und Weiterent-
wicklungen dieser Formel zu beleuchten.

2 Minkowski

Hermann Minkowski wurde am 22. Juni 1864 in dem kleinen Ort Aleksotas auf dem Gebiet des
heutigen Staates Litauen, damals zu Russland gehörend, geboren. Von 1887 bis 1909 lehrte er
den Universitäten Bonn, Königsberg, Zürich und Göttingen, wo er am 12. Januar 1909 an den
Folgen eines Blinddarmdurchbruchs verstarb.

Der entscheidene Term von Formel (1) taucht bei Minkowski auf, und zwar in seinem Buch
Geometrie der Zahlen [1] auf Seite 115, in folgender Form:(

(abs v1)
p + · · ·+ (abs vn)p

n

) 1
p

= f (x1, . . . , xn); (2)

dabei hat er vorausgesetzt:

Es seien v1, . . . , vn n lineare Formen in x1, . . . , xn . . .

Was er unter einer linearen Form versteht, hat er ein paar Seiten vorher, zu Beginn seines vierten
Kapitels, beschrieben [1, Seite 102]:

. . . von linearen Formen in x1, . . . , xn, also Ausdrücke von der Gestalt

α1x1 + . . . + αnxn,

und zwar durchweg mit lauter reellen Coefficienten;

Also ist Formel (1) ein Spezialfall von Minkowskis Formel (2): Nimmt man als i-te Linear-
form ein geeignetes Vielfaches der i-ten Koordinate, vi := p

√
n xi, bezeichnet den Absolutbetrag

gemäß heutiger Schreibweise mit zwei senkrechten Strichen, und ersetzt noch das kleine n
durch ein großes N, so ist f (x1, . . . , xn) aus Formel (2) gleich ‖~x‖p aus Formel (1).

Warum ist das vermutlich das erste Auftreten? Nun, der 1953 erschienene Druck seines
Buchs Geometrie der Zahlen enthält eine Widmung:
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Weil Hermite am 24. Dezember 1822 geboren wurde, sollte der Text um den 24. Dezember 1892
herum fertig geworden sein. Tatsächlich wurden Auszüge davon 1893 und 1896 publiziert;
in den Gesammelten Abhandlungen [2] konnte ich die betreffende Stelle jedoch nicht finden. Es
ist eher unwahrscheinlich, dass vorher schon jemand diese Formel untersucht haben, denn in
welchem Zusammenhang sollte man das tun?

3 Die Minkowski’sche Ungleichung

Das erste, was Minkowski mit seiner in (2) definierten Funktion f macht, ist, die folgende
Behauptung zu beweisen:

Es besteht nun ferner bei beliebigen reellen Werthen a1, . . . , an; b1, . . . , bn für ein p ≥ 1
immer die Ungleichung

f (a1 + b1, . . . , an + bn) ≤ f (a1, . . . , an) + f (b1, . . . , bn),

und tritt darin im Falle eines p > 1 das Gleichheitszeichen nur dann ein, wenn entweder
b1, . . . , bn sämmtlich Null sind oder aber Beziehungen

a1 = (τ − 1)b1, . . . an = (τ − 1)bn, τ − 1 = 0

gelten. [1, Seite 115]

Also mit der in (1) eingeführten Schreibweise:

∀ p ∈ [1, ∞[, ~x,~y ∈ RN :


‖~x +~y‖p 6 ‖~x‖p + ‖~y‖p, und

‖~x +~y‖p = ‖~x‖p + ‖~y‖p ⇔
{
~y = 0 oder
∃λ ∈ [0, ∞[: ~x = λ~y.

(3)

Diese Ungleichung ist heute unter dem Namen Minkowski’sche Ungleichung bekannt. Ihre Be-
deutung ist, dass sie die Dreiecksungleichung für die Abbildung

‖ · ‖p : RN → R (4)

ist, weswegen diese Abbildung zu einer Norm auf dem RN wird. Diese Norm wird gelegentlich
als Minkowski-Norm bezeichnet, obwohl dieser Ausdruck wegen der Minkowski’schen Unter-
suchungen zum Minkowski-Raum der speziellen Relativitätstheorie etwas irreführend aufge-
fasst werden könnte. In der Regel wird die Abbildung (4) als p-Norm bezeichnet – meist wird
nur der Fall p > 1 betrachtet, wo es sich tatsächlich um eine Norm handelt. Wenn auch Werte
p < 1 in Betracht kommen, ist eben eine p-Norm nicht unbedingt auch eine Norm (auf einem
Vektorraum).
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4 Mathematische Erweiterungen und Spezialfälle

Es ist irgendwie naheliegend, zu untersuchen, was passiert, wenn man für p noch andere Werte
zulässt.

p = ∞ . Mit Hilfe einfacher Abschätzungen folgt aus (1) für alle p > 1 die Ungleichungskette

max
n∈{1,...,N}

|xn| 6 ‖~x‖p 6 p
√

N · max
n∈{1,...,N}

|xn|; (5)

daher ist folgende Bezeichnung sinnvoll:

‖~x‖∞ := lim
p→∞
‖~x‖p = max

n∈{1,...,N}
|xn|.

Weil die Minkowski’sche Ungleichung für alle p > 1 gültig ist, muss sie auch für die
Grenzwert für p→ ∞ gelten, weswegen durch

‖ · ‖∞ : RN → R (6)

auch eine Norm auf dem RN gegeben ist. Diese Norm heißt meistens Maximumsnorm und
manchmal auch Tschebyschew-Norm.

p = 2 . Das ist die bekannte Euklidische Norm auf dem RN .

p = 1 . Die Norm ‖ · ‖1 heißt auch Betragssummennorm, oder City-Block-Norm, und spielt in
vielen Anwendungen eine große Rolle.

0 < p < 1 . Für diese p ist die in (3) formulierte Aussage falsch, man erhält also keine Norm.
Gegenbeispiele:

• Die Dreiecksungleichung gilt nicht, denn für 0 < p < 1 ist:

~x =

(
0
1

)
, ~y =

(
1
0

)
⇒ ‖~x +~y‖p = 2

1
p > 2 = 1 + 1 = ‖~x‖p + ‖~y‖p.

• Die umgekehrte Dreicksungleichung für nicht-kollineare Vektoren gilt auch nicht,
denn für 0 < p < 1 ist:

~x =

(
5
1

)
, ~y =

(
−1
−1

)
⇒ ‖~x +~y‖p = 4 < (5p + 1)

1
p + 2

1
p = ‖~x‖p + ‖~y‖p.

Allerdings ist die durch

d̃p(~x,~y) :=
N

∑
n=1
|xn − yn|p = ‖~x−~y‖p

p

definierte Abbildung auf RN ×RN eine Metrik, weswegen es zu diesem Fall auch Fach-
artikel gibt.

p = 0 . Analog zum Fall p = ∞ kann man hier Grenzwerte betrachten: Wegen

∀ ξ ∈ [0, ∞[: lim
p↓0

ξ p =

{
ξ0 = 1 für ξ > 0,
0 für ξ = 0,

ist der Grenzwert
lim
p↓0
‖~x‖p

p = lim
p↓0

(|x1|p + . . . + |xn|p) (7)
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gleich der Anzahl der nicht-verschwindenden Komponenten von ~x = (x1, . . . , xn)T. In
manchen Arbeiten zu Themen in den Bereichen Maschinelles Lernen oder Optimierung
wird dieser Grenzwert auch als zero norm bezeichnet – obwohl er keine Norm ist.

Aus (7) folgt

lim
p↓0
‖~x‖p =

{
∞ falls ~x mindestens zwei Komponenten 6= 0 besitzt,
‖~x‖1 = ‖~x‖∞ falls ~x höchstens eine Komponente 6= 0 hat.

p < 0 . Für p < 0 setzt man sinnvollerweise 0p := ∞ und ∞p := 0. Dann lässt sich die Formel
(1) auch für p < 0 auswerten. Man erhält insbesondere das folgende Resultat:

Ist p < 0 und ein xn = 0, dann ist ‖~x‖p = 0. (8)

• Die Dreiecksungleichung gilt nicht, denn für p < 0 ist:

~x =

(
5
1

)
, ~y =

(
−1
−1

)
⇒ ‖~x +~y‖p = 4 > (5p + 1)

1
p + 2

1
p = ‖~x‖p + ‖~y‖p.

• Die umgekehrte Dreicksungleichung für nicht-kollineare Vektoren gilt auch nicht,
denn für p < 0 ist:

~x =

(
0
1

)
, ~y =

(
1
0

)
⇒ ‖~x +~y‖p = 2

1
p < 2 = 1 + 1 = ‖~x‖p + ‖~y‖p.

p = −∞ . Analog zu (5) verifiziert man leicht die für p 6 −1 gültige Ungleichungskette

p
√

N · min
n∈{1,...,N}

|xn| 6 ‖~x‖p 6 min
n∈{1,...,N}

|xn|, (9)

woraus die Konvergenz von ‖~x‖p für p→ −∞ folgt. Also kann man setzen:

‖~x‖−∞ := lim
p→−∞

‖~x‖p = min
n∈{1,...,N}

|xn|.

Natürlich erhält man auf diese Weise keine Norm auf dem RN .

5 Lp-Räume

Richtig Karriere gemacht haben die p-Normen durch ihre (jedenfalls für F. Riesz) naheliegende
Erweiterung auf integrierbare Funktionen: Seien zunächst eine Menge X, eine σ-AlgebraA auf
X und ein Maß µ : A → R gegeben – damit ist definiert, was eine meßbare bzw. integrierbare
Funktion ist. Hat eine meßbare Funktion f : X → R die Eigenschaft dann ist ihre p-Norm
wohldefiniert:

‖ f ‖p :=
(∫

X
| f |p dµ

) 1
p

. (10)

Was ist die Verbindung zu Minkowski’s Formel (2) ? Nun, setzt man in Formel (10)

X := {1, . . . , n} und µ = Gleichverteilungsmaß auf X,

so geht die rechte Seite von (10) in die linke Seite von (2) mit f (i) anstelle von vi über. Das
klingt so gesehen zwar etwas weit hergeholt, aber die Grundstruktur

”die p-te Wurzel aus dem Mittelwert der p-ten Potenzen der Beträge“

ist doch die gleiche.
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Zurück zu Formel (10). Es stellt sich heraus, dass

(a) die Menge der meßbaren Funktionen f : X → R mit der Eigenschaft, dass | f |p integrierbar
ist, ein linearer Raum (also ein Vektorraum) ist,

(b) im Falle p > 1 durch ‖ · ‖p eine Halbnorm auf diesem Raum gegeben ist, und

(c) die Gleichung ‖ f ‖p = 0 genau dann richtig ist, wenn f außerhalb einer µ-Nullmenge ver-
schwindet.

Für die zweite Aussage muss man die Dreiecksungleichung ‖ f + g‖p 6 ‖ f ‖p + ‖g‖p beweisen;
diese verallgemeinert die oben erwähnte Minkowski’sche Ungleichung – häufig wird diese
Verallgemeinerung ebenfalls als Minkowski’sche Ungleichung bezeichnet.

Mathematisch interessant sind sicherlich Aussagen über die algebraischen Strukturen von
Mengen integrierbarer Funktionen. Zu diesem Thema hat F. Riesz 1910 einen längeren Aufsatz
[3] und ein dazu passende Comptes Rendues-Note [4] geschrieben, die folgendermaßen beginnt:

Appelons classe [Lp] la totalité des fonctions f (x), réelles ou non, définies sur l’intervalle
(a, b), sommable et telles que | f |p est sommable.

Das ist sehr wahrscheinlich die erste Verwendung der Bezeichnung Lp in der mathematischen
Fachliteratur. Der Text des Aufsatzes [3] legt die Vermutung nahe, dass der Buchstabe L zu
Ehren von Henri Lebesgue gewählt wurde. Die Wahl des Buchstaben p für den Exponenten
bedarf bei Riesz keiner weiteren Erklärung; Minkowski hatte ja einige Jahre früher auch schon
den Exponenten mit p bezeichnet.

Zurück zu fachlichen Inhalten. Es ist leicht zu zeigen, dass man wieder eine integrierbare
Funktion erhält, wenn man eine integrierbare Funktion mit einem Skalar multipliziert, oder
wenn man zwei integrierbare Funktionen addiert. Aber unter welchen zusätzlichen Bedin-
gungen kann man zwei integrierbare Funktionen (punktweise) multplizieren, ohne dass die
Integrierbarkeit verloren geht? In [3] hat Riesz darauf die folgende gefunden:

Danach ist das Produkt der Funktionen f (x), h(x) sicher integrierbar, wenn es eine Zahl
p > 1 gibt, derart daß die Funktionen | f (x)|p, |h(x)|

p
1−p integrierbar ausfallen.

Darüber hinaus fand er auch eine Art Umkehrung:

Ist das Produkt f (x), h(x) für alle integrierbaren Funktionen f (x), für welche die Potenz
| f (x)|p (p > 1) integrierbar ist, ebenfalls integrierbar, so ist es auch die Potenz |h(x)|

p
p−1 .
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