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1 Die Formel

Auf dem N-dimensionalen Vektorraum RY ist die p-Norm der Vektoren wie folgt gegeben:
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Sofern p eine reelle Zahl > 0 ist, ist diese Formel ohne weiteres auswertbar. Das Thema dieser
Note ist, schlaglichtartig ein paar Hintergriinde, mathematische Eigenschaften und Weiterent-
wicklungen dieser Formel zu beleuchten.

2 Minkowski

Hermann Minkowski wurde am 22. Juni 1864 in dem kleinen Ort Aleksotas auf dem Gebiet des
heutigen Staates Litauen, damals zu Russland gehorend, geboren. Von 1887 bis 1909 lehrte er
den Universitdten Bonn, Koénigsberg, Ziirich und Géttingen, wo er am 12. Januar 1909 an den
Folgen eines Blinddarmdurchbruchs verstarb.

Der entscheidene Term von Formel (1) taucht bei Minkowski auf, und zwar in seinem Buch
Geometrie der Zahlen [1] auf Seite 115, in folgender Form:

= f(x1,...,%Xn); ()

(oo <absvn>p>;

n
dabei hat er vorausgesetzt:
Es seien vy, ...,v, n lineare Formen in xq1, ..., Xy

Was er unter einer linearen Form versteht, hat er ein paar Seiten vorher, zu Beginn seines vierten
Kapitels, beschrieben [1, Seite 102]:

... von linearen Formen in x1, . .., Xy, also Ausdriicke von der Gestalt
K1xX1 4+ ...+ apxy,
und zwar durchweg mit lauter reellen Coefficienten;

Also ist Formel (1) ein Spezialfall von Minkowskis Formel (2): Nimmt man als i-te Linear-
form ein geeignetes Vielfaches der i-ten Koordinate, v; := {/n x;, bezeichnet den Absolutbetrag
gemdfs heutiger Schreibweise mit zwei senkrechten Strichen, und ersetzt noch das kleine n
durch ein grofies N, so ist f(x1,...,x,) aus Formel (2) gleich ||¥||, aus Formel (1).

Warum ist das vermutlich das erste Auftreten? Nun, der 1953 erschienene Druck seines
Buchs Geometrie der Zahlen enthélt eine Widmung:
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HERRN
CHARLES HERMITE
ZUM SIEBZIGSTEN GEBURTSTAGE
IN GROSSTER VEREHRUNG
GEWIDMET
VOM
VERFASSER

Weil Hermite am 24. Dezember 1822 geboren wurde, sollte der Text um den 24. Dezember 1892
herum fertig geworden sein. Tatsdchlich wurden Ausziige davon 1893 und 1896 publiziert;
in den Gesammelten Abhandlungen [2] konnte ich die betreffende Stelle jedoch nicht finden. Es
ist eher unwahrscheinlich, dass vorher schon jemand diese Formel untersucht haben, denn in
welchem Zusammenhang sollte man das tun?

3 Die Minkowski’sche Ungleichung

Das erste, was Minkowski mit seiner in (2) definierten Funktion f macht, ist, die folgende
Behauptung zu beweisen:

Es besteht nun ferner bei beliebigen reellen Werthen ay,...,a,; by, ..., by fiirein p > 1
immer die Ungleichung

flar+by,...,a0+by) < flay,...,a0) + f(b1,...,by),

und tritt darin im Falle eines p > 1 das Gleichheitszeichen nur dann ein, wenn entweder
by,..., b, simmtlich Null sind oder aber Beziehungen

a1 =(t—1)by, ... ay = (t—1)by, T—120
gelten. [1, Seite 115]

Also mit der in (1) eingefiihrten Schreibweise:

1X+7llp < IXllp + I7llp,  und
=0 oder 3)
JA € ]0,00[: X = A¥.

Vpe[loof ¥,jcRN: o . .
1Z+ 7l = IX]l, + 7, <

Diese Ungleichung ist heute unter dem Namen Minkowski’sche Ungleichung bekannt. Ihre Be-
deutung ist, dass sie die Dreiecksungleichung fiir die Abbildung

I 1lp : RY - R 4)

ist, weswegen diese Abbildung zu einer Norm auf dem RN wird. Diese Norm wird gelegentlich
als Minkowski-Norm bezeichnet, obwohl dieser Ausdruck wegen der Minkowski’schen Unter-
suchungen zum Minkowski-Raum der speziellen Relativitdtstheorie etwas irrefithrend aufge-
fasst werden konnte. In der Regel wird die Abbildung (4) als p-Norm bezeichnet — meist wird
nur der Fall p > 1 betrachtet, wo es sich tatsachlich um eine Norm handelt. Wenn auch Werte
p < 1in Betracht kommen, ist eben eine p-Norm nicht unbedingt auch eine Norm (auf einem
Vektorraum).



4 Mathematische Erweiterungen und Spezialfille

Es ist irgendwie naheliegend, zu untersuchen, was passiert, wenn man fiir p noch andere Werte
zulésst.

p = co. Mit Hilfe einfacher Abschédtzungen folgt aus (1) fiir alle p > 1 die Ungleichungskette

max x| < [|¥]|, < VN- max |x,|; (5)
ne{l,..,N} ne{l,..,N}

daher ist folgende Bezeichnung sinnvoll:

| X0 := Lim [|¥]|, = max [x,].
p— ne{l,..,N}

Weil die Minkowski’sche Ungleichung fiir alle p > 1 giiltig ist, muss sie auch fiir die
Grenzwert fiir p — oo gelten, weswegen durch

| llo : RN = R ©6)

auch eine Norm auf dem RN gegeben ist. Diese Norm heifit meistens Maximumsnorm und
manchmal auch Tschebyschew-Norm.

p = 2. Das ist die bekannte Euklidische Norm auf dem R¥.

p=1. Die Norm || - ||; heilt auch Betragssummennorm, oder City-Block-Norm, und spielt in
vielen Anwendungen eine grof3e Rolle.

0 < p < 1. Fir diese p ist die in (3) formulierte Aussage falsch, man erhilt also keine Norm.
Gegenbeispiele:

e Die Dreiecksungleichung gilt nicht, denn fiir 0 < p < 1ist:

. {0 .1 o . ) .
x:(l), y:<0> = X+, =2" >2=1+1= x|, + |7l

e Die umgekehrte Dreicksungleichung fiir nicht-kollineare Vektoren gilt auch nicht,
denn fiir 0 < p < 1ist:

= 5 S -1 o 1 1
x:<1>, y:<_1> = |[T+7l,=4<(B"+1)r +2¢ = ||Z|, + 7],

Allerdings ist die durch

N

dp(%, 9) ZZ —yul” = [1¥ =7l

definierte Abbildung auf RN x RN eine Metrik, weswegen es zu diesem Fall auch Fach-
artikel gibt.

p = 0. Analog zum Fall p = co kann man hier Grenzwerte betrachten: Wegen

=1 firé >0,

V& e[0,00f: liméP =
el e — {571 e

ist der Grenzwert
lim || %]|5 = lim (|x1|P + ...+ |x,|? 7
;w I Hp ;w (| 1] || ) (7)



gleich der Anzahl der nicht-verschwindenden Komponenten von ¥ = (xy,..., xn)T. In
manchen Arbeiten zu Themen in den Bereichen Maschinelles Lernen oder Optimierung
wird dieser Grenzwert auch als zero norm bezeichnet — obwohl er keine Norm ist.

Aus (7) folgt

lim ||%| 00 falls ¥ mindestens zwei Komponenten # 0 besitzt,
1 =
plo |X|l1 = ||¥||c falls ¥ hochstens eine Komponente # 0 hat.

p < 0. Fir p < 0 setzt man sinnvollerweise 07 := oo und co” := 0. Dann ldsst sich die Formel
(1) auch fiir p < 0 auswerten. Man erhilt insbesondere das folgende Resultat:

Ist p < 0 und ein x,, = 0, dann ist ||%]|, = 0. 8)

e Die Dreiecksungleichung gilt nicht, denn fiir p < 0 ist:

==

o 5 L -1 L 1 o ~
7=(3), 7=(31) = IRHgl=4> & 0} 420 =7, + 7,

e Die umgekehrte Dreicksungleichung fiir nicht-kollineare Vektoren gilt auch nicht,
denn fiir p < O ist:

R 0 ~ 1 oL 1 . .
=), 7=(p) = 1Fedl =2 <2=141=]30,+ 17

p = —oo. Analog zu (5) verifiziert man leicht die fiir p < —1 giiltige Ungleichungskette

{/N- min x| <X, £ min x|, )
ne{l,..,N} ne{l,..,N}

woraus die Konvergenz von ||¥||, fiir p — —oo folgt. Also kann man setzen:

¥l . := lim ¥, = min Xn|-
[ i= fim (%] = _min [

Natiirlich erhilt man auf diese Weise keine Norm auf dem RN,

5 L[P-Raume

Richtig Karriere gemacht haben die p-Normen durch ihre (jedenfalls fiir F. Riesz) naheliegende
Erweiterung auf integrierbare Funktionen: Seien zunéchst eine Menge X, eine o-Algebra A auf
X und ein Maf$ 4 : A — R gegeben — damit ist definiert, was eine mef$bare bzw. integrierbare
Funktion ist. Hat eine meflbare Funktion f : X — R die Eigenschaft dann ist ihre p-Norm

wohldefiniert: .
g 2
£l = ([ 1717 an)" (10

Was ist die Verbindung zu Minkowski’s Formel (2) ? Nun, setzt man in Formel (10)
X:={1,...,n} und u = Gleichverteilungsmaf auf X,

so geht die rechte Seite von (10) in die linke Seite von (2) mit f(i) anstelle von v; tiber. Das
klingt so gesehen zwar etwas weit hergeholt, aber die Grundstruktur

,die p-te Wurzel aus dem Mittelwert der p-ten Potenzen der Betrdge”

ist doch die gleiche.



Zuriick zu Formel (10). Es stellt sich heraus, dass

(a) die Menge der mefibaren Funktionen f : X — R mit der Eigenschaft, dass | f|? integrierbar
ist, ein linearer Raum (also ein Vektorraum) ist,

(b) im Falle p > 1 durch || - ||, eine Halbnorm auf diesem Raum gegeben ist, und

(c) die Gleichung ||f||, = 0 genau dann richtig ist, wenn f aulerhalb einer y-Nullmenge ver-
schwindet.

Fiir die zweite Aussage muss man die Dreiecksungleichung | f +g||, < || f||, + ||g]|» beweisen;
diese verallgemeinert die oben erwdhnte Minkowski’sche Ungleichung — hdufig wird diese
Verallgemeinerung ebenfalls als Minkowski’sche Ungleichung bezeichnet.

Mathematisch interessant sind sicherlich Aussagen tiber die algebraischen Strukturen von
Mengen integrierbarer Funktionen. Zu diesem Thema hat F. Riesz 1910 einen langeren Aufsatz
[3] und ein dazu passende Comptes Rendues-Note [4] geschrieben, die folgendermafien beginnt:

Appelons classe [LP] la totalité des fonctions f(x), réelles ou non, définies sur l'intervalle
(a,b), sommable et telles que |f|F est sommable.

Das ist sehr wahrscheinlich die erste Verwendung der Bezeichnung L? in der mathematischen
Fachliteratur. Der Text des Aufsatzes [3] legt die Vermutung nahe, dass der Buchstabe L zu
Ehren von Henri Lebesgue gewdhlt wurde. Die Wahl des Buchstaben p fiir den Exponenten
bedarf bei Riesz keiner weiteren Erklarung; Minkowski hatte ja einige Jahre friiher auch schon
den Exponenten mit p bezeichnet.

Zuriick zu fachlichen Inhalten. Es ist leicht zu zeigen, dass man wieder eine integrierbare
Funktion erhilt, wenn man eine integrierbare Funktion mit einem Skalar multipliziert, oder
wenn man zwei integrierbare Funktionen addiert. Aber unter welchen zusatzlichen Bedin-
gungen kann man zwei integrierbare Funktionen (punktweise) multplizieren, ohne dass die
Integrierbarkeit verloren geht? In [3] hat Riesz darauf die folgende gefunden:

P

Danach ist das Produkt der Funktionen f(x), h(x) sicher integrierbar, wenn es eine Zahl
p > 1 gibt, derart daf3 die Funktionen |f(x)|P, |h(x)| ™7 integrierbar ausfallen.
Dartiber hinaus fand er auch eine Art Umkehrung:

Ist das Produkt f(x),h(x) fiir alle integrierbaren Funktionen f(x), fiir welche die Potenz
|f(x)|P (p > 1) integrierbar ist, ebenfalls integrierbar, so ist es auch die Potenz |h(x)]| =y
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