Titelangaben
Bischoff, Wolfgang:
Minimax and Gamma-minimax estimation for functions of the bounded parameter of a scala parameter family under L_p-loss.
In: Statistics & decisions. 10 (1992) 1/2.
- S. 45-61.
ISSN 0721-2631
Kurzfassung/Abstract
Let $X$ be a random variable with density $f(t,\theta)=\theta g(t\theta)$, $t\in R\sp +$ or $R$ where the scale parameter $\theta\in I=[\theta\sb 0,(1+m)\theta\sb 0]$, $\theta\sb 0>0$, $m>0$, i.e. $\theta$ lies in a bounded interval $I$. The problem is to estimate a strictly monotonic parametric function $h(\theta)$ under the loss function $L\sb p(\theta,d)=\vert h(\theta)-d\vert\sp p$ where $p\geq 2$ and $d$ is an estimator. The author obtains minimax and $\Gamma$-minimax (minimax under Gamma prior) estimators under the $L\sb p$-loss if the interval $I$ is small enough. It is shown that these minimax estimators are Bayes with respect to a two-point prior.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | gamma-minimax estimation; bounded parameter interval; scale parameter family; generalized gamma distribution; least favourable two point prior; Bayes estimators; Lp-loss; strictly monotonic parametric function; Gamma prior; minimax estimators |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Statistik |
Peer-Review-Journal: | Ja |
Verlag: | Oldenbourg |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 3820 |
Letzte Änderung: 19. Mär 2010 15:39
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/3820/