Titelangaben
Bischoff, Wolfgang:
On distributions whose conditional distributions are (multivariate) normal with applications : a vector space approach.
In: Mathematical methods of statistics. 5 (1996).
- S. 443-463.
ISSN 1934-8045
Kurzfassung/Abstract
Let $X$ and $Y$ be two random vectors taking values in the real finite-dimensional inner product spaces $V$ and $W$, respectively. We determine the class of all possible joint distributions of $X$ and $Y$ on the vector space $V\oplus W$ such that conditional distributions of $X$ given $Y=w$ for all $w\in W$ and $Y$ given $X=v$ for all $v\in V$ are normal. Herefrom we can prove characterizations of the multivariate normal distribution on $V \oplus W$ by its conditional distributions. Further the result is applied to Bayesian analysis: We determine the largest class of conjugate priors under which the sampling distributions and the posterior distributions are normal. Moreover, exact formulas are given, showing how the posterior distribution depends on the sampling distributions and on the prior. The solutions of a functional equation form the basis of the results given in this paper.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | normal conditional distributions; conditional specification; vector space approach; characterizing multivariate normal distributions; Bayesian analysis; conjugate priors |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Statistik |
Peer-Review-Journal: | Ja |
Verlag: | Allerton Press |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 3716 |
Letzte Änderung: 04. Mär 2010 13:27
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/3716/