Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Branch-and-repair for the stochastic three-dimensional bin selection problem : A multi-stage stochastic programming application

Titelangaben

Verfügbarkeit überprüfen

Fontaine, Pirmin:
Branch-and-repair for the stochastic three-dimensional bin selection problem : A multi-stage stochastic programming application.
In: European Journal of Operational Research. (Januar 2026).
ISSN 0377-2217

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (1MB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1016/j.ejor.2026.01.035

Kurzfassung/Abstract

Increasing e-commerce has been one of the major trends in the last decades. One of the key elements is the packing of items where the company has to decide which parcel type to choose for packing all items of an order. To reduce the unused space in parcels, the essential part is the available parcel type portfolio. Since order demand is uncertain, it is important to account for this uncertainty in the strategic decision process. Therefore, we address the strategic design of the parcel type portfolio under stochastic demand and introduce the stochastic three-dimensional bin selection problem (S3D-BSP).
We formulate the S3D-BSP as a multi-stage stochastic program in which recourse decisions allow for reordering parcels of the chosen portfolio and balance inventory and procurement decisions. To solve larger instances, we introduce a branch-and-repair method. Specifically, we develop a fast approximated and a slow but optimal repair strategy and discuss how to balance the trade-off between those two. In the numerical study, we show the efficiency of our approach and show that optimal portfolios can largely vary depending on the demand structure in a case study based on real-world data.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL, Logistik und Operations Analytics
DOI / URN / ID:10.1016/j.ejor.2026.01.035
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:36241
Eingestellt am: 20. Feb 2026 10:02
Letzte Änderung: 20. Feb 2026 10:02
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/36241/
AnalyticsGoogle Scholar