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Using an optimal containment approach, we quantify the asymmetry of convex 
bodies in Rn with respect to reflections across a�ine subspaces of a given dimension. 
We prove general inequalities relating these ``Minkowski chirality'' measures to 
Banach–Mazur distances and to each other, and prove their continuity with respect 
to the Hausdorff distance. In the planar case, we determine the reflection axes at 
which the Minkowski chirality of triangles and parallelograms is attained, and show 
that 

√
2 is a tight upper bound on the chirality in both cases.
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1. Introduction

In his ground-laying work [15], Grünbaum set up a general framework for quantifying the point (a)symme
try of convex bodies, i.e., compact convex sets with nonempty interior. Specifically, a measure of (a)symmetry 
is a similarity-invariant (or even a�inely invariant) Hausdorff continuous function f that takes convex bod
ies to the unit interval with the property that f(K) = 1 if and only if K is point-symmetric. In [15], 
some generalizations are discussed, for example quantifying (a)symmetry with respect to reflections across 
a�ine subspaces of dimension at least one. However, the author mentions lack of results in the literature 
in this direction. Different notions of chirality or axiality for quantifying the (a)symmetry of planar shapes 
with respect to reflections across straight lines have been investigated in the mathematical literature in the 
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past decades [10--12,24,25]. Asymmetry notions for planar convex bodies are also studied in mathematical 
chemistry [7--9,26], where polygons serve as abstractions of molecules and where chirality impacts chemical 
properties.

Our contribution is based on an extension of the notion of Minkowski asymmetry [2,6], which, for a 
convex body K, is defined as the smallest dilation factor λ > 0 such that K is a subset of a translated and 
dilated copy of −K, the mirror image of K upon reflection across the coordinate origin. We incorporate 
reflections across higher-dimensional (a�ine) subspaces by defining the jth Minkowski chirality αj(K) as 
the smallest dilation factor λ > 0 such that the convex body K ⊂ Rn is a subset of a translated and 
dilated copy of ΦU (K), where ΦU denotes the reflection across the j-dimensional a�ine subspace U ⊂ Rn

for j ∈ {0, . . . , n}. Note that the Minkowski asymmetry is α0(K) in this terminology.
It is well-known that α0(K) ∈ [1, n] for all convex bodies K ⊂ Rn, with α0(K) = 1 if and only if K is 

point-symmetric, and α0(K) = n if and only if K is a fulldimensional simplex, see [15] and [21, Note 14 
for Section 3.1]. Our main result for convex bodies in general dimensions extends the upper bound on the 
Minkowski asymmetry to all Minkowski chiralities αj(K) for any j ∈ {0, . . . , n}.

Theorem 1.1. Let K ⊂ Rn be a convex body and j ∈ {0, . . . , n}. Then

1 ≤ αj(K) ≤ min
{︃
n,

α0(K) + 1
2 

√
n

}︃
,

with αj(K) = 1 if and only if there exists a j-dimensional a�ine subspace U such that K = ΦU (K).

In fact, the upper bound in Theorem 1.1 can be strengthened and unified to

αj(K) ≤
√︁

α0(K)n. (1)

Since α0(K) ≤ n with α0(K) = n solely for simplices, this result implies αj(K) ≤ n and in particular that 
only simplices might have jth Minkowski chirality n. The inequality (1) is based on a bound on the Banach--
Mazur distance dBM (K,Bn

2 ) ≤
√︁

α0(K)n for any convex body K ⊂ Rn from an unpublished manuscript 
[3].

We recall that the Banach–Mazur distance between convex bodies K,L ⊂ Rn is defined by

dBM (K,L) = inf{λ > 0 : t1 + K ⊂ A(L) ⊂ t2 + λK, A ∈ GL(Rn), t1, t2 ∈ Rn},

where GL(Rn) denotes the set of invertible real n× n matrices, see [21, p. 589].
The inequality (1) is also consequential for the absolute upper bound on the jth Minkowski chirality. 

Based on a stability result from [22], any convex body K with Minkowski asymmetry α0(K) near n is close 
to a simplex in the Banach–Mazur distance. Together with (1), this means that either the supremum of 
αj(T ) over all simplices T ⊂ Rn equals n, or there exists some constant c(n, j) < n such that any convex 
body K ⊂ Rn satisfies αj(K) ≤ c(n, j) (see Section 4 for details). In other words, we can determine whether 
the inequality αj(K) ≤ n is tight by checking only simplices.

Although this remains a challenging problem in general, we are able to solve it in the planar case for the 
1st Minkowski chirality.

Theorem 1.2. Let K ⊂ R2 be a triangle. Then the infimum in the definition of α1(K) is attained at some 
a�ine subspace U of R2 that is necessarily

(i) parallel to the bisector of one of the largest interior angles of K,
(ii) parallel to the bisector of one of the smallest interior angles of K, or
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(iii) perpendicular to one of the longest edges of K.

Moreover, we have

{︁
α1(K) : K ⊂ R2 is a triangle

}︁
=
[︂
1,
√

2
)︂
, (2)

with α1(K) = 1 precisely for isosceles triangles.

The above approach yields the upper bound α1(K) < 1.95 for all convex bodies K ⊂ R2, see (11).
The question of how large αj(K) can be for general n and j is still open, as even deciding whether 

the inequality αj(K) ≤ n is actually tight appears to be difficult. Instead, we focus on a special class of 
convex bodies and answer the first question for planar point-symmetric convex bodies: the upper bound 
from Theorem 1.1 becomes 

√
2 in this case, and the following two theorems show that this bound is reached 

precisely by a specific family of parallelograms. The second theorem uses the John ellipsoid ℰJ (K) of a 
convex body K ⊂ Rn, which is the unique volume-maximal ellipsoid contained in K (see Section 2 for 
details).

Theorem 1.3. Let K ⊂ R2 be a point-symmetric convex body with dBM(K,P ) ≥ 1 + ε for a parallelogram 
P ⊂ R2 and some ε > 0. Then

α1(K) <
√

2
(︂
1 − ε 

10

)︂
.

Theorem 1.4. Let K ⊂ R2 be a parallelogram. Then the infimum in the definition of α1(K) is attained at 
some a�ine subspace U of R2 that is necessarily parallel to

(i) the bisector of an angle formed by consecutive edges of K,
(ii) the bisector of an angle formed by the diagonals of K, or
(iii) a principal axis of the John ellipse ℰJ(K) of K.

Moreover, we have

{︁
α1(K) : K ⊂ R2 is a parallelogram

}︁
=
[︂
1,
√

2
]︂
, (3)

with α1(K) = 1 precisely for rectangles and rhombuses. Furthermore, α1(K) =
√

2 if and only if the angles 
between the diagonals coincide with the interior angles and the ratio between the lengths of the longer edges 
and the shorter edges is at least 

√
2.

Our paper is organized as follows. We start with definitions, notations, and preliminaries in Section 2. We 
proceed with basic properties of αj such as similarity invariance and continuity with respect to the Hausdorff 
distance in Section 3. Afterwards, we show inequalities that compare certain Minkowski chiralities, which 
lead to detailed proofs of Theorems 1.1 and 1.3 in Section 4. Lastly, we turn to the planar case and 
show Theorems 1.2 and 1.4 in Sections 5 and 6. Sections 5 and 6 also contain a detailed analysis of the 
explicit 1st Minkowski chirality of arbitrary parallelograms and triangles depending on various natural 
parametrizations.
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2. Preliminaries

2.1. General notation

For x = (x1, . . . , xn)⊤ ∈ Rn, the Euclidean norm is given by ∥x∥ :=
√︁∑︁n

i=1 x
2
i and the Euclidean unit 

ball is denoted by Bn
2 := {x ∈ Rn : ∥x∥ ≤ 1}. Let X,Y ⊂ Rn, z ∈ Rn, and μ > 0. The Minkowski sum 

of X and Y is given by X + Y := {x + y : x ∈ X, y ∈ Y }. Sets of the form X + z := z + X := {z} + X

and μX := {μx : x ∈ X} are called translates and dilates of X, respectively. We abbreviate (−1)X and 
X + ((−1)Y ) by −X and X − Y , respectively. The set X is z-symmetric if X − z = z − X, and point
symmetric if it is z-symmetric for some z ∈ Rn. We write X ⊂t Y if there exists z ∈ Rn such that X ⊂ Y +z. 
Similarly, if there exists z ∈ Rn such that X = Y + z, we shall write X =t Y for short. If f : Rn → Rn, 
then f(X) := {f(x) : x ∈ X} denotes the image of X under f . We say that f is a similarity transform if 
it is a map of the form f(x) = rAx + b with r > 0, b ∈ Rn, and A ∈ Rn×n orthogonal.

We write conv(X), aff(X), bd(X), and int(X) for the convex hull, a�ine hull, boundary, and interior 
of X, respectively. (For the sake of readability, we will omit the parentheses if the set X is written with 
curly brackets.) For x, y ∈ Rn, the closed line segment connecting them is given by [x, y] where we replace 
the brackets by parentheses if we wish to exclude the respective endpoint from the line segment. For 
a ∈ Rn \ {0} and β ∈ R, the hyperplane H(a,β) is given by 

{︁
x ∈ Rn : a⊤x = β

}︁
. We denote by H≤

(a,β) :={︁
x ∈ Rn : a⊤x ≤ β

}︁
and H≥

(a,β) :=
{︁
x ∈ Rn : a⊤x ≥ β

}︁
the halfspaces bounded by H(a,β). A halfspace 

H≤ ⊂ Rn supports a set X ⊂ Rn at x ∈ X if X ⊂ H≤ and x ∈ bd(H≤), and a hyperplane H supports 
X at x if one of the halfspaces bounded by H does. We write hX(a) := sup

{︁
a⊤x : x ∈ X

}︁
for the support 

function of X. The polar set of X is defined as X◦ := {a ∈ Rn : hX(a) ≤ 1}. We write vol(X) for the 
n-dimensional Lebesgue measure (volume) of X if X is measurable.

By a triangle and a parallelogram, we always refer to non-degenerate convex polygons, i.e., their vertices 
are not elements of a single straight line. The bisector of an interior angle of a triangle is always the one 
that has non-empty intersection with the interior of the polygon.

2.2. Convex bodies, radii, and optimal containment

We denote by 𝒦n the family of convex bodies in Rn, i.e., compact convex sets with nonempty interior. For 
K,L ∈ 𝒦n, their Hausdorff distance is given by dH(K,L) := inf {λ > 0 : K ⊂ L + λBn

2 and L ⊂ K + λBn
2}. 

By [21, Lemma 1.8.14], we equivalently have dH(K,L) = max∥u∥=1 |hK(u) − hL(u)|. The pointwise inequal
ity hK(x) ≤ hL(x) + max∥u∥=1 |hK(u) − hL(u)|hBn

2 (x) = hL+dH(K,L)Bn
2
(x) for all x ∈ Rn thus implies 

K ⊂ L + dH(K,L)Bn
2 , so the Hausdorff distance is always attained as a minimum.

For K,C ∈ 𝒦n, the circumradius and the inradius of K with respect to C are defined as

R(K,C) := inf {λ > 0 : K ⊂t λC} and r(K,C) := sup {λ > 0 : λC ⊂t K} ,

respectively. The jth Minkowski chirality can be written with the help of the circumradius as

αj(K) := inf {R(K,ΦU (K)) : U ⊂ Rn a�ine subspace, dim(U) = j} . (4)

If K = −K and C = −C, translations can be omitted in the definition of circum- and inradius, i.e.,

R(K,C) = inf {λ > 0 : K ⊂ λC} and r(K,C) = inf {λ > 0 : λC ⊂ K} .

The following result, taken from [5, Theorem 2.3], helps with checking whether a containment K ⊂ C is 
optimal, meaning that additionally R(K,C) = 1.
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Proposition 2.1. Let K,C ∈ 𝒦n. Then K is optimally contained in C if and only if

(i) K ⊂ C, and
(ii) there exist some a1, . . . , am ∈ Rn \ {0} such that hK(ai) = hC(ai) for i ∈ {1, . . . ,m} and 0 ∈

conv
{︁
a1, . . . , am

}︁
.

By Proposition 2.1, K ⊂ C is optimal for triangles if and only if every edge of C contains a vertex of K, 
and for parallelograms if and only if C has two opposite edges each containing a vertex of K.

As in the introduction, the John ellipsoid ℰJ(K) of a convex body K ⊂ Rn is the unique volume-maximal 
ellipsoid contained in K, see [14, Theorem 11.1]. The John ellipsoid is a�ine equivariant, meaning that for any 
convex body K ∈ 𝒦n, any invertible linear transformation A ∈ GL(Rn), and any translation vector b ∈ Rn, 
we have ℰJ(A(K) + b) = A(ℰJ(K)) + b, see [1, Section 8.4.3]. By John’s theorem [14, Theorem 11.2], the 
Euclidean ball Bn

2 is the John ellipsoid of the cube [−1, 1]n. Since a�ine transformations preserve midpoints 
and parallelism of hyperplanes, the John ellipsoid of a parallelotope is the ellipsoid that is tangent to all 
facets of the parallelotope at their midpoints.

2.3. Grassmannian and reflections

For j ∈ {0, . . . , n}, we denote by Grj(Rn) the Grassmannian, i.e., the set of all j-dimensional linear 
subspaces of Rn. This set is topologized as a quotient space of the Stiefel manifold and as such it is 
homeomorphic to the set {︁

M ∈ Rn×n : M = M⊤ = M2, trace(M) = j
}︁

of trace-j symmetric idempotent real n×n-matrices equipped with the subspace topology of Rn×n, see [19, 
§5]. These matrices are precisely the orthoprojectors PU : Rn → Rn onto j-dimensional subspaces U of Rn, 
where PU (x) ∈ Rn is for x ∈ Rn uniquely determined by the conditions PU(x) ∈ U and ∥PU (x) − x∥ ≤
∥z − x∥ for all z ∈ U . Since the map U ↦→ PU is bijective and the set of trace-j symmetric idempotent 
real n × n-matrices is a closed subset of the unit sphere of the spectral norm ∥·∥ on Rn×n, we see that 
dG(U, V ) := ∥PU − PV ∥ defines a metric on Grj(Rn), and that (Grj(Rn), dG) is a compact metric space.

For U ⊂ Rn an a�ine subspace, the reflection across U is given by ΦU : Rn → Rn, ΦU (x) = 2PU (x)− x. 
Note that for x ∈ Rn, we have

ΦU (x) = ΦU−U (x) + 2PU (0). (5)

3. Basic properties

This section is devoted to verifying some basic properties of the Minkowski chiralities that Grünbaum 
[15] demanded of any (a)symmetry measure. In particular, we show their similarity invariance and Hausdorff 
continuity. We also obtain results on ratios of certain Minkowski chiralities, which prepares us for the proofs 
of the upper bounds on the chiralities in the next section.

3.1. Similarity invariance

We begin this subsection with a slight simplification of the definition of the Minkowski chirality. The 
translation invariance of the circumradius together with (5) shows for K ∈ 𝒦n and an a�ine subspace U
of Rn of dimension j ∈ {0, . . . , n} that R(K,ΦU (K)) = R(K,ΦU−U (K)). Taking the infimum over the 
j-dimensional a�ine subspaces U in (4), we get
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αj(K) = inf {R(K,ΦU (K)) : U ∈ Grj(Rn)} . (6)

Next, we show that the Minkowski chiralities are similarity invariant. In Sections 5 and 6, we make use 
of this property by choosing representatives of the similarity classes of parallelograms and triangles.

Lemma 3.1. Let K ∈ 𝒦n and j ∈ {0, . . . , n}. Then αj(f(K)) = αj(K) for any similarity transform f :
Rn → Rn.

Proof. The general case is a composition of the cases of translations and linear similarity transforms.
First, assume that f is a translation, i.e., there exists b ∈ Rn such that f(x) = x+ b for all x ∈ Rn. Using 

the linearity of ΦU for U ∈ Grj(Rn) and the translation invariance of the circumradius,

R(K + b,ΦU (K + b)) = R(K + b,ΦU (K) + ΦU (b)) = R(K,ΦU (K)).

Now take the infimum over U ∈ Grj(Rn) to obtain αj(K + b) = αj(K) from (6).
Second, assume that the similarity transform f : Rn → Rn is linear. Since f is invertible, the containment 

f(K) ⊂ x+λC for x ∈ Rn and λ > 0 is equivalent to K ⊂ f−1(x)+λf−1(C). It follows that R(f(K), C) =
R(K, f−1(C)). Next, for U ∈ Grj(Rn), the maps f−1 ◦ ΦU ◦ f and Φf−1(U) coincide as can be checked by 
their actions on a basis of f−1(U) and on one of f−1(U)⊥. Hence,

R(f(K),ΦU (f(K))) = R(K, f−1(ΦU (f(K)))) = R(K,Φf−1(U)(K)),

and taking the infimum over U ∈ Grj(Rn) yields αj(f(K)) = αj(K) from (6). Note that when U traverses 
Grj(Rn), then so does f−1(U). □

Let us remark that the Minkowski asymmetry α0 enjoys an even stronger invariance property, namely the 
invariance under invertible a�ine transformations, i.e., α0(A(K) + b) = α0(K) for all K ∈ 𝒦n, b ∈ Rn, and 
A ∈ GL(Rn). This is evident from the equivalence of K ⊂t λ(−K) and A(K) ⊂t λ(−A(K)) for λ > 0. In 
contrast, the jth Minkowski chirality αj is not a�inely invariant when j / ∈ {0, n}. For instance, a rectangle 
K satisfies α1(K) = 1, but there exist a�ine images A(K) with αj(A(K)) > 1, namely when A(K) is a 
parallelogram that is neither a rectangle nor a rhombus. We can further pinpoint the step in the proof of 
Lemma 3.1 which fails for showing the a�ine invariance of αj when j / ∈ {0, n}. If f is a general invertible 
linear map (instead of just a linear similarity transform), then the maps f−1 ◦ΦU ◦ f and Φf−1(U) may not 
coincide, even though their sets of fixed points still do.

3.2. Existence of optimal subspaces and continuity

In this subsection, we prove that αj is Hausdorff continuous and that the infimum in (6) is attained by 
some subspace U∗ ∈ Grj(Rn).

We start with some preparatory results regarding the continuity of the circumradius R : 𝒦n × 𝒦n → R

and the map Φ : 𝒦n × Grj(Rn) → 𝒦n, (K,U) ↦→ ΦU (K). These maps are defined on the Cartesian 
products 𝒦n × 𝒦n and 𝒦n × Grj(Rn), on which we consider the metrics dH + dH and dH + dG given 
by (dH + dH)((K1, C1), (K2, C2)) := dH(K1,K2) + dH(C1, C2) and (dH + dG)((K1, U1), (K2, U2)) :=
dH(K1,K2) + dG(U1, U2) for U1, U2 ∈ Grj(Rn) and K1,K2, C1, C2 ∈ 𝒦n. The joint continuity of both 
maps in their respective arguments is straightforward to verify and well-known to experts. Since explicit 
proofs appear difficult to locate in the literature, we provide short proofs in Appendix A for the sake of 
completeness.

Proposition 3.2. The map R : 𝒦n ×𝒦n → R is continuous.
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Proposition 3.3. Let j ∈ {0, . . . , n}. The map Φ : 𝒦n × Grj(Rn) → 𝒦n, (K,U) ↦→ ΦU (K) is continuous.

With these results at hand, we establish the continuity of αj and show that the infimum in (6) is attained. 
Moreover, we verify that any convex body K contains at least one point (x∗ below) that acts for αj like 
a Minkowski center would for α0 (see [6, Definition 3.1]). This is important for some constructions in the 
next subsection. In contrast to Minkowski centers, x∗ does not need to lie in the interior of K. In fact, take 
any triangle T ⊂ R2 with α1(T ) > 1 whose 1st Minkowski chirality is attained uniquely for the reflections 
across lines parallel to the bisector of the smallest interior angle (see Theorem 1.2). In this case, it is easy 
to establish from the proof below that the only possible choice for x∗ is the vertex at this smallest interior 
angle.

Lemma 3.4. Let K ∈ 𝒦n and j ∈ {0, . . . , n}. There exist U∗ ∈ Grj(Rn) and x∗ ∈ K such that K − x∗ ⊂
αj(K)ΦU∗(K − x∗). Moreover, the map αj : 𝒦n → R is Hausdorff continuous.

Proof. By [6, Lemma 2.2], we obtain R(K,ΦU (K)) < ∞ for all U ∈ Grj(Rn), so αj(K) < ∞. By Proposi
tions 3.2 and 3.3, the map Grj(Rn) → R, U ↦→ R(K,ΦU (K)) is a continuous map over a compact domain. 
The existence of U∗ ∈ Grj(Rn) with R(K,ΦU∗(K)) = αj(K) is now a consequence of Weierstrass’s theorem, 
and the continuity of αj : 𝒦n → R follows from Proposition 3.3 and the compactness of the metric space 
(Grj(Rn), dG).

Again by [6, Lemma 2.2], there exists some x ∈ Rn with K ⊂ x+αj(K)ΦU∗(K). There also exist y ∈ U∗

and z ∈ (U∗)⊥ such that x = y+z. Next, we want to choose y′ ∈ U∗ and z′ ∈ (U∗)⊥ with (1−αj(K))y′ = y

and (1 + αj(K))z′ = z. There are clearly no obstructions in doing so when αj(K) > 1. If, on the other 
hand, we have αj(K) = 1, then

ΦU∗(K) ⊂ ΦU∗(y + z + ΦU∗(K)) = y − z + K

shows that K ⊂ y + z + ΦU∗(K) ⊂ 2y + K. From the cancellation property, cf. [21, p. 48], we conclude 
y = 0. In other words, also in the case when αj(K) = 1, the choice of y′ ∈ U∗ with (1 − αj(K))y′ = y is 
possible (and, moreover, any y′ ∈ U∗ is admissible). Define x′ := y′ + z′. Then

αj(K)ΦU∗(K − x′) = αj(K)ΦU∗(K) − αj(K)y′ + αj(K)z′

⊃ K − y − z + (1 − αj(K))y′ + (1 + αj(K))z′ − y′ − z′ = K − x′. (7)

It remains to show that x′ can be chosen from K. To this end, we first claim that int(K − x′) ∩ U∗ ̸= ∅. 
Towards a contradiction, let us assume that int(K − x′) ∩ U∗ = ∅. Then [21, Theorem 1.3.8] yields the 
existence of a ∈ (U∗)⊥ \ {0} with hK−x′(a) ≤ 0 such that there exists v ∈ K − x′ with a⊤v < 0. However, 
we then have

hαj(K)ΦU∗ (K−x′)(−a) = αj(K)hK−x′(ΦU∗(−a)) = αj(K)hK−x′(a) ≤ 0,

which contradicts v ∈ K − x′ ⊂ αj(K)ΦU∗(K − x′). Therefore, there must exist u′ ∈ int(K − x′) ∩ U∗. 
If now αj(K) = 1, then x∗ := x′ + u′ is an element of K and, from the discussion for (7), we see that 
x∗ = (y′ + u′) + z′ ∈ U∗ + (U∗)⊥ satisfies K − x∗ ⊂ α0(K)ΦU∗(K − x∗). If instead αj(K) > 1, then we 
argue that x∗ := x′ ∈ K. Towards a contradiction, let us assume that x′ / ∈ K. Then we have 0 / ∈ K ′ :=
(K − x′)∩U∗. From [21, Theorem 1.3.4], we conclude that there exists a ∈ U∗ such that hK′(a) < 0. Since 
K ′ ⊂ (αj(K)ΦU∗(K − x′)) ∩ U∗ = αj(K)K ′, we obtain

hK′(a) ≤ hαj(K)K′(a) = αj(K)hK′(a).

However, this contradicts hK′(a) < 0 and αj(K) > 1. □
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3.3. Relating chiralities to each other

The next theorem relates the jth Minkowski chiralities of different convex bodies to each other. It 
generalizes [6, Theorem 6.1], where the same inequality is shown, but restricted to the Minkowski asymmetry 
α0. The ratio between circumradius and inradius, which appears on the right-hand side of our estimate, has 
been studied in [23] as a distance measure in the context of the Banach–Mazur distance and the Minkowski 
asymmetry. This connection allows us to obtain the general estimates on the Minkowski chiralities in the 
next section, extending the importance of the following theorem beyond the context of comparing Minkowski 
chiralities.

Theorem 3.5. Let K,L ∈ 𝒦n and j ∈ {0, . . . , n}. Then

max
{︃
αj(K)
αj(L) ,

αj(L) 
αj(K)

}︃
≤ R(K,L)

r(K,L) = R(L,K)
r(L,K) . (8)

For every K ∈ 𝒦n and β ∈ [1, αj(K)], there exists L ∈ 𝒦n with αj(L) = β and equality in (8).

Proof. The identity R(K,L)
r(K,L) = R(L,K)

r(L,K) is direct from the definitions of R and r. Let U ∈ Grj(Rn) with 
R(L,ΦU (L)) = αj(L) be obtained from Lemma 3.4. Then L ⊂t αj(L)ΦU (L), and, hence,

K ⊂t R(K,L)L ⊂t R(K,L)αj(L)ΦU (L)

⊂t R(K,L)αj(L)ΦU (r(K,L)−1K) = αj(L)R(K,L)
r(K,L) ΦU (K).

Consequently, we have R(K,ΦU (K)) ≤ αj(L)R(K,L)
r(K,L) . Now, use (6) to conclude

αj(K) ≤ αj(L)R(K,L)
r(K,L) .

Reversing the roles of K and L gives

αj(L) ≤ αj(K)R(L,K)
r(L,K) = αj(K)R(K,L)

r(K,L) .

Combining those two results yields the claimed inequality.
Let us now turn to the equality case. According to Lemma 3.4, there exist U ∈ Grj(Rn) and x ∈ K with 

K − x ⊂ αj(K)ΦU (K − x). We define for β ∈ [1, αj(K)] the convex body

L := conv((β(K − x)) ∪ ΦU (K − x)).

Then r(L,K) ≥ β since β(K − x) ⊂ L. Moreover, 0 ∈ K − x and αj(K) ≥ β show

β(K − x) ⊂ αj(K)(K − x),

so L ⊂ αj(K)(K − x). We conclude R(L,K) ≤ αj(K) and R(K,L)
r(K,L) = R(L,K)

r(L,K) ≤
αj(K)

β . The already proven 
inequality (8) implies αj(L) ≥ β. It remains to show αj(L) ≤ β. This is immediate from

ΦU (L) = conv((βΦU (K − x)) ∪ (K − x)) ⊂ conv((β2(K − x)) ∪ (βΦU (K − x))) = βL,

where we used β ≥ 1 and 0 ∈ K − x. □
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Remark 3.6. It follows from Theorem 3.5 that αj(K) ≤ R(K,L)
r(K,L) for all j ∈ {0, . . . , n} and K,L ∈ 𝒦n with 

αj(L) = 1. Moreover, for every j ∈ {0, . . . , n} and K ∈ 𝒦n, there exists L ∈ 𝒦n with αj(L) = 1 such that 
αj(K) = R(K,L)

r(K,L) . Writing dD(K,L) := R(K,L)
r(K,L) , this shows

αj(K) = min {dD(K,L) : L ∈ 𝒦n, αj(L) = 1} . (9)

The quantity dD has been studied as a close relative of the Banach–Mazur distance [23]. This gives another 
interpretation of αj(K) as quantifying the distance from the family of convex bodies that are symmetric with 
respect to reflection at an appropriate j-dimensional subspace. Since α0 is a�inely invariant, (9) generalizes 
the identity α0(K) = min {dBM (K,L) : L ∈ 𝒦n, α0(L) = 1} from [2, Proposition 3.1].

While Theorem 3.5 relates the values of the same Minkowski chirality of different convex bodies to each 
other, we can also compare different Minkowski chiralities associated with a single convex body. This requires 
the following simple observations.

Proposition 3.7. Let K ∈ 𝒦n and U ⊂ Rn be a linear subspace. Then

(i) R(K,ΦU (K)) = R(K,ΦU⊥(−K)), and 
(ii) R(K,ΦU (K)) = R(K◦,ΦU (K◦)) if K is 0-symmetric.

Proof. For (i), recall that ΦU (ΦU (x)) = x and ΦU (ΦU⊥(x)) = −x for all x ∈ Rn. Thus,

ΦU (K) = ΦU (ΦU (ΦU⊥(−K))) = ΦU⊥(−K).

For (ii), let A ∈ Rn×n be the matrix representation of ΦU with respect to the standard basis of Rn. Then 
the 0-symmetry of K, ΦU (K), K◦, and ΦU (K◦) shows for λ > 0 that

λ ≥ R(K,ΦU (K)) ⇐⇒ K ⊂ λA(K) ⇐⇒ K◦ ⊃ 1 
λ
A−⊤(K◦) ⇐⇒ λA⊤(K◦) ⊃ K◦

⇐⇒ λΦU (K◦) ⊃ K◦ ⇐⇒ λ ≥ R(K◦,ΦU (K◦)). □
We are now ready to verify the final result of this section, which highlights the special role of point

symmetry and the Minkowski asymmetry α0 in the context of the general Minkowski chiralities.

Theorem 3.8. Let K ∈ 𝒦n and j ∈ {0, . . . , n}. Then

max
{︃

αj(K) 
αn−j(K) ,

αn−j(K)
αj(K) 

}︃
≤ α0(K). (10)

If K is point-symmetric, then αj(K) = αn−j(K). If K is 0-symmetric, then αj(K) = αj(K◦).

Proof. Let U ∈ Grj(Rn) with R(K,ΦU⊥(K)) = αn−j(K) be obtained from Lemma 3.4. Since −K ⊂t

α0(K)K, the monotonicity and translation invariance of the circumradius, together with Proposition 3.7, 
show

αj(K) ≤ R(K,ΦU (K)) = R(K,ΦU⊥(−K)) ≤ R(K,ΦU⊥(α0(K)K)) = α0(K)αn−j(K).

Reversing the roles of j and n− j proves (10).
Since a point-symmetric convex body K satisfies α0(K) = 1, (10) shows αj(K) ≤ αn−j(K) ≤

αn−(n−j)(K) = αj(K) and consequently αj(K) = αn−j(K) in this case.
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Lastly, if K is 0-symmetric, Proposition 3.7 and (6) show

αj(K◦) = inf {R(K◦,ΦU (K◦)) : U ∈ Grj(Rn)} = inf {R(K,ΦU (K)) : U ∈ Grj(Rn)} = αj(K). □
Let us point out that the Minkowski asymmetry α0 on the right-hand side in (10) cannot be replaced 

with the other Minkowski chiralities in general. For instance, any triangle T ⊂ R2 satisfies α0(T )
α2(T ) = 2, 

yet Theorem 1.2 implies α1(T ) <
√

2. We also have α0(T ) ̸= α2(T ), so the point-symmetry in the second 
part of the theorem cannot be omitted. Lastly, it is easy to see that αj(K) = αj(K◦) may fail for general 
K ∈ 𝒦n with 0 ∈ int(K), even if K is point-symmetric (with its center outside the origin). For example, 
the square K ⊂ R2 with vertices (2, 1), (−2, 1), (−2,−3), and (2,−3) satisfies α0(K) = 1, but K◦ is a 
non-point-symmetric kite with α0(K◦) > 1.

4. General upper bounds on the Minkowski chirality

We verify Theorems 1.1 and 1.3 in this section. Their proofs require the following auxiliary result, which 
states that any ellipsoid is invariant under reflection at a subspace spanned by some of its principal axes.

Proposition 4.1. Let v1, . . . , vn ∈ Rn form an orthonormal basis and let α1, . . . , αn > 0. Define the ellipsoid 
E =

{︂
x ∈ Rn : 

∑︁n
i=1

(x⊤vi)2
α2

i
≤ 1
}︂

and the subspace U :=
{︂∑︁j

i=1 μiv
i : μ1, . . . , μj ∈ R

}︂
for some j ∈

{0, . . . , n}. Then ΦU (E) = E and αj(E) = 1.

Proof. Since ΦU is invertible with ΦU = Φ−1
U , we have ΦU (E) = Φ−1

U (E) = {y ∈ Rn : ΦU (y) ∈ E}. It is 
therefore enough to show for any y ∈ Rn and i ∈ {1, . . . , n} that (ΦU (y)⊤vi)2 = (y⊤vi)2.

To this end, recall that ΦU (y) = 2PU (y) − y, where PU (y) =
∑︁j

i=1(y⊤vi)vi is the orthogonal projection 
of y onto U . Now, if i ∈ {1, . . . , j}, we obtain

ΦU (y)⊤vi = 2
j∑︂

ℓ=1 
(y⊤vℓ)((vℓ)⊤vi) − y⊤vi = 2(y⊤vi) − y⊤vi = y⊤vi.

If instead i ∈ {j + 1, . . . , n}, we have

ΦU (y)⊤vi = 2
j∑︂

ℓ=1 
(y⊤vℓ)((vℓ)⊤vi) − y⊤vi = 0 − y⊤vi = −y⊤vi. □

The following result establishes a direct link between the jth Minkowski chirality and the Banach–Mazur 
distance to the Euclidean ball. It serves as our main tool for the proofs of Theorems 1.1 and 1.3. The 
inequality below can also be read as a lower bound to the Banach–Mazur distance to the Euclidean ball. 
Lower bounds to Banach–Mazur distances are typically difficult to verify, which gives the inequality some 
additional value as another tool to obtain such lower bounds.

Theorem 4.2. Let K ∈ 𝒦n and j ∈ {0, . . . , n}. Then

αj(K) ≤ dBM (K,Bn
2 ).

Moreover, for every β ∈ [1, n], there exists K ∈ 𝒦n such that α0(K) = dBM (K,Bn
2 ) = β.

Proof. From (9) and Proposition 4.1, we obtain

αj(K) = min {dD(K,L) : L ∈ 𝒦n, αj(L) = 1} ≤ inf {dD(K,E) : E ∈ 𝒦n ellipsoid} = dBM (K,Bn
2 ).
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Towards the second claim, let Tn ∈ 𝒦n be a regular simplex with 1 
nB

n
2 ⊂ Tn ⊂ Bn

2 . For K := conv(Bn
2 ∪

(βTn)), β ∈ [1, n], we have

βTn ⊂ K ⊂ nTn and Bn
2 ⊂ K ⊂ βBn

2 ,

which implies dBM (K,Tn) ≤ n
β and α0(K) ≤ dBM (K,Bn

2 ) ≤ β. Now, Theorem 3.5 together with α0(Tn) =
n and the a�ine invariance of α0 additionally shows

dBM (K,Tn) = inf
{︃
R(K,A(Tn))
r(K,A(Tn)) : A ∈ GL(Rn)

}︃
≥ α0(Tn)

α0(K) ≥
n 
β
.

Therefore, we must have α0(K) = β and altogether β = α0(K) ≤ dBM (K,Bn
2 ) ≤ β. □

We now prove the upper bound on the Minkowski chirality for general n-dimensional convex bodies.

Proof of Theorem 1.1. The inequality αj(K) ≥ 1 becomes clear from a volumetric argument: If U ∈
Grj(Rn), x ∈ Rn, μ > 0, and K ⊂ x + μΦU (K), then vol(K) ≤ vol(x + μΦU (K)) = μn vol(K), so 
μ ≥ 1. If αj(K) = 1, then by Lemma 3.4 there exist U ∈ Grj(Rn), x ∈ K such that K − x ⊂ ΦU (K − x), 
i.e., K ⊂ ΦU+x(K). Since K and ΦU+x(K) have equal volumes, they coincide.

Towards the upper bound, we obtain from [21, (10.113)] and Theorem 4.2 that

αj(K) ≤ dBM (K,Bn
2 ) ≤ n.

Moreover, [4, Corollary 5.3] and [6, Corollary 4.3] together with the a�ine invariance of α0 imply

αj(K) ≤ dBM (K,Bn
2 ) = inf

{︃
w(A(K),Bn

2 ) 
2r(A(K),Bn

2 )
2R(A(K),Bn

2 )
w(A(K),Bn

2 ) : A ∈ GL(Rn)
}︃

≤ α0(K) + 1
2 

inf
{︃

2R(A(K),Bn
2 )

w(A(K),Bn
2 ) : A ∈ GL(Rn)

}︃
≤ α0(K) + 1

2 

√
n,

where w(K,C) := 2r(K −K,C − C) is the minimal width of K ∈ 𝒦n with respect to C ∈ 𝒦n. □
In a similar fashion, we can verify Theorem 1.3.

Proof of Theorem 1.3. It is shown in [16, Theorem 1.3] that a point-symmetric convex body K ∈ 𝒦2 with 
dBM (K,P ) ≥ 1 + 10 √

2δ for a parallelogram P ⊂ R2 and some δ > 0 satisfies dBM (K,B2
2) <

√
2 − δ. By 

Theorem 4.2, the latter in particular means α1(K) <
√

2− δ. Therefore, dBM (K,P ) ≥ 1 + ε for some ε > 0
implies with δ :=

√
2

10 ε that α1(K) <
√

2 − δ =
√

2
(︁
1 − ε 

10
)︁

as claimed. □
The final result of this section is another consequence of Theorem 3.5. It provides a stability improvement 

of the upper bound on the Minkowski chirality from Theorem 1.1 whenever the jth Minkowski chirality of 
simplices can be bounded away from n. In this case, we also obtain an explicit improvement of the absolute 
upper bound n on the jth Minkowski chirality as outlined below.

Theorem 4.3. Let K ∈ 𝒦n with α0(K) > n − ε for some ε ∈ [0, 1 
n ), j ∈ {0, . . . , n}, and s(n, j) :=

sup {αj(T ) : T ∈ 𝒦n simplex}. Then

αj(K) < s(n, j)
(︃

1 + (n + 1)ε
1 − nε 

)︃
.
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Note that the above supremum s(n, j) is not attained as a maximum for some n and j. For example, 
Theorem 1.2 shows that any triangle T ⊂ R2 satisfies α1(T ) <

√
2 = s(2, 1).

Proof. Theorem 3.5 yields for any simplex T ∈ 𝒦n the inequality

αj(K) ≤ αj(T )R(K,T )
r(K,T ) ≤ s(n, j)R(K,T )

r(K,T ) .

Minimizing the right-hand term over all choices of T thus yields αj(K) ≤ s(n, j)dBM (K,T ). Lastly, we 
apply [22, Theorem 2.1], which states that

dBM (K,T ) < 1 + (n + 1)ε
1 − nε 

under the assumptions in the theorem. □
Finally, let us discuss the improvement of the absolute upper bound n on the jth Minkowski chirality. 

Whenever s(n, j) < n, there exists a unique number ε(n, j) ∈ (0, 1 
n ) that satisfies

√︁
n(n− ε(n, j)) = s(n, j)

(︃
1 + (n + 1)ε(n, j)

1 − nε(n, j) 

)︃
.

By (1) and Theorem 4.3, any K ∈ 𝒦n satisfies αj(K) ≤ c(n, j) :=
√︁

n(n− ε(n, j)) since either α0(K) ≤
n− ε(n, j) and thus αj(K) ≤

√︁
α0(K)n ≤ c(n, j), or αj(K) > n− ε(n, j) and thus

αj(K) < s(n, j)
(︃

1 + (n + 1)ε(n, j)
1 − nε(n, j) 

)︃
= c(n, j).

For (n, j) = (2, 1), Theorem 1.2 shows s(2, 1) =
√

2. We may therefore compute c(2, 1) explicitly, which 
leads to

α1(K) ≤

⌜⃓⃓⃓
⎷1

6

⎛⎝13 − 11 (︁
631 + 54

√
137
)︁1/3 +

(︂
631 + 54

√
137
)︂1/3

⎞⎠ < 1.95 (11)

for K ∈ 𝒦2.

5. Parallelograms

In this section, we prove Theorem 1.4. Let us describe the roadmap of our proof.
First, note that Theorem 1.1 already verifies that α1(K) ≥ 1, with equality precisely if K is a rectangle 

or a rhombus. Therefore, it remains to prove Theorem 1.4 for parallelograms that are neither rectangles nor 
rhombuses. Such parallelograms shall be referred to as nontrivial in the sequel. In Proposition 5.1, we show 
that a reflection axis at which α1(K) is attained is necessarily parallel or perpendicular to the bisector of 
an angle formed by consecutive edges or by the diagonals of K, or to a principal axis of the John ellipse 
ℰJ(K).

Second, we derive the values of R(K,ΦU (K)) for the candidate subspaces U in Proposition 5.3. To do 
so, note that by Lemma 3.1, we may parameterize parallelograms by their side length ratio r ≥ 1, i.e., the 
ratio of the length of the longer edge divided by the length of the shorter one, and the larger of the two 
interior angles θ ∈ [π2 ,π). In particular, this means that r > 1 if K is not a rhombus, and θ > π

2 if K is not 
a rectangle.
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Third, we prove (3) and the characterization of its boundary cases in Proposition 5.6. (Note that the 
bound α1(K) ≤

√
2 for parallelograms K already follows from Theorem 1.1.)

Last, we describe a ``phase diagram'' for the optimal reflection axes in Corollary 5.7, i.e., we establish 
explicit conditions on r and θ that tell us which of the candidates for the optimal reflection axis is the one 
that attains α1(K).

The following result is based on the fact that for any set K ⊂ R2 and any two subspaces U,U ′ ∈ Gr1(R2), 
the set ΦU ′(K) is the image of ΦU (K) under a rotation at the coordinate origin. This idea is used again to 
determine the optimal reflection axes for triangles in the next section.

Proposition 5.1. Let K ∈ 𝒦2 be a nontrivial 0-symmetric parallelogram and U ∈ Gr1(R2) such that 
R(K,ΦU (K)) = α1(K). Then U is parallel or perpendicular to either

(i) the bisector of an angle formed by consecutive edges of K,
(ii) the bisector of an angle formed by the diagonals of K, or
(iii) a principal axis of the John ellipsoid of K.

Proof. Let K = −K and C = −C be parallelograms such that K ⊂ C and R(K,C) = 1. By Proposition 2.1, 
either two vertices of K that are the endpoints of one of its diagonals lie on the boundary of C, or all four 
vertices of K do. Likewise, by 0-symmetry, there are either two or four edges of C that have nonempty 
intersection with K.

We do a case distinction for these two numbers. In each case, we determine the implications of the 
additional assumption that C = λΦU (K) for some λ > 1 and some U ∈ Gr1(R2), and specifically that U is 
such that λ = α1(K).

Case 1: There are precisely two vertices of K on the boundary of C and precisely two edges of C have 
nonempty intersection with K. This means that there are two vertices v1 and −v1 of K in the relative 
interior of edges F and −F of C, respectively, while the remaining two vertices v2 and −v2 of K are 
elements of int(C). Then there is a rotation Ψ : R2 → R2 around the coordinate origin (with a small 
rotation angle in the appropriate direction) such that Ψ(±v1),Ψ(±v2) ∈ int(C), i.e., K ⊂ int(Ψ−1(C)) and 
hence R(K,Ψ−1(C)) < 1. The direction of the rotation angle corresponds to where the smaller angle formed 
by aff {−v1, v1} and a perpendicular to F is, and the existence of a rotation angle sufficiently close to 0
follows by continuity of rotations. If C = λΦU (K) for some λ and U , then there exists U ′ ∈ Gr1(R2) such 
that Ψ−1(C) = λΦU ′(K), which shows that our assumption λ = R(K,ΦU (K)) = α1(K) is violated.

Case 2: There are precisely two vertices of K on the boundary of C and all four edges of C have nonempty 
intersection with K. This means that K and C share precisely one diagonal. If C = λΦU (K) for some λ
and U and if the shared diagonal was the long or the short diagonal in both K and C, then the shared 
diagonal would be a subset of U (or of its orthogonal complement) and the interior angles at the shared 
vertices would be the same for K and C. By K ⊂ C, this would already imply that K = C, but since K is 
assumed not to be a rhombus, this contradicts the assumption that C is a dilated mirror image of K. Thus, 
for K and C = λΦU (K) to be nontrivial parallelograms that share precisely one diagonal, the reflection 
axis U must be the bisector of one of the angles formed by the diagonals, see Fig. 1.

Case 3: All four vertices of K lie on the boundary of C but only two edges of C have nonempty intersection 
with K. This means that there are edges F of K and F ′ of C such that F is a subset of the relative interior 
of F ′. If C = λΦU (K) for some λ and U and if F and F ′ are both long or both short edges of K and C, 
respectively, then U is parallel or perpendicular to the common direction of F and F ′. But then F ⊂ F ′

would imply that K was a rectangle. Therefore, the reflection ΦU necessarily maps the directions of the 
edges of K onto each other, i.e., U is parallel or perpendicular to the bisector of the angle formed by a pair 
of consecutive edges of K, see Fig. 1 for an illustration.
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0
0

Fig. 1. Case 2 (left) and Case 3 (right) in the proof of Proposition 5.1: Parallelogram K (green), reflection axis U (gray), ΦU (K)
(red), and C = R(K,ΦU (K))ΦU (K) (black). (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

0

v

w

q1
q2

0

Fig. 2. Case 4 in the proof of Proposition 5.1: Let all edges of A(K) (green) contain a vertex of a parallelogram P (red, dotted) 
that is not a square. Then P cannot be a dilation of A(ΦU (K)) since not all edges of R(A(K), P )P (red, dashed) contain a vertex 
of A(K) in their relative interiors (left panel). If U is a principal axis of the John ellipsoid, A(K) (green) and A(ΦU (K)) (red) are 
squares - both with John ellipsoid B2

2 and vertices on bd(
√

2B2
2). In the relative interior of each edge of R(K,ΦU (K))A(ΦU (K)), 

there exists a vertex of A(K) (right panel).

Case 4: All four vertices of K lie on the boundary of C and all four edges of C have nonempty intersection 
with K. If K and C share one diagonal and if C is a dilated mirror image of K, then U is parallel or 
perpendicular to the shared diagonal, or to the bisector of the angle formed by the diagonals of K. Either 
way, all four vertices of K lying on the boundary of C then contradicts the assumption of K being nontrivial. 
Hence, K and C do not share any vertices, i.e., every edge of C contains precisely one vertex of K in its 
relative interior. It remains to show that then U is one of the principal axes of ℰJ(K).

Let A ∈ GL(R2) such that A(ℰJ(K)) = B2
2. By [17, p. 203], A(K) is a square with all vertices on 

bd(
√

2B2
2). Let u1, u2 ∈ R2 be the standard Euclidean unit vectors and assume without loss of generality 

that A(K) =
√

2 conv
{︁
u1, u2,−u1,−u2}︁. There exist vertices v, w of 1 

α1(K)A(ΦU (K)) with v ∈
√

2(u1, u2)
and w ∈

√
2(−u1, u2). Denote by q1 the intersection point of [0,

√
2u1] and [v,−w], and by q2 the intersection 

point of [0,
√

2u2] and [v, w], see Fig. 2. For having a vertex of A(K) in the relative interior of each edge 
of α1(K)A(ΦU (K)), we need 

⃦⃦
q1
⃦⃦

=
⃦⃦
q2
⃦⃦
. Let λ, μ ∈ (0, 1) with v = λ

√
2u1 + (1 − λ)

√
2u2 and w =

(1 − μ)(−
√

2u1) + μ
√

2u2.
The line through v and w is defined by the equation

x2 = 1 − λ− μ 
1 − μ + λ

x1 +
√

2
(︃
μ + (1 − μ)1 − λ− μ 

1 − μ + λ

)︃
,

which can be easily verified by checking that it is satisfied by v and w. This immediately implies

⃦⃦
q2⃦⃦ =

√
2
(︃
μ + (1 − μ)1 − λ− μ 

1 − μ + λ

)︃
.

Analogously, we can compute
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⃦⃦
q1⃦⃦ =

√
2
(︃
λ + (1 − λ)1 − λ− μ 

1 + μ− λ

)︃
.

The condition 
⃦⃦
q1
⃦⃦

=
⃦⃦
q2
⃦⃦

can be rearranged to

2
√

2((1 − λ)(1 − μ) + λμ)(λ− μ)
(1 − λ + μ)(1 − μ + λ) = 0.

Since λ, μ ∈ (0, 1), this implies λ = μ. Consequently 1 
α1(K)A(ΦU (K)) is a square. Therefore, B2

2 is also the 
John ellipsoid of A(ΦU (K)), and the a�ine equivariance of John ellipsoids shows that ℰJ(K) = ℰJ(ΦU (K)) =
ΦU (ℰJ(K)). This means that U is a principal axis of ℰJ (K). □

When U is one of the candidate subspaces from Proposition 5.1, the optimal containment situation 
K ⊂ R(K,ΦU (K))ΦU (K) can be characterized in terms of the location of the vertices of K relative to the 
boundary of R(K,ΦU (K))ΦU (K). In case of U being a principal axis of the John ellipse, this characterization 
crucially simplifies the proof of Proposition 5.3(iii) below.

Proposition 5.2. Let K ∈ 𝒦2 be a nontrivial 0-symmetric parallelogram and U ∈ Gr1(R2). Then the following 
statements are true:

(i) U is parallel to the bisector of an angle formed by consecutive edges of K if and only if an edge of K
is a subset of an edge of R(K,ΦU (K))ΦU (K),

(ii) U is parallel to the bisector of an angle formed by the diagonals of K if and only if K and 
R(K,ΦU (K))ΦU (K) share a vertex, and

(iii) U is parallel to a principal axis of ℰJ(K) if and only if every edge of R(K,ΦU(K))ΦU (K) contains a 
vertex of K in its relative interior.

Proof. The sufficiency of the conditions on the location of the vertices of K relative to the boundary of 
R(K,ΦU (K))ΦU (K) has been addressed in the proof of Proposition 5.1. Their necessity is clear for (i) and 
(ii). It remains to show the necessity for (iii).

Let U be a principal axis of ℰJ (K). Proposition 4.1 and the equivariance of the John ellipse show 
ℰJ(K) = ΦU (ℰJ(K)) = ℰJ(ΦU (K)). By [17, p. 203], all vertices of K and ΦU (K) lie on bd(

√
2ℰJ(K)). Let 

A ∈ GL(Rn) be such that A(ℰJ(K)) = B2
2. Then B2

2 is the John ellipse of the parallelograms A(K) and 
A(ΦU (K)), and A(K) and A(ΦU (K)) are 0-symmetric squares with all vertices lying on bd(

√
2B2

2). Since 
α1(K) > 1, the squares A(K) and A(ΦU (K)) are different from each other.

We note for a vertex w of A(K) and pw ∈ [0, w] ∩ bd(A(ΦU (K))) that the ratio ∥w∥
∥pw∥ > 1 does not 

depend on the choice of w. See the right panel of Fig. 2 again for an illustration. Thus, we have A(K) ⊂
∥w∥
∥pw∥A(ΦU (K)) and there is a vertex of A(K) in the relative interior of each edge of ∥w∥

∥pw∥A(ΦU (K)). We have 
∥w∥
∥pw∥ = R(A(K), A(ΦU (K))) = R(K,ΦU (K)), so applying A−1 to return to K and R(K,ΦU (K))ΦU (K)
completes the proof. □

Next, we determine for a parallelogram K ∈ 𝒦2 the minimal dilation factors in an inclusion K ⊂
x + λΦU (K), where U is the bisector of an angle formed by consecutive edges of K or the diagonals of K, 
or a principal axis of the John ellipse of K.

Proposition 5.3. Let K ∈ 𝒦2 be a parallelogram with side length ratio r > 1 and larger interior angle 
θ ∈ (π2 ,π). Then the following statements are true:
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U

−b

b

a

ΦU (−b)

ΦU (b)

U

−a

−b

b

a

Fig. 3. Optimal containment of a parallelogram K (green) in the dilated mirror image after reflection across the reflection axis U
from the proof of Proposition 5.3 for the case of a bisector of an interior angle (left panel) and a bisector of the diagonals (right 
panel): reflection axis U (gray), ΦU (K) (red), and an appropriate translate of R(K,ΦU (K))ΦU (K) (black).

(i) If U is the bisector of an interior angle of K, then 

R(K,ΦU (K)) = r.

(ii) If U is an angle bisector of the diagonals of K, then 

R(K,ΦU (K)) = r2 − 2r cos(θ) + 1 √︁
(r2 + 1)2 − 4r2 cos(θ)2

.

(iii) If U is a principal axis of the John ellipse of K, then 

R(K,ΦU (K)) = r2 − 2r cos(θ) − 1 √︁
(r2 − 1)2 + 4r2 cos(θ)2

.

Proof. By Lemma 3.1, we may assume K = conv {a, b,−a,−b}, where a = (1, 0)⊤ and b = (z1, z2)⊤ ∈ R2

with z1, z2 > 0 and z2
1 + z2

2 < 1.
For (i), if U is the angle bisector of K at a, then ΦU maps aff {a, b} onto aff {a,−b} and vice versa. In 

this case, K ⊂ a + max
{︂

∥a−b∥
∥a+b∥ ,

∥a+b∥
∥a−b∥

}︂
(ΦU (K) − a) is optimal by Proposition 2.1, see left panel of Fig. 3, 

i.e., R(K,ΦU (K)) = max
{︂

∥a−b∥
∥a+b∥ ,

∥a+b∥
∥a−b∥

}︂
= r.

For (ii), note that ΦU maps aff {a,−a} onto aff {b,−b} and vice versa. For the ratio of the diagonal 
lengths λ = max

{︂
2∥a∥
2∥b∥ ,

2∥b∥
2∥a∥

}︂
, the containment K ⊂ λΦU (K) is optimal by Proposition 2.1, see right panel 

of Fig. 3. Thus, R(K,ΦU (K)) equals the ratio of the diagonal lengths. In a parallelogram with side lengths 
1 and r and larger interior angle θ, we may use the law of cosines to determine the lengths of the diagonals. 
These turn out to be 

√︁
r2 + 1 − 2r cos(θ) and 

√︁
r2 + 1 + 2r cos(θ), where the former is the larger one since 

cos(θ) < 0.
For (iii), we invoke a generalization of Marden’s theorem from [20, Proposition 5], which implies that 

upon identification of R2 with C, the focal points of ℰJ(K) are solutions w ∈ C of the equation w2 =
1+z2

1−z2
2

2 + iz1z2. By assumption, the real and the imaginary parts of 1+z2
1−z2

2
2 + iz1z2 are both positive, so 

there is one solution w with argument in (0, π4 ). Therefore, the major axis of ℰJ(K), i.e., the straight line 
containing both focal points, is given by U =

{︁
μ(cos(φ), sin(φ))⊤ : μ ∈ R

}︁
, where φ ∈ (0, π

4 ) is determined 

by cot(2φ) = 1+z2
1−z2

2
2z1z2 . Setting t := sin(2φ), we obtain

√
1 − t2

t 
= 1 + z2

1 − z2
2

2z1z2
.

Squaring and solving for t leads to

sin(2φ) = 2z1z2√︁
(1 + z2

1 − z2
2)2 + (2z1z2)2

and cos(2φ) = 1 + z2
1 − z2

2√︁
(1 + z2

1 − z2
2)2 + (2z1z2)2

.
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Note that ΦU (a) = (cos(2φ), sin(2φ))⊤. By Proposition 5.2, all vertices of 1 
R(K,ΦU (K))ΦU (K) are boundary 

points of K. Let us thus compute the unique number λ > 0 for which 1 
λΦU (a) ∈ bd(K).

With

μ := 2z1

1 − z2
1 − z2

2 + 2z1
= 1 − 1 − z2

1 − z2
2

1 − z2
1 − z2

2 + 2z1
∈ (0, 1),

we compute

[a, b] ∋ (1 − μ)a + μb = ((1 − μ) + μz1, μz2)⊤ =
(︃

1 + z2
1 − z2

2
1 − z2

1 − z2
2 + 2z1

,
2z1z2

1 − z2
1 − z2

2 + 2z1

)︃⊤

=
√︁

(1 + z2
1 − z2

2)2 + (2z1z2)2
1 − z2

1 − z2
2 + 2z1

(cos(2φ), sin(2φ))⊤ .

Thus, we have for

λ := 1 − z2
1 − z2

2 + 2z1√︁
(1 + z2

1 − z2
2)2 + (2z1z2)2

> 0 (12)

that 1 
λΦU (a) ∈ [a, b] ⊂ bd(K). Since there exists only one such λ > 0, this yields R(K,ΦU (K)) = λ.

It remains to express λ = R(K,ΦU (K)) in terms of the side length ratio r > 1 and the interior angle 
θ ∈ (π2 ,π). Since z1, z2 > 0 and z2

1 + z2
2 < 1, the line segment [a, b] is one of the short edges of K and 

the interior angle of K at b is obtuse. If we abbreviate the length of this segment by s := ∥b− a∥, then 
∥b− (−a)∥ = rs is the other side length of K. The law of cosines for the triangle conv {a, b,−a} implies 
r2s2 + s2 − 2rs2 cos(θ) = 4 or, equivalently,

s2 = 4 
1 + r2 − 2r cos(θ) .

Note that 1 + r2 − 2r cos(θ) > 0 since cos(θ) < 0. Now, let c = (z1, 0)⊤ ∈ [−a, a] be the foot of the perpen
dicular from b to [−a, a]. Applying Pythagoras’s theorem in the triangles conv {a, b, c} and conv {−a, b, c}
gives (1 − z1)2 + z2

2 = s2 and (1 + z1)2 + z2
2 = r2s2. It follows that

z1 = 1
4(r2 − 1)s2 = r2 − 1 

1 + r2 − 2r cos(θ) . (13)

This implies 1 − z1 = 2(1−r cos(θ)) 
1+r2−2r cos(θ) . We obtain

z2
2 = s2 − (1 − z1)2 = 4 

1 + r2 − 2r cos(θ) − 4(1 − r cos(θ))2

(1 + r2 − 2r cos(θ))2 = 4r2 sin(θ)2

(1 + r2 − 2r cos(θ))2 .

Since z2 > 0 and sin(θ) > 0, we further have

z2 = 2r sin(θ) 
1 + r2 − 2r cos(θ) . (14)

Plugging (13) and (14) into the numerator of (12) and using the subs and simplify methods in SymPy 
[18], we obtain

1 − z2
1 − z2

2 + 2z1 = 2(r2 − 2r cos(θ) − 1)
1 + r2 − 2r cos(θ) .
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For the expression under the square root in the denominator of (12), a similar approach gives

(1 + z2
1 − z2

2)2 + (2z1z2)2 = 4(r4 + 2r2 cos(2θ) + 1)
(r2 − 2r cos(θ) + 1)2 .

Hence

R(K,ΦU (K)) = λ = r2 − 2r cos(θ) − 1 √︁
r4 + 2r2 cos(2θ) + 1

= r2 − 2r cos(θ) − 1 √︁
(r2 − 1)2 + 4r2 cos(θ)2

. □

Corollary 5.4. For a nontrivial parallelogram with side length ratio r > 1 and larger interior angle θ ∈ (π2 ,π), 
we have

α1(K) = min
{︄
r,

r2 − 2r cos(θ) + 1 √︁
(r2 + 1)2 − 4r2 cos(θ)2

,
r2 − 2r cos(θ) − 1 √︁

(r2 − 1)2 + 4r2 cos(θ)2

}︄
. (15)

Proof. This follows from Proposition 5.1 together with Proposition 5.3. □
Remark 5.5. 

(i) The a�ine equivariance of John ellipses offers a method of computing their principal axes for paral
lelograms K := conv {a, b,−a,−b}, where a = (a1, a2)⊤ and b = (b1, b2)⊤ ∈ R2, other than the one 
used in the proof of Proposition 5.3(iii). Let f : R2 → R2, f(x) = Mx be the linear map given by left 
multiplication with the matrix

M :=
(︃
a1 b1
a2 b2

)︃(︃
−1 1

1 1

)︃−1

.

Then we have f([−1, 1]2) = K, so ℰJ([−1, 1]2) = B2
2 yields ℰJ(K) = f(B2

2). In other words, we have 
ℰJ(K) =

{︁
x ∈ R2 : x⊤M−⊤M−1x ≤ 1

}︁
, which means that the principal axes of ℰJ(K) are given by 

the eigenvectors of the symmetric matrix

M−⊤M−1 = 2
(︃
a1 a2
b1 b2

)︃−1(︃
a1 b1
a2 b2

)︃−1

.

(ii) Proposition 3.7 sheds some additional light on the optimal axes in Theorem 1.4. If K ∈ 𝒦2 is a 
0-symmetric parallelogram, then so is K◦, and we can canonically associate all candidate reflection 
axes for α1(K) with those for α1(K◦). First, the directions of the principal axes of ℰJ(K◦) coincide 
with those of ℰJ(K). Indeed, if A ∈ GL(Rn) such that K = A([−1, 1]2), then K◦ = A−⊤(C), where 
C := ([−1, 1]2)◦ is a rotation of [−1, 1]2 by 45◦ dilated by the factor 1 √

2 . Therefore, the equivariance 
of the John ellipsoid shows

ℰJ(K◦) = ℰJ (A−⊤(C)) = A−⊤(ℰJ(C)) = 1 √
2
A−⊤(B2

2)

= 1 √
2
(A(ℰJ([−1, 1]2))◦ = 1 √

2
(ℰJ(K))◦.

Since the principal axes of a 0-symmetric ellipsoid and its polar coincide (see, e.g., [16, Lemma 2.7]), 
this verifies that the principal axes of ℰJ(K◦) and ℰJ(K) really are the same. Second, note that the 
edges of K◦ are perpendicular to the diagonals of K and vice versa. With this, it is easy to see that 
the interior angles of K◦ can be paired up with the angles formed by the diagonals of K such that 
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the angle pairs each add up to 180◦. In particular, the interior angles of K◦ coincide with the angles 
formed by the diagonals of K, and so do the bisectors of these respective angles (up to translation). 
Last, we also see that the condition that the interior angles of K coincide with the angles formed by 
the diagonals of K can be equivalently stated as K and K◦ being similar to each other. (Note that the 
interior angles and the angles formed by the diagonals determine a parallelogram up to similarity.) In 
this case, the bisectors U1 and U2 of an interior angle of K and an angle formed by the diagonals of 
K, respectively, must satisfy R(K,ΦU1(K)) = R(K,ΦU2(K)). 

We are ready to prove (3) and determine the parallelograms with the maximum Minkowski chirality.

Proposition 5.6. We have 
{︁
α1(K) : K ∈ 𝒦2 is a nontrivial parallelogram

}︁
= (1,

√
2]. Moreover, for a non

trivial parallelogram K ∈ 𝒦2, the condition α1(K) =
√

2 is equivalent to the condition that the angles formed 
by consecutive edges of K coincide with the angles formed by its diagonals and the ratio between the length 
of a long edge and that of a short edge being at least 

√
2.

Proof. Denote, as before, r as the ratio of a longer side by a shorter side and θ as the size of the obtuse angle 
between consecutive edges. In view of (15), α1(K) is the pointwise infimum of three continuous functions of 
(r, θ) ∈ (1,∞)× (π2 ,π), so it is continuous itself. For the first part of the claim, it is thus sufficient to show 
that the infimum of the set 

{︁
α1(K) : K ∈ 𝒦2 is a nontrivial parallelogram

}︁
is 1 and that the supremum of 

the set is 
√

2.
For the infimum, we see that for every ϵ > 0, there is a nontrivial parallelogram K with side length ratio 

r = 1 + ε and thus, by (15), also α1(K) ≤ 1 + ε. Note that this is indeed an infimum and not a minimum 
since we are discussing nontrivial parallelograms.

Next, observe that

r2 − 2r cos(θ) − 1 √︁
(r2 − 1)2 + 4r2 cos(θ)2

≤
√

2. (16)

Indeed, by squaring and substituting y := −2 cos(θ), this is equivalent to (r2 +yr−1)2 ≤ 2(r2−1)2 +2y2r2, 
which can be rearranged to 0 ≤ r4−2yr3+(y2−2)r2+2yr+1 =

(︁
r(y−r)+1

)︁2. This, together with (15), shows 
α1(K) ≤

√
2. A particular example for a parallelogram K with α1(K) =

√
2 is K = conv {±(1, 0),±(2, 1)}. 

This completes the proof of the first part of the claim.
Now, observe that equality holds in (16) if and only if r(r − y) = 1, which is in turn equivalent to 

cos(θ) = 1
2
(︁ 1
r − r

)︁
. We claim that the latter condition is also equivalent to

r2 − 2r cos(θ) + 1 √︁
(r2 + 1)2 − 4r2 cos(θ)2

= r. (17)

Indeed, a straightforward computation shows for cos(θ) = 1
2
(︁ 1
r − r

)︁
that

r2 − 2r cos(θ) + 1 √︁
(r2 + 1)2 − 4r2 cos(θ)2

= r2 − (1 − r2) + 1 √︁
(r2 + 1)2 − (1 − r2)2

= 2r2
√

4r2
= r.

Conversely, the numerator of the left-hand term in (17) is strictly decreasing in cos(θ), whereas the de
nominator is strictly increasing in cos(θ) ∈ (−1, 0). Thus, the entire left-hand term is strictly decreasing in 
cos(θ) ∈ (−1, 0), which means that cos(θ) = 1

2
(︁ 1
r − r

)︁
is the only solution of (17). Altogether, in view of 

(15), we have that α1(K) =
√

2 if and only if

r2 − 2r cos(θ) + 1 √︁
(r2 + 1)2 − 4r2 cos(θ)2

= r ≥
√

2.
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θ

δ m

a b

d c

Fig. 4. The obtuse angle formed by the diagonals of the parallelogram is denoted by δ. 

To complete the proof, it suffices to show that (17) is equivalent to the condition that θ equals the larger 
angle δ formed by the diagonals of K, see Fig. 4. To achieve this, let the vertices of K be labeled as a, b, c, d, 
and denote the center of K by m = a+b+c+d

4 . Assume that [a, b], [b, c], [c, d], and [d, a] are the edges of K
with ∥a− b∥ = ∥c− d∥ = 1 and ∥a− d∥ = ∥b− c∥ = r.

Applying the law of cosines to the triangles conv {a, b, d} and conv {a, b, c} gives

∥b− d∥2 = r2 + 1 − 2r · 1 · cos(θ) and ∥a− c∥2 = r2 + 1 + 2r · 1 · cos(θ).

If we assume equality in (17), or equivalently, that cos(θ) = 1
2
(︁ 1
r − r

)︁
, we get ∥b− d∥2 = 2r2 and ∥a− c∥2 =

2. Another application of the law of cosines in the triangle conv {a,m, d} yields

r2 = ∥b− d∥2

4 
+ ∥a− c∥2

4 
− 2∥b− d∥

2 
· ∥a− c∥

2 
· cos(δ),

which simplifies to −2 cos(δ) = r− 1
r . The bijectivity of the cosine function on (π2 ,π) shows that θ = δ. The 

converse implication follows from Remark 5.5(ii). □
In the following, we describe a ``phase diagram'' for the reflection axis at which the Minkowski chirality 

α1(K) of a given nontrivial parallelogram is attained in terms of the side length ratio r > 1 and the larger 
interior angle θ ∈ (π2 ,π). This phase diagram is depicted in Fig. 5 (left panel).

Corollary 5.7. Let K ∈ 𝒦2 be a nontrivial parallelogram with side length ratio r > 1 and larger interior 
angle θ ∈ (π2 ,π). Define Ψ1,Ψ2 : (1,∞) → (π2 ,π) by

Ψ1(r) =
{︄

arccos(−1
2 (r − 1

r )) if r ∈
(︁
1,
√

2
)︁
,

arccos(−1
2 (−r2+

√
r4+6r2−7+1

2r )) if r ≥
√

2

and

Ψ2(r) =
{︄

arccos(−1
2 (1

r +
√

2 − r2)) if r ∈
(︁
1,
√

2
)︁
,

arccos(−1
2 (−r2+

√
r4+6r2−7+1

2r )) if r ≥
√

2.

Let further

𝒟 :=
{︂

(r, θ)⊤ ∈ R2 : 1 < r, 
π

2 
< θ ≤ Ψ1(x)

}︂
, (18)

𝒥 :=
{︁
(r, θ)⊤ ∈ R2 : 1 < r, π > θ ≥ Ψ2(x)

}︁
, and (19)
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ℬ :=
(︂
(1,∞) ×

(︂π
2 
,π
)︂)︂

\
(︁
𝒥 ∪ 𝒟

)︁
. (20)

Then α1(K) = R(K,ΦU (K)), where

(i) U is the angle bisector of two consecutive edges of K whenever (r, θ) ∈ ℬ,
(ii) U is an angle bisector of the diagonals of K whenever (r, θ) ∈ 𝒟, and
(iii) U is a principal axis of the John ellipse of K whenever (r, θ) ∈ 𝒥 .

Proof. Set y := −2 cos(θ) and Ω := (1,∞) × (0, 2). Given our restrictions on r and θ, it is easy to see that 
the coordinate transform (r, θ) ↦→ (r, y) is one-to-one. Further, define B,D, J : Ω → R by

B(r, y) = r2, D(r, y) = (r2 + ry + 1)2

(r2 + 1)2 − r2y2 , and J(r, y) = (r2 + ry − 1)2

(r2 − 1)2 + r2y2 .

These expressions are equal to R(K,ΦU (K))2, where U is the angle bisector of two consecutive edges of 
K, an angle bisector of the diagonals of K, or the major axis of ℰJ(K), respectively. By Propositions 5.1
and 5.3, proving the claim can be recast as determining the domains in Ω where each of B, D, and J is 
minimal. To do so, we rewrite the sets of pairs (r, y) ∈ Ω for which either J(r, y) = D(r, y), D(r, y) = B(r, y), 
or J(r, y) = B(r, y) as graphs of functions of r. (Parts of these graphs appear as solid lines in the left panel 
of Fig. 5.) Depended on the order of these functions, we then distinguish cases to find the desired regions.

We have

J(r, y) = D(r, y)

⇔ r6y2 + 2r5y3 + r4y4 + r2y2 − 2r5y − 2r4y2 + 2ry = 0

⇔ r3y3 + 2r4y2 + (r5 − 2r3 + r)y + 2 − 2r4 = 0

⇔ 
(︂
y − −r2 − 1

r

)︂(︂
y − −r2 −

√
r4 + 6r2 − 7 + 1

2r 

)︂(︂
y − −r2 +

√
r4 + 6r2 − 7 + 1

2r 

)︂
= 0.

From r > 1, we know that both −r2−1
r and −r2−

√
r4+6r2−7+1

2r are negative. Therefore, since we are looking 
for y ∈ (0, 2), the only potential solution is

y = −r2 +
√
r4 + 6r2 − 7 + 1

2r . (21)

Let us also remark that r > 1 implies r4 + 6r2 − 7 = (r2 + 7)(r2 − 1) > (r2 − 1)2 > 0. Thus, y from (21) is 
positive. A direct computations shows that −r2+

√
r4+6r2−7+1

2r < 2 is equivalent to (r2 − 1)(r+1) > 0, which 
is again satisfied for r > 1.

Thus, we have J(r, y) = D(r, y) for (r, y)⊤ ∈ Ω if and only if (r, y)⊤ is an element of the graph of the 
function fJD : (1,∞) → R given by fJD(r) = −r2+

√
r4+6r2−7+1

2r .
Similarly, we get J(r, y) < D(r, y) if y > fJD(r), and J(r, y) > D(r, y) if y < fJD(r).
Next, consider

D(r, y) = B(r, y)

⇔ r4 + r2y2 + 1 + 2r3y + 2r2 + 2ry = r6 + 2r4 + r2 − r4y2

⇔ (r2 + 1)(r2y2 + 2ry + 1 − r4) = 0

⇔ r2y2 + 2ry + 1 − r4 = 0

⇔ 
(︂
y −
(︂
− r − 1

r

)︂)︂(︂
y −
(︂
r − 1

r

)︂)︂
= 0.
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Clearly, we have −r − 1
r < 0 when r > 1. Since we are looking for y ∈ (0, 2), the only potential solution is

y = r − 1
r
. (22)

Since r > 1, we have 0 < y. Moreover, if r > 1 and y < 2 in (22), then r < 1 +
√

2. Thus, we have D(r, y) =
B(r, y) for (r, y)⊤ ∈ Ω if and only if (r, y)⊤ is an element of the graph of the function fDB : (1, 1+

√
2) → R

given by fDB(r) = r − 1
r . Similarly, we obtain D(r, y) < B(r, y) if y < fDB(r) or r ≥ 1 +

√
2, and 

D(r, y) > B(r, y) if y > fDB(r).
Finally, for r ∈ (1,

√
2] we consider

J(r, y) = B(r, y)

⇔ r4 + r2y2 + 1 + 2r3y − 2r2 − 2ry = r6 − 2r4 + r2 + r4y2

⇔ (r2 − 1)(r2y2 − 2ry + (r2 − 1)2) = 0

⇔ r2y2 − 2ry + (r2 − 1)2 = 0

⇔ 
(︂
y −
(︂1
r
−
√︁

2 − r2
)︂)︂(︂

y −
(︂1
r

+
√︁

2 − r2
)︂)︂

= 0.

Moreover, if r ∈ (1,
√

2], we have 1 > 1
r >

√
2 − r2, i.e., (r, 1

r −
√

2 − r2)⊤, (r, 1
r +

√
2 − r2)⊤ ∈ Ω. Thus, 

J(r, y) = B(r, y) for (r, y)⊤ ∈ Ω if and only if (r, y)⊤ is an element of the graph of one of the functions 
fJB,1, fJB,2 : (1,

√
2] → R given by fJB,1(r) = 1

r −
√

2 − r2 and fJB,2(r) = 1
r +

√
2 − r2.

Similarly, we obtain B(r, y) < J(r, y) for r ∈ (1,
√

2) and y ∈ (fJB,1(r), fJB,2(r)) on the one hand, and 
B(r, y) > J(r, y) for r ∈ (1,

√
2] and y / ∈ [fJB,1(r), fJB,2(r)], and for r >

√
2 on the other hand.

Observe that fJB,1(
√

2) = fDB(
√

2) = fJD(
√

2) = fJB,2(
√

2) = 1 √
2 motivates to look at the cases r <

√
2

and r >
√

2 separately. As previously mentioned, we have B(r, y) > J(r, y) for (r, y)⊤ ∈ Ω with r >
√

2, 
or r =

√
2 and y ̸= 1 √

2 . This means that the minimum among B(r, y), J(r, y), and D(r, y) is one of the 

latter two numbers in these cases. Hence, for r ≥
√

2, only fJD is relevant for partioning Ω according to the 
minimum of B, D, and J .

On the other hand, if 1 < r <
√

2, then fJB,1(r) < fDB(r) < fJD(r) < fJB,2(r). Consequently, if 
y < fDB(r), then y < fJD(r), i.e., D(r, y) < B(r, y) and D(r, y) < J(r, y). This means that if (r, y)⊤ ∈ Ω
is such that 1 < r <

√
2 and y < fDB(r), the minimum among B(r, y), J(r, y), and D(r, y) is D(r, y). 

Similarly, one finds that the minimum is B(r, y) when fDB(r) < y < fJB,2(r), and J(r, y) for y > fJB,2(r).
Putting everything together, let us define the functions ˜︁Ψ1, ˜︁Ψ2 : (1,∞) → (0, 2) given by

˜︁Ψ1(r) =
{︄
r − 1

r if r ∈
(︁
1,
√

2
)︁
,

−r2+
√
r4+6r2−7+1

2r if r ≥
√

2

and

˜︁Ψ2(r) =
{︄

1
r +

√
2 − r2 if r ∈

(︁
1,
√

2
)︁
,

−r2+
√
r4+6r2−7+1

2r if r ≥
√

2.

If we set ˜︁𝒟 :=
{︂

(r, y)⊤ ∈ R2 : 1 < r, 0 < y ≤ ˜︁Ψ1(r)
}︂

, ˜︁𝒥 :=
{︂

(r, y)⊤ ∈ R2 : 1 < r, 2 > y ≥ ˜︁Ψ2(r)
}︂

, and ˜︁ℬ := Ω \
(︁ ˜︁𝒥 ∪ ˜︁𝒟)︁, we have that D is optimal in ˜︁𝒟, J is optimal in ˜︁𝒥 , and B is optimal in ˜︁ℬ.

Returning to the original coordinates r and θ, we just need to define the functions Ψ1,Ψ2 : (1,∞) → (π2 ,π)
branch-wise by Ψ1(r) = arccos(−1

2
˜︁Ψ1(r)) and Ψ2(r) = arccos(−1

2
˜︁Ψ2(r)), where we choose the principal 

branch of the arccos function. The domains 𝒟,𝒥 , and ℬ from (18), (19), and (20) can be obtained in the 
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Fig. 5. We parametrize nontrivial parallelograms K in three different ways by the larger interior angle θ ∈ (π
2 ,π), the side length 

ratio r ∈ (1,∞), the larger angle δ ∈ (π
2 ,π) formed by the diagonals, and the coordinates x, y ∈ R. (In the latter case, we assume 

that the vertices of K are ±(1, 0) and ±(x, y), where x2 + y2 < 1 and x, y > 0.) The solid lines separate regions which correspond 
to the reflection axis at which the Minkowski chirality α1 is attained: a bisector of an interior angle for ℬ, an angle bisector of the 
diagonals for 𝒟, and a principal axis of the John ellipse for 𝒥 . The dashed line indicates the parallelograms with α1(K) =

√
2.

obvious way. Note that inside the definition of these domains, the signs of the orderings involving y are 
not perturbed by this transformation. This is due to arccos being decreasing on its principal branch. For 
example, the condition y < r − 1

r simply becomes θ < arccos
(︂
− 1

2
(︁
r − 1

r

)︁)︂
. □

Next, we comment on how to derive phase diagrams for two different parameterizations of parallelograms. 
In particular, we identify the pairs of parameters that correspond to parallelograms K for which two of our 
three candidate reflection axes U attain α1(K).

In Remark 5.5, we saw that the shape of the diagram in Fig. 5 becomes symmetric with respect to 
reflection at the diagonal if in the parameterization of nontrivial parallelograms we replace the side length 
ratio r by the angle δ ∈ (π2 ,π) formed by the intersection of the diagonals. Then the pairs (δ, θ) that 
represent nontrivial parallelograms K for which the reflections across the bisector of the interior angle θ and 
the bisector of the diagonal angle δ give the same circumradius R(K,ΦU (K)) are given by δ = θ. Among 
those, there are also the nontrivial parallelograms K with α1(K) =

√
2.

In Corollary 5.7, we saw that the nontrivial parallelograms K for which the bisector of the interior angle 
θ and the principal axes of ℰJ(K) give the same value α1(K) for R(K,ΦU (K)) are given by the side length 
ratio r ∈ (1,

√
2] and the identity −2 cos(θ) = 1

r +
√

2 − r2. For such a parallelogram, the squared lengths of 
the diagonals can be computed as r2+1−2r cos(θ) = r2+2+r

√
2 − r2 and r2+1+2r cos(θ) = r2−r

√
2 − r2

due to the law of cosines, see again Fig. 4. Hence, another application of the law of cosines yields the following 
relation between the side length ratio r and the obtuse angle δ formed by the diagonals of the parallelogram:

r2 = r2 + 1
2 

−

√︂
(r2 + 2 + r

√
2 − r2)(r2 − r

√
2 − r2)

2 
· cos(δ).

This is equivalent to

δ = arccos

⎛⎝ 1 − r2√︂
(r2 + 2 + r

√
2 − r2)(r2 − r

√
2 − r2)

⎞⎠ .

In the parametrization by δ and θ, the nontrivial parallelograms K for which the bisector of the interior 
angle θ and the principal axes of ℰJ(K) give the same value for R(K,ΦU (K)) are thus represented by the 
parameterized curve

(δ, θ) =

⎛⎝arccos

⎛⎝ 1 − r2√︂
(r2 + 2 + r

√
2 − r2)(r2 − r

√
2 − r2)

⎞⎠ , arccos
(︃
−1

2

(︃
1
r

+
√︁

2 − r2
)︃)︃⎞⎠ ,
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where r ∈ (1,
√

2]. Using the symmetry of this parameterization, we also get the pairs (δ, θ) representing 
nontrivial parallelograms K for which the bisector of the angle δ formed by the diagonals and the principal 
axes of ℰJ(K) give the same value α1(K) for R(K,ΦU (K)), see the middle panel of Fig. 5.

As a third and last parametrization, let us consider nontrivial parallelograms with vertices ±(1, 0)⊤ and 
±(x, y)⊤, where x2 + y2 < 1 and x, y > 0. This family of parallelograms consists of one representative 
of each similarity class, each point-symmetric with respect to the coordinate origin and having the longer 
diagonal of length 2. The nontrivial parallelograms K for which the reflections across the bisector of the 
interior angle θ and the bisector of the diagonal angle δ give the same circumradius R(K,ΦU (K)) are those 
for which the side length ratio equals the diagonal length ratio. In this parameterization,

4 
4(x2 + y2) = r2 = (x + 1)2 + y2

(x− 1)2 + y2 ,

i.e., (x + 1)2 + y2 = 2. Among those, there are also the nontrivial parallelograms K with α1(K) =
√

2. It 
remains to locate the parallelograms K for which α1(K) is obtained by the reflection across the principal axis 
of ℰJ(K) and one of the other two candidates. The pairs (x, y) corresponding to nontrivial parallelograms 
with side length ratio r > 1 are given by

r =
√︁

(x + 1)2 + y2√︁
(x− 1)2 + y2

.

Squaring and rearranging yields the equation of the circle C1(r) with midpoint ( r
2+1 

r2−1 , 0)⊤ and radius √︂
(r2+1)2
(r2−1)2 − 1. Similarly, the pairs (x, y) corresponding to nontrivial parallelograms with obtuse interior 

angle θ belong to the circle C2(θ) with midpoint 
(︂
0,−
√︂

1 
sin(θ)2 − 1

)︂⊤
and radius 1 

sin(θ) . For every r > 1 and 

θ ∈ (π2 ,π), the circles C1(r) and C2(θ) have two intersection points (x, y)⊤. Precisely one of them, call it 
v(r, θ), has x, y > 0. The common boundary of the domains 𝒥 and ℬ∪𝒟 in the right panel of Fig. 5 is then 
obtained as the set of the points v(r, θ) for r > 1 and θ = Ψ2(r), with Ψ2 from Corollary 5.7. Alternatively, 
by taking (12) and (15) into account, one arrives at

α1(K) = min
{︄√︁

(x + 1)2 + y2√︁
(x− 1)2 + y2

,
1 √︁

x2 + y2
,

1 − x2 − y2 + 2x √︁
(1 + x2 − y2)2 + (2xy)2

}︄
,

for which one could do an analysis analogous to that of Corollary 5.7.

6. Triangles

In this section, we prove Theorem 1.2. By Theorem 1.1, any triangle K ∈ 𝒦2 satisfies α1(K) ≥ 1, with 
equality precisely if K is an isosceles triangle. Therefore, it remains to prove Theorem 1.2 for scalene triangles 
K, i.e., those in which all three sides are of different lengths. To this end, we prove in Propositions 6.1 and 6.2
that if α1(K) = R(K,ΦU (K)) for some straight line U , then U is parallel to the bisector of one of the interior 
angles or perpendicular to one of the edges. In Proposition 6.3, we find the circumradii of triangles with 
respect to their mirror images upon reflection across straight lines parallel to angle bisectors or perpendicular 
to edges. In Proposition 6.4, we reduce the list of candidates for the optimal reflection axis to the bisectors of 
the largest and smallest interior angles and the perpendicular lines to the longest edge, and give an explicit 
formula for α1(K) in terms of the side lengths of the triangle. Last, we describe a ``phase diagram'' for the 
optimal reflection axes in Corollary 6.5, i.e., we provide parametrizations of sets of representatives of the 
similarity classes of triangles and establish explicit conditions on the parameters that tell us which of the 
candidates for the optimal reflection axis is the one that attains α1.
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u u

Fig. 6. Case 3 in the proof of Proposition 6.1: S (green) is optimally contained in T (red), but not under rotation. This is because 
after suitable rotation (left panel) and translation (right panel), the transformed S is a subset of T but does not intersect all edges 
of T .

As used in the previous section for parallelograms, one may for U,U ′ ∈ Gr1(R2) understand the mirror 
image ΦU ′(K) as the image of ΦU (K) under a rotation. We are therefore interested in finding the largest 
dilate of a rotation of ΦU (K) that fits in K. Formally, we say for K,L ∈ 𝒦2 with K ⊂ L that K is optimally 
contained in L under rotation if for all rotations Ψ : R2 → R2, λ > 1, and x ∈ R2, we have λΨ(K)+x ̸⊂ L.

Proposition 6.1. Let S, T ∈ 𝒦2 be triangles such that S is optimally contained in T under rotation. Then at 
least one edge of S is contained in an edge of T .

Proof. Denote by u, v, w the vertices of S, and by a, b, c the vertices of T . Since S is optimally contained in 
T under rotation, we have R(S, T ) = 1. Based on the observation following Proposition 2.1, we distinguish 
three cases.

Case 1: S and T share at least two vertices. Since S and T have a common edge, we are done.

Case 2: S and T share precisely one vertex, say u. We may assume that neither of the remaining vertices 
of S is contained in an edge of T incident to u. Since R(S, T ) = 1, at least one vertex of S, say v, must be 
an element of the relative interior of the edge of T opposite u. We are done if w is also an element of this 
edge, so assume for a contradiction that w ∈ int(T ). Then there is a rotation Ψ around u (with a sufficiently 
small rotation angle and an appropriately chosen rotation direction) such that Ψ(v) and Ψ(w) both lie in 
int(T ). This means that Ψ(S) ⊂ T and Ψ(S) intersects only two edges of T . By Proposition 2.1, Ψ(S)
is not optimally contained in T , so S is not optimally contained in T under rotation. This is the desired 
contradiction. 

Case 3: S and T do not share any vertices. By R(S, T ) = 1, the vertices u, v, w of S are elements of 
the relative interiors of the edges Eu, Ev, Ew of T , respectively. Denote the straight lines supporting T at 
Eu = [a, b], Ev = [b, c], Ew = [c, a] by Fu, Fv, Fw, respectively. Let

Ψφ : R2 → R2, Ψφ(x) = u +
(︃

cos(φ) − sin(φ)
sin(φ) cos(φ)

)︃
(x− u)

be the rotation around u by the angle φ. As in the previous case, there exists ε > 0 such that the rotations 
of v and w around u by an angle at most ε and with respective appropriately chosen rotation directions lie 
in int(T ). We may assume that the appropriate rotation directions for v and w do no coincide, as otherwise 
some rotation of S is contained in T and intersects only one edge of T , contradicting the assumption that S
is optimally contained in T under rotation. Thus, we can relabel v and w if necessary such that Ψφ(v) / ∈ T

and Ψφ(w) ∈ int(T ) for all φ ∈ (0, ε), and Ψφ(v) ∈ int(T ) and Ψφ(w) / ∈ T for all φ ∈ (−ε, 0). Our goal is 
to show that for some φ ∈ (−ε, ε) \ {0}, the triangle Ψφ(S) can be translated parallel to Fu such that the 
translated triangle lies entirely in T and intersects at most two edges of T , see Fig. 6 for an illustration. By 
Proposition 2.1, this shows that this translation of Ψφ(S) is not optimally contained in T and, hence, that 
S is not optimally contained in T under rotation. 

To this end, we introduce some notation and present arguments in the following that apply analogously 
for v and w. To avoid repetition, we write z as a placeholder for them throughout the proof whenever 
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Fu

Fv

Fw

u

v

w

a b

c

Ψφ(v)
pφ(v)

Fig. 7. Notation used in Case 3 in the proof of Proposition 6.1. 

some step is needed and executed in the same way for both of them. If the distinction between v and w is 
important, we refer to them explicitly. Now, let du := a− b, dv := b− c, and dw := c−a be direction vectors 
of Fu, Fv, and Fw, respectively. The vectors du, dv, dw are pairwise linearly independent.

Next, note for x ∈ R2 that there exists a unique pair of numbers (μz(x), λz(x)) with x + μz(x)du =
z + λz(x)dz. Note that the map μz : R2 → R given by

μz(x) = (1 0)
(︂
du −dz

)︂−1
(z − x)

is an a�ine map. The quantity μz(x) can be understood as a signed distance that measures how far x is 
from Fz and whether Fz can be reached from x by going in the direction of du or its negative. Our goal is 
to show μw(Ψφ(w)) > μv(Ψφ(v)) > 0 or 0 > μw(Ψφ(w)) > μv(Ψφ(v)) for some φ ∈ (−ε, ε) \ {0}.

Next, we define for φ ∈ (−π
2 ,

π
2 ) a map pφ : R2 \ {u} → R2 by

pφ(x) := u + 1 
cos(φ) (Ψφ(x) − u) = x + tan(φ)(Ψπ

2 (x) − u).

Then pφ(x) is the unique intersection point of the ray from u through Ψφ(x) and the straight line supporting 
u + ∥u− x∥B2

2 at x, see Fig. 7 for an illustration.
Let further

cz := (1 0)
(︂
du −dz

)︂−1
(u− Ψπ

2 (z)).

Then μz(pφ(z)) = cz tan(φ) for all φ ∈ (−π
2 ,

π
2 ). If φ ∈ (−π

2 ,
π
2 )\{0}, then 1 

cos(φ) > 1, so Ψφ(z) ∈ (u, pφ(z)). 
Since μz is an a�ine map, μz(Ψφ(z)) is between μz(u) and μz(pφ(z)). Next, we determine the signs and the 
order of the latter three numbers, depending on the sign of φ ∈ (−ε, ε) \ {0}. Since u + [0,∞)du does not 
intersect Fv but Fw, we already know that μv(u) < 0 and μw(u) > 0.

Assume first that φ ∈ (0, ε). Then Ψφ(v) / ∈ T by assumption and [u,Ψφ(v)) ∩ Fv ̸= ∅ if ε is sufficiently 
small. Since μv(x) = 0 precisely if x ∈ Fv, we conclude from μv(u) < 0 and the a�inity of μv that 
0 < μv(Ψφ(v)) < μv(pφ(v)). In particular, we obtain from μv(pφ(v)) = cv tan(φ) that cv > 0. Similarly, 
Ψφ(w) ∈ int(T ) by assumption and [u, pφ(w)] ∩ Fw = ∅ if ε is sufficiently small. Since μw(x) = 0 precisely 
if x ∈ Fw, we conclude similar to before that μw(u) > μw(Ψφ(w)) > μw(pφ(w)) > 0 and thus cw > 0.
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Second, for φ ∈ (−ε, 0), we have Ψφ(v) ∈ int(T ) by assumption and [u, pφ(v)] ∩ Fv = ∅ if ε is small 
enough. Since μv(x) = 0 precisely if x ∈ Fv, we conclude that μv(Ψφ(v)) < μv(pφ(v)) < 0. Similarly, 
0 > μw(Ψφ(w)) > μw(pφ(w)) if ε is small enough.

Finally, we distinguish two cases. If cw ≥ cv, then we have for any φ ∈ (0, ε) that

μw(Ψφ(w)) > μw(pφ(w)) = cw tan(φ) ≥ cv tan(φ) = μv(pφ(v)) > μv(Ψφ(v)) > 0. (23)

By definition of μw, we always have Ψφ(w) + μw(Ψφ(w))du ∈ Fw. Since Ψφ(w) ∈ int(T ), we even obtain 
for ε sufficiently small that Ψφ(w) + μw(Ψφ(w))du lies in the relative interior of Ew. Further, we have by 
(23) that

Ψφ(w) + μv(Ψφ(v))du ∈ [Ψφ(w),Ψφ(w) + μw(Ψφ(w))du) ⊂ int(T ).

Moreover, we also have Ψφ(v) + μv(Ψφ(v))du ∈ Ev. By μw(u) > μw(Ψφ(w)) > μv(Ψφ(v)), we further 
obtain Ψφ(u) + μv(Ψφ(v))du = u + μv(Ψφ(v))du ∈ Eu \ Ew. Altogether, Ψφ(S) + μv(Ψφ(v))du ⊂ T and 
Ψφ(S) + μv(Ψφ(v))du does not intersect Fw. This completes the proof in this case.

If instead cv ≥ cw, we have for any φ ∈ (−ε, 0) that

0 > μw(Ψφ(w)) > μw(pφ(w)) = cw tan(φ) ≥ cv tan(φ) = μv(pφ(v)) > μv(Ψφ(v)).

Analogously, we get Ψφ(S) + μw(Ψφ(w))du ⊂ T and that Ψφ(S) + μw(Ψφ(w))du does not intersect Fv for 
ε small enough, which completes the proof also in this case. □

We immediately obtain a short list of candidates for the optimal reflection axis for the 1st Minkowski 
chirality of triangles.

Proposition 6.2. Let K ∈ 𝒦2 be a triangle and U ∈ Gr1(R2) such that R(K,ΦU (K)) = α1(K). Then U is 
parallel to the bisector of an interior angle of K or perpendicular to an edge of K.

Proof. The triangle K is optimally contained in x + α1(K)ΦU (K) under rotation for some x ∈ R2. The 
previous proposition therefore shows that at least one edge E of K is a subset of an edge of x+α1(K)ΦU (K). 
If V denotes the straight line supporting K at E, we see that ΦU (V ) must be parallel to V or to the a�ine 
hull of another edge of K. This means that U is perpendicular to an edge of K, parallel to the bisector of an 
interior angle of K, or parallel to an edge of K. The latter case cannot happen, as x would have to be such 
that E ⊂ x+α1(K)ΦU (E). But then the vertex of K opposite E is not an element of x+α1(K)ΦU (K). □

Next, we determine the minimal dilation factor in the inclusion K ⊂ x + λK ′, where K ′ is the image of 
K under reflection across a straight line parallel to one of the angle bisectors or perpendicular to one of the 
edges.

Proposition 6.3. Let K = conv {a, b, c} ∈ 𝒦2 be a triangle with x := ∥b− c∥ ≤ y := ∥a− c∥.

(i) Let U ⊂ R2 be the bisector of the interior angle at c. Then R(K,ΦU(K)) = y
x .

(ii) Let U be the perpendicular bisector of [a, b], and z := ∥a− b∥. Then R(K,ΦU (K)) = 1 + y2−x2

z2 .

Proof. For (i), note that ΦU maps aff {a, c} onto aff {b, c} and vice versa. Thus, K ⊂ c + y
x (ΦU (K) − c), 

and the containment is optimal by Proposition 2.1, see Fig. 8. This means that R(K,ΦU (K)) = y
x .

For (ii), note that ΦU (K) = conv {a, b,ΦU (c)}, and the line segments [a, c] and [b,ΦU (c)] have a unique 
intersection point d. Further, we have
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ΦU (b)

U

a

b

c

ΦU (a)

U

a b

c
ΦU (c)

d

Fig. 8. Optimal containment of a triangle K (green) in the dilated mirror image after reflection across the reflection axis U (gray) 
for the case of an angle bisector (left panel) or perpendicular bisector on an edge (right panel): ΦU(K) (red), and the appropriate 
translate of R(K,ΦU (K))ΦU (K) (black).

K ⊂ a + y

∥d− a∥ (ΦU (K) − a),

see Fig. 8. Proposition 2.1 shows the optimality of this containment, i.e., R(K,ΦU (K)) = y
∥d−a∥ . Since 

aff {a, b} and aff {c,ΦU (c)} are parallel, we get as a consequence of the intercept theorem that 

∥d− c∥
∥d− a∥ = ∥c− ΦU (c)∥

z
.

Ptolemy’s theorem applied to the isosceles trapezoid conv {a, b, c,ΦU (c)} shows ∥c− ΦU (c)∥ = y2−x2

z . Thus,

y

∥d− a∥ = ∥d− a∥ + ∥d− c∥
∥d− a∥ = 1 + ∥d− c∥

∥d− a∥ = 1 + ∥c− ΦU (c)∥
z

= 1 + y2 − x2

z2 . □

Now we are ready to give a formula for α1(K) for a triangle K in terms of its side lengths, and rule out 
three of the candidates from Proposition 6.2.

Proposition 6.4. Let K ∈ 𝒦2 be a triangle with side lengths 0 < x ≤ y ≤ z. Then

α1(K) = min
{︃
z

y
,
y

x
, 1 + y2 − x2

z2

}︃
. (24)

In particular, we have α1(K) = R(K,ΦU (K)) for U ∈ Gr1(R2) a line parallel to the bisector of the smallest 
or the largest interior angle of K or perpendicular to the longest edge of K.

Proof. We may assume that K is a scalene triangle, i.e., x < y < z, since otherwise all assertions are clear. 
From Propositions 6.2 and 6.3, we know that

α1(K) = min
{︃
z

y
,
y

x
,
z

x
, 1 + y2 − x2

z2 , 1 + z2 − x2

y2 , 1 + z2 − y2

x2

}︃
.

In order to verify (24), it suffices to show that

min
{︃
z

y
,
y

x
, 1 + y2 − x2

z2

}︃
< min

{︃
z

x
, 1 + z2 − x2

y2 , 1 + z2 − y2

x2

}︃
.

First, note that yx < z
x since y < z. Next, we have

1 + y2 − x2

z2 < 1 + z2 − x2

z2 < 1 + z2 − x2

y2 .
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Last, observe that zy < 1 + z2−y2

x2 is equivalent to 0 < x2y + yz2 − y3 − x2z = (z − y)(y2 − x2 + yz). The 
latter is true since we assumed z > y and y2 > x2. □

Note that in the setup of Proposition 6.4, we do not always have 1 + y2−x2

z2 < 1 + z2−y2

x2 whenever 
0 < x < y < z and x + y > z. For instance, by taking x sufficiently large, y = x2 and z = x2 + 1

4 we have

1 + y2 − x2

z2 = 1 + x4 − x2

x4 + 2x2 + 1 ≈ 2, while 1 + z2 − y2

x2 = 1 +
1
2x

2 + 1 
16

x2 ≈ 3
2 .

Thus, in the proof of Proposition 6.4, we could not have ruled out the perpendicular bisector of the shortest 
edge in the same way we eliminated the perpendicular bisector of the middle edge.

In the following corollary, we describe the ``phase diagram'' depicted in Fig. 9 for the reflection axis at 
which α1(K) of a given scalene triangle K is attained. We parameterize the triangle in terms of its side 
lengths x, y, and 1, assuming that 0 < x < y < 1 < x + y. Later, we give a similar result for triangles 
parameterized by a vertex (x, y)⊤ while fixing the other vertices at (0, 0)⊤ and (1, 0)⊤, see Corollary 6.6
and Fig. 10.

Corollary 6.5. Let K be a triangle with side lengths x, y, and 1 such that 0 < x < y < 1 < x + y. Define 
Ψ1,Ψ2 : (1

2 , 1) → R by

Ψ1(y) =

⎧⎪⎪⎨⎪⎪⎩
0 if y ≤

√
2

2 ,√︂
y3+y−1

y if 
√

2
2 < y ≤ y0,

y2 if y > y0

and Ψ2(y) =

⎧⎪⎪⎨⎪⎪⎩
0 if y ≤

√
2

2 ,
1
2 (
√︁
y2 + 4 − y) if 

√
2

2 < y ≤ y0,

y2 if y > y0

where y0 ≈ 0.819173 is the unique positive real solution of the equation y4 + y3 = 1. Let further

Ω :=
{︁
(x, y)⊤ ∈ R2 : 0 < x < y < 1 < x + y

}︁
, ℒ :=

{︁
(x, y)⊤ ∈ Ω : x > Ψ2(y)

}︁
,

𝒮 :=
{︁
(x, y)⊤ ∈ Ω : x ≤ Ψ1(y)

}︁
, 𝒫 := Ω \ (ℒ ∪ 𝒮) .

Then α1(K) = R(K,ΦU (K)), where

(i) U is the bisector of the largest interior angle of K whenever (x, y) ∈ ℒ,
(ii) U is the bisector of the smallest interior angle of K whenever (x, y) ∈ 𝒮, and
(iii) U is perpendicular to the longest edge of K whenever (x, y) ∈ 𝒫.

Proof. Let L, S, P : Ω → R be defined by

L(x, y) = y

x
, S(x, y) = 1 

y
, and P (x, y) = 1 + y2 − x2.

These expressions are by Proposition 6.3 equal to R(K,ΦU (K)) for U ⊂ R2 the bisector of the largest 
interior angle of K, the bisector of the smallest interior angle of K, or perpendicular to the longest edge of 
K, respectively. By Proposition 6.4, proving the corollary can be recast as determining the domains in Ω
where each of L, S, and P is minimal. As we shall see, this essentially boils down to finding the solutions 
to the equations L = S, S = P and L = P . For (x, y)⊤ ∈ Ω, we have

L(x, y) = S(x, y) ⇔ x = y2,

S(x, y) = P (x, y) ⇔ 1 = y + y3 − x2y ⇔ x =

√︄
y3 + y − 1

y
, and
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Fig. 9. Parameterization of scalene triangles by their side lengths x, y, and 1 with 0 < x < y < 1 < x+ y. The dashed line indicates 
the right-angled triangles. Left panel: The solid lines inside the parameter space indicate the pairs (x, y)⊤ for which two of the 
three candidate reflection axes lead to the same value of R(K,ΦU (K)). Right panel: The parameter space is separated into regions 
which correspond to the reflection axis U for which α1(K) = R(K,ΦU (K)): the bisector of a largest interior angle for ℒ, the 
bisector of a smallest interior angle for 𝒮, and the perpendicular line to a longest edge for 𝒫.

P (x, y) = L(x, y) ⇔ y = x + xy2 − x3 ⇔ 0 = (x− y)(x2 + xy − 1) ⇔ x = 1
2

(︂√︁
y2 + 4 − y

)︂
.

There is a unique element (x0, y0) ∈ Ω for which S(x0, y0) = L(x0, y0) = P (x0, y0) with y0 ≈ 0.819173 being 
the unique positive real solution of the equation y4 + y3 = 1. Indeed, from x = y2 and x2 + xy − 1 = 0, we 
obtain y4 + y3 − 1 = 0. The derivative of y ↦→ y4 + y3 − 1 is positive for y > 0, so y ↦→ y4 + y3 − 1 itself 
is strictly increasing for y > 0. Hence, there exists at most one positive real solution y0 of the equation 
y4 + y3 − 1 = 0. The existence of a solution in [0, 1] follows from the intermediate value theorem.

Let fLS : (
√

5−1
2 , 1) → R and fSP , fPL : (

√
2

2 , 1) → R be given by

fLS(y) = y2, fSP (y) =

√︄
y3 + y − 1

y
, and fPL(y) = 1

2

(︂√︁
y2 + 4 − y

)︂
Note that for (x, y)⊤ ∈ Ω, the statements x = fLS(y) and L(x, y) = S(x, y) are equivalent. Likewise, 
x = fSP (y) and S(x, y) = P (x, y) are equivalent, and so are x = fPL(y) and P (x, y) = L(x, y).

The graphs of fLS, fSP , and fPL subdivide Ω into six regions, corresponding to the six possible strict 
orderings of the three numbers L(x, y), S(x, y), and P (x, y), see the left panel of Fig. 9.

To determine on which two of the six regions each of the three numbers is smallest, it suffices to pick 
a point (x, y)⊤ from every region and check the ordering for these representatives. For instance, if x = 0.6
and y = 0.78, then P (x, y) ≈ 1.2484 < S(x, y) ≈ 1.28205 < L(x, y) = 1.3. Thus, if K has side lengths x, y, 
and 1 with (x, y)⊤ ∈ Ω and in addition max {1 − y, fSP (y)} < x < fLS(y), then (x, y)⊤ ∈ 𝒫 and α1(K) is 
attained at the reflection axes perpendicular to the longest edge of K. □

A different set of representatives of the similarity classes of triangles is given by the triangles of the form 
conv

{︁
(0, 0)⊤, (1, 0)⊤, (x, y)⊤

}︁
with x > 1

2 , y > 0, and x2 + y2 < 1. The side lengths of such a triangle are in 
increasing order given by 

√︁
(x− 1)2 + y2, 

√︁
x2 + y2, and 1. Then, similarly to Corollary 6.5, one can show 

the following result.

Corollary 6.6. Let K = conv
{︁
(0, 0)⊤, (1, 0)⊤, (x, y)⊤

}︁
where x > 1

2 , y > 0, and x2 + y2 < 1. Define 
Ψ1,Ψ2 : (1

2 , 1) → R by

Ψ1(x) =

⎧⎪⎪⎨⎪⎪⎩
√︂

−2x2+1+
√

5−8x
2 if x ≤ x0,

√
1−4x4

2x if x0 < x < 1 √
2 ,

0 if x > 1 √
2

and Ψ2(x) =

⎧⎪⎪⎨⎪⎪⎩
√︂

x2(3−2x)
1+2x if x ≤ x0,

√
1−4x4

2x if x0 < x < 1 √
2 ,

0 if x > 1 √
2

where x0 ≈ 0.61037 is the unique positive real solution of the equation 16x4 − 2x− 1 = 0. Let further
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Fig. 10. We parameterize triangles K with vertices (0, 0)⊤ and (1, 0)⊤ by their third vertex (x, y)⊤ with x ∈ ( 1
2 , 1) and y ∈

(0,
√

1 − x2). The solid lines separate the regions that correspond to the reflection axis U for which α1(K) = R(K,ΦU (K)): the 
bisector of a largest interior angle for ℒ, the bisector of a smallest interior angle for 𝒮, and the perpendicular line to a longest edge 
for 𝒫. The dashed line indicates the right-angled triangles.

Ω :=
{︃

(x, y)⊤ ∈ R2 : x >
1
2 , y > 0, x2 + y2 < 1

}︃
, 𝒮 :=

{︁
(x, y)⊤ ∈ Ω : y ≥ Ψ1(x)

}︁
,

𝒫 :=
{︁
(x, y)⊤ ∈ Ω : y < Ψ2(x)

}︁
, ℒ := Ω \ (𝒫 ∪ 𝒮) .

Then α1(K) = R(K,ΦU (K)), where

(i) U is the bisector of the largest interior angle of K whenever (x, y) ∈ ℒ,
(ii) U is the bisector of the smallest interior angle of K whenever (x, y) ∈ 𝒮, and
(iii) U is perpendicular to the longest edge of K whenever (x, y) ∈ 𝒫.

An illustration of Corollary 6.6 is given in Fig. 10. 
The last part of Theorem 1.2 that remains to be proved is (2).

Corollary 6.7. We have 
{︁
α1(K) : K ∈ 𝒦2 is a scalene triangle

}︁
=
(︁
1,
√

2
)︁
.

Proof. Let 0 < x ≤ y ≤ z be the side lengths of a triangle K ∈ 𝒦2. Then z < x + y and in particular 
x2 > (z − y)2. By Proposition 6.4, we have

α1(K) ≤ 1 + y2 − x2

z2 < 1 + y2 − (z − y)2

z2 = 2y
z
.

Therefore, we directly get α1(K) <
√

2 whenever yz ≤ 1 √
2 . Otherwise, we use Proposition 6.4 again to obtain

α1(K) ≤ z

y
<

√
2.

To complete the proof, by Lemma 3.4 and the intermediate value theorem, it remains to find a sequence 
(Ki)i∈N of triangles Ki ∈ 𝒦2 such that limi→∞ α1(Ki) =

√
2. For i ∈ N, we choose the triangle Ki :=

conv
{︂

(0, 0)⊤, (1, 0)⊤, ( 1 √
2 ,

1 
i+2 )⊤

}︂
. Letting i → ∞, the ordered triple of side lengths of Ki converges to 

(1 − 1 √
2 ,

1 √
2 , 1). Therefore, Proposition 6.4 gives
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lim 
i→∞

α1(Ki) = min

⎧⎪⎨⎪⎩ 1 
1 √
2
,

1 √
2

1 − 1 √
2
, 1 +

1
2 −
(︂
1 − 1 √

2

)︂2

1 

⎫⎪⎬⎪⎭ =
√

2. □

7. Open problems

We close this paper with some final directions for problems to consider in future work.
First, we know from Theorem 1.1 for any j ∈ {0, . . . , n} and K ∈ 𝒦n that αj(K) ≤ n. As outlined in the 

introduction and Section 4, this bound is tight if and only if it is tight for just simplices. While Theorem 1.2
shows that the latter does not hold for (n, j) = (2, 1), the question of tightness remains open in the general 
case. As a starting point for deriving better bounds on the Minkowski chiralities, it would therefore be 
interesting to determine the tightness of αj(K) ≤ n for simplices K ∈ 𝒦n. Once a pair (n, j) for which the 
tightness fails is found, one can consider strengthening the upper bound n. In particular, finding the best 
possible upper bound of the 1st Minkowski chirality of planar convex bodies appears to be an intriguing 
problem.

Second, Theorems 1.3 and 1.4 show that any point-symmetric K ∈ 𝒦2 satisfies α1(K) ≤
√

2, with equality 
precisely for a specific family of parallelograms. In dimension n = 3, Theorem 1.1 yields the analogous 
inequality αj(K) ≤

√
3 for j ∈ {1, 2} and any point-symmetric K ∈ 𝒦3. According to Theorem 4.2 and 

[16, Theorem 2.4], the only candidates for K that could achieve equality here are parallelotopes and cross
polytopes. By Theorem 3.8, these two classes of bodies have the same range of values for the 1st and 2nd 
Minkowski chiralities. Thus, in order to determine whether the bound αj(K) ≤

√
3 is attained for j ∈ {1, 2}

and any point-symmetric K ∈ 𝒦3, it suffices to check this for just one value of j and either the class of 
parallelotopes or cross-polytopes. Note that if the inequality turns out to be attained in particular examples, 
the subspaces spanned by the principal axes of the John ellipsoid would necessarily be optimal. In higher 
dimensions, however, the analogous problem becomes more involved since there does not appear to be an 
easy description of all point-symmetric K ∈ 𝒦n with dBM (K,Bn

2 ) =
√
n according to [16, Example 2.5].

Last, it might be helpful to find conditions that describe the optimal situation K ⊂ x + α1(K)ΦU (K)
for x ∈ Rn and U ∈ Grj(Rn) similar to Proposition 2.1. Such conditions might help find better general 
bounds on the Minkowski chirality and understand the optimal reflection subspaces. Note, though, that 
Theorems 1.2 and 1.4 show that a complete description of the optimal situation for a general convex body 
might become very involved.
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Appendix A. Continuity of functionals

We provide the postponed proofs of Propositions 3.2 and 3.3 in this appendix. Our proof of the former 
is based on [13, Proposition 1.2.1] about the Hausdorff continuity of R(·,Bn

2 ) on 𝒦n.

Proof of Proposition 3.2. Let ((Ki, Ci))i∈N be a convergent sequence in the metric space (𝒦n×𝒦n, dH+dH)
with limit (K,C) ∈ 𝒦n × 𝒦n. Then (Ki)i∈N, (Ci)i∈N are convergent sequences in (𝒦n, dH) with limits K
and C, respectively. By the translation invariance of the circumradius, we may assume that 0 ∈ int(K) and 
0 ∈ int(C), i.e., there exists r > 0 such that rBn

2 ⊂ K and rBn
2 ⊂ C. Fix i ∈ N. Then
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Ki ⊂ K + dH(Ki,K)Bn
2 ⊂ K + dH(Ki,K)

r
K =

(︃
1 + dH(Ki,K)

r

)︃
K

and, analogously,

Ci ⊂ C + (dH(Ci, C))Bn
2 ⊂ C + dH(Ci, C)

r
C =

(︃
1 + dH(Ci, C)

r

)︃
C.

For i sufficiently large, we have dH(Ki,K) < r and dH(Ci, C) < r, so(︃
1 − dH(Ki,K)

r

)︃
K + dH(Ki,K)

r
K = K ⊂ Ki + dH(Ki,K)Bn

2 ⊂ Ki + dH(Ki,K)
r

K

and (︃
1 − dH(Ci, C)

r

)︃
C + dH(Ci, C)

r
C = C ⊂ Ci + dH(Ci, C)Bn

2 ⊂ Ci + dH(Ci, C)
r

C.

Together with the cancellation property, cf. [21, p. 48], we conclude(︃
1 − dH(Ki,K)

r

)︃
K ⊂ Ki and

(︃
1 − dH(Ci, C)

r

)︃
C ⊂ Ci.

Thus, the monotonicity of the circumradius under set inclusions gives(︂
1 − dH(Ki,K)

r

)︂
(︂
1 + dH(Ci,C)

r

)︂R(K,C) ≤ R(Ki, Ci) ≤

(︂
1 + dH(Ki,K)

r

)︂
(︂
1 − dH(Ci,C)

r

)︂R(K,C).

This shows that limi→∞ R(Ki, Ci) = R(K,C). □
Proof of Proposition 3.3. We first show for K ∈ 𝒦n that the map Φ•(K) : Grj(Rn) → 𝒦n, U ↦→ ΦU (K) is 
continuous.

Let (U i)i∈N be a convergent sequence in the metric space (Grj(Rn), dG) with limit U . We show

lim 
i→∞

dH(ΦUi(K),ΦU (K)) = 0

using [21, Theorem 1.8.8].
First, let x ∈ ΦU (K). Then there exists y ∈ K such that x = ΦU (y). For xi = ΦUi(y) ∈ ΦUi(K),⃦⃦

xi − x
⃦⃦

= ∥ΦUi(y) − ΦU (y)∥ ≤ ∥ΦUi − ΦU∥ ∥y∥ = 2dG(U i, U) ∥y∥ i→∞ −−−→ 0,

i.e., x = limi→∞ xi. Second, let (ij)j∈N be an increasing sequence in N, and suppose that xij ∈ ΦUij (K) for 
all j ∈ N. Further suppose that (xij )j∈N is a convergent sequence whose limit shall be denoted by x∗ ∈ Rn. 
For all j ∈ N, there exists yij ∈ K such that xij = ΦUij (yij ). We have⃦⃦

yij − ΦU (x∗)
⃦⃦

=
⃦⃦
ΦUij (xij ) − ΦU (x∗)

⃦⃦
=
⃦⃦
ΦUij (xij ) − ΦUij (x∗) + ΦUij (x∗) − ΦU (x∗)

⃦⃦
≤
⃦⃦
ΦUij

⃦⃦ ⃦⃦
xij − x∗⃦⃦+

⃦⃦
ΦUij − ΦU

⃦⃦
∥x∗∥

=
⃦⃦
xij − x∗⃦⃦+ 2dG(U ij , U) ∥x∗∥ j→∞ −−−→ 0.
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Thus, the sequence (yij )j∈N is a convergent sequence with limit ΦU (x∗). Since this is a sequence in the closed 
set K, the limit is an element of K, too. But ΦU(x∗) ∈ K is equivalent to x∗ ∈ ΦU (K). This completes the 
proof of the continuity of Φ•(K).

Now, let ((Ki, U i))i∈N be a convergent sequence in the metric space (𝒦n×Grj(Rn), dH + dG) with limit 
(K,U) ∈ 𝒦n × Grj(Rn). Then (Ki)i∈N is a convergent sequence in (𝒦n, dH) with limit K, and (U i)i∈N is 
a convergent sequence in (Grj(Rn), dG) with limit U . We see

dH(ΦUi(Ki),ΦU (K)) ≤ dH(ΦUi(Ki),ΦUi(K)) + dH(ΦUi(K),ΦU (K))

= dH(Ki,K) + dH(ΦUi(K),ΦU (K)) i→∞ −−−→ 0,

i.e., we have limi→∞ ΦUi(Ki) = ΦU (K) in (𝒦n, dH). □
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