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1. Introduction

In his ground-laying work [15], Griinbaum set up a general framework for quantifying the point (a)symme-
try of convex bodies, i.e., compact convex sets with nonempty interior. Specifically, a measure of (a)symmetry
is a similarity-invariant (or even affinely invariant) Hausdorff continuous function f that takes convex bod-
ies to the unit interval with the property that f(K) = 1 if and only if K is point-symmetric. In [15],
some generalizations are discussed, for example quantifying (a)symmetry with respect to reflections across
affine subspaces of dimension at least one. However, the author mentions lack of results in the literature
in this direction. Different notions of chirality or axiality for quantifying the (a)symmetry of planar shapes
with respect to reflections across straight lines have been investigated in the mathematical literature in the
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past decades [10-12,24,25]. Asymmetry notions for planar convex bodies are also studied in mathematical
chemistry [7-9,26], where polygons serve as abstractions of molecules and where chirality impacts chemical
properties.

Our contribution is based on an extension of the notion of Minkowski asymmetry [2,6], which, for a
convex body K, is defined as the smallest dilation factor A > 0 such that K is a subset of a translated and
dilated copy of —K, the mirror image of K upon reflection across the coordinate origin. We incorporate
reflections across higher-dimensional (affine) subspaces by defining the jth Minkowski chirality o;(K) as
the smallest dilation factor A > 0 such that the convex body K C R"™ is a subset of a translated and
dilated copy of @y (K), where ®;; denotes the reflection across the j-dimensional affine subspace U C R"™
for j € {0,...,n}. Note that the Minkowski asymmetry is ao(K) in this terminology.

It is well-known that ag(K) € [1,n] for all convex bodies K C R", with ag(K) =1 if and only if K is
point-symmetric, and ao(K) = n if and only if K is a fulldimensional simplex, see [15] and [21, Note 14
for Section 3.1]. Our main result for convex bodies in general dimensions extends the upper bound on the
Minkowski asymmetry to all Minkowski chiralities o; (K) for any j € {0,...,n}.

Theorem 1.1. Let K C R™ be a convex body and j € {0,...,n}. Then

OLQ(K) +1

lgaj(K)gmin{n, 5

with a;(K) =1 if and only if there exists a j-dimensional affine subspace U such that K = @y (K).
In fact, the upper bound in Theorem 1.1 can be strengthened and unified to
a; (K) < v/ ao(K)n. (1)

Since ag(K) < n with ao(K) = n solely for simplices, this result implies o;;(K) < n and in particular that
only simplices might have jth Minkowski chirality n. The inequality (1) is based on a bound on the Banach—
Mazur distance dgp (K, BY) < v/ao(K)n for any convex body K C R™ from an unpublished manuscript
[3].

We recall that the Banach—Mazur distance between convex bodies K, L C R is defined by
dpy(K,L) =inf{A > 0:t' + K C A(L) C t* + A\K, A € GL(R"), t},#*> € R"},

where GL(IR™) denotes the set of invertible real n x n matrices, see [21, p. 589].

The inequality (1) is also consequential for the absolute upper bound on the jth Minkowski chirality.
Based on a stability result from [22], any convex body K with Minkowski asymmetry ag(K) near n is close
to a simplex in the Banach—-Mazur distance. Together with (1), this means that either the supremum of
a;(T) over all simplices T C R™ equals n, or there exists some constant ¢(n, j) < n such that any convex
body K C R™ satisfies a;(K) < ¢(n, j) (see Section 4 for details). In other words, we can determine whether
the inequality «;(K) < n is tight by checking only simplices.

Although this remains a challenging problem in general, we are able to solve it in the planar case for the
1st Minkowski chirality.

Theorem 1.2. Let K C R? be a triangle. Then the infimum in the definition of ay(K) is attained at some
affine subspace U of R? that is necessarily

(i) parallel to the bisector of one of the largest interior angles of K,
(ii) parallel to the bisector of one of the smallest interior angles of K, or
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(iii) perpendicular to one of the longest edges of K.

Moreover, we have
{oa1(K) : K C R? is a triangle} = [1, \/5) ) (2)
with ay (K) = 1 precisely for isosceles triangles.

The above approach yields the upper bound a;(K) < 1.95 for all convex bodies K C R?, see (11).

The question of how large o;(K) can be for general n and j is still open, as even deciding whether
the inequality a;(K) < n is actually tight appears to be difficult. Instead, we focus on a special class of
convex bodies and answer the first question for planar point-symmetric convex bodies: the upper bound
from Theorem 1.1 becomes v/2 in this case, and the following two theorems show that this bound is reached
precisely by a specific family of parallelograms. The second theorem uses the John ellipsoid £;(K) of a
convex body K C R™, which is the unique volume-maximal ellipsoid contained in K (see Section 2 for
details).

Theorem 1.3. Let K C R? be a point-symmetric convex body with dpar(K,P) > 1+ ¢ for a parallelogram
P Cc R? and some £ > 0. Then

a1 (K) <¢§(1—1€—0).

Theorem 1.4. Let K C R? be a parallelogram. Then the infimum in the definition of a1(K) is attained at
some affine subspace U of R? that is necessarily parallel to

(i) the bisector of an angle formed by consecutive edges of K,
(i) the bisector of an angle formed by the diagonals of K, or
(#ii) a principal azis of the John ellipse E5(K) of K.

Moreover, we have
{a1(K) : K C R? is a parallelogram} = [1,\/5} , (3)

with a1 (K) = 1 precisely for rectangles and rhombuses. Furthermore, oy (K) = \/2 if and only if the angles
between the diagonals coincide with the interior angles and the ratio between the lengths of the longer edges
and the shorter edges is at least V2.

Our paper is organized as follows. We start with definitions, notations, and preliminaries in Section 2. We
proceed with basic properties of o; such as similarity invariance and continuity with respect to the Hausdorff
distance in Section 3. Afterwards, we show inequalities that compare certain Minkowski chiralities, which
lead to detailed proofs of Theorems 1.1 and 1.3 in Section 4. Lastly, we turn to the planar case and
show Theorems 1.2 and 1.4 in Sections 5 and 6. Sections 5 and 6 also contain a detailed analysis of the
explicit 1st Minkowski chirality of arbitrary parallelograms and triangles depending on various natural
parametrizations.
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2. Preliminaries
2.1. General notation

For x = (21,...,2,)" € R™, the Buclidean norm is given by ||z|| := />_;_, #? and the Euclidean unit
ball is denoted by By := {x € R™ : ||z|| < 1}. Let X, Y C R™, z € R", and p > 0. The Minkowski sum
of X and YVisgiven by X +Y = {z+y : v € X,y € Y}. Sets of the form X + 2z := 2+ X = {z} + X
and puX := {ux : x € X} are called translates and dilates of X, respectively. We abbreviate (—1)X and
X+ ((-1)Y) by —X and X — Y, respectively. The set X is z-symmetric if X — z = z — X, and point-
symmetric if it is z-symmetric for some z € R™. We write X C; Y if there exists z € R™ such that X C Y +z.
Similarly, if there exists z € R™ such that X = Y + 2, we shall write X =; Y for short. If f : R™ — R",
then f(X) := {f(x) : x € X} denotes the image of X under f. We say that f is a similarity transform if
it is a map of the form f(x) = rAxz + b with r > 0, b € R"™, and A € R™"*"™ orthogonal.

We write conv(X), aff(X), bd(X), and int(X) for the conver hull, affine hull, boundary, and interior
of X, respectively. (For the sake of readability, we will omit the parentheses if the set X is written with
curly brackets.) For z,y € R™, the closed line segment connecting them is given by [z, y] where we replace
the brackets by parentheses if we wish to exclude the respective endpoint from the line segment. For
a € R™\ {0} and 8 € R, the hyperplane H(, g) is given by {z € R" : a'z = 3}. We denote by H(Saﬁ) =
{x ER” :a'z < 5} and H(iﬁ) = {w ER" :aTz> B} the halfspaces bounded by H(, g). A halfspace
H=S C R" supports aset X C R at v € X if X C HS and x € bd(H<), and a hyperplane H supports
X at x if one of the halfspaces bounded by H does. We write hx (a) := sup {aTx t T € X} for the support
function of X. The polar set of X is defined as X° := {a € R™ : hx(a) < 1}. We write vol(X) for the
n-dimensional Lebesgue measure (volume) of X if X is measurable.

By a triangle and a parallelogram, we always refer to non-degenerate convex polygons, i.e., their vertices
are not elements of a single straight line. The bisector of an interior angle of a triangle is always the one
that has non-empty intersection with the interior of the polygon.

2.2. Convez bodies, radii, and optimal containment

We denote by K™ the family of convez bodies in R™, i.e., compact convex sets with nonempty interior. For
K, L € K", their Hausdor{f distance is given by dy (K, L) :==inf {A >0 : K C L+ AB} and L C K + AB}}.
By [21, Lemma 1.8.14], we equivalently have dg (K, L) = max|, =1 |hx (u) — hz(u)|. The pointwise inequal-
ity hi(r) < hp(z) + max),|=1 |hx(u) — hr(uw)| by () = hrid,k,o)sy (z) for all x € R™ thus implies
K C L+dy(K,L)BY, so the Hausdorff distance is always attained as a minimum.

For K,C € K™, the circumradius and the inradius of K with respect to C' are defined as

R(K,C):=inf{A>0: K, \C} and r(K,C):=sup{A>0:ACC, K},
respectively. The jth Minkowski chirality can be written with the help of the circumradius as
a;(K) :=inf {R(K,®y(K)) : U C R" affine subspace, dim(U) = j}. (4)
If K = —K and C = —C, translations can be omitted in the definition of circum- and inradius, i.e.,
RK,C)=inf{A>0: KCAC} and r(K,C)=inf{A>0:\C CK}.

The following result, taken from [5, Theorem 2.3], helps with checking whether a containment K C C is
optimal, meaning that additionally R(K,C) = 1.
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Proposition 2.1. Let K,C € K™. Then K is optimally contained in C if and only if

(i) K C C, and
(ii) there exist some a',...,a™ € R™\ {0} such that hx(a’) = hc(a®) for i € {1,...,m} and 0 €
conv{al,...,am}.

By Proposition 2.1, K C C' is optimal for triangles if and only if every edge of C' contains a vertex of K,
and for parallelograms if and only if C' has two opposite edges each containing a vertex of K.

As in the introduction, the John ellipsoid £;(K) of a convex body K C R" is the unique volume-maximal
ellipsoid contained in K, see [14, Theorem 11.1]. The John ellipsoid is affine equivariant, meaning that for any
convex body K € K", any invertible linear transformation A € GL(RR"), and any translation vector b € R",
we have £;(A(K) +b) = A(E;(K)) + b, see [1, Section 8.4.3]. By John’s theorem [14, Theorem 11.2], the
Euclidean ball BY is the John ellipsoid of the cube [—1,1]™. Since affine transformations preserve midpoints
and parallelism of hyperplanes, the John ellipsoid of a parallelotope is the ellipsoid that is tangent to all
facets of the parallelotope at their midpoints.

2.8. Grassmannian and reflections

For j € {0,...,n}, we denote by Gr;(R"™) the Grassmannian, i.e., the set of all j-dimensional linear
subspaces of R™. This set is topologized as a quotient space of the Stiefel manifold and as such it is
homeomorphic to the set

{MeR™™ : M=M"=M? trace(M) = j}

of trace-j symmetric idempotent real n x n-matrices equipped with the subspace topology of R™*", see [19,
§5]. These matrices are precisely the orthoprojectors Py : R™ — R™ onto j-dimensional subspaces U of R™,
where Py(z) € R™ is for x € R™ uniquely determined by the conditions Py(z) € U and ||Py(z) — z| <
Iz — z|| for all z € U. Since the map U +— Py is bijective and the set of trace-j symmetric idempotent
real n X n-matrices is a closed subset of the unit sphere of the spectral norm ||| on R™*™, we see that
de(U,V) := ||Py — Py|| defines a metric on Gr;(R"), and that (Gr;(R"™),ds) is a compact metric space.

For U C R™ an affine subspace, the reflection across U is given by &y : R™ — R", &y (z) = 2Py (z) — =.
Note that for z € R™, we have

@U($) = (I)U_U(.’L‘) + 2PU(0) (5)
3. Basic properties

This section is devoted to verifying some basic properties of the Minkowski chiralities that Griinbaum
[15] demanded of any (a)symmetry measure. In particular, we show their similarity invariance and Hausdorff
continuity. We also obtain results on ratios of certain Minkowski chiralities, which prepares us for the proofs
of the upper bounds on the chiralities in the next section.

8.1. Similarity invariance

We begin this subsection with a slight simplification of the definition of the Minkowski chirality. The
translation invariance of the circumradius together with (5) shows for K € K™ and an affine subspace U
of R™ of dimension j € {0,...,n} that R(K,®y(K)) = R(K,Py_y(K)). Taking the infimum over the
j-dimensional affine subspaces U in (4), we get
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a;(K) = inf {R(K, oy (K)) : U € Gr;(R™)} . (6)

Next, we show that the Minkowski chiralities are similarity invariant. In Sections 5 and 6, we make use
of this property by choosing representatives of the similarity classes of parallelograms and triangles.

Lemma 3.1. Let K € K" and j € {0,...,n}. Then o;(f(K)) = o;(K) for any similarity transform f :
R" — R".

Proof. The general case is a composition of the cases of translations and linear similarity transforms.
First, assume that f is a translation, i.e., there exists b € R™ such that f(z) = z+b for all z € R™. Using
the linearity of ®y for U € Gr;(R™) and the translation invariance of the circumradius,

R(K + b, @y (K +b)) = R(K +b,®y(K) + ®y(b) = R(K, ®y(K)).

Now take the infimum over U € Gr,;(R™) to obtain a;(K + b) = a;j(K) from (6).

Second, assume that the similarity transform f : R™ — R™ is linear. Since f is invertible, the containment
f(K) Cx+AC for x € R™ and X\ > 0 is equivalent to K C f~!(z) + Af~}(C). It follows that R(f(K),C) =
R(K, f~1(C)). Next, for U € Gr;(R™), the maps f~! o ®y o f and ® ;-1 coincide as can be checked by
their actions on a basis of f~1(U) and on one of f~1(U)*. Hence,

R(f(K), ®u(f(K))) = R(K, [~ (Pu(f(K)))) = R(K, ® -1 (K)),

and taking the infimum over U € Gr;(R") yields o (f(K)) = o, (K) from (6). Note that when U traverses
Gr;(R"), then so does f~1(U). O

Let us remark that the Minkowski asymmetry o enjoys an even stronger invariance property, namely the
invariance under invertible affine transformations, i.e., ag(A(K) + b) = ap(K) for all K € K", b € R", and
A € GL(R™). This is evident from the equivalence of K C; A(—K) and A(K) C; M(—A(K)) for A > 0. In
contrast, the jth Minkowski chirality «; is not affinely invariant when j ¢ {0,n}. For instance, a rectangle
K satisfies a1(K) = 1, but there exist affine images A(K) with a;(A(K)) > 1, namely when A(K) is a
parallelogram that is neither a rectangle nor a rhombus. We can further pinpoint the step in the proof of
Lemma 3.1 which fails for showing the affine invariance of a; when j ¢ {0,n}. If f is a general invertible
linear map (instead of just a linear similarity transform), then the maps f~! o ®y o f and ® f-1(u) may not
coincide, even though their sets of fixed points still do.

3.2. Existence of optimal subspaces and continuity

In this subsection, we prove that a; is Hausdorff continuous and that the infimum in (6) is attained by
some subspace U* € Gr;(R"™).

We start with some preparatory results regarding the continuity of the circumradius R : " x K" — R
and the map ® : K" x Grj(R") — K", (K,U) — ®y(K). These maps are defined on the Cartesian
products £™ x K™ and K™ x Gr;(R™), on which we consider the metrics dg + dy and dg + d¢ given
by (dg + du)(K*,CY),(K?,C?)) = dg(K', K?) + duy(C',C?) and (dy + dg)((K',UY), (K2, U?)) =
dg(K', K?) + de(U,U?) for U',U? € Gr;(R™) and K', K2 C',C? € K". The joint continuity of both
maps in their respective arguments is straightforward to verify and well-known to experts. Since explicit
proofs appear difficult to locate in the literature, we provide short proofs in Appendix A for the sake of
completeness.

Proposition 3.2. The map R: K™ x K™ — R is continuous.
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Proposition 3.3. Let j € {0,...,n}. The map ® : K" x Gr;(R") = K", (K,U) = ®y(K) is continuous.

With these results at hand, we establish the continuity of o; and show that the infimum in (6) is attained.
Moreover, we verify that any convex body K contains at least one point (z* below) that acts for a; like
a Minkowski center would for aq (see [6, Definition 3.1]). This is important for some constructions in the
next subsection. In contrast to Minkowski centers, z* does not need to lie in the interior of K. In fact, take
any triangle T C R? with a;1(T) > 1 whose 1st Minkowski chirality is attained uniquely for the reflections
across lines parallel to the bisector of the smallest interior angle (see Theorem 1.2). In this case, it is easy
to establish from the proof below that the only possible choice for z* is the vertex at this smallest interior
angle.

Lemma 3.4. Let K € K" and j € {0,...,n}. There exist U* € Grj(R™) and z* € K such that K — xz* C
o (K) Oy« (K — a*). Moreover, the map o : K™ — R is Hausdorff continuous.

Proof. By [6, Lemma 2.2], we obtain R(K, Py (K)) < oo for all U € Gr;(R™), so a;(K) < co. By Proposi-
tions 3.2 and 3.3, the map Gr;(R") - R, U — R(K, ®y(K)) is a continuous map over a compact domain.
The existence of U* € Gr;(R") with R(K, @y« (K)) = «;(K) is now a consequence of Weierstrass’s theorem,
and the continuity of a;; : K" — R follows from Proposition 3.3 and the compactness of the metric space
(Gry(R"), do).

Again by [6, Lemma 2.2], there exists some z € R™ with K C 2+ a;(K)®y-(K). There also exist y € U*
and z € (U*)L such that 2 = y+ 2. Next, we want to choose ¢’ € U* and 2’ € (U*)* with (1—«a;(K))y' =y
and (14 «;(K))z" = z. There are clearly no obstructions in doing so when a;(K) > 1. If, on the other
hand, we have o;(K) = 1, then

By (K) C - (y+ 2+ Sp-(K)) =y — 2+ K

shows that K C y + 2z + ®y+(K) C 2y + K. From the cancellation property, cf. [21, p. 48], we conclude
y = 0. In other words, also in the case when a;(K) = 1, the choice of ¥’ € U* with (1 — o;(K))y =y is
possible (and, moreover, any 3’ € U* is admissible). Define 2’ := 3’ + 2z’. Then
a;(K)Py- (K —a') = a;(K)®y-(K) — o (K)y' + o;(K)z'
5Kyt (LK) + (4 g(K) g~ =K~ (D)
It remains to show that 2’ can be chosen from K. To this end, we first claim that int(K — ') N U* # (.
Towards a contradiction, let us assume that int(K — ') N U* = (. Then [21, Theorem 1.3.8] yields the

existence of a € (U*)1 \ {0} with hx_,s(a) < 0 such that there exists v € K — 2’ with a'v < 0. However,
we then have

haj(K)q)U*(K_m/)(—a) = CYj(K)hK,I/((I)U*(—(L)) = Oéj(K)hK,I/(a) S 0,

which contradicts v € K — 2’ C a;(K)®y«(K — 2’). Therefore, there must exist v’ € int(K — 2’) N U*.

If now oj(K) = 1, then z* := 2’ + «’ is an element of K and, from the discussion for (7), we see that
¥ = (y +u') + 2 € U+ (U*)?* satisfies K — 2* C ap(K)®y«(K — 2*). If instead oj(K) > 1, then we
argue that z* := 2’ € K. Towards a contradiction, let us assume that ' ¢ K. Then we have 0 ¢ K' :=

(K —2')NU*. From [21, Theorem 1.3.4], we conclude that there exists a € U* such that hg/(a) < 0. Since
K' C (0(K)®y-(K —2')) NU* = o (K)K', we obtain

hir(a) < ho; i)k (a) = o (K)hie ().

However, this contradicts hx(a) < 0 and o;(K) >1. O
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3.8. Relating chiralities to each other

The next theorem relates the jth Minkowski chiralities of different convex bodies to each other. It
generalizes [6, Theorem 6.1], where the same inequality is shown, but restricted to the Minkowski asymmetry
ag. The ratio between circumradius and inradius, which appears on the right-hand side of our estimate, has
been studied in [23] as a distance measure in the context of the Banach-Mazur distance and the Minkowski
asymmetry. This connection allows us to obtain the general estimates on the Minkowski chiralities in the
next section, extending the importance of the following theorem beyond the context of comparing Minkowski
chiralities.

Theorem 3.5. Let K, L € K" and j € {0,...,n}. Then

o;(K) oy(L) R(K,L) _ R(L,K)
max{a' }< HKL) (LK) (8)

For every K € K" and B € [1,a;(K)], there exists L € K™ with (L) =  and equality in (8).

Proof. The identity f((gLL)) = f((LL[I(()) is direct from the definitions of R and r. Let U € Gr;(R") with

R(L,®y (L)) = a;(L) be obtained from Lemma 3.4. Then L C; a;(L)®y (L), and, hence,

K C; R(K,L)L C; R(K, L)a;(L)®y (L)

R(K,L)

C¢ R(K, LYoy (L)®y(r(K, L) K) = Oéj(L)m

Oy (K).

Consequently, we have R(K, @y (K)) < a;(L) f((gLL)) Now, use (6) to conclude

() < 0y(1) T

Reversing the roles of K and L gives

a;(L) < aj(K)% — a;(K)

R(K, L)
r(K,L)"

Combining those two results yields the claimed inequality.
Let us now turn to the equality case. According to Lemma 3.4, there exist U € Gr;(R") and z € K with
K — 2 C a;(K)®y (K — x). We define for g € [1,a;(K)] the convex body
L :=conv((f(K — z)) UDy (K — x)).

Then r(L, K) > 8 since (K —z) C L. Moreover, 0 € K —z and o;(K) > 3 show

B(K —x) C o (K)(K —x),

so L C a;(K)(K — x). We conclude R(L, K) < a;(K) and If((f{(f)) = IT{(%II{()) < O‘j(BK). The already proven

inequality (8) implies a;(L) > B. It remains to show «;(L) < . This is immediate from
Oy (L) = conv((BPy (K — x)) U (K —z)) C conv((B*(K — x)) U (BPy(K —x))) = L,

where weused > 1and 0 e K —x. O
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Remark 3.6. It follows from Theorem 3.5 that a;(K) < If(({((f)) for all j € {0,...,n} and K,L € K" with

a;(L) = 1. Moreover, for every j € {0,...,n} and K € K", there exists L € K™ with a;(L) = 1 such that

o (K) = If((gLL)) Writing dp (K, L) := 15((5{(5))7 this shows
oj(K)=min{dp(K,L) : L e K", oj(L) =1}. (9)

The quantity dp has been studied as a close relative of the Banach-Mazur distance [23]. This gives another
interpretation of o (K) as quantifying the distance from the family of convex bodies that are symmetric with
respect to reflection at an appropriate j-dimensional subspace. Since «y is affinely invariant, (9) generalizes
the identity ao(K) = min{dpy(K,L) : L € K", ap(L) = 1} from [2, Proposition 3.1].

While Theorem 3.5 relates the values of the same Minkowski chirality of different convex bodies to each
other, we can also compare different Minkowski chiralities associated with a single convex body. This requires
the following simple observations.

Proposition 3.7. Let K € K" and U C R"™ be a linear subspace. Then

(i) R(K,®y(K)) = R(K,®y.(—K)), and
(i) R(K,®y(K)) = R(K°, ®y(K°)) if K is 0-symmetric.

Proof. For (i), recall that &y (Py(x)) = « and @y (P (z)) = —z for all 2 € R™. Thus,
Oy (K) = @u(Pu(Py:(-K))) = @y (-K).

For (ii), let A € R™*"™ be the matrix representation of ®;; with respect to the standard basis of R™. Then
the O0-symmetry of K, &y (K), K°, and @y (K°) shows for A > 0 that

A> R(K,®y(K)) <= K C MA(K) <= K° > %A*T(K") — MT(K°) D K°
<= A0y (K°) D K° <= A> R(K°,opy(K°)). D

We are now ready to verify the final result of this section, which highlights the special role of point-
symmetry and the Minkowski asymmetry ag in the context of the general Minkowski chiralities.

Theorem 3.8. Let K € K™ and j € {0,...,n}. Then

0y (K)o y()) _
s {2 iy | < ol (10)

If K is point-symmetric, then o;(K) = a,—;(K). If K is 0-symmetric, then o;(K) = o;(K°).

Proof. Let U € Grj(R™) with R(K, @y (K)) = ap—;(K) be obtained from Lemma 3.4. Since —K C;
ap(K)K, the monotonicity and translation invariance of the circumradius, together with Proposition 3.7,
show

a;(K) < R(K, 9y (K)) = R(K, ®y+ (=K)) < R(K, 2 (ao(K)K)) = ao (K)o —; (K).
Reversing the roles of j and n — j proves (10).

Since a point-symmetric convex body K satisfies ag(K) = 1, (10) shows «a;(K) < ap—;(K) <
n—(n—j)(K) = a;(K) and consequently a;(K) = a,;(K) in this case.
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Lastly, if K is 0-symmetric, Proposition 3.7 and (6) show
a;(K°) =inf {R(K°, @y (K°)) : U € Gr;(R")} = inf {R(K,Py(K)) : U € Gr;(R")} = oj(K). O

Let us point out that the Minkowski asymmetry ag on the right-hand side in (10) cannot be replaced
with the other Minkowski chiralities in general. For instance, any triangle T" C R2? satisfies z;g% = 2,
yet Theorem 1.2 implies a;(T) < v/2. We also have ao(T) # az(T), so the point-symmetry in the second
part of the theorem cannot be omitted. Lastly, it is easy to see that «;(K) = a,(K°) may fail for general
K € K" with 0 € int(K), even if K is point-symmetric (with its center outside the origin). For example,
the square K C R? with vertices (2,1), (=2,1), (=2,-3), and (2, —3) satisfies ag(K) = 1, but K° is a
non-point-symmetric kite with ag(K°) > 1.

4. General upper bounds on the Minkowski chirality

We verify Theorems 1.1 and 1.3 in this section. Their proofs require the following auxiliary result, which
states that any ellipsoid is invariant under reflection at a subspace spanned by some of its principal axes.

o2 for some j €

{0,...,n}. Then ®y(E) = E and a;(E) = 1.

Proposition 4.1. Let v!,. - , 0" € R™ form an orthonormal basis and let o, ...,a, > 0. Define the ellipsoid
)2 - .
E = {:U eR™: Y, (@ o) < 1} and the subspace U := { T vt ..,y €R

Proof. Since @y is invertible with &y = &', we have &y (E) = &, (E) = {y € R" : dy(y) € E}. It is
therefore enough to show for any y € R™ and i € {1,...,n} that (®y(y) v")? = (y v%)%

To this end, recall that @y (y) = 2Py (y) — y, where Py (y) = S7_, (yTv')v’ is the orthogonal projection
of y onto U. Now, if i € {1,...,j}, we obtain

;
Oy(y) "ot =23 (") () Tv) =y ot =20y ) —y T =y Tl
=1
If instead ¢ € {j + 1,...,n}, we have
. j . . . .
‘I’U(y)TUZ — 2Z(yTve)((vZ)Tv’) _ yTvz —0— yT,U’L — —yTUZ. O
=1

The following result establishes a direct link between the jth Minkowski chirality and the Banach—Mazur
distance to the Euclidean ball. It serves as our main tool for the proofs of Theorems 1.1 and 1.3. The
inequality below can also be read as a lower bound to the Banach—Mazur distance to the Euclidean ball.
Lower bounds to Banach—Mazur distances are typically difficult to verify, which gives the inequality some
additional value as another tool to obtain such lower bounds.

Theorem 4.2. Let K € K™ and j € {0,...,n}. Then

a;(K) <dpm(K,BY).
Moreover, for every B € [1,n], there exists K € K™ such that ag(K) = dpy (K, BY) = 5.
Proof. From (9) and Proposition 4.1, we obtain

ozj(K) = min {dD(K,L) : L e IC",aj(L) = 1} < inf {dD(K, E) : Eek” eHlpSOld} = dB]\/[(K, Bg)
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Towards the second claim, let 7" € K™ be a regular simplex with %IBQ‘ CT" C BE. For K := conv(Bj U
(BT™)), B € [1,n], we have

BT Cc KcnI™ and By C K C gBjY,

which implies dpa (K, T") < 5 and ao(K) < dpn (K, By) < . Now, Theorem 3.5 together with ag(T™) =
n and the affine invariance of oy additionally shows

R(K, A(T™))
(K, A(T™))

Olo(Tn)
Oé()(K) Z B

dBM(K,T")inf{ : AGGL(Rn)} >
Therefore, we must have a(K) = 8 and altogether 8 = a(K) < dpy(K,BY) < 5. O

We now prove the upper bound on the Minkowski chirality for general n-dimensional convex bodies.
Proof of Theorem 1.1. The inequality «;(K) > 1 becomes clear from a volumetric argument: If U €
Grj(R"), z € R", p > 0, and K C z + p®y(K), then vol(K) < vol(z + p®y(K)) = p"vol(K), so
p>1.If a;(K) = 1, then by Lemma 3.4 there exist U € Grj(R"™), z € K such that K —x C ®y(K — ),
ie, K C Py, (K). Since K and Py, (K) have equal volumes, they coincide.

Towards the upper bound, we obtain from [21, (10.113)] and Theorem 4.2 that

Oéj(K) S dB]w(I(7 IBS) <n.

Moreover, [4, Corollary 5.3] and [6, Corollary 4.3] together with the affine invariance of aq imply

o w(A(K), B) 2R(A(K),BY) .
) < oo 16B) = | B S gy A € U™ |

where w(K,C) := 2r(K — K,C — () is the minimal width of K € K" with respect to C € K". O
In a similar fashion, we can verify Theorem 1.3.

Proof of Theorem 1.3. It is shown in [16, Theorem 1.3] that a point-symmetric convex body K € K? with
dpm(K,P) > 1+ 1—\/%5 for a parallelogram P C R? and some & > 0 satisfies dgu(K,B2) < v/2 — 6. By
Theorem 4.2, the latter in particular means a1 (K) < v/2 — d. Therefore, dgp (K, P) > 1+ ¢ for some € > 0
implies with § := \1/—055 that a1(K) <v2 -8 =2 (1 — f—o) as claimed. O

The final result of this section is another consequence of Theorem 3.5. It provides a stability improvement
of the upper bound on the Minkowski chirality from Theorem 1.1 whenever the jth Minkowski chirality of
simplices can be bounded away from n. In this case, we also obtain an explicit improvement of the absolute
upper bound n on the jth Minkowski chirality as outlined below.

Theorem 4.3. Let K € K" with ap(K) > n — ¢ for some ¢ € [0,1), j € {0,...,n}, and s(n,j) :=
sup {a;(T) : T € K™ simplex}. Then

oy (K) < 5(n, ) (1 i M) |

1—ne
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Note that the above supremum s(n,j) is not attained as a maximum for some n and j. For example,
Theorem 1.2 shows that any triangle T C R? satisfies oy (T) < v/2 = s(2,1).

Proof. Theorem 3.5 yields for any simplex T" € K" the inequality

%Uﬁﬁaﬂﬂ%%%gédmﬁ%%%%~

Minimizing the right-hand term over all choices of T' thus yields «o;(K) < s(n,j)dpm (K, T). Lastly, we
apply [22, Theorem 2.1], which states that

(n+1)e

dij(K7 T) <1+
— ne

under the assumptions in the theorem. O

Finally, let us discuss the improvement of the absolute upper bound n on the jth Minkowski chirality.
Whenever s(n, j) < n, there exists a unique number €(n, j) € (0, %) that satisfies

- . (n+1)e(n, j)
\/_7 = s ]_ - .
= 2(09) = st ) (14 S
By (1) and Theorem 4.3, any K € K" satisfies a;(K) < ¢(n,j) := /n(n —e(n,j)) since either ag(K) <
n —e(n,j) and thus a;(K) < \/ag(K)n < c¢(n,j), or a;(K) >n —e(n, ) and thus

%ﬂ@<ﬂmﬂ(1+@iﬂﬂﬂﬁ)—amn

1 —ne(n,j)

For (n,7) = (2,1), Theorem 1.2 shows s(2,1) = /2. We may therefore compute c(2, 1) explicitly, which
leads to

1 11 /s
a(K)< |- |13 + (631 +54V137) | < 1.95 (11)

T\ © (631 + 54/137) "

for K € K2.
5. Parallelograms

In this section, we prove Theorem 1.4. Let us describe the roadmap of our proof.

First, note that Theorem 1.1 already verifies that oy (K) > 1, with equality precisely if K is a rectangle
or a thombus. Therefore, it remains to prove Theorem 1.4 for parallelograms that are neither rectangles nor
rhombuses. Such parallelograms shall be referred to as nontrivial in the sequel. In Proposition 5.1, we show
that a reflection axis at which a4 (K) is attained is necessarily parallel or perpendicular to the bisector of
an angle formed by consecutive edges or by the diagonals of K, or to a principal axis of the John ellipse
E1(K).

Second, we derive the values of R(K,®y(K)) for the candidate subspaces U in Proposition 5.3. To do
so, note that by Lemma 3.1, we may parameterize parallelograms by their side length ratio r > 1, i.e., the
ratio of the length of the longer edge divided by the length of the shorter one, and the larger of the two
interior angles 6 € [5, 7). In particular, this means that » > 1 if K is not a rhombus, and 6 > 7 if K is not
a rectangle.
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Third, we prove (3) and the characterization of its boundary cases in Proposition 5.6. (Note that the
bound oy (K) < V2 for parallelograms K already follows from Theorem 1.1.)

Last, we describe a “phase diagram” for the optimal reflection axes in Corollary 5.7, i.e., we establish
explicit conditions on r and € that tell us which of the candidates for the optimal reflection axis is the one
that attains aq (K).

The following result is based on the fact that for any set K C R? and any two subspaces U, U’ € Gr;(R?),
the set @y (K) is the image of ®;(K) under a rotation at the coordinate origin. This idea is used again to
determine the optimal reflection axes for triangles in the next section.

Proposition 5.1. Let K € K? be a nontrivial 0-symmetric parallelogram and U € Gri(R?) such that
R(K,®y(K)) = a1(K). Then U is parallel or perpendicular to either

(i) the bisector of an angle formed by consecutive edges of K,
(ii) the bisector of an angle formed by the diagonals of K, or
(#ii) a principal azis of the John ellipsoid of K.

Proof. Let K = —K and C = —C be parallelograms such that K C C' and R(K,C) = 1. By Proposition 2.1,
either two vertices of K that are the endpoints of one of its diagonals lie on the boundary of C, or all four
vertices of K do. Likewise, by 0-symmetry, there are either two or four edges of C' that have nonempty
intersection with K.

We do a case distinction for these two numbers. In each case, we determine the implications of the
additional assumption that C' = A®;(K) for some A > 1 and some U € Gry(R?), and specifically that U is
such that A = a3 (K).

Case 1: There are precisely two vertices of K on the boundary of C' and precisely two edges of C have
nonempty intersection with K. This means that there are two vertices v; and —v; of K in the relative
interior of edges F and —F of C, respectively, while the remaining two vertices vy and —wvs of K are
elements of int(C). Then there is a rotation ¥ : R? — R? around the coordinate origin (with a small
rotation angle in the appropriate direction) such that W(+v;), ¥(+vs) € int(C), ie., K C int(¥~(C)) and
hence R(K,¥~1(C)) < 1. The direction of the rotation angle corresponds to where the smaller angle formed
by aff {—v1,v1} and a perpendicular to F' is, and the existence of a rotation angle sufficiently close to 0
follows by continuity of rotations. If C' = A®;(K) for some A and U, then there exists U’ € Gry(R?) such
that ¥=1(C) = A®y/(K), which shows that our assumption A = R(K, ®y(K)) = a1(K) is violated.

Case 2: There are precisely two vertices of K on the boundary of C' and all four edges of C' have nonempty
intersection with K. This means that K and C share precisely one diagonal. If C' = APy (K) for some A
and U and if the shared diagonal was the long or the short diagonal in both K and C, then the shared
diagonal would be a subset of U (or of its orthogonal complement) and the interior angles at the shared
vertices would be the same for K and C'. By K C C, this would already imply that K = C, but since K is
assumed not to be a rhombus, this contradicts the assumption that C is a dilated mirror image of K. Thus,
for K and C = A®y(K) to be nontrivial parallelograms that share precisely one diagonal, the reflection
axis U must be the bisector of one of the angles formed by the diagonals, see Fig. 1.

Case 3: All four vertices of K lie on the boundary of C but only two edges of C' have nonempty intersection
with K. This means that there are edges F' of K and F’ of C such that F is a subset of the relative interior
of F/'. If C = A&y (K) for some A and U and if F' and F’ are both long or both short edges of K and C,
respectively, then U is parallel or perpendicular to the common direction of F' and F’. But then F' C F’
would imply that K was a rectangle. Therefore, the reflection ®y; necessarily maps the directions of the
edges of K onto each other, i.e., U is parallel or perpendicular to the bisector of the angle formed by a pair
of consecutive edges of K, see Fig. 1 for an illustration.
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N SNl

Fig. 1. Case 2 (left) and Case 3 (right) in the proof of Proposition 5.1: Parallelogram K (green), reflection axis U (gray), ®u (K)
(red), and C = R(K,®y(K))®y(K) (black). (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

Fig. 2. Case 4 in the proof of Proposition 5.1: Let all edges of A(K) (green) contain a vertex of a parallelogram P (red, dotted)
that is not a square. Then P cannot be a dilation of A(®y (K)) since not all edges of R(A(K), P)P (red, dashed) contain a vertex
of A(K) in their relative interiors (left panel). If U is a principal axis of the John ellipsoid, A(K) (green) and A(®y (K)) (red) are
squares - both with John ellipsoid B3 and vertices on bd(v/2B3). In the relative interior of each edge of R(K, @y (K))A(Py (K)),
there exists a vertex of A(K) (right panel).

Case 4: All four vertices of K lie on the boundary of C and all four edges of C' have nonempty intersection
with K. If K and C share one diagonal and if C is a dilated mirror image of K, then U is parallel or
perpendicular to the shared diagonal, or to the bisector of the angle formed by the diagonals of K. Either
way, all four vertices of K lying on the boundary of C' then contradicts the assumption of K being nontrivial.
Hence, K and C do not share any vertices, i.e., every edge of C contains precisely one vertex of K in its
relative interior. It remains to show that then U is one of the principal axes of £;(K).

Let A € GL(R?) such that A(E;(K)) = B2. By [17, p. 203], A(K) is a square with all vertices on
bd(v/2B2). Let u',u? € R? be the standard Euclidean unit vectors and assume without loss of generality
that A(K) = v2conv {u',u? —u', —u?}. There exist vertices v, w of (K)A(<I>U(K)) with v € V2(u', u?)
and w € v/2(—u',u?). Denote by ¢* the intersection point of [0, v/2u'] and [v, —w], and by ¢ the intersection
point of [0,v/2u?] and [v,w], see Fig. 2. For having a vertex of A(K) in the relative interior of each edge
of a1(K)A(®Py(K)), we need ||¢*|| = ||¢*||- Let A, € (0,1) with v = Av2u! + (1 — A)v2u? and w =
(1= )(—v2ul) + pv/2u2.

The line through v and w is defined by the equation

17)\ I 1—-A—p
AR o 1—y)—2—F
Ty = +)\131+\/_<M+( ml—/ﬁ—)\)’

which can be easily verified by checking that it is satisfied by v and w. This immediately implies

I = V2 (1 1= =2k ).

1—p+A

Analogously, we can compute
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_ 1—-XA—p
||q1|]_\/§(>\+(1—)\)m>.

The condition ||q1|| = Hq2H can be rearranged to

9zl =AU = ) + Auw)(A = p)

Trrmi—ptn O

Since A, u € (0, 1), this implies A = p. Consequently ﬁA(@U(K)) is a square. Therefore, B2 is also the
John ellipsoid of A(®y(K)), and the affine equivariance of John ellipsoids shows that £;(K) = £;(Py(K)) =
Oy (E5(K)). This means that U is a principal axis of £;(K). O

When U is one of the candidate subspaces from Proposition 5.1, the optimal containment situation
K C R(K,®y(K))®Py(K) can be characterized in terms of the location of the vertices of K relative to the
boundary of R(K, Py (K))®y(K). In case of U being a principal axis of the John ellipse, this characterization
crucially simplifies the proof of Proposition 5.3(iii) below.

Proposition 5.2. Let K € K2 be a nontrivial 0-symmetric parallelogram and U € Gri(R?). Then the following
statements are true:

(i) U is parallel to the bisector of an angle formed by consecutive edges of K if and only if an edge of K
is a subset of an edge of R(K, ®y(K))®y(K),
(i) U is parallel to the bisector of an angle formed by the diagonals of K if and only if K and
R(K,®y(K))®y(K) share a vertex, and
(i) U is parallel to a principal axis of £;(K) if and only if every edge of R(K, Py (K))Py(K) contains a
vertex of K in its relative interior.

Proof. The sufficiency of the conditions on the location of the vertices of K relative to the boundary of
R(K,®y(K))Py(K) has been addressed in the proof of Proposition 5.1. Their necessity is clear for (i) and
(ii). It remains to show the necessity for (iii).

Let U be a principal axis of £;(K). Proposition 4.1 and the equivariance of the John ellipse show
E7(K) = ®y(£5(K)) = £;(Py(K)). By [17, p. 203], all vertices of K and &y (K) lie on bd(v/2E5(K)). Let
A € GL(R") be such that A(E;(K)) = B2. Then B2 is the John ellipse of the parallelograms A(K) and
A(®y(K)), and A(K) and A(®y(K)) are O-symmetric squares with all vertices lying on bd(v/2B2). Since
a1 (K) > 1, the squares A(K) and A(®y(K)) are different from each other.

We note for a vertex w of A(K) and p, € [0,w] N bd(A(Py(K))) that the ratio H”pli”l\ > 1 does not
depend on the choice of w. See the right panel of Fig. 2 again for an illustration. Thus, we have A(K) C

”“;;HH A(®y(K)) and there is a vertex of A(K) in the relative interior of each edge of %A(@U(K)). We have

el = R(A(K), A(®y(K))) = R(K, Dy (K)), so applying A~! to return to K and R(K, ®y(K))®y(K)
completes the proof. 0O

Next, we determine for a parallelogram K € K? the minimal dilation factors in an inclusion K C
x + APy (K), where U is the bisector of an angle formed by consecutive edges of K or the diagonals of K,
or a principal axis of the John ellipse of K.

Proposition 5.3. Let K € K? be a parallelogram with side length ratio r > 1 and larger interior angle
0 € (5,m). Then the following statements are true:
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Fig. 3. Optimal containment of a parallelogram K (green) in the dilated mirror image after reflection across the reflection axis U
from the proof of Proposition 5.3 for the case of a bisector of an interior angle (left panel) and a bisector of the diagonals (right
panel): reflection axis U (gray), ®u (K) (red), and an appropriate translate of R(K, ®y (K))Py (K) (black).

(i) If U is the bisector of an interior angle of K, then
R(K, @y (K)) =r.
(i) If U is an angle bisector of the diagonals of K, then

r? — 2rcos(f) + 1

R 2u(K)) = T o)

(iii) If U is a principal azis of the John ellipse of K, then

r2 — 2rcos(f) — 1
V(2 —1)2 + 4r2cos(6)2

R(K, 0y (K)) =

Proof. By Lemma 3.1, we may assume K = conv {a, b, —a, —b}, where a = (1,0)" and b = (z1,22) ' € R?
with 21,29 > 0 and z% + zg < 1.
For (i), if U is the angle bisector of K at a, then ®y maps aff {a, b} onto aff {a, —b} and vice versa. In

this case, K C a + max { HZ;ZHv HZJ:ZH } (Py(K) — a) is optimal by Proposition 2.1, see left panel of Fig. 3,
3 a—b a-+b
e R0, 00 = ot JE} =

For (ii), note that ®y maps aff {a, —a} onto aff {b, —b} and vice versa. For the ratio of the diagonal

_ 2llall 2]l
lengths A = max { S5 2llal

of Fig. 3. Thus, R(K, Py (K)) equals the ratio of the diagonal lengths. In a parallelogram with side lengths

}, the containment K C A®y(K) is optimal by Proposition 2.1, see right panel

1 and r and larger interior angle 6, we may use the law of cosines to determine the lengths of the diagonals.
These turn out to be /72 + 1 — 2rcos(6) and /72 + 1 + 2r cos(f), where the former is the larger one since
cos(f) < 0.

For (iii), we invoke a generalization of Marden’s theorem from [20, Proposition 5], which implies that

upon identification of R? with C, the focal points of £;(K) are solutions w € C of the equation w? =

2 2 2 2
HZIT*ZQ + iz 25. By assumption, the real and the imaginary parts of Hzl% + iz, 29 are both positive, so
s
» 4
containing both focal points, is given by U = {u(cos(¢),sin(¢))" : p € R}, where ¢ € (0, %) is determined

2 2
by cot(2¢) = 14;1%222 Setting t := sin(2¢p), we obtain

there is one solution w with argument in (0, Z). Therefore, the major axis of £;(K), i.e., the straight line

V1 —t2 _ 1422 — 22

t 22122

Squaring and solving for ¢ leads to

. 22129 1+ 22 — 22
sin(2¢) = and cos(2¢) = .
27 V(27 = 25)2 + (22122)? 27 V(27 = 23)2 + (22122)?
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Note that ®;(a) = (cos(2¢),sin(2p)) . By Proposition 5.2, all vertices of m@[](l{) are boundary
points of K. Let us thus compute the unique number A > 0 for which $®y (a) € bd(K).
With

2z 1— 22— 22
= =1- € (0,1),
. 1—22 — 22422 1—22 — 22422 0.1)
we compute
T
1422 — 22 22129
b3 (1— b=((1- L uzo) | = 1L =2
813 (1= pat = (=) 4 i) = (g P

VL + 27 —22)% + (221 20)? : T
p— 2 2 .
1 Z% — Zg 122, (cos(2¢), sin(2¢))

Thus, we have for

1—22 — 22422
VA +2f = 25)? + (22122)?

A= >0 (12)

that Py (a) € [a,b] C bd(K). Since there exists only one such A > 0, this yields R(K, @y (K)) = A.

It remains to express A = R(K,®y(K)) in terms of the side length ratio r > 1 and the interior angle
9 € (5,m). Since 21,22 > 0 and 27 + 23 < 1, the line segment [a,b] is one of the short edges of K and
the interior angle of K at b is obtuse. If we abbreviate the length of this segment by s := ||b — a||, then
Ib — (—a)|| = rs is the other side length of K. The law of cosines for the triangle conv {a,b, —a} implies

7252 4 52 — 2rs% cos(f) = 4 or, equivalently,

2 4
1412 —2rcos(f)

S

Note that 1+ 72 — 2r cos(#) > 0 since cos(#) < 0. Now, let ¢ = (21,0) " € [—a, a] be the foot of the perpen-
dicular from b to [—a,a]. Applying Pythagoras’s theorem in the triangles conv {a,b,c} and conv{—a,b, c}
gives (1 —21)? + 253 = s? and (1 + 21)? + 23 = r2s2. It follows that

a=tpr oo ] (13)
YTy 1472 —2rcos(f)’
This implies 1 — z; = fﬁ%ﬂ%. We obtain
Ros?(1—2)? = 4 B 4(1 — rcos(f))? _ 472 sin(6)? .
1472 —2rcos(d) (1+7r2—2rcos(0))? (1+72—2rcos())?
Since z2 > 0 and sin(f) > 0, we further have
2rsin(6
= rsin(6) (14)

1472 —2rcos(f)’

Plugging (13) and (14) into the numerator of (12) and using the subs and simplify methods in SymPy
[18], we obtain

2(r? — 2rcos(6) — 1)
1472 — 2rcos(f)

1—27 — 25 +22 =
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For the expression under the square root in the denominator of (12), a similar approach gives

4(r* + 2r2 cos(20) + 1)
(r2 —2rcos(f) +1)2

(1427 — 23)° + (22122)° =

Hence

r?—2rcos(d) —1 r?2 —2rcos(f) — 1

R(K, @y (H)) = 1 = \/1"4 + 2r2cos(20) + 1 B \/(7"2 —1)% + 4r? COS(Q)Q.

Corollary 5.4. For a nontrivial parallelogram with side length ratio r > 1 and larger interior angle 6 € (5, ),
we have

(15)

2 _ 2 _ _
o (K) = min {7’, r? —2rcos(f) + 1 r? —2rcos(f) — 1 } ‘

V(2 +1)2 —4r2 cos(9)2’ V/(r2 — 1)2 + 4r2 cos(0)?
Proof. This follows from Proposition 5.1 together with Proposition 5.3. O

Remark 5.5.

(i) The affine equivariance of John ellipses offers a method of computing their principal axes for paral-
lelograms K := conv {a,b, —a, —b}, where a = (a1,az)" and b = (b1,by)" € R2, other than the one
used in the proof of Proposition 5.3(iii). Let f : R? — R2, f(x) = Mx be the linear map given by left

multiplication with the matrix
ap b 11\
_ [a1 01 -
M= (ag b2) < 1 1) ’

Then we have f([—1,1]?) = K, so £;([—1,1]?) = B2 yields £;(K) = f(B3). In other words, we have
E)(K) = {x ER?: 2™ M TM 'z < 1}, which means that the principal axes of £;(K) are given by
the eigenvectors of the symmetric matrix

T ar as\ " far b\
vt (G i) ()

(ii) Proposition 3.7 sheds some additional light on the optimal axes in Theorem 1.4. If K € K? is a
0-symmetric parallelogram, then so is K°, and we can canonically associate all candidate reflection
axes for ay (K) with those for oy (K°). First, the directions of the principal axes of £;(K°) coincide
with those of £;(K). Indeed, if A € GL(R™) such that K = A([—1,1]?), then K° = A~ (C), where
C := ([~1,1]?)° is a rotation of [~1,1]? by 45° dilated by the factor —=. Therefore, the equivariance

V2
of the John ellipsoid shows

o\ __ —T _ —T _i —-T 2
() = £(A7T(C)) = AT (E(C)) = Z=ATT(B))
= L AE(L1P)° = = (& (K.

V2 2

Since the principal axes of a 0-symmetric ellipsoid and its polar coincide (see, e.g., [16, Lemma 2.7]),
this verifies that the principal axes of £;(K°) and £;(K) really are the same. Second, note that the
edges of K° are perpendicular to the diagonals of K and vice versa. With this, it is easy to see that
the interior angles of K° can be paired up with the angles formed by the diagonals of K such that
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the angle pairs each add up to 180°. In particular, the interior angles of K° coincide with the angles
formed by the diagonals of K, and so do the bisectors of these respective angles (up to translation).
Last, we also see that the condition that the interior angles of K coincide with the angles formed by
the diagonals of K can be equivalently stated as K and K° being similar to each other. (Note that the
interior angles and the angles formed by the diagonals determine a parallelogram up to similarity.) In
this case, the bisectors U' and U? of an interior angle of K and an angle formed by the diagonals of
K, respectively, must satisfy R(K, ®y1(K)) = R(K, ®y2(K)).

We are ready to prove (3) and determine the parallelograms with the maximum Minkowski chirality.

Proposition 5.6. We have {a(K) : K € K? is a nontrivial parallelogram} = (1,/2]. Moreover, for a non-
trivial parallelogram K € K2, the condition oy (K) = /2 is equivalent to the condition that the angles formed
by consecutive edges of K coincide with the angles formed by its diagonals and the ratio between the length
of a long edge and that of a short edge being at least /2.

Proof. Denote, as before, r as the ratio of a longer side by a shorter side and 6 as the size of the obtuse angle
between consecutive edges. In view of (15), oy (K) is the pointwise infimum of three continuous functions of
(r,0) € (1,00) x (5,7), so it is continuous itself. For the first part of the claim, it is thus sufficient to show
that the infimum of the set {al(K ) : K € K% is a nontrivial parallelogram} is 1 and that the supremum of
the set is v/2.

For the infimum, we see that for every € > 0, there is a nontrivial parallelogram K with side length ratio
r = 1+ ¢ and thus, by (15), also a3 (K) < 1+ €. Note that this is indeed an infimum and not a minimum
since we are discussing nontrivial parallelograms.

Next, observe that

r? — 2rcos(f) — 1 <3
2 _1)2 2 2 = ’
V(2 —1)2 + 4r2 cos(0)

(16)

Indeed, by squaring and substituting y := —2 cos(f), this is equivalent to (72 +yr —1)% < 2(r? —1)2 +2y2r2,
which can be rearranged to 0 < r4—2yr3+4(y% —2)r?+2yr+1 = (T(y—r)+1)2. This, together with (15), shows
a1(K) < V2. A particular example for a parallelogram K with a;(K) = v/2 is K = conv {£(1,0),4(2,1)}.
This completes the proof of the first part of the claim.

Now, observe that equality holds in (16) if and only if r(r — y) = 1, which is in turn equivalent to

cos(d) = (L —r). We claim that the latter condition is also equivalent to

r? — 2rcos(f) + 1
V(2 +1)2 — 4r2 cos(6)?

=r. (17)

Indeed, a straightforward computation shows for cos(f) = £ (1 — ) that

r?2 —2rcos(f) + 1 -1 -r)4+1 27

S T2 40 P T (L_r22  varE

Conversely, the numerator of the left-hand term in (17) is strictly decreasing in cos(f), whereas the de-
nominator is strictly increasing in cos(f) € (—1,0). Thus, the entire left-hand term is strictly decreasing in
cos(f) € (—1,0), which means that cos(d) = 1(1 —r) is the only solution of (17). Altogether, in view of
(15), we have that oy (K) = v/2 if and only if

7"272TCOS(0)+1 :7’2\/5
VO T AP~ 4 con(0)?
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Q

N

a b

Fig. 4. The obtuse angle formed by the diagonals of the parallelogram is denoted by 4.

To complete the proof, it suffices to show that (17) is equivalent to the condition that 6 equals the larger
angle § formed by the diagonals of K, see Fig. 4. To achieve this, let the vertices of K be labeled as a, b, ¢, d,
and denote the center of K by m = 2Fretd - Assume that [a,b], [b,c], [c,d], and [d, a] are the edges of K
with |la = b|| = |[c—d||=1and |la —=d| = ||[b—¢| = r.

Applying the law of cosines to the triangles conv {a, b, d} and conv {a,b, c} gives

|b—d||> =r?+1—2r-1-cos(f) and la—¢|* =72 +1+2r-1-cos(h).

If we assume equality in (17), or equivalently, that cos(#) = % (£ —r), we get ||b — d||* =2r2 and |ja — ¢|* =

2. Another application of the law of cosines in the triangle conv {a, m,d} yields

2 2
g2 Ib—dl”  lla—c” _,flb—dl fla—c]
4 4 2 2

- cos(0),

which simplifies to —2 cos(§) = r — L. The bijectivity of the cosine function on (%, 7) shows that § = §. The
converse implication follows from Remark 5.5(ii). O

In the following, we describe a “phase diagram” for the reflection axis at which the Minkowski chirality
a1 (K) of a given nontrivial parallelogram is attained in terms of the side length ratio » > 1 and the larger
interior angle € (%, ). This phase diagram is depicted in Fig. 5 (left panel).

Corollary 5.7. Let K € K? be a nontrivial parallelogram with side length ratio v > 1 and larger interior
angle § € (5, 7). Define Ui, Wy : (1,00) — (5, m) by

Ui (r) = arccos(—%(r — %)) ifre (1, \/5),
n arccos(f%(*rq‘/ﬂ;ﬁﬁﬂ)) ifr>+2

and
(1) arccos(—3 (L +v2—12)) ifr e (1,v2),
r) = .
? arccos(—%(*r%rv T42t6” —TEL)Y e > /2.
Let further

= {(T,G)TGRZ S1<, g<9§\111(a:)}, (18)
{

(r)"eR2:1<r,m>0> Uy(z)}, and (19)
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Bi=((1,00) x (gn)) \ (JUD). (20)
Then a1 (K) = R(K, Py (K)), where

(i) U is the angle bisector of two consecutive edges of K whenever (r,0) € B,
(i) U is an angle bisector of the diagonals of K whenever (r,0) € D, and
(iii) U is a principal azis of the John ellipse of K whenever (r,0) € J.

Proof. Set y := —2cos(f) and Q := (1,00) x (0,2). Given our restrictions on r and 0, it is easy to see that
the coordinate transform (r,6) — (r,y) is one-to-one. Further, define B, D,J : Q@ — R by

(r2 +ry+1)2
2+ 1)2 — 2y

(r2 +ry —1)2

_ .2 —
B(r,y) =r7,  D(ry) = Z_12 422

and J(r,y) =
These expressions are equal to R(K,®y(K))?, where U is the angle bisector of two consecutive edges of
K, an angle bisector of the diagonals of K, or the major axis of £;(K), respectively. By Propositions 5.1
and 5.3, proving the claim can be recast as determining the domains in Q2 where each of B, D, and J is
minimal. To do so, we rewrite the sets of pairs (r,y) € Q for which either J(r,y) = D(r,y), D(r,y) = B(r,y),
or J(r,y) = B(r,y) as graphs of functions of r. (Parts of these graphs appear as solid lines in the left panel
of Fig. 5.) Depended on the order of these functions, we then distinguish cases to find the desired regions.
We have

J(r,y) = D(r,y)
< Oy ortyd ottt 0%y — 22Xy — 2rtyP + 2ry = 0
e PPty + (P -2ty +2-2" =0

(y_frtl)(y_wLWH)(y_er\/WH):O.

r 2r 2r

=

2 2\ /A 2_ . . .
From r > 1, we know that both = L and =—=vr 2";67" 1 are negative. Therefore, since we are looking

for y € (0,2), the only potential solution is

2Vt 6r2 -7+ 1
2r '

= (21)
Let us also remark that 7 > 1 implies r* +6r> — 7 = (r2 + 7)(r> — 1) > (r> — 1)2 > 0. Thus, y from (21) is
positive. A direct computations shows that —rity T42J;6T2*7+1 < 2 is equivalent to (r? —1)(r +1) > 0, which
is again satisfied for r > 1.

Thus, we have J(r,y) = D(r,y) for (r,y)T € Q if and only if (r,y) " is an element of the graph of the
function f;p : (1,00) = R given by f;p(r) = _’”2+”42J;6T2_7+1.

Similarly, we get J(r,y) < D(r,y) if y > fsp(r), and J(r,y) > D(r,y) if y < fip(r).

Next, consider

D(Tv y) = B(T7 y)

4 r2y? 14203y + 202 4 2ry = 0 4+ 2t 42—ty
P+ Dy +2ry +1 -7 =0
2P+ 22y +1—1rt=0

b= 2)) -

r ¢ 00
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Clearly, we have —r — % < 0 when r > 1. Since we are looking for y € (0, 2), the only potential solution is

1
y=r-——. (22)
Since r > 1, we have 0 < y. Moreover, if > 1 and y < 2 in (22), then r < 14 /2. Thus, we have D(r,y) =
B(r,y) for (r,y) " € Qif and only if (r,3) " is an element of the graph of the function fpp : (1,14++v2) = R
given by fpp(r) = r — 1. Similarly, we obtain D(r,y) < B(r,y) if y < fpp(r) or r > 1+ /2, and
D(T7y) > B(T’ y) if y > fDB(T>'

Finally, for r € (1, /2] we consider

J(r,y) = B(r,y)

rt+ r2y2 + 1+ 2r3y —2r? — 2ry = ro —ort 4% 4 r4y2
(r2 =Dy = 2ry + (r2 = 1)?) =0

P2y —2ry +(r* =12 =0

- () (v ) o
Moreover, if r € (1,v/2], we have 1 > 2 > V2 —72 ie, (r, —v2—1%)T (r,2 + vV2—12)T € Q. Thus,

J(r,y) = B(r,y) for (r,y)T € Q if and only if (r,y) " is an element of the graph of one of the functions
fJBJ,fJB)Q : (]., \/§] — R given by fJB,l(’r') = % — \/m and fJBg(T') = % + \/m

Similarly, we obtain B(r,y) < J(r,y) for r € (1,/2) and y € (fs51(r), fs5,2(r)) on the one hand, and
B(r,y) > J(r,y) for r € (1,3/2] and y ¢ [fr5.1(7), f1B.2(r)], and for > /2 on the other hand.

Observe that f15.1(V2) = fos(V2) = fip(V2) = fip2(V2) = % motivates to look at the cases r < v/2
and r > /2 separately. As previously mentioned, we have B(r,y) > J(r,y) for (r,y)T € Q with r > /2,
or r = /2 and y # % This means that the minimum among B(r,y), J(r,y), and D(r,y) is one of the

t ¢ 0

latter two numbers in these cases. Hence, for r > /2, only f;p is relevant for partioning  according to the
minimum of B, D, and J.
On the other hand, if 1 < r < /2, then fyp1(r) < fpp(r) < fip(r) < frp2(r). Consequently, if
y < fpp(r), then y < f;p(r), ie., D(r,y) < B(r,y) and D(r,y) < J(r,y). This means that if (r,y)" € Q
is such that 1 < r < v/2 and y < fpg(r), the minimum among B(r,y), J(r,y), and D(r,y) is D(r,y).
Similarly, one finds that the minimum is B(r,y) when fpp(r) <y < frp2(r), and J(r,y) for y > fip2(r).
Putting everything together, let us define the functions Uq, U : (1,00) — (0,2) given by

U _ r—% ifre(l,\/?),
1) =9\ 2 et ifr> /3
2r —

and

B (r) 1+v2a—r2 if r € (1,v2),
)=
R = SRR

If we set D := {(r,y)T ER?:1<r0<y< \Tll(r)}, J = {(r,y)T ER?:1<r2>y> \Tlg(T)}, and

B:=9Q \ (j U 75), we have that D is optimal in 75, J is optimal in j, and B is optimal in B.
Returning to the original coordinates  and 6, we just need to define the functions ¥y, ¥y : (1, 00) — (5, 7)
branch-wise by W1(r) = arccos(—3W¥1(r)) and Ws(r) = arccos(—3Ws(r)), where we choose the principal

branch of the arccos function. The domains D, 7, and B from (18), (19), and (20) can be obtained in the
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Fig. 5. We parametrize nontrivial parallelograms K in three different ways by the larger interior angle 6 € (%, ), the side length
ratio r € (1, 00), the larger angle § € (5, 7r) formed by the diagonals, and the coordinates z,y € R. (In the latter case, we assume
that the vertices of K are £(1,0) and %(x,y), where ? + y? < 1 and @,y > 0.) The solid lines separate regions which correspond
to the reflection axis at which the Minkowski chirality «; is attained: a bisector of an interior angle for B, an angle bisector of the
diagonals for D, and a principal axis of the John ellipse for J. The dashed line indicates the parallelograms with a7 (K) = V2.

obvious way. Note that inside the definition of these domains, the signs of the orderings involving y are
not perturbed by this transformation. This is due to arccos being decreasing on its principal branch. For

example, the condition y < r — % simply becomes 6 < arccos [ — %(7‘ — %) . O

Next, we comment on how to derive phase diagrams for two different parameterizations of parallelograms.
In particular, we identify the pairs of parameters that correspond to parallelograms K for which two of our
three candidate reflection axes U attain oy (K).

In Remark 5.5, we saw that the shape of the diagram in Fig. 5 becomes symmetric with respect to
reflection at the diagonal if in the parameterization of nontrivial parallelograms we replace the side length
ratio 7 by the angle 0 € (F,m) formed by the intersection of the diagonals. Then the pairs (4,0) that
represent nontrivial parallelograms K for which the reflections across the bisector of the interior angle 6 and
the bisector of the diagonal angle § give the same circumradius R(K, @y (K)) are given by § = 6. Among
those, there are also the nontrivial parallelograms K with a;(K) = v/2.

In Corollary 5.7, we saw that the nontrivial parallelograms K for which the bisector of the interior angle
6 and the principal axes of £;(K) give the same value a1 (K) for R(K, ®y(K)) are given by the side length
ratio 7 € (1, /2] and the identity —2 cos(f) = % ++/2 — r2. For such a parallelogram, the squared lengths of
the diagonals can be computed as 72 +1—2r cos(f) = 72 +2+7rv/2 — r2 and 72 +1+2r cos(0) = r2—rv/2 — r2
due to the law of cosines, see again Fig. 4. Hence, another application of the law of cosines yields the following
relation between the side length ratio r and the obtuse angle § formed by the diagonals of the parallelogram:

, 241 \/(r2 + 2472 —12)(r2 — rv/2 —1?2)
re = -

2 2

- cos(9).
This is equivalent to

1—r2

V02 4242 )2 - VT )

6 = arccos

In the parametrization by § and 6, the nontrivial parallelograms K for which the bisector of the interior
angle 0 and the principal axes of £;(K) give the same value for R(K, ®y(K)) are thus represented by the
parameterized curve

1—72

Vo2 2= — 2= ) ’amos(_i <;+ 2_T2)> 7

arccos

(6a 9) =
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where 7 € (1,v/2]. Using the symmetry of this parameterization, we also get the pairs (d,6) representing
nontrivial parallelograms K for which the bisector of the angle § formed by the diagonals and the principal
axes of £;(K) give the same value oy (K) for R(K, @y (K)), see the middle panel of Fig. 5.

As a third and last parametrization, let us consider nontrivial parallelograms with vertices #(1,0)" and
+(z,y)", where 22 + y? < 1 and z,y > 0. This family of parallelograms consists of one representative
of each similarity class, each point-symmetric with respect to the coordinate origin and having the longer
diagonal of length 2. The nontrivial parallelograms K for which the reflections across the bisector of the
interior angle 6 and the bisector of the diagonal angle § give the same circumradius R(K, @y (K)) are those
for which the side length ratio equals the diagonal length ratio. In this parameterization,

4 oo @41+
@y T @)y
ie., (z +1)%2 +y? = 2. Among those, there are also the nontrivial parallelograms K with a1 (K) = /2. It
remains to locate the parallelograms K for which a4 (K) is obtained by the reflection across the principal axis
of £;(K) and one of the other two candidates. The pairs (z,y) corresponding to nontrivial parallelograms
with side length ratio » > 1 are given by

(x+1)2+9y2

r= .
=17+

Squaring and rearranging yields the equation of the circle C;(r) with midpoint (:jﬂ,O)T and radius

1/ E:jﬂ;i — 1. Similarly, the pairs (z,y) corresponding to nontrivial parallelograms with obtuse interior

T
angle 0 belong to the circle C3(6) with midpoint (0, — m — 1) and radius m. For every r > 1 and
0 € (%,m), the circles C1(r) and C5(6) have two intersection points (z,y)". Precisely one of them, call it
v(r,0), has x,y > 0. The common boundary of the domains [J and BUD in the right panel of Fig. 5 is then
obtained as the set of the points v(r,0) for r > 1 and 6 = Uy (r), with ¥ from Corollary 5.7. Alternatively,

by taking (12) and (15) into account, one arrives at

a1(K):min{ (x+ D* +y° ! L2ty 42 }

V=12 +y2" a2+ 2 [0+ 22— y2)2 + (22y)?

for which one could do an analysis analogous to that of Corollary 5.7.
6. Triangles

In this section, we prove Theorem 1.2. By Theorem 1.1, any triangle K € K2 satisfies a1(K) > 1, with
equality precisely if K is an isosceles triangle. Therefore, it remains to prove Theorem 1.2 for scalene triangles
K, i.e., those in which all three sides are of different lengths. To this end, we prove in Propositions 6.1 and 6.2
that if a1 (K) = R(K, ®y(K)) for some straight line U, then U is parallel to the bisector of one of the interior
angles or perpendicular to one of the edges. In Proposition 6.3, we find the circumradii of triangles with
respect to their mirror images upon reflection across straight lines parallel to angle bisectors or perpendicular
to edges. In Proposition 6.4, we reduce the list of candidates for the optimal reflection axis to the bisectors of
the largest and smallest interior angles and the perpendicular lines to the longest edge, and give an explicit
formula for 1 (K) in terms of the side lengths of the triangle. Last, we describe a “phase diagram” for the
optimal reflection axes in Corollary 6.5, i.e., we provide parametrizations of sets of representatives of the
similarity classes of triangles and establish explicit conditions on the parameters that tell us which of the
candidates for the optimal reflection axis is the one that attains a;.
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A /S

Fig. 6. Case 3 in the proof of Proposition 6.1: S (green) is optimally contained in T' (red), but not under rotation. This is because
after suitable rotation (left panel) and translation (right panel), the transformed S is a subset of T' but does not intersect all edges
of T.

As used in the previous section for parallelograms, one may for U, U’ € Gri(R?) understand the mirror
image @y (K) as the image of ®y(K) under a rotation. We are therefore interested in finding the largest
dilate of a rotation of ®;;(K) that fits in K. Formally, we say for K, L € K? with K C L that K is optimally
contained in L under rotation if for all rotations ¥ : R? — R?, A > 1, and = € R?, we have \V(K)+x ¢ L.

Proposition 6.1. Let S, T € K? be triangles such that S is optimally contained in T under rotation. Then at
least one edge of S is contained in an edge of T.

Proof. Denote by u, v, w the vertices of .S, and by a, b, ¢ the vertices of T'. Since S is optimally contained in
T under rotation, we have R(S,T) = 1. Based on the observation following Proposition 2.1, we distinguish
three cases.

Case 1: S and T share at least two vertices. Since S and T have a common edge, we are done.

Case 2: S and T share precisely one vertex, say u. We may assume that neither of the remaining vertices
of S is contained in an edge of T incident to w. Since R(S,T) = 1, at least one vertex of .S, say v, must be
an element of the relative interior of the edge of T' opposite u. We are done if w is also an element of this
edge, so assume for a contradiction that w € int(7"). Then there is a rotation ¥ around u (with a sufficiently
small rotation angle and an appropriately chosen rotation direction) such that ¥(v) and ¥(w) both lie in
int(7"). This means that ¥(S) C T and ¥(S) intersects only two edges of T. By Proposition 2.1, ¥(S)
is not optimally contained in 7', so S is not optimally contained in T under rotation. This is the desired
contradiction.

Case 8: S and T do not share any vertices. By R(S,T) = 1, the vertices u, v, w of S are elements of
the relative interiors of the edges E,, FE,, E, of T, respectively. Denote the straight lines supporting 7" at
E, =la,b], E, =[b,c], Ey = [c,a] by Fy, F,, Fy, respectively. Let

U, R? =R, W(z)=u+ (g?]s((g; _2;2((:?» e

be the rotation around u by the angle . As in the previous case, there exists € > 0 such that the rotations
of v and w around u by an angle at most € and with respective appropriately chosen rotation directions lie
in int(7"). We may assume that the appropriate rotation directions for v and w do no coincide, as otherwise
some rotation of S is contained in 7" and intersects only one edge of T', contradicting the assumption that S
is optimally contained in T" under rotation. Thus, we can relabel v and w if necessary such that ¥, (v) ¢ T
and ¥, (w) € int(T) for all ¢ € (0,¢), and ¥, (v) € int(T) and V,(w) ¢ T for all ¢ € (—¢,0). Our goal is
to show that for some ¢ € (—¢,¢) \ {0}, the triangle W, (S) can be translated parallel to F,, such that the
translated triangle lies entirely in T and intersects at most two edges of T, see Fig. 6 for an illustration. By
Proposition 2.1, this shows that this translation of ¥, (S) is not optimally contained in T' and, hence, that
S is not optimally contained in T under rotation.

To this end, we introduce some notation and present arguments in the following that apply analogously
for v and w. To avoid repetition, we write z as a placeholder for them throughout the proof whenever
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Fig. 7. Notation used in Case 3 in the proof of Proposition 6.1.

some step is needed and executed in the same way for both of them. If the distinction between v and w is
important, we refer to them explicitly. Now, let d,, := a —b, d,, := b— ¢, and d,, := ¢— a be direction vectors
of F,, F,, and F,, respectively. The vectors d.,, d,, d,, are pairwise linearly independent.

Next, note for z € R? that there exists a unique pair of numbers (u.(z),\,(z)) with z + p.(z)d, =
z+ \.(z)d.. Note that the map p. : R?> — R given by

pete) = (1 0) (du | =) (-

is an affine map. The quantity u.(z) can be understood as a signed distance that measures how far x is
from F, and whether F, can be reached from x by going in the direction of d,, or its negative. Our goal is
to show 1 (U (w)) > o (T (v)) > 0 or 0 > gy (¥ (w)) > py (P (v)) for some ¢ € (—¢,¢) \ {0}.

Next, we define for ¢ € (=%, %) a map p, : R* \ {u} — R* by

1
cos()

Po(@) = u+ —— (V@) — ) = & + tan(p) (T 5 (x) — ).

Then p,(z) is the unique intersection point of the ray from u through ¥, (x) and the straight line supporting
u+ ||u — z|| B3 at z, see Fig. 7 for an illustration.
Let further

e = (1 O)(du | —dz)il(u—\llg(z)).

Then p.(py(2)) = c. tan(p) forall p € (=5, ). Iif ¢ € (=%, 5)\ {0}, then @ > 1,50 Wy, (2) € (u,pp(2)).
Since f1. is an affine map, p1.(¥,(2)) is between i, (u) and . (p,(2)). Next, we determine the signs and the
order of the latter three numbers, depending on the sign of ¢ € (—¢,¢) \ {0}. Since u + [0, 00)d,, does not
intersect F, but F,, we already know that p,(u) < 0 and p,(u) > 0.

Assume first that ¢ € (0,¢). Then ¥, (v) ¢ T by assumption and [u, ¥, (v)) N F, # 0 if ¢ is sufficiently
small. Since p,(x) = 0 precisely if x € F,, we conclude from p,(u) < 0 and the affinity of pu, that
0 < po(Vy(v)) < po(pp(v)). In particular, we obtain from i, (p,(v)) = ¢, tan(p) that ¢, > 0. Similarly,
U, (w) € int(T) by assumption and [u, p,(w)] N F,, = 0 if ¢ is sufficiently small. Since p,,(2) = 0 precisely
if z € F,,, we conclude similar to before that ji,, (1) > pi(Vu(w)) > phw(pp(w)) > 0 and thus ¢, > 0.
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Second, for ¢ € (—¢,0), we have U, (v) € int(T) by assumption and [u,p,(v)] N F, = 0 if € is small
enough. Since p,(x) = 0 precisely if € F,, we conclude that i,(V,(v)) < fo(pyp(v)) < 0. Similarly,
0> fr (¥ (w)) > pr(pp(w)) if € is small enough.

Finally, we distinguish two cases. If ¢,, > ¢, then we have for any ¢ € (0,¢) that

(T (W) > s (pp () = 4 tan(p) > ¢, tan(e) = o (pp(v) > (T (v)) > 0. (23)

By definition of ju,,, we always have W, (w) + pw (¥, (w))dy € F,. Since W, (w) € int(7T'), we even obtain
for e sufficiently small that W, (w) + pw(¥,(w))d, lies in the relative interior of E,,. Further, we have by
(23) that

W (w) + 0 (U (0))dy € [ (@), () + proo (W (w))d,) C int(T).

Moreover, we also have W, (v) + (Vo (v))dy € Ey. By p(u) > prw(¥e(w)) > py(Vy(v)), we further
obtain Wy (u) + (Ve (v))dy = v+ py (Y (v))dy € Ey \ Ey. Altogether, W, (S) + 1y (¥4 (v))d, C T and
U, (S) + 1o (¥ (v))d, does not intersect F,. This completes the proof in this case.

If instead ¢, > ¢, we have for any ¢ € (—¢,0) that

0> f10y (Y (w)) > iy (P (w)) = e tan(p) > ¢, tan(p) = py(Pp(v)) > po (Ve (v)).

Analogously, we get W, (S) + piw (¥ (w))d, C T and that W, (S) + pr, (¥, (w))d, does not intersect F, for
€ small enough, which completes the proof also in this case. O

We immediately obtain a short list of candidates for the optimal reflection axis for the 1st Minkowski
chirality of triangles.

Proposition 6.2. Let K € K? be a triangle and U € Gri(R?) such that R(K,®y(K)) = a1(K). Then U is
parallel to the bisector of an interior angle of K or perpendicular to an edge of K.

Proof. The triangle K is optimally contained in x + oy (K)®y (K) under rotation for some z € R?. The
previous proposition therefore shows that at least one edge F of K is a subset of an edge of x4y (K)®y (K).
If V denotes the straight line supporting K at E, we see that @y (V) must be parallel to V' or to the affine
hull of another edge of K. This means that U is perpendicular to an edge of K, parallel to the bisector of an
interior angle of K, or parallel to an edge of K. The latter case cannot happen, as z would have to be such
that £ C 2+ a1 (K)®y(E). But then the vertex of K opposite E is not an element of z + a1 (K)®y (K). O

Next, we determine the minimal dilation factor in the inclusion K C z + AK’, where K’ is the image of
K under reflection across a straight line parallel to one of the angle bisectors or perpendicular to one of the
edges.

Proposition 6.3. Let K = conv {a,b,c} € K? be a triangle with x := ||b—c|| <y :=|la — c||.

(i) Let U C R? be the bisector of the interior angle at c. Then R(K,®y(K)) = £.
(ii) Let U be the perpendicular bisector of [a,b], and z := ||a — b||. Then R(K,®dy(K)) =1+ % S

Proof. For (i), note that ®; maps aff {a,c} onto aff {b,c} and vice versa. Thus, K C c+ £(®
and the containment is optimal by Proposition 2.1, see Fig. 8. This means that R(K, <I>U(K)) =

(K) c),

For (ii), note that ®y(K) = conv {a,b, ®y(c)}, and the line segments [a, c] and [b, Py(c)] have a unique
intersection point d. Further, we have
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%
U <

<I>U(a)

Fig. 8. Optimal containment of a triangle K (green) in the dilated mirror image after reflection across the reflection axis U (gray)
for the case of an angle bisector (left panel) or perpendicular bisector on an edge (right panel): &y (K) (red), and the appropriate
translate of R(K, ®y(K))®y(K) (black).

)
KcCat—2 (@y(K)—a),
fa—ay oK)~

see Fig. 8. Proposition 2.1 shows the optimality of this containment, i.e., R(K, oy (K)) = Hdga\l' Since

aff {a,b} and aff {¢, Py (c)} are parallel, we get as a consequence of the intercept theorem that

ld—c|l _ lle = 2v(o)l

ld —al z
Ptolemy’s theorem applied to the isosceles trapezoid conv {a, b, ¢, & (c)} shows ||c — Py (c)|| = yz;zxz Thus,
y ld —all +[d — ¢l ld = <f lle = @u ()]l y* —a?
|d — all Id — all 1d — all z 2

Now we are ready to give a formula for o4 (K) for a triangle K in terms of its side lengths, and rule out
three of the candidates from Proposition 6.2.

Proposition 6.4. Let K € K2 be a triangle with side lengths 0 < x <y < z. Then

2 2
fzy . Y-
K)=m - =1 . 24
ap(K) m{y’x’ + = } (24)

In particular, we have aq(K) = R(K, @y (K)) for U € Gri(R?) a line parallel to the bisector of the smallest
or the largest interior angle of K or perpendicular to the longest edge of K.

Proof. We may assume that K is a scalene triangle, i.e., x < y < z, since otherwise all assertions are clear.
From Propositions 6.2 and 6.3, we know that

)

() = min {

]I

i ,5714_
Yy €

In order to verify (24), it suffices to show that

2 _ .2 2 _ .2 2 _ .2

- 22—z 2% —

min{z,y,ler 2x}<min{z,l+ ;14 y}
y x z x

First, note that £ < Z since y < 2. Next, we have

y? — 22 52 _ g2 22 _ g2

1+
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Last, observe that £ <1+ 24" i equivalent to 0 < 22y +y2? —yP — 222 = (2 — y)(y? — 2% + y2). The

[132
latter is true since we assumed z >y and 3% > 22. O

% — a2 2242

Note that in the setup of Proposition 6.4, we do not always have 1 + ¥—— < 1 + == whenever

0<x<y<zandx+y >z For instance, by taking z sufficiently large, y = 2% and z = 2 + % we have

2 2 4 2 2 2 1.2, 1
y? —x zt—x . 25—y 2%+ 15
=14+ —-—=2 hile 1 =1 ~
22 +x4+2x2+1 , while 14 x? +

N o

1+ >
Thus, in the proof of Proposition 6.4, we could not have ruled out the perpendicular bisector of the shortest
edge in the same way we eliminated the perpendicular bisector of the middle edge.

In the following corollary, we describe the “phase diagram” depicted in Fig. 9 for the reflection axis at
which a1 (K) of a given scalene triangle K is attained. We parameterize the triangle in terms of its side
lengths z, y, and 1, assuming that 0 < x < y < 1 < z + y. Later, we give a similar result for triangles
parameterized by a vertex (z,y)" while fixing the other vertices at (0,0)T and (1,0)T, see Corollary 6.6
and Fig. 10.

Corollary 6.5. Let K be a triangle with side lengths x, y, and 1 such that 0 < x < y < 1 < x 4+ y. Define
\1117\112 : (%,1) — R by

0 iy <3 0 ify<4,
Ui(y) = § /2 iR <y <y, and Ua(y) =32 HA-y) iR <y<w,
y? if y > yo y? if y > yo

where yo ~ 0.819173 is the unique positive real solution of the equation y* +y> = 1. Let further

Q:={(z,y)  eR?: 0<a<y<l<z+y}, L={(z,y) €Q:z>Ts(y)},
S={(z,y)" €Q:2<T(y)}, P:=Q\(LUS).

Then a1 (K) = R(K, @y (K)), where

(i) U is the bisector of the largest interior angle of K whenever (z,y) € L,
(i) U is the bisector of the smallest interior angle of K whenever (z,y) € S, and
(iii) U is perpendicular to the longest edge of K whenever (z,y) € P.

Proof. Let L, S, P: Q — R be defined by
Y 1 2 2
L(w,y):;, S(x,y):g, and P(z,y)=1+y" —a~°.

These expressions are by Proposition 6.3 equal to R(K,®y(K)) for U C R? the bisector of the largest
interior angle of K, the bisector of the smallest interior angle of K, or perpendicular to the longest edge of
K, respectively. By Proposition 6.4, proving the corollary can be recast as determining the domains in 2
where each of L, S, and P is minimal. As we shall see, this essentially boils down to finding the solutions
to the equations L = S, S = P and L = P. For (z,y)" € Q, we have

L(x,y) = S(m,y) < T = y2,

Spy—1
S(x,m:P(w,y)m:y+y3—w2yw:\/%’ and



30 A. Caragea et al. / J. Math. Anal. Appl. 557 (2026) 130287

1 =< 1 =T T
- | ._~~~
0.9 - .. - 0.9 - .S -
~ ~ L
0.8 |- > < - 0.8 |- > - |
= ~ = ~
0.7 - - 0.7 |
P

0.6 | — 0.6 | |
0.5 L1 L1 0.5 L1 L1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x x

Fig. 9. Parameterization of scalene triangles by their side lengths z, y, and 1 with 0 < z < y < 1 < = + y. The dashed line indicates
the right-angled triangles. Left panel: The solid lines inside the parameter space indicate the pairs (av,y)T for which two of the
three candidate reflection axes lead to the same value of R(K, ®y (K)). Right panel: The parameter space is separated into regions
which correspond to the reflection axis U for which a1 (K) = R(K, ®y(K)): the bisector of a largest interior angle for £, the
bisector of a smallest interior angle for S, and the perpendicular line to a longest edge for P.

1
P(:c,y):L(:c7y)(:>y=x+xy2—x3<:>0:(x—y)(a:2+xy—1)<:)x:5(\/y2+4—y>.

There is a unique element (z, yp) € € for which S(xo,yo) = L(xo,y0) = P(x0,yo) with yo =~ 0.819173 being
the unique positive real solution of the equation y* + y> = 1. Indeed, from x = y? and 2% + zy — 1 = 0, we
obtain y* + 43 — 1 = 0. The derivative of y — y* + y> — 1 is positive for y > 0, so y — y* + y> — 1 itself
is strictly increasing for y > 0. Hence, there exists at most one positive real solution yg of the equation
y* + 4% — 1 = 0. The existence of a solution in [0, 1] follows from the intermediate value theorem.

Let frs: (\/‘F’;l, 1) = R and fsp, fpr : (@, 1) = R be given by

3

fus) =o. forln) = \[ T and fou() = 5 (VPR )
Note that for (z,y)" € Q, the statements x = frs(y) and L(x,y) = S(x,y) are equivalent. Likewise,
x = fsp(y) and S(z,y) = P(z,y) are equivalent, and so are z = fpr(y) and P(x,y) = L(z,y).

The graphs of frs, fsp, and fpr subdivide € into six regions, corresponding to the six possible strict
orderings of the three numbers L(z,y), S(z,y), and P(z,y), see the left panel of Fig. 9.

To determine on which two of the six regions each of the three numbers is smallest, it suffices to pick
a point (z,y)" from every region and check the ordering for these representatives. For instance, if 2 = 0.6
and y = 0.78, then P(xz,y) ~ 1.2484 < S(z,y) ~ 1.28205 < L(z,y) = 1.3. Thus, if K has side lengths =z, y,
and 1 with (z,y)" € Q and in addition max {1 —y, fsp(y)} < = < frs(y), then (z,y)" € P and a;(K) is
attained at the reflection axes perpendicular to the longest edge of K. O

A different set of representatives of the similarity classes of triangles is given by the triangles of the form
conv {(0,0)7,(1,0)", (z,y) "} withz > 1, y > 0, and % +y? < 1. The side lengths of such a triangle are in
increasing order given by \/(z — 1)2 + 32, /22 + ¢2, and 1. Then, similarly to Corollary 6.5, one can show
the following result.

Corollary 6.6. Let K = conv {(0,0)7,(1,0)",(z,y)"} where z > %, y > 0, and 2*> + y*> < 1. Define
\Ill,\:[fg : (%,1) —R by

—2z241+/5—8z z2(3—2z)
—EERSE i < g, \ i if x < xp,

Uy (x) = _@;1:,;4 z'fx0<as<%, and Wy(z) = —Vlgfl z'fx0<as<%,
0 ifx>% 0 ifx>%

where xo ~ 0.61037 is the unique positive real solution of the equation 16x* — 22 — 1 = 0. Let further
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0
0.5 0.6 0.7 0.8 0.9 1
T

Fig. 10. We parameterize triangles K with vertices (0,0)" and (1,0)" by their third vertex (z,y)' with « € (3,1) and y €
(0,+/1 — x2). The solid lines separate the regions that correspond to the reflection axis U for which a1 (K) = R(K, ®y(K)): the

bisector of a largest interior angle for £, the bisector of a smallest interior angle for S, and the perpendicular line to a longest edge
for P. The dashed line indicates the right-angled triangles.

Q.= {(:c,y)TGIR2 x> %,y>07 952—|—312<1}7 S:= {(m,y)TeQ fy > W(x)},
Pi={(z,y)T €Q:y<Ty(x)}, L:=Q\(PUS).

Then a1 (K) = R(K, Py (K)), where

(i) U is the bisector of the largest interior angle of K whenever (z,y) € L,
(ii) U is the bisector of the smallest interior angle of K whenever (x,y) € S, and
(iii) U is perpendicular to the longest edge of K whenever (z,y) € P.

An illustration of Corollary 6.6 is given in Fig. 10.
The last part of Theorem 1.2 that remains to be proved is (2).

Corollary 6.7. We have {a1(K) : K € K? is a scalene triangle} = (1,/2).

Proof. Let 0 < < y < z be the side lengths of a triangle K € K2. Then z < z + y and in particular
2?2 > (2 — y)%. By Proposition 6.4, we have

2 _ g2 2 _ (5 _q)2 9
al(K)§1+yz2 vy —(z—y)® y

Therefore, we directly get oy (K) < v/2 whenever < % Otherwise, we use Proposition 6.4 again to obtain

ar(K) <= <V

z
Y

To complete the proof, by Lemma 3.4 and the intermediate value theorem, it remains to find a sequence
(K;)ien of triangles K; € K2 such that lim; . a;(K;) = V2. For i € IN, we choose the triangle K; :=

conv {(O,O)T, (1,0) T, (%, H%Q)T} Letting ¢ — oo, the ordered triple of side lengths of K; converges to
(1— %, %, 1). Therefore, Proposition 6.4 gives
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L b i)
hm Oél(Ki):Hlin > \/51 ,1+ 2 1 V2 :\/5 O
i—00 7 1_%

7. Open problems

We close this paper with some final directions for problems to consider in future work.

First, we know from Theorem 1.1 for any j € {0,...,n} and K € K" that «;(K) < n. As outlined in the
introduction and Section 4, this bound is tight if and only if it is tight for just simplices. While Theorem 1.2
shows that the latter does not hold for (n,j) = (2, 1), the question of tightness remains open in the general
case. As a starting point for deriving better bounds on the Minkowski chiralities, it would therefore be
interesting to determine the tightness of a;(K) < n for simplices K € K". Once a pair (n, j) for which the
tightness fails is found, one can consider strengthening the upper bound n. In particular, finding the best
possible upper bound of the 1st Minkowski chirality of planar convex bodies appears to be an intriguing
problem.

Second, Theorems 1.3 and 1.4 show that any point-symmetric K € K2 satisfies a; (K) < v/2, with equality
precisely for a specific family of parallelograms. In dimension n = 3, Theorem 1.1 yields the analogous
inequality o, (K) < V3 for j € {1,2} and any point-symmetric K € K. According to Theorem 4.2 and
[16, Theorem 2.4], the only candidates for K that could achieve equality here are parallelotopes and cross-
polytopes. By Theorem 3.8, these two classes of bodies have the same range of values for the 1st and 2nd
Minkowski chiralities. Thus, in order to determine whether the bound «;(K) < /3 is attained for j € {1,2}
and any point-symmetric K € K3, it suffices to check this for just one value of j and either the class of
parallelotopes or cross-polytopes. Note that if the inequality turns out to be attained in particular examples,
the subspaces spanned by the principal axes of the John ellipsoid would necessarily be optimal. In higher
dimensions, however, the analogous problem becomes more involved since there does not appear to be an
easy description of all point-symmetric K € K™ with dpy (K, BY) = v/n according to [16, Example 2.5].

Last, it might be helpful to find conditions that describe the optimal situation K C = + a1 (K)®y(K)
for z € R™ and U € Gr;(R") similar to Proposition 2.1. Such conditions might help find better general
bounds on the Minkowski chirality and understand the optimal reflection subspaces. Note, though, that
Theorems 1.2 and 1.4 show that a complete description of the optimal situation for a general convex body
might become very involved.
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Appendix A. Continuity of functionals

We provide the postponed proofs of Propositions 3.2 and 3.3 in this appendix. Our proof of the former
is based on [13, Proposition 1.2.1] about the Hausdorft continuity of R(-,B}) on K.

Proof of Proposition 3.2. Let ((K*, C"));en be a convergent sequence in the metric space (K™ x K™, dg +dyr)
with limit (K,C) € K™ x K™. Then (K");en, (C%);en are convergent sequences in (K", dg) with limits K
and C, respectively. By the translation invariance of the circumradius, we may assume that 0 € int(X) and
0 € int(C), i.e., there exists » > 0 such that rBj C K and rBj C C. Fix i € N. Then
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du(K', K)

K'C K+dg(K', K)By ¢ K + K

K= <1 + dH(Iii’K))

and, analogously,

C'C C+(du(C,C))By C C + WC = (1 + dH(C’C)) C.

r

For i sufficiently large, we have dg (K%, K) < r and dg(C*, C) < r, so

(1— (K ’K))K+ du (K€ ’K)K:KCKi+dH(Ki,K)]BS CKWL(IE K
r r
and
i i , , . dy(Ct

Together with the cancellation property, cf. [21, p. 48], we conclude

<1dH(K’K)>KcKi and (1dH(C’C)>CCCi.
T

r

Thus, the monotonicity of the circumradius under set inclusions gives

(1 n dH(K'i,K))
R

T

(1 _ M)
N __ZR(K,C) < R(K',C") < m

(1+ a0 (K, 0).

This shows that lim; ,o, R(K?,C?) = R(K,C). O

Proof of Proposition 3.3. We first show for K € K" that the map ®4(K) : Gr;(R") = K", U — ®y(K) is
continuous.

Let (U?);ew be a convergent sequence in the metric space (Gr;(R™), dg) with limit U. We show

lim dg (O (K), by (K)) =0

11— 00
using [21, Theorem 1.8.8].
First, let € ®(K). Then there exists y € K such that z = ®y(y). For ' = & (y) € &y (K),

" =z = [1Pui (y) = Lo W) < | Pv: — Pullllyll = 2de(U",U) ||yl === 0,

i.e., z = lim;_,o 2. Second, let (i;);en be an increasing sequence in IN, and suppose that z% € @i, (K) for
all j € IN. Further suppose that (z%) jen is a convergent sequence whose limit shall be denoted by z* € R™.
For all j € IN, there exists 4% € K such that 2% = i (y%). We have

Iy = @u@)] = |0 (@) ~ eu ()|
= [| @i, (29) = @pyi; (%) + Dy, (27) — Py (a™)]|

< [1@us [l =2 + [ @y = 2ol 2"l
— ||&% — &*|| + 2de (U, U) ¥ || 22 0.
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Thus, the sequence (y*) e is a convergent sequence with limit ®(z*). Since this is a sequence in the closed
set K, the limit is an element of K, too. But ®y(x*) € K is equivalent to * € ®(K). This completes the
proof of the continuity of ®e(K).

Now, let ((K*% U%));en be a convergent sequence in the metric space (K™ x Gr;(R™),dg + d¢) with limit
(K,U) € K™ x Gr;(R™). Then (K");en is a convergent sequence in (K", dp) with limit K, and (U");e is
a convergent sequence in (Gr;(R"™), dg) with limit U. We see

di (P (K, ®y(K)) < dp(®yi (K", @i (K)) + dp (®y:(K), Oy (K))

=dy (K K) + dy (9 (K), oy (K)) 222 0,
i.e., we have lim; o, @y (K*) = @y (K) in (K", dy). O
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