Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

AI Resource Allocation: On the Contribution of Distributive and Procedural Fairness

Titelangaben

Verfügbarkeit überprüfen

Esch, Christopher ; Werner, Deborah ; Gross, Mascha E. ; Kals, Elisabeth ; Pfeuffer, Christina U.:
AI Resource Allocation: On the Contribution of Distributive and Procedural Fairness.
In: Osawa, Hirotaka ; Lindgren, Helena ; Steinfeld, Aaron ; Foster, Mary Ellen ; Okada, Shogo ; Zhu, Haiyi (Hrsg.): HAI '25 : Proceedings of the 13th International conference on Human-Agent Interaction. - New York, 2026. - S. 188-202
ISBN 9798400721786

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (794kB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://dl.acm.org/doi/full/10.1145/3765766.376577...

Kurzfassung/Abstract

This study investigates how users perceive AI-driven decision-making systems in resource allocation contexts based on three key factors: outcome favorability, transparency, and task type. We conducted an online experiment with a 2 (outcome: favorable vs. unfavorable) x 3 (transparency: low vs. balanced vs. high) mixed design across four different resource allocation scenarios that reflected tasks perceived as more mechanical versus more human (N = 929). Our Bayesian linear mixed-effects models revealed that outcome favorability was the strongest single predictor of perceived fairness, trust, acceptance, and behavioral intention to use the respective AI. Task type (perceived “humanness”) further influenced user perceptions and additionally interacted with outcome favorability and transparency. Surprisingly and in contrast to prior studies, we found evidence against a main effect of transparency. Our findings highlight the critical importance of AI-based resource allocation performance, that is, outcome optimization, for users’ perception of corresponding AI systems. Conversely, the impact of transparency on user perceptions appears to be even more nuanced than previously thought.

Weitere Angaben

Publikationsform:Aufsatz in einem Buch
Schlagwörter:AI decision-making; outcome favorability; task type; transparency
Sprache des Eintrags:Englisch
Institutionen der Universität:Philosophisch-Pädagogische Fakultät > Psychologie > Professur für Sozial- und Organisationspsychologie
Philosophisch-Pädagogische Fakultät > Psychologie > Juniorprofessur für Human-Technology Interaction
DOI / URN / ID:10.1145/3765766.3765776
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Begutachteter Aufsatz:Ja
Titel an der KU entstanden:Ja
KU.edoc-ID:36183
Eingestellt am: 29. Jan 2026 09:08
Letzte Änderung: 29. Jan 2026 09:08
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/36183/
AnalyticsGoogle Scholar