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Abstract
Rarely are we fully informed about the data security and data pri-
vacy (DSDP) of artificial intelligence (AI) products and services
we use. Providing DSDP information on AI products in an easily
accessible and quick-to-process format could help instill appro-
priate levels of (dis-)trust in (potential) users. Here, participants
were presented with hypothetical AI products paired with differ-
ent labels (graphical vs. text-based) conveying low to high DSDP
levels. Expectedly, trust increased and anxiety decreased when an
AI product reached a higher DSDP level. That is, labels effectively
communicated DSDP differences. Text-based labels were associated
with increased trust and decreased anxiety compared to graphical
labels. Interestingly, when not provided with DSDP information via
a label, participants attributed an intermediate level of (dis-)trust to
AI products. These findings illustrate the importance and potential
of introducing easy-to-process labels to convey information about
AI products, for instance, DSDP information.

CCS Concepts
• Security and privacy→ Human and societal aspects of security
and privacy; •Human-centered computing→ Human computer
interaction (HCI); Empirical studies in HCI; • Social and profes-
sional topics → Computing / technology policy; Government
technology policy; Governmental regulations.
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1 Introduction
Artificial intelligence (AI) and corresponding AI products hold the
potential to benefit both individuals, organizations, and society at
large by, for instance, optimizing products and services, enhancing
productivity and efficiency, or lowering costs [11]. This potential
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can only be realized when human-AI interactions are appropriately
shaped [2, 10]. Concerns regarding AI trustworthiness, in partic-
ular, data security and data privacy concerns [9, 11], jeopardize a
further widespread acceptance and broader adoption of AI prod-
ucts (see e.g., [6, 18, 23, 24], for prominent theories of technology
acceptance and adoption). Recent theorizing emphasizes especially
the role of trust (e.g., [25], linked to transparency and derived from
a trustworthiness assessment [21]) as an essential precursors of
technology acceptance and adoption. As such, establishing the
public’s trust in AI appears paramount to its further acceptance
and adoption.

Users, however, are hardly able to evaluate the trustworthiness
of AI accurately [11, 21], as corresponding information is com-
monly not easily accessible. They therefore (dis-)trust mainly based
on heuristics [3, 16, 17] and strong, often unjustified AI endorse-
ment [11], is coupled with low understanding of AI in the general
public [11, 15]. Discrepancies between objective trustworthiness
(e.g., adherence to criteria like those proposed by the European
Commission [8, 9]) and how trustworthy individuals perceive AI
to be call for corresponding affirmative action. Both misplaced
distrust [5, 25] and misplaced trust (due to expectancy violations,
[13, 19]) prevent the further acceptance and adoption of new (and
trustworthy) AI technologies and obstruct corresponding benefits
of AI usage. I propose that informative, multi-level labels (e.g.,
similar to the Nutri-Score indicating the nutritional value of food,
e.g., [16]; for prior studies on technology/AI certification labels see
[1, 12, 20, 27]) constitute the best-suited means of achieving accu-
rate assessments of AI trustworthiness with very limited (potential)
user effort across varying levels of AI literacy.

Here, I communicated the data security and data privacy (DSDP;
i.e., AI trustworthiness criteria) level of hypothetical AI products
using three-level labels (graphical vs. text-based label). I expected
trust and attributed monetary value to increase and AI anxiety to
decrease for AI products with higher DSDP levels communicated
by a corresponding DSDP/trustworthiness label. Furthermore, I
expected to observe differences between the two label types.

2 Experimental Methods
An extended preprint (https://osf.io/preprints/psyarxiv/q25nr_v1;
see for extended descriptions), a preregistra-
tion (https://osf.io/vbxqy), and all study materials
(https://doi.org/10.17605/OSF.IO/HD3NA) are available online.

102 participants (35 male, 64 female, 3 diverse; age: M = 26.7
years, SD = 8.9; attitude towards technology [5]: M = 14.4, SD
= 2.86, [4;20]) took part after providing informed consent. First,
participants were informed about the features and functions of
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Figure 1: Study Design and Time Course

two hypothetical AI product types (smart fridge, voice assistant).
They then rated their trust (4 items [5]; 1 = strongly disagree to 5 =
strongly agree) and (state) anxiety (4 items [26]; 1 = strongly dis-
agree to 5 = strongly agree) regarding each AI product (represented
by an icon), first, when presented without further information (base-
line) and, second (after an introduction of the labels; criteria adapted
from [22]; compare [8, 9]), when presented with a DSDP label (label
type: graphical vs. text-based; within) indicating a low, intermedi-
ate, or high level of trustworthiness (DSDP level; within; see Figure
1 for experimental design and procedure). Then, I assessed the
monetary value participants attributed to the respective labelled
AI products by showing two different levels of the same label type
per AI product and trial (level comparison: low-intermediate vs.
intermediate-high vs. low-high; within) and asking how much
more (% price) participants were willing to pay for the AI product
with the higher DSDP level. Participants then rated their attitude
towards (AI) technology ([5]; 1 = strongly disagree to 5 = strongly
agree) and were debriefed.

3 RESULTS
A Bayesian linear mixed model analysis approach (criterion: BF10 >
3 or < 1/3) was used. To account for differences between a person’s
ratings of the respective AI product type at baseline (i.e., without a

DSDP label) and when presented with a DSDP label, I analyzed cor-
responding difference scores (trust/AI anxiety condition – trust/AI
anxiety baseline).

Baseline. Trust at baseline was 9.8 (SD = 2.7; [0;20])/10.8 (SD
= 3.0) for the AI voice assistant/smart fridge and AI anxiety at
baseline was 13.1 (SD = 3.7; [0;20])/12.5 (SD = 3.5) for the AI voice
assistant/smart fridge.

Trust. Trust ratings increased with increasing DSDP levels,
BF10 = 1.36 x 1044 ±1.16% (see Figure 2, left). Moreover, trust
ratings were higher for text-based as compared to graphical labels,
BF10 = 7.18 x 107 ±0.88%. Label type and DSDP level interacted,
BF10 = 4.03 ±1.61%.

AI Anxiety. AI anxiety ratings decreased with increasing DSDP
levels, BF10 = 8.4 x 1025 ±1.76% (see Figure 2, middle). AI anxiety
ratings were lower for text-based as compared to graphical labels,
BF10 = 9.5 ±1.75%. There was evidence against an interaction of
label type and DSDP level, BF10 = 0.1 ±2.23%.

Attributed Value. Attributed monetary value (acceptable per-
centage of price increase for a higher DSDP level) increased across
DSDP level comparisons, BF10 = 5.8 x 1029 ±1.26% (see Figure 2,
right). Higher monetary value was attributed to AI products la-
belled with graphical as compared to text-based labels, BF10 = 8.1
±1.15%. There was inconclusive evidence against an interaction of
label type and DSDP level comparison, BF10 = 0.44 ±1.81%.

4 DISCUSSION
Participants’ trust and AI anxiety as well as the monetary value
they attributed to AI products scaled with the DSDP label level
(low vs. intermediate vs. high). This shows that DSDP labels ef-
fectively communicated AI trustworthiness, affecting (potential)
user’s perception and evaluation of AI products. Importantly, trust
and AI anxiety ratings were baseline-adjusted (i.e., a value of 0
corresponded to a participant’s respective baseline rating). This
comparison of labelled AI products against the baseline revealed
that trust and AI anxiety ratings at baseline corresponded to ratings
for AI products labelled with an intermediate DSDP level. It thus
appears that participants unjustifiedly attributed an intermediate

Figure 2: Effects of Data Security and Data Privacy (DSDP) Level/Level Comparison and Label Type on Trust, AI Anxiety, and
Attributed Monetary Value. Trust and AI anxiety scores are displayed relative to a participant’s respective baseline rating of
the corresponding AI product (0 = rating equivalent to baseline). Violins around the respective mean depict the corresponding
rating distribution per condition.
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DSDP level to AI products in the absence of DSDP information.
These findings underscore the importance of introducing corre-
sponding DSDP labels for AI products to prevent both unjustified
trust and unjustified distrust.

Moreover, ‘AI products with text-based labels were associated
with higher trust and lower AI anxiety than graphical labels,
whereas AI products with graphical labels were attributed higher
monetary value. Thus, text-based labels are better suited to in-
crease trust [5, 7, 25] and thereby the acceptance and adoption of AI,
whereas graphical labels might better serve to make AI DSDP/trust-
worthiness labels more appealing to AI companies and can be
processed faster by (potential) users.

Future research will, for instance, need to incorporate further
trustworthiness criteria (e.g., [8]), select more informed thresholds
for AI trustworthiness levels, assess the potential of combined label
types, and account for label effects at different AI literacy levels
(e.g., [4]).
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