Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

On Optimal Covariance Matrix Shrinkage Levels in Forecast Combination

Titelangaben

Verfügbarkeit überprüfen

Setzer, Thomas ; Fuchs, Marco:
On Optimal Covariance Matrix Shrinkage Levels in Forecast Combination.
In: Wirtschaftsinformatik 2024 Proceedings / Associations for Information Systems. 13 (2024).

Volltext

Volltext Link zum Volltext (externe URL):
https://aisel.aisnet.org/wi2024/13

Kurzfassung/Abstract

Forecast combination is an established technique to improve forecast accuracy and enterprise planning, where a key research question is (still) how to weight individual forecasts. One common but largely unsuccessful approach is to learn weights that minimize the mean squared error (MSE) on known observations, usually from (instable) sample covariance matrices of past errors. These weights are then shrunk to mitigate over-fitting and avoid high errors when using the weights in novel forecasts. This can be done by shrinking the sample covariance matrix to a less flexible matrix, e.g. the unit diagonal matrix, where even formulas for the shrinkage level minimizing the expected deviation between the shrunk and the true covariance matrix exist. We provide analyses with synthetic error data showing that such shrink-levels generally not lead to MSE-minimizing weights and argue that adjusted shrinkage criteria or machine-learning-based shrinkage tuning is adviced to successfully apply such approaches in forecast combination.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Forecast Combination; Shrinkage; Regularization; Error Covariance Matrix Shrinkage
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL und Wirtschaftsinformatik
Peer-Review-Journal:Ja
Titel an der KU entstanden:Ja
KU.edoc-ID:36067
Eingestellt am: 14. Jan 2026 12:41
Letzte Änderung: 14. Jan 2026 12:41
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/36067/
AnalyticsGoogle Scholar