Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Prevalence and risk factors of suicidal ideation amongst unaccompanied young refugees : a machine learning approach

Titelangaben

Verfügbarkeit überprüfen

Keller, Jacob ; Eglinsky, Jenny ; Garbade, Maike ; Pfeiffer, Elisa ; Plener, Paul L. ; Rosner, Rita ; Sukale, Thorsten ; Sachser, Cedric:
Prevalence and risk factors of suicidal ideation amongst unaccompanied young refugees : a machine learning approach.
In: European Child & Adolescent Psychiatry. (12. September 2025).
ISSN 1018-8827

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (923kB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1007/s00787-025-02828-0

Kurzfassung/Abstract

Background
Suicidality is a major public health concern worldwide. Evidence on the prevalence and risk factors of suicidality amongst unaccompanied young refugees (UYRs), a population already at risk for mental health disorders, is scarce.
Methods
Given the complexity of individual risk factor constellations influencing suicidality, machine learning (ML) methods offer a statistical approach that can detect complex relations within the data. Four ML classifiers, (logistic regression (LR), random forest (RF), support vector machines (SVM), and extreme gradient boosting (XGB)) were trained on a dataset of n = 623 UYRs (M age =16.77, SD = 1.34, range: 12–21), retrieved from the large-scale randomized controlled trial Better Care to predict suicidal ideation. Features used in the classifiers were age, gender, asylum status, having contact with the family, and whether parents are alive as well as clinically elevated post-traumatic stress symptoms (PTSS), depressive symptoms and past suicide attempts. The classifiers were then tested on the independent dataset of n = 94 UYRs (M age =16.31, SD = 2.03, range: 5–21) retrieved from the screening tool porta project to examine their predictive performance.
Results
The prevalence of past-week suicidal ideation in the combined sample of N = 717 was 18.13%. All classifiers yielded good predictive performance (accuracy 0.734–0.840, sensitivity 0.857, AUC 0.853–0.880). The most relevant features were past suicide attempts, PTSS and depressive symptoms as risk factors, and having a living mother as protective factor.
Conclusions
Suicidal ideation is prevalent amongst UYRs, and using ML approaches, the classifiers were able to classify roughly 85% of the cases with suicidal ideation in the past week correctly as suicidal. Building on the findings of this study, screening for suicidality could be further improved by implementing ML classifiers in the assessment to highlight potential at risk cases early, and suitable interventions be developed.

Weitere Angaben

Publikationsform:Artikel
Themenfelder:Flucht und Migration
Sprache des Eintrags:Englisch
Institutionen der Universität:Philosophisch-Pädagogische Fakultät > Psychologie > Lehrstuhl für Klinische und Biologische Psychologie
Philosophisch-Pädagogische Fakultät > Psychologie > Lehrstuhl für Klinische Psychologie und Kinder- und Jugendlichenpsychotherapie
DOI / URN / ID:10.1007/s00787-025-02828-0
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Springer
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:35671
Eingestellt am: 14. Okt 2025 13:25
Letzte Änderung: 14. Okt 2025 13:25
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/35671/
AnalyticsGoogle Scholar