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Abstract Detailed individual tree crown segmentation is
highly relevant for the detection and monitoring of Fraxinus
excelsior L. trees affected by ash dieback, a major threat to
common ash populations across Europe. In this study, both
fine and coarse crown segmentation methods were applied
to close-range multispectral UAV imagery. The fine tree
crown segmentation method utilized a novel unsupervised
machine learning approach based on a blended NIR-NDVI
image, whereas the coarse segmentation relied on the seg-
ment anything model (SAM). Both methods successfully
delineated tree crown outlines, however, only the fine seg-
mentation accurately captured internal canopy gaps. Despite
these structural differences, mean NDVI values calculated
per tree crown revealed no significant differences between
the two approaches, indicating that coarse segmentation is
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sufficient for mean vegetation index assessments. Neverthe-
less, the fine segmentation revealed increased heterogeneity
in NDVI values in more severely damaged trees, underscor-
ing its value for detailed structural and health analyses. Fur-
thermore, the fine segmentation workflow proved transfer-
able to both individual UAV images and orthophotos from
broader UAV surveys. For applications focused on structural
integrity and spatial variation in canopy health, the fine seg-
mentation approach is recommended.

Keywords Leaf mass segmentation - Machine learning -
Segment anything model - Ash dieback

Introduction

Remote sensing technologies provide powerful tools for
surveying large-scale tree populations, enabling efficient,
long-term monitoring of tree health and disease progres-
sion across broad landscapes. Unmanned aerial vehicles
(UAVs) equipped with different sensor types have been
proven to be suitable for the identification and monitoring
of plant diseases in the context of various species (Torre-
san et al. 2017; Barbedo 2019). Disease-induced damage
symptoms can often be detected through changes in reflec-
tance within the visible and near-infrared (NIR) spectrum.
Multispectral sensors mounted on UAVs are particularly
well-suited for detecting diseased plants, offering high spa-
tial resolution and the ability to capture subtle physiologi-
cal changes across large areas (Zhang et al. 2019; Neupane
and Baysal-Gurel 2021). Vegetation indices, derived from
mathematical combinations of reflectance values across mul-
tiple wavelengths, are widely used to analyse spectral reflec-
tance patterns. These indices provide valuable insights into
plant physiological traits and are therefore important tools
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for detecting disease symptoms and monitoring vegetation
health (Huete 2012). The Normalized Difference Vegetation
Index (NDVI), which is based on the differential reflectance
of red and near-infrared wavelengths by plant canopies, is
one of the most commonly and effective vegetation indices
for detecting plant stress, as it enables early detection of
physiological responses to stressors (Neupane and Baysal-
Gurel 2021).

An increasingly important application of remote sensing
technologies is the detection and monitoring of ash dieback,
a disease that poses a major threat to European forest ecosys-
tems. Since the introduction of the invasive fungal pathogen
Hymenoscyphus fraxineus (Baral et al. 2014) in Europe and
the first disease reports in Poland in the 1990s, ash dieback
has severely affected populations of European common ash
(Fraxinus excelsior L.). The fungal pathogen produces air-
borne ascospores that primarily infect leaves (Timmermann
et al. 2011), initially causing necrotic lesions on leaflets and
rachises. From there, the infection spreads into twigs and
shoots, leading to branch dieback, wilting, and necrotic bark
lesions, especially in young tissues. Eventually, the infec-
tion progresses into larger branches and stems, resulting in
crown dieback characterised by extensive leaf loss (Gross
et al. 2014; Timmermann et al. 2017; Fuchs et al. 2024).
In advanced stages, necroses may also develop at the stem
base, further weakening the tree (Langer 2017). This disease
trajectory, from initial leaf infection to full crown dieback,
can vary in speed depending on environmental conditions,
tree age, and genetic resistance, but often results in high
mortality within a few years after the onset of visible symp-
toms (Timmermann et al. 2017; Klesse et al. 2021). The
European common ash is ecologically vital, supporting
numerous dependent species (Mitchell et al. 2017; Hultberg
et al. 2020) and is expected to experience severe population
declines across Europe in the coming decades due to ash
dieback (Coker et al. 2019). Therefore, efforts to identify,
monitor and characterise affected ash trees are crucial for
the long-term conservation of this ecologically important
species.

The application of remote sensing technologies for
assessing ash tree health remains limited. Some research has
focused on monitoring damage caused by the emerald ash
borer (Agrilus planipennis), a major insect pest threating ash
populations, analysing hyperspectral (Pontius et al. 2008)
and satellite data (Murfitt et al. 2016). Hyperspectral data
have also been successfully used to identify ash trees dam-
aged by ash dieback (Chan et al. 2021; Polk et al. 2022). The
more frequently available multispectral data and the thereof
calculated vegetation indices have been used to identify and
segment ash tree crowns in a mixed forest and subsequently
to classify the damage caused by ash dieback (Waser et al.
2014). Kampen et al. (2019) likewise analysed multispec-
tral UAV data and successfully segmented ash tree crowns
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and characterised ash dieback severity. A different approach
was taken by Flynn et al. (2024), who analysed 3D RGB
point cloud data from UAV surveys of individual ash trees
regarding the different internal crown greenness patterns of
trees with differing degrees of damage. Furthermore, Buch-
ner et al. (2025) examined vegetation index values across
different damage classes using both RGB and multispectral
data, identifying clear value ranges distinguishing mildly
from severely affected trees. However, while Buchner et al.
(2025) manually delineated ash tree crowns to only analyse
leaf mass, no study to date has focused on automatically seg-
menting ash tree crowns from their surroundings to exclu-
sively study the leaf mass in relation to ash dieback. As the
crown of severely affected ash trees decreases drastically
and typically presents multiple crown gaps, the exclusion of
ground pixels is crucial for the accuracy of further analysis.

Multiple approaches for tree crown segmentation have
been successfully developed utilising a wide range of differ-
ent data, including airborne laser scanning (Dalponte et al.
2015; Argamosa et al. 2016; Douss and Farah 2022), hyper-
spectral data (Dalponte et al. 2015), satellite data (Lassalle
et al. 2022), as well as RGB (Mohan et al. 2017; Huang
et al. 2018; Tahar et al. 2021) and multispectral data (Qiu
et al. 2020; Ulku et al. 2022). These diverse datasets sup-
port a broad spectrum of tree crown delineation techniques,
ranging from traditional methods such as valley following,
region growing or marker-controlled watershed segmenta-
tion to more recent machine and deep learning models (Ke
and Quackenbush 2011; Kestur et al. 2018; Freudenberg
et al. 2022; Zheng et al. 2025). While tree crown segmenta-
tion has been widely explored, the focus in many studies
often lies in detecting and counting individual trees rather
than on analysing the structural or physiological condition
of the crown itself (Ke and Quackenbush 2011; Zheng et al.
2025). Nevertheless, segmentation precision is essential in
downstream tasks such as disease detection, where accu-
rate delineation of crown boundaries and internal features
become critical.

This study, therefore, investigated two approaches for seg-
menting tree crowns, producing both fine and coarse tree
crown masks, to assess whether the choice of segmentation
method significantly affects the calculation of mean NDVI.
In addition, we examined how varying levels of crown
damage influence the spatial homogeneity of NDVI values
within individual tree crowns.

Materials and methods

Study sites

This study was conducted in 2023 at two ash seed orchards
in the federal state of Baden-Wuerttemberg, located in
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southern Germany (Fig. 1). Both sites have already been
included in previous studies on ash dieback (Enderle et al.
2015, Buchner et al. 2022, Eisen et al. 2022, 2023, 2024;
Buchner et al. 2024, 2025).

The first site, the Emmendingen orchard (48° 7' N, 7° 52’
E, 210 m a.s.l.) is situated about 15 km north of Freiburg.
Covering 2.7 ha, this plantation was established in 1995 with
an initial layout of 228 ash trees planted in a 10 mx 10 m
grid. While no thinning operations were conducted, many
trees had to be removed due to the impact of ash dieback.
The site also contains a variety of other tree and shrub spe-
cies growing close to the ash trees.

The second site, the Schorndorf orchard (48°46' N,
9°25" E, 420 m a.s.l.), lies east of Stuttgart, the capital of
Baden-Wuerttemberg. It was established in 1992 with an
original planting density of 7 m X7 m, spanning approxi-
mately 2.27 ha. Initially, 416 ash trees were planted, but over
time, more than half of them have been removed as a result
of both thinning measures and the effects of ash dieback.
Additional tree species, such as fruit trees, are also present
on the orchard.

For the close-up UAV images, 30 ash trees were selected
at each study site. These trees were evenly distributed
throughout the orchards, exhibiting varying degrees of ash
dieback symptoms, from mild to very severe symptoms.

Vitality assessment
Each selected tree was individually assessed for its vitality

status in the field at the end of July 2023. Using a vital-
ity scoring system (Peters et al. 2021) trees were classified

based on their visible damage symptoms. Due to the wide-
spread presence of ash dieback in Germany (Fuchs et al.
2024), no completely healthy trees were found at either of
the two ash seed orchards. Consequently, the healthy tree
category (class 0) was omitted. Trees with mild damage
symptoms were assigned to classes 1 and 2, while those
with severe damage symptoms were classified as classes 3
and 4. Dead trees (class 5) were not relevant to our study.
Each damage class was defined by multiple criteria, includ-
ing leaf loss, the percentage of dead shoots and branches,
the presence of epicormic shoots and stem rot necrosis, with
increasing symptom severity from class 1 to class 4.

Image acquisition
Close-up UAV images

For both study sites, individual close-up images of the 30
selected ash tree crowns were recorded using the UAV sys-
tem DJI Mavic 3 Multispectral (Mavic 3 M) during June,
July and October 2023. The Mavic 3 M is equipped with
a 20 MP RGB camera and four 5 MP multispectral sen-
sors, allowing for simultaneous capture of both RGB and
multispectral images. The multispectral sensors cover
four wavelength bands: NIR (860 nm +26 nm), red edge
(730 nm + 16 nm), red (650 nm=+ 16 nm), and green
(560 nm + 16 nm). Additionally, an integrated sun sensor
measures solar radiation to enable light compensation dur-
ing post-processing (DJI 2022).The images were captured
at an altitude of approximately 8 m above the tree crowns,
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Fig. 1 Study sites Emmendingen (a) and Schorndorf (b) in the federal state of Baden-Wuerttemberg (dark green) in Germany (c, light green),

Source: Esri Base Map, BKG 2025dl-de/by-2-0
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providing an exceptionally high spatial resolution that
ensures detailed image quality.

UAV survey

Additionally, a UAV survey was conducted at the Schorndorf
orchard in July 2023 at a flight altitude of 80 m to further test
the newly developed tree crown segmentation method. The
Mavic 3 M followed a pre-planned flight plan with 85% front
and side overlap and a flight speed of 4 m/s. This ensured a
ground sampling distance of 2.77 cm/pixel for the captured
multispectral images. The survey was divided into two flight
missions, due to the size of the plantation and UAV specific
battery capacity. However, the missions were conducted
back-to-back to minimize variations in the environmental
conditions.

The images were georeferenced using the integrated
RTK data and processed into an orthophoto by aligning
the images and generating a point cloud using the software
Agisoft Metashape Professional (version 1.8.1).

Post-processing of the close-up UAV images

Due to the slight spatial offset between the four built-in mul-
tispectral sensors in the UAV system, the individual close-up
images captured by each sensor were not perfectly aligned,
resulting in minor misregistration between spectral bands.
As a result, precise image alignment was required prior to
further processing. Using a custom-built Python (version
3.13.0) script, the NIR, red edge, and red band images were
co-registered to the green sensor image for each capture,
which served as the reference. The applied homography-
based image registration algorithm implemented in OpenCV
aligned the images by calculating a 3 X 3 transformation
matrix that mapped matching points from the non-reference
images to the green reference image. Throughout the co-
registration process, the original metadata of the images was
retained.

Tree crown segmentation

Two different methods of individual tree crown segmenta-
tion were applied, creating a coarse and a fine mask for each
tree crown. While the coarse mask was designed to capture
the general outline of the tree crown, the fine mask aimed to
incorporate the detailed crown structure, including internal
gaps and irregularities.

To extract the coarse tree crown masks from UAV-based
imagery, we applied the pre-trained Segment Anything
Model (SAM) (Kirillov et al. 2024), a general-purpose seg-
mentation framework developed for prompt-driven object
segmentation, using a custom-built Python (version 3.11.0)
script. SAM features a modular architecture consisting of
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an image encoder, a prompt encoder, and a mask decoder.
The image encoder converts the input image into a latent
representation capturing spatial and semantic features. User-
provided prompts are processed by the prompt encoder and
guide the segmentation process. Finally, the mask decoder
integrates both embeddings to produce one or more seg-
mentation masks (Kirillov et al. 2024; Speckenwirth et al.
2024). In this study, grayscale NIR images were converted
to 3-channel grayscale RGB images to match the input for-
mat expected by the model. A single foreground point was
manually placed near the centre of each image to indicate
the approximate location of the tree crown. Based on this
input, multiple candidate masks were generated by SAM.
Each mask was visually assessed, and the most accurate one
representing the crown shape was selected and exported as
a binary mask for further analysis.

The fine tree crown masks were generated using a cus-
tom-built R (version 4.1.1) script, executed in R Studio (ver-
sion 2021.09.0). The script integrated spectral, textural, and
edge-based features into a multistep segmentation workflow
comprising image preprocessing, feature extraction, unsu-
pervised clustering, and morphological refinement (Fig. 2).
First, the NIR and red bands were normalized to a range of
0-1, and the NDVI was computed as follows:

NIR — Red
NOVI= NIR ¥ Red M

To enhance vegetation signals, a hybrid image was con-
structed using a weighted combination of NDVI and NIR,
assigning a weight of 0.4 to NDVI and 0.6 to NIR:

Hybrid image = 0.4 « NDVI + 0.6 % NIR )

The hybrid image was subsequently normalized and
enhanced using histogram equalization based on the empir-
ical cumulative distribution function (ECDF) to improve
local contrast. To characterize spatial structure, texture
metrics (contrast, entropy, mean, and variance) were cal-
culated from the equalized hybrid image using a grey level
co-occurrence matrix (GLCM) with a 5 X 5 moving window.
In addition, edge features were extracted using the Sobel
operator by computing gradient magnitudes in both hori-
zontal and vertical directions to enhance boundary detec-
tion. All derived features were compiled into a multilayer
raster stack, providing a comprehensive representation of
spectral, textural, and structural scene characteristics. Pixel-
level values were extracted into a data frame and subjected
to k-means clustering with k=2, using Euclidean distance
and random initialization. The cluster most representative of
vegetation was identified by selecting the one with the high-
est mean texture value, and a corresponding binary mask
was generated. To improve segmentation accuracy, morpho-
logical post-processing was applied. Small gaps within the
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Fig. 2 Workflow for segmenting a fine tree crown mask

crown mask were filled using a 3 X 3 maximum filter, and
boundaries were smoothed using a 3 X3 mean filter. Pixels
with smoothed values greater than 0.5 were retained in the
final binary mask. To select only the tree crown, a minimum
size threshold of 900 pixels was applied. The resulting mask
constitutes a spatially constrained and structurally refined
representation of the tree crown.

Each segmented fine and coarse tree crown mask was vis-
ually validated with the RGB image of the tree crown. Addi-
tionally, two sections from two different tree crowns were
chosen and manually segmented. Due to the required level of
segmentation detail, not all trees were segmented manually;
only a representative subset of twelve trees in total, three
typical trees per vitality class, was selected for validation.
In ArcGIS Pro (version 2.8.3), the manual segmentation was
executed, and a tree crown polygon was generated for all
three mask types: manual, fine and coarse. The total area was
calculated for all masks. To quantify the overlap between the
segmentations, we employed the Intersect tool to create an
intersection polygon (Area_overlap), for both the compari-
son of the manual and automated fine and coarse segments.
This allowed to compute the Intersection over Union (IoU), a
widely used metric for segmentation accuracy (Mishra et al.
2021; Sahin et al. 2023; Speckenwirth et al. 2024). The IoU
is defined as the ratio of the overlapping area between the
manual segmentation (A) and the automated segmentation
masks (B) to the total area encompassed by both, as defined
by Eq. 3.

_ANnB

IoU = ——
AUB

3

In addition to IoU, we examined false positives and false
negatives to identify over- and under-segmentation. The Erase

(" Hybrid image (" Equalized Hybrid image A

SRS S T

Texture features

Edge detection

tool in ArcGIS Pro was used to extract false positives, repre-
senting areas detected by the automated segmentations but
absent in the manual delineation. False negatives, on the other
hand, represent regions that were included in the manual seg-
mentation but missed by the automated methods. To further
evaluate segmentation performance, Precision and Recall were
computed, as shown in Egs. 4 and 5:

.. Ar eaoverlap
Precision = )
reaoverlap + Areafalsepositive
Areaoverlap
Recall = 5)

Areaoverlap + Areafalxenegative

Based on these, we derived the F1-score as described by
Eq. 6, which highlights the correctly identified true positives
and true negatives:

Precision % Recall

F1 =2X
score Precision + Recall ©)

As an additional test, the novel fine tree crown segmenta-
tion workflow was applied to the orthophoto of the Schorndorf
orchard. Following the generation of a binary tree crown mask,
the output was spatially aligned with the georeferenced tree
positions recorded using the Stonex SOIII (STONEX® Srl,
Paderno Dugnano, Italy). This alignment enabled the inte-
gration of the segmentation results with precise ground-truth
coordinates.
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Statistical analysis

For both fine and coarse segmented tree crown masks, a
mean NDVI value was calculated. To assess differences in
the mean values and standard deviation (SD) of NDVI val-
ues between the fine and coarse mask types across vitality
classes, pairwise statistical comparisons were conducted
using the Wilcoxon rank-sum test.

To assess differences between the coarse and the fine
tree crown segmentations, the proportion of crown area
differences between the two mask types was quantified.
Since tree crowns vary in size, direct comparisons of abso-
lute differences would be misleading. Therefore, the differ-
ence area was expressed as a proportion of the total coarse
mask area, ensuring an unbiased comparison across trees
of different sizes. The resulting proportionate difference
values were analysed in relation to tree health classifi-
cations to identify potential differences in segmentation
refinements across different vitality conditions.

Additionally, only the NDVI values of the fine mask
were further analysed to assess the homogeneity of index
values per tree crown in relation to vitality class. Both the
SD and coefficient of variation (CV) were calculated per
tree crown and tested for statistical differences between the
four vitality classes. A Kruskal-Wallis test was performed
to determine whether significant variation existed between
vitality classes. Post-hoc pairwise comparisons were con-
ducted using the Wilcoxon rank-sum test with Bonferroni
correction.

Results

Segmentation results and evaluation

Both methods applied for the automatic segmentation of ash
tree crowns successfully identified and delineated the crown
shape, as illustrated in Fig. 3, which shows four exemplary
ash trees representative of the four vitality classes analysed

Fig. 3 RGB image (a), NIR image (b), coarse mask (¢) and fine mask (d) of four exemplary ash tree crowns for the four vitality classes 1 to 4
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in this study. The coarse mask worked well for trees with
only mildly damage (Fig. 3: 1-c and 2-c). However, for trees
with more severe damage, crown gaps were not sufficiently
considered (Fig. 3: 3-c and 4-c). Particularly for trees with
very severe damage (vitality class 4) large areas of ground
pixels were included in the coarse crown mask. In compari-
son, the fine mask was able to segment the leaf mass in
more detail, especially for the more severely damaged trees
(Fig. 3: 3-d and 4-d). While segmentation results from the
fine and coarse masks were visually similar for trees in vital-
ity classes 1 and 2, the fine mask provided a more precise
representation of the crown for trees in classes 3 and 4.

All 360 segmented tree crown masks were validated visu-
ally in comparison with the RGB images. Six individual
trees, three of the coarse and three of the fine masks did not
accurately segment the tree crown. Consequently, both mask
types for these six trees were subsequently excluded from
further analysis.

To systematically evaluate the segmentation performance
across varying crown conditions, the fine and coarse seg-
mentation masks were compared to manually delineated
reference crowns across four vitality classes (Table 1).
Both masks achieved high IoU values (mean IoU of 0.94
for the fine and 0.93 for the coarse mask). The manually
segmented mask accurately represented internal gaps, while

the coarse mask did not present any crown gaps. As a result,
even over-segmented crowns, such as those from the coarse
mask, could still achieve a high IoU due to increased overlap
with the manual reference crown. Nevertheless, differences
between the fine and coarse mask emerged in the precision
and F1-score, particularly under more structurally hetero-
geneous conditions for trees with severe damage due to ash
dieback. Both mask types were able to capture the outline
of the crown (Fig. 4c, d), however while the fine mask was
able to represent internal crown gaps in high detail, the
coarse mask only captured the outline of the crown (Fig. 4g,
h). The fine mask exhibited consistently higher accuracy
across most metrics. Notably, in vitality class 4, representing
crowns with severe damage and increased structural irregu-
larity, the fine mask substantially outperformed the coarse
mask in terms of precision (0.86 vs. 0.78) and F1-score (0.91
vs. 0.85), indicating an increased ability to avoid over-seg-
mentation in complex canopy structures. While both mask
types achieved similarly high recall values across all vitality
classes (>0.97), reflecting a general robustness in detecting
crown presence, the fine mask demonstrated greater consist-
ency and balance across all evaluated metrics. The overall
higher precision (0.94 vs. 0.91) and F1-score (0.96 vs. 0.94)
of the fine mask further underscore its enhanced delineation
quality. These results suggest that increased spatial detail in

Table 1 Mean investigated
metrics to evaluate the success

Class

Ground truth—fine mask

Ground truth—coarse mask

of segmentation of the fine and IoU Precision Recall F1 IoU Precision Recall F1
coarse mask in comparison the
manual segmentation (ground Class 1 0.97 0.98 0.99 0.98 0.96 0.99 0.98 0.98
truth) for the four vitality Class 2 0.95 0.96 0.99 0.98 0.93 0.96 0.98 0.97
classes, each class represented Class 3 092 097 0.95 096 089 092 0.97 0.95
by three individual trees
Class 4 0.93 0.86 0.98 0.91 0.94 0.78 0.97 0.85
Overall mean 0.94 0.94 0.98 0.96 0.93 0.91 0.97 0.94

Fig. 4 RGB image (a, e), detailed manual segmentation of a part of a tree crown (b, f), fine segmentation (¢, g) and coarse segmentation (d, h)
of the edge area of an ash tree crown (a—d) and a crown with severe gaps (e-h)
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crown segmentation enhances accuracy, particularly under
conditions of elevated canopy heterogeneity.

Differences per mask type

Based on the 174 individual images of analysed ash trees
derived from the different flight missions in June, July and
October from both ash orchards, slightly higher NDVI val-
ues were recorded for the fine mask in comparison to the
coarse mask. However, these differences were not statisti-
cally significant in any of the four vitality classes (Fig. 5).
Independent from the mask type, a decrease in NDVI values
was observed with an increasing damage due to ash dieback.
Additionally, the mean NDVI calculated for the difference
area (the region included in the coarse mask but excluded
in the fine mask) was significantly lower than that of the
fine mask in all vitality classes (p <0.001), indicating that
the excluded areas, mainly ground pixels beneath the crown
and large exposed branches, have substantially lower NDVI
values.

In contrast to the mean NDVI results, the SD values
differed between the fine and coarse mask, with a signifi-
cant difference observed between mask types in both vital-
ity classes 2 and 3 (Fig. 5). The SD of the NDVI values
increased with vitality class, demonstrating greater variabil-
ity in NDVI values for severely damaged ash tree crowns.

The proportionate difference area between the coarse
and fine mask, demonstrated an increase with more
severely damaged ash trees (Fig. 6). The Kruskal-Wallis
test proved statistical significance (p =0.022). While the
area between the two mask types differed only slightly

0.6 1 P=0.773 P=0.511 P=0.385 P=0.710
. L

0.5 1
= H
8 4
Z 0.4
=
]
9] .

0.3 1

0.2 1

1 2 3 4
Vitality class
n=90 n=162 n=_82 n=14
Mask Type Coarse Fine

P=0.033
L]
<
L 064
(o]
(]
2
<
[ =]
o
p=]
—
S 0.4 -
O- L]
o
St
o .
[
Q °
o .
8 0 2 -
Lo [ ]
p=
) *
0.0 4
1 2 3 4
Vitality class
n=45 n=_81 n=41 n=7

Fig. 6 Difference proportionate area between coarse and fine masks
for the four vitality classes for the analysed 174 images from ash trees
at the two seed orchards

for class 1, the difference was much more pronounced
in classes 3 and 4, indicating differing fine and coarse
segmentations. The post-hoc test revealed a statistically
significant difference only for class 1 and 3 (p =0.033).
However, these results indicate an increasing deviation of
the segmented areas of the two mask types with increas-
ing damage severity, likely attributable to the increase of
crown gaps with more severe damage.

P=0.274 P=0.008 P=0.009 P=0.318
0.20 4
g .
>
a
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a
’ E
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Fig. 5 Boxplots of the mean and SD NDVI values calculated from the two mask types, analysed among the 174 images for both coarse and fine

masks, for the four vitality classes at the two seed orchards
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Homogeneity of NDVI values

To assess spatial variability of NDVI in relation to canopy
condition, the SD and CV of NDVI values were calculated
for individual trees applying the fine crown segmentation
method and compared across vitality classes (Fig. 7). Box-
plot analysis revealed a significant increase in both NDVI
SD (Kruskal-Wallis, p-value =0.024) and NDVI CV
(Kruskal-Wallis, p-value =0.012) with declining tree vital-
ity. Notably, trees in class 4 exhibited significantly higher
NDVI SD than those in class 1 to 3, indicating greater het-
erogeneity in canopy reflectance.

Moreover, the CV showed a consistent upward trend
from class 1 to class 4, with a statistically significant differ-
ence between class 1 and 4. This suggests that, in addition
to the observed decrease in NDVI values with increasing
disease severity (Fig. 5), the relative variability of NDVI
within individual tree crowns becomes more pronounced.
While SD reflects the absolute spread of NDVI values, the
CV normalizes this spread by accounting for mean differ-
ences between trees, thus emphasizing the disproportionate
increase in heterogeneity among more severely damaged
individuals. Therefore, healthier trees have both higher and
more consistent NDVI values, whereas trees suffering from
advanced ash dieback show lower NDVI and increased spa-
tial irregularity across their crowns.

Tree crown segmentation in orthophoto

The application of the newly developed workflow for a
detailed tree crown segmentation was also successfully
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applied to an orthophoto generated from a UAV-survey.
Despite the lower image resolution due to the flight height
of 80 m, individual tree crowns were successfully delineated
from their surroundings (Fig. 8). Not only the shape of the
tree crowns was replicated but also gaps in the tree crowns
(Fig. 8, purple frame), both in large trees and in smaller
ash trees with severe damage (Fig. 8, orange frame). How-
ever, in cases where trees were in contact to surrounding
trees, segmentation often merged them into a single object
(Fig. 8, blue frame), highlighting a limitation of the method.
These results emphasize the importance of spatial separation
between individual trees for the segmentation technique to
function reliably.

Discussion
Fine and coarse tree crown masks

A novel workflow for the detailed segmentation of ash tree
crowns was developed in this study and successfully applied
to multispectral close-up UAV imagery and an orthophoto
of trees affected by ash dieback.

The ash trees investigated in this study were located on
two ash tree orchards, with generous spacing between indi-
vidual trees. While this setup provides clear crown outlines,
the surrounding vegetation, primarily tall grass and small
bushes, adds background complexity. Despite these condi-
tions, both tree crown segmentation methods were able to
successfully segment the crowns from their surroundings.
Accurate segmentation of green plant material is readily
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Fig. 7 SD of the NDVI values of the fine mask per vitality class and CV of NDVI of the fine mask per vitality class with significant post-hoc

results displayed as bars at the top for the analysed 174 images
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Fig. 8 Segmented tree crowns from an orthophoto with highlighted examples: the crown of a single ash tree (purple frame), detailed images of
merged trees (blue frame) and a small, severely damaged ash (orange frame)

achievable when close-up images feature a uniform back-
ground. This has been demonstrated among others by Khan
et al. (2022), who applied semantic segmentation techniques,
and by Wacker et al. (2024), who employed multispectral
imaging in combination with chlorophyll fluorescence to
enable segmentation. However, as noted by Mishra et al.
(2021), segmentation becomes considerably more challeng-
ing when the background contains vegetation with similar
spectral properties. For instance, while deep-learning mod-
els were able to differentiate between crop and weed, dif-
ficulties in separating the plant material from the surround-
ing soil and similar vegetation were reported (Sahin et al.
2023). However, the results of this study demonstrate that
successful crown delineation is achievable even in semi-
structured environments with vegetation with similar spec-
tral properties.

Many studies on tree crown segmentation rely on remote
sensing data acquired from UAVs or satellites (Heenkenda
et al. 2015; Zhang et al. 2020; Lassalle et al. 2022). While
these datasets often offer relatively high spatial resolution,
they frequently lack the detail necessary to capture fine-scale
crown structures, such as small canopy gaps, resulting in
coarser crown outlines that may not accurately reflect true
crown morphology. Only a few studies reported tree crown
segmentation results with a level of detail comparable to that
achieved in the present study. For instance, LiDAR point
clouds have been used to accurately calculate crown volume
and segment citrus trees with high morphological accuracy
(Liu et al. 2021). Similarly, morphological image analysis
applied to multispectral UAV data has enabled detailed
crown segmentation in olive orchards (Sarabia et al. 2020),
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and similar methods were also successfully tested on other
orchard species, including lemon and orange trees (Ponce
et al. 2022). Additionally, adaptive thresholding combined
with watershed segmentation enabled precise delineation of
peach tree crowns (Mu et al. 2018). Beyond morphological
techniques, deep learning models have shown considerable
potential for high-precision crown segmentation. For exam-
ple, frameworks combining object detection models such as
YOLOv4 with LiDAR-derived heightmaps have effectively
segmented tree crowns (Sun et al. 2022). UAV-borne LiDAR
datasets have been applied across diverse forest types (Chen
et al. 2021), and multiple semantic segmentation architec-
tures have been evaluated on multispectral aerial and satel-
lite imagery, further demonstrating the versatility of deep
learning approaches for crown segmentation (Ulku et al.
2022).

A key strength of the novel approach developed in our
study lies in its ability to segment tree crown areas without
the need for annotated training data, making it particularly
valuable for large study sites. The combination of spectral
and textural indicators—such as NDVI, NIR reflectance, and
GLCM-derived metrics—enhances robustness of the method
against within-crown variability and background interfer-
ence. By incorporating edge information and applying
unsupervised k-means clustering, the workflow effectively
captures the structural heterogeneity commonly observed in
high-resolution UAV imagery. The application of k-means
clustering in this context has proven to be a viable tool for
vegetation or tree crown segmentation, as supported by pre-
vious studies. For example, Moussaid et al. (2021) applied
k-means clustering to multispectral satellite images of
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orchards to segment overlapping tree crowns, successfully
distinguishing vegetation from soil and shadows. Similarly,
Cinat et al. (2019) compared k-means with other unsuper-
vised methods for segmenting vineyard canopies using UAV-
acquired RGB and NIR-Red-Green imagery, demonstrating
the applicability of the method in agricultural contexts.

Texture features have been shown to significantly enhance
the segmentation and classification of tree crowns. Both Wu
et al. (2004) and Erdem and Bayrak (2023) demonstrated
that incorporating texture information, ranging from sim-
ple image gradients to advanced radiomic descriptors, can
improve accuracy in identifying crown boundaries and dis-
tinguishing species.

In our novel tree crown segmentation approach, the NIR
image and derived NDVI serve as the basis input for all fur-
ther segmentation steps. The suitability of NDVI and NIR
imagery for tree crown segmentation has been consistently
demonstrated across multiple studies. Kang et al. (2017)
showed that UAV-acquired NIR imagery provided strong
spectral contrast between eucalyptus crowns and their sur-
roundings, enabling accurate segmentation. Furthermore,
Safonova et al. (2021) highlighted, that models trained on
NDVI and GNDVI (Green Normalized Difference Vegeta-
tion Index) outperformed those using RGB alone for seg-
menting olive tree crowns. These studies confirm that NDVI
and NIR imagery can enhance crown visibility. Despite these
advantages, using the NIR image for segmentation alone can
introduce variability due to different illumination conditions,
especially in shadowed areas within the crown diminishing
visual consistency. Conversely, NDVI by itself often lacks
sufficient contrast to clearly distinguish the tree crown from
spectrally similar surrounding vegetation. As demonstrated
in our study, generating a hybrid image by merging NIR and
NDVI data enhances crown delineation. This fusion high-
lights crown structure while simultaneously reducing the
visual impact of shadowed regions and thereby offering a
more consistent and robust basis for segmentation.

The UAV close-up images were captured at two study
sites from June to October, covering different stages of the
vegetation period of the common ash. No differences in
segmenting the images were noted for the three analysed
months, indicating that the developed segmentation algo-
rithm can be applied to images captured during the entire
vegetation period of the common ash. However, as Lu et al.
(2022) pointed out, natural illumination can cause shaded
and non-shaded areas within individual crowns. These
effects were minimized by generating the hybrid NIR-NDVI
image in our study. Additionally, a more evenly distribu-
tion of shadowed areas can be achieved by performing UAV
surveys under overcast conditions, which avoids the harsh
contrasts caused by direct sunlight.

Although the SAM model did not capture crown gaps
and lacked detail along the crown edges, it was still able

to generate tree crown masks that accurately represented
the overall crown outline. However, in our study, the SAM
model was applied exclusively to individual images of tree
crowns, with the crown consistently positioned at the centre
of each image. The SAM model was also able to detect and
segment tree crowns to analyse changes in riparian wood-
land (Dawson et al. 2025). Similarly Balasundaram et al.
(2024) reported successful background separation of plants
using SAM. However, in a comparative evaluation, SAM
underperformed relative to three other deep learning models
(Speckenwirth et al. 2024). In our study, the SAM model
was configured to generate three segmentation masks per
ash tree crown. Each mask was manually reviewed, and the
most accurate one was selected. However, relying solely on
the model’s confidence scores would have occasionally led
to the selection of an incorrect mask.

Validation of a representative subset of the data revealed
a high IoU for both the fine and coarse segmentation masks.
However, a closer examination of precision and F1-score
metrics indicated that the fine mask more accurately cap-
tured the true shape of the tree crowns. These findings sug-
gest that, although both segmentation approaches performed
reasonably well in delineating the general crown area, the
fine mask provided a more accurate representation of the
actual crown structure. This advantage was particularly evi-
dent in severely damaged trees, where accurate depiction of
remaining leaf mass is critical. Therefore, fine-scale segmen-
tation is strongly recommended in contexts where detailed
crown morphology and subtle structural variation are of
analytical importance. This distinction proves as particu-
larly important when assessing the health condition of ash
trees, where crown size and internal structure serve as key
indicators of disease severity. In severely damaged crowns,
structural complexity increases due to the emergence of epi-
cormic shoots (Enderle et al. 2015). These dense clusters can
partially close crown gaps and create a more heterogeneous
crown surface. As a result, the coarse segmentation approach
tends to miss fine structural details and underestimates the
distribution of living biomass, especially where small, scat-
tered shoots predominate.

Both the development of the fine-scale tree crown seg-
mentation workflow and the application of the SAM model
were conducted on very high-resolution images of indi-
vidual ash trees. To assess the workflow’s transferability to
coarser spatial scales, its performance was further evalu-
ated on lower resolution orthophotos. Despite the reduced
resolution, the segmentation approach, designed to isolate
leaf mass, proved effective when applied to an entire ash
tree orchard. These results demonstrated the method’s scal-
ability and robustness, highlighting its potential for broader
application in landscape-level crown analysis. While crown
gaps were accurately identified and the reduced leaf mass in
severely damaged trees was well captured, cases where tree
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canopies overlapped often resulted in a single segmented
crown encompassing multiple adjacent trees. This challenge
was also observed by Mu et al. (2018) and Sarabia et al.
(2020). However, additional processing steps like morpho-
logical erosion (Marques et al. 2019) or seed markers from
regional maxima and a watershed algorithm (Ponce et al.
2022) can further improve the tree crown masks and separate
connecting masks.

NDVI analysis

One of the main objectives of this study was to assess
whether delineating only the coarse crown outline is suf-
ficient for calculating mean vegetation index values in
severely damaged ash tree crowns. In particular, we exam-
ined whether the increasing presence of crown gaps signifi-
cantly affects these values. While no significant differences
in mean vegetation index values were observed between the
fine and coarse crown segmentations, the analysis of the dif-
ference area, i.e., the part included in the coarse but excluded
from the fine mask, revealed substantially lower NDVI val-
ues across all vitality classes. This suggests that although
the inclusion of ground pixels does not markedly alter the
overall mean index when comparing full crown masks, it
does introduce a component with clearly lower vegetation
activity, particularly reflecting gaps and exposed background
beneath sparse crowns.

The observed decline in mean NDVI values with increas-
ing damage due to ash dieback is in accordance with the
findings of Buchner et al. (2025), who also reported lower
NDVI values in severely damaged ash trees compared to
those with only mild symptoms. This decrease in NDVI is
explained by the loss of chlorophyll-rich foliage in damaged
crowns, leading to reduced reflectance in the NIR spectrum
relative to the red spectrum.

The comparison between coarse and fine crown masks
revealed notable differences in NDVI variability across vital-
ity classes. While SD of NDVI increased with declining tree
vitality, significant differences between mask types were
observed particularly in moderately damaged trees (classes 2
and 3). In these cases, coarse masks yielded higher variabil-
ity, likely due to the inclusion of non-foliar elements such
as exposed branches and crown gaps. In contrast, the fine
masks, which focused on leaf mass, provided a more con-
sistent and presumably a more biologically relevant meas-
ure of canopy composition. The area difference between the
fine and coarse masks also increased with damage severity,
reflecting the greater inclusion of non-leaf pixels in coarse
masks as crown gaps expanded.

The analysis of NDVI variability within in detail seg-
mented ash tree crowns, revealed a consistent increase in
heterogeneity in index values with rising damage severity,
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indicating that NDVI values vary within the crown, espe-
cially in trees with severe damage. Similarly, Flynn et al.
(2024) documented a spatial pattern in greenness (green
chromatic coordinate) decline toward the crown extremi-
ties, whereas healthy ash trees, not affected by ash dieback,
showed increased greenness at the edges. These results sug-
gest that infection increases within-crown heterogeneity.
Accordingly, while mean NDVI values can reliably represent
overall crown condition in trees with mild symptoms, they
may not fully capture the internal variability of crowns in
more severely damaged individuals.

The proposed workflow, designed to account for signifi-
cant crown gaps in ash trees affected by dieback, proved
effective in evaluating the influence of external pixel inclu-
sion on mean vegetation index values and in capturing dif-
ferences in crown homogeneity across damage classes. Its
main limitation lies in the requirement for isolated ash trees
without overlapping foliage from surrounding vegetation.
However, the workflow offers considerable flexibility, such
as adjustable hybrid blending and clustering parameters,
making it readily adaptable to other vegetation types and
research objectives.

Conclusion

Detailed segmentation of the leaf mass in ash trees affected
by ash dieback is feasible and can be applied not only to
individual close-range multispectral UAV images but also
to orthophotos generated from broader UAV surveys. This
novel workflow effectively captures both fine crown edges
and internal crown gaps. However, as demonstrated by the
comparison between fine and coarse crown segmentation,
there was no significant difference in mean vegetation index
values per crown, indicating that coarse tree crown seg-
mentation is sufficient for such calculations. Nonetheless,
the fine segmentation revealed increasing heterogeneity in
NDVI values with greater symptom severity. Therefore, for
in-depth crown analysis, particularly when assessing struc-
tural integrity or spatial variation in canopy health, the fine
segmentation method is recommended. Our approach sup-
ports remote, scalable, and reproducible monitoring of forest
health, applicable beyond ash dieback and relevant to tree
species under similar stressors.
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