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Abstract  Detailed individual tree crown segmentation is 
highly relevant for the detection and monitoring of Fraxinus 
excelsior L. trees affected by ash dieback, a major threat to 
common ash populations across Europe. In this study, both 
fine and coarse crown segmentation methods were applied 
to close-range multispectral UAV imagery. The fine tree 
crown segmentation method utilized a novel unsupervised 
machine learning approach based on a blended NIR–NDVI 
image, whereas the coarse segmentation relied on the seg-
ment anything model (SAM). Both methods successfully 
delineated tree crown outlines, however, only the fine seg-
mentation accurately captured internal canopy gaps. Despite 
these structural differences, mean NDVI values calculated 
per tree crown revealed no significant differences between 
the two approaches, indicating that coarse segmentation is 

sufficient for mean vegetation index assessments. Neverthe-
less, the fine segmentation revealed increased heterogeneity 
in NDVI values in more severely damaged trees, underscor-
ing its value for detailed structural and health analyses. Fur-
thermore, the fine segmentation workflow proved transfer-
able to both individual UAV images and orthophotos from 
broader UAV surveys. For applications focused on structural 
integrity and spatial variation in canopy health, the fine seg-
mentation approach is recommended.
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Introduction

Remote sensing technologies provide powerful tools for 
surveying large-scale tree populations, enabling efficient, 
long-term monitoring of tree health and disease progres-
sion across broad landscapes. Unmanned aerial vehicles 
(UAVs) equipped with different sensor types have been 
proven to be suitable for the identification and monitoring 
of plant diseases in the context of various species (Torre-
san et al. 2017; Barbedo 2019). Disease-induced damage 
symptoms can often be detected through changes in reflec-
tance within the visible and near-infrared (NIR) spectrum. 
Multispectral sensors mounted on UAVs are particularly 
well-suited for detecting diseased plants, offering high spa-
tial resolution and the ability to capture subtle physiologi-
cal changes across large areas (Zhang et al. 2019; Neupane 
and Baysal-Gurel 2021). Vegetation indices, derived from 
mathematical combinations of reflectance values across mul-
tiple wavelengths, are widely used to analyse spectral reflec-
tance patterns. These indices provide valuable insights into 
plant physiological traits and are therefore important tools 
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for detecting disease symptoms and monitoring vegetation 
health (Huete 2012). The Normalized Difference Vegetation 
Index (NDVI), which is based on the differential reflectance 
of red and near-infrared wavelengths by plant canopies, is 
one of the most commonly and effective vegetation indices 
for detecting plant stress, as it enables early detection of 
physiological responses to stressors (Neupane and Baysal-
Gurel 2021).

An increasingly important application of remote sensing 
technologies is the detection and monitoring of ash dieback, 
a disease that poses a major threat to European forest ecosys-
tems. Since the introduction of the invasive fungal pathogen 
Hymenoscyphus fraxineus (Baral et al. 2014) in Europe and 
the first disease reports in Poland in the 1990s, ash dieback 
has severely affected populations of European common ash 
(Fraxinus excelsior L.). The fungal pathogen produces air-
borne ascospores that primarily infect leaves (Timmermann 
et al. 2011), initially causing necrotic lesions on leaflets and 
rachises. From there, the infection spreads into twigs and 
shoots, leading to branch dieback, wilting, and necrotic bark 
lesions, especially in young tissues. Eventually, the infec-
tion progresses into larger branches and stems, resulting in 
crown dieback characterised by extensive leaf loss (Gross 
et al. 2014; Timmermann et al. 2017; Fuchs et al. 2024). 
In advanced stages, necroses may also develop at the stem 
base, further weakening the tree (Langer 2017). This disease 
trajectory, from initial leaf infection to full crown dieback, 
can vary in speed depending on environmental conditions, 
tree age, and genetic resistance, but often results in high 
mortality within a few years after the onset of visible symp-
toms (Timmermann et al. 2017; Klesse et al. 2021). The 
European common ash is ecologically vital, supporting 
numerous dependent species (Mitchell et al. 2017; Hultberg 
et al. 2020) and is expected to experience severe population 
declines across Europe in the coming decades due to ash 
dieback (Coker et al. 2019). Therefore, efforts to identify, 
monitor and characterise affected ash trees are crucial for 
the long-term conservation of this ecologically important 
species.

The application of remote sensing technologies for 
assessing ash tree health remains limited. Some research has 
focused on monitoring damage caused by the emerald ash 
borer (Agrilus planipennis), a major insect pest threating ash 
populations, analysing hyperspectral (Pontius et al. 2008) 
and satellite data (Murfitt et al. 2016). Hyperspectral data 
have also been successfully used to identify ash trees dam-
aged by ash dieback (Chan et al. 2021; Polk et al. 2022). The 
more frequently available multispectral data and the thereof 
calculated vegetation indices have been used to identify and 
segment ash tree crowns in a mixed forest and subsequently 
to classify the damage caused by ash dieback (Waser et al. 
2014). Kampen et al. (2019) likewise analysed multispec-
tral UAV data and successfully segmented ash tree crowns 

and characterised ash dieback severity. A different approach 
was taken by Flynn et al. (2024), who analysed 3D RGB 
point cloud data from UAV surveys of individual ash trees 
regarding the different internal crown greenness patterns of 
trees with differing degrees of damage. Furthermore, Buch-
ner et al. (2025) examined vegetation index values across 
different damage classes using both RGB and multispectral 
data, identifying clear value ranges distinguishing mildly 
from severely affected trees. However, while Buchner et al. 
(2025) manually delineated ash tree crowns to only analyse 
leaf mass, no study to date has focused on automatically seg-
menting ash tree crowns from their surroundings to exclu-
sively study the leaf mass in relation to ash dieback. As the 
crown of severely affected ash trees decreases drastically 
and typically presents multiple crown gaps, the exclusion of 
ground pixels is crucial for the accuracy of further analysis.

Multiple approaches for tree crown segmentation have 
been successfully developed utilising a wide range of differ-
ent data, including airborne laser scanning (Dalponte et al. 
2015; Argamosa et al. 2016; Douss and Farah 2022), hyper-
spectral data (Dalponte et al. 2015), satellite data (Lassalle 
et al. 2022), as well as RGB (Mohan et al. 2017; Huang 
et al. 2018; Tahar et al. 2021) and multispectral data (Qiu 
et al. 2020; Ulku et al. 2022). These diverse datasets sup-
port a broad spectrum of tree crown delineation techniques, 
ranging from traditional methods such as valley following, 
region growing or marker-controlled watershed segmenta-
tion to more recent machine and deep learning models (Ke 
and Quackenbush 2011; Kestur et al. 2018; Freudenberg 
et al. 2022; Zheng et al. 2025). While tree crown segmenta-
tion has been widely explored, the focus in many studies 
often lies in detecting and counting individual trees rather 
than on analysing the structural or physiological condition 
of the crown itself (Ke and Quackenbush 2011; Zheng et al. 
2025). Nevertheless, segmentation precision is essential in 
downstream tasks such as disease detection, where accu-
rate delineation of crown boundaries and internal features 
become critical.

This study, therefore, investigated two approaches for seg-
menting tree crowns, producing both fine and coarse tree 
crown masks, to assess whether the choice of segmentation 
method significantly affects the calculation of mean NDVI. 
In addition, we examined how varying levels of crown 
damage influence the spatial homogeneity of NDVI values 
within individual tree crowns.

Materials and methods

Study sites

This study was conducted in 2023 at two ash seed orchards 
in the federal state of Baden-Wuerttemberg, located in 
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southern Germany (Fig. 1). Both sites have already been 
included in previous studies on ash dieback (Enderle et al. 
2015, Buchner et al. 2022, Eisen et al. 2022, 2023, 2024; 
Buchner et al. 2024, 2025).

The first site, the Emmendingen orchard (48° 7′ N, 7° 52′ 
E, 210 m a.s.l.) is situated about 15 km north of Freiburg. 
Covering 2.7 ha, this plantation was established in 1995 with 
an initial layout of 228 ash trees planted in a 10 m × 10 m 
grid. While no thinning operations were conducted, many 
trees had to be removed due to the impact of ash dieback. 
The site also contains a variety of other tree and shrub spe-
cies growing close to the ash trees.

The second site, the Schorndorf orchard (48°46′ N, 
9°25′ E, 420 m a.s.l.), lies east of Stuttgart, the capital of 
Baden-Wuerttemberg. It was established in 1992 with an 
original planting density of 7 m × 7 m, spanning approxi-
mately 2.27 ha. Initially, 416 ash trees were planted, but over 
time, more than half of them have been removed as a result 
of both thinning measures and the effects of ash dieback. 
Additional tree species, such as fruit trees, are also present 
on the orchard.

For the close-up UAV images, 30 ash trees were selected 
at each study site. These trees were evenly distributed 
throughout the orchards, exhibiting varying degrees of ash 
dieback symptoms, from mild to very severe symptoms.

Vitality assessment

Each selected tree was individually assessed for its vitality 
status in the field at the end of July 2023. Using a vital-
ity scoring system (Peters et al. 2021) trees were classified 

based on their visible damage symptoms. Due to the wide-
spread presence of ash dieback in Germany (Fuchs et al. 
2024), no completely healthy trees were found at either of 
the two ash seed orchards. Consequently, the healthy tree 
category (class 0) was omitted. Trees with mild damage 
symptoms were assigned to classes 1 and 2, while those 
with severe damage symptoms were classified as classes 3 
and 4. Dead trees (class 5) were not relevant to our study. 
Each damage class was defined by multiple criteria, includ-
ing leaf loss, the percentage of dead shoots and branches, 
the presence of epicormic shoots and stem rot necrosis, with 
increasing symptom severity from class 1 to class 4.

Image acquisition

Close‑up UAV images

For both study sites, individual close-up images of the 30 
selected ash tree crowns were recorded using the UAV sys-
tem DJI Mavic 3 Multispectral (Mavic 3 M) during June, 
July and October 2023. The Mavic 3 M is equipped with 
a 20 MP RGB camera and four 5 MP multispectral sen-
sors, allowing for simultaneous capture of both RGB and 
multispectral images. The multispectral sensors cover 
four wavelength bands: NIR (860 nm ± 26 nm), red edge 
(730  nm ± 16  nm), red (650  nm ± 16  nm), and green 
(560 nm ± 16 nm). Additionally, an integrated sun sensor 
measures solar radiation to enable light compensation dur-
ing post-processing (DJI 2022).The images were captured 
at an altitude of approximately 8 m above the tree crowns, 

Fig. 1   Study sites Emmendingen (a) and Schorndorf (b) in the federal state of Baden-Wuerttemberg (dark green) in Germany (c, light green), 
Source: Esri Base Map, BKG 2025dl-de/by-2-0
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providing an exceptionally high spatial resolution that 
ensures detailed image quality.

UAV survey

Additionally, a UAV survey was conducted at the Schorndorf 
orchard in July 2023 at a flight altitude of 80 m to further test 
the newly developed tree crown segmentation method. The 
Mavic 3 M followed a pre-planned flight plan with 85% front 
and side overlap and a flight speed of 4 m/s. This ensured a 
ground sampling distance of 2.77 cm/pixel for the captured 
multispectral images. The survey was divided into two flight 
missions, due to the size of the plantation and UAV specific 
battery capacity. However, the missions were conducted 
back-to-back to minimize variations in the environmental 
conditions.

The images were georeferenced using the integrated 
RTK data and processed into an orthophoto by aligning 
the images and generating a point cloud using the software 
Agisoft Metashape Professional (version 1.8.1).

Post‑processing of the close‑up UAV images

Due to the slight spatial offset between the four built-in mul-
tispectral sensors in the UAV system, the individual close-up 
images captured by each sensor were not perfectly aligned, 
resulting in minor misregistration between spectral bands. 
As a result, precise image alignment was required prior to 
further processing. Using a custom-built Python (version 
3.13.0) script, the NIR, red edge, and red band images were 
co-registered to the green sensor image for each capture, 
which served as the reference. The applied homography-
based image registration algorithm implemented in OpenCV 
aligned the images by calculating a 3 × 3 transformation 
matrix that mapped matching points from the non-reference 
images to the green reference image. Throughout the co-
registration process, the original metadata of the images was 
retained.

Tree crown segmentation

Two different methods of individual tree crown segmenta-
tion were applied, creating a coarse and a fine mask for each 
tree crown. While the coarse mask was designed to capture 
the general outline of the tree crown, the fine mask aimed to 
incorporate the detailed crown structure, including internal 
gaps and irregularities.

To extract the coarse tree crown masks from UAV-based 
imagery, we applied the pre-trained Segment Anything 
Model (SAM) (Kirillov et al. 2024), a general-purpose seg-
mentation framework developed for prompt-driven object 
segmentation, using a custom-built Python (version 3.11.0) 
script. SAM features a modular architecture consisting of 

an image encoder, a prompt encoder, and a mask decoder. 
The image encoder converts the input image into a latent 
representation capturing spatial and semantic features. User-
provided prompts are processed by the prompt encoder and 
guide the segmentation process. Finally, the mask decoder 
integrates both embeddings to produce one or more seg-
mentation masks (Kirillov et al. 2024; Speckenwirth et al. 
2024). In this study, grayscale NIR images were converted 
to 3-channel grayscale RGB images to match the input for-
mat expected by the model. A single foreground point was 
manually placed near the centre of each image to indicate 
the approximate location of the tree crown. Based on this 
input, multiple candidate masks were generated by SAM. 
Each mask was visually assessed, and the most accurate one 
representing the crown shape was selected and exported as 
a binary mask for further analysis.

The fine tree crown masks were generated using a cus-
tom-built R (version 4.1.1) script, executed in R Studio (ver-
sion 2021.09.0). The script integrated spectral, textural, and 
edge-based features into a multistep segmentation workflow 
comprising image preprocessing, feature extraction, unsu-
pervised clustering, and morphological refinement (Fig. 2). 
First, the NIR and red bands were normalized to a range of 
0–1, and the NDVI was computed as follows:

To enhance vegetation signals, a hybrid image was con-
structed using a weighted combination of NDVI and NIR, 
assigning a weight of 0.4 to NDVI and 0.6 to NIR:

The hybrid image was subsequently normalized and 
enhanced using histogram equalization based on the empir-
ical cumulative distribution function (ECDF) to improve 
local contrast. To characterize spatial structure, texture 
metrics (contrast, entropy, mean, and variance) were cal-
culated from the equalized hybrid image using a grey level 
co-occurrence matrix (GLCM) with a 5 × 5 moving window. 
In addition, edge features were extracted using the Sobel 
operator by computing gradient magnitudes in both hori-
zontal and vertical directions to enhance boundary detec-
tion. All derived features were compiled into a multilayer 
raster stack, providing a comprehensive representation of 
spectral, textural, and structural scene characteristics. Pixel-
level values were extracted into a data frame and subjected 
to k-means clustering with k = 2, using Euclidean distance 
and random initialization. The cluster most representative of 
vegetation was identified by selecting the one with the high-
est mean texture value, and a corresponding binary mask 
was generated. To improve segmentation accuracy, morpho-
logical post-processing was applied. Small gaps within the 

(1)NDVI =
NIR − Red

NIR + Red

(2)Hybrid image = 0.4 ∗ NDVI + 0.6 ∗ NIR
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crown mask were filled using a 3 × 3 maximum filter, and 
boundaries were smoothed using a 3 × 3 mean filter. Pixels 
with smoothed values greater than 0.5 were retained in the 
final binary mask. To select only the tree crown, a minimum 
size threshold of 900 pixels was applied. The resulting mask 
constitutes a spatially constrained and structurally refined 
representation of the tree crown.

Each segmented fine and coarse tree crown mask was vis-
ually validated with the RGB image of the tree crown. Addi-
tionally, two sections from two different tree crowns were 
chosen and manually segmented. Due to the required level of 
segmentation detail, not all trees were segmented manually; 
only a representative subset of twelve trees in total, three 
typical trees per vitality class, was selected for validation. 
In ArcGIS Pro (version 2.8.3), the manual segmentation was 
executed, and a tree crown polygon was generated for all 
three mask types: manual, fine and coarse. The total area was 
calculated for all masks. To quantify the overlap between the 
segmentations, we employed the Intersect tool to create an 
intersection polygon (Area_overlap), for both the compari-
son of the manual and automated fine and coarse segments. 
This allowed to compute the Intersection over Union (IoU), a 
widely used metric for segmentation accuracy (Mishra et al. 
2021; Sahin et al. 2023; Speckenwirth et al. 2024). The IoU 
is defined as the ratio of the overlapping area between the 
manual segmentation (A) and the automated segmentation 
masks (B) to the total area encompassed by both, as defined 
by Eq. 3.

In addition to IoU, we examined false positives and false 
negatives to identify over- and under-segmentation. The Erase 

(3)IoU =
A ∩ B

A ∪ B

tool in ArcGIS Pro was used to extract false positives, repre-
senting areas detected by the automated segmentations but 
absent in the manual delineation. False negatives, on the other 
hand, represent regions that were included in the manual seg-
mentation but missed by the automated methods. To further 
evaluate segmentation performance, Precision and Recall were 
computed, as shown in Eqs. 4 and 5:

Based on these, we derived the F1-score as described by 
Eq. 6, which highlights the correctly identified true positives 
and true negatives:

As an additional test, the novel fine tree crown segmenta-
tion workflow was applied to the orthophoto of the Schorndorf 
orchard. Following the generation of a binary tree crown mask, 
the output was spatially aligned with the georeferenced tree 
positions recorded using the Stonex S9III (STONEX® Srl, 
Paderno Dugnano, Italy). This alignment enabled the inte-
gration of the segmentation results with precise ground-truth 
coordinates.

(4)Precision =

Areaoverlap

Areaoverlap + Areafalsepositive

(5)Recall =
Areaoverlap

Areaoverlap + Areafalsenegative

(6)F1score = 2 ×
Precision ∗ Recall

Precision + Recall

Fig. 2   Workflow for segmenting a fine tree crown mask
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Statistical analysis

For both fine and coarse segmented tree crown masks, a 
mean NDVI value was calculated. To assess differences in 
the mean values and standard deviation (SD) of NDVI val-
ues between the fine and coarse mask types across vitality 
classes, pairwise statistical comparisons were conducted 
using the Wilcoxon rank-sum test.

To assess differences between the coarse and the fine 
tree crown segmentations, the proportion of crown area 
differences between the two mask types was quantified. 
Since tree crowns vary in size, direct comparisons of abso-
lute differences would be misleading. Therefore, the differ-
ence area was expressed as a proportion of the total coarse 
mask area, ensuring an unbiased comparison across trees 
of different sizes. The resulting proportionate difference 
values were analysed in relation to tree health classifi-
cations to identify potential differences in segmentation 
refinements across different vitality conditions.

Additionally, only the NDVI values of the fine mask 
were further analysed to assess the homogeneity of index 
values per tree crown in relation to vitality class. Both the 
SD and coefficient of variation (CV) were calculated per 
tree crown and tested for statistical differences between the 
four vitality classes. A Kruskal–Wallis test was performed 
to determine whether significant variation existed between 
vitality classes. Post-hoc pairwise comparisons were con-
ducted using the Wilcoxon rank-sum test with Bonferroni 
correction.

Results

Segmentation results and evaluation

Both methods applied for the automatic segmentation of ash 
tree crowns successfully identified and delineated the crown 
shape, as illustrated in Fig. 3, which shows four exemplary 
ash trees representative of the four vitality classes analysed 

Fig. 3   RGB image (a), NIR image (b), coarse mask (c) and fine mask (d) of four exemplary ash tree crowns for the four vitality classes 1 to 4
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in this study. The coarse mask worked well for trees with 
only mildly damage (Fig. 3: 1-c and 2-c). However, for trees 
with more severe damage, crown gaps were not sufficiently 
considered (Fig. 3: 3-c and 4-c). Particularly for trees with 
very severe damage (vitality class 4) large areas of ground 
pixels were included in the coarse crown mask. In compari-
son, the fine mask was able to segment the leaf mass in 
more detail, especially for the more severely damaged trees 
(Fig. 3: 3-d and 4-d). While segmentation results from the 
fine and coarse masks were visually similar for trees in vital-
ity classes 1 and 2, the fine mask provided a more precise 
representation of the crown for trees in classes 3 and 4.

All 360 segmented tree crown masks were validated visu-
ally in comparison with the RGB images. Six individual 
trees, three of the coarse and three of the fine masks did not 
accurately segment the tree crown. Consequently, both mask 
types for these six trees were subsequently excluded from 
further analysis.

To systematically evaluate the segmentation performance 
across varying crown conditions, the fine and coarse seg-
mentation masks were compared to manually delineated 
reference crowns across four vitality classes (Table  1). 
Both masks achieved high IoU values (mean IoU of 0.94 
for the fine and 0.93 for the coarse mask). The manually 
segmented mask accurately represented internal gaps, while 

the coarse mask did not present any crown gaps. As a result, 
even over-segmented crowns, such as those from the coarse 
mask, could still achieve a high IoU due to increased overlap 
with the manual reference crown. Nevertheless, differences 
between the fine and coarse mask emerged in the precision 
and F1-score, particularly under more structurally hetero-
geneous conditions for trees with severe damage due to ash 
dieback. Both mask types were able to capture the outline 
of the crown (Fig. 4c, d), however while the fine mask was 
able to represent internal crown gaps in high detail, the 
coarse mask only captured the outline of the crown (Fig. 4g, 
h). The fine mask exhibited consistently higher accuracy 
across most metrics. Notably, in vitality class 4, representing 
crowns with severe damage and increased structural irregu-
larity, the fine mask substantially outperformed the coarse 
mask in terms of precision (0.86 vs. 0.78) and F1-score (0.91 
vs. 0.85), indicating an increased ability to avoid over-seg-
mentation in complex canopy structures. While both mask 
types achieved similarly high recall values across all vitality 
classes (≥ 0.97), reflecting a general robustness in detecting 
crown presence, the fine mask demonstrated greater consist-
ency and balance across all evaluated metrics. The overall 
higher precision (0.94 vs. 0.91) and F1-score (0.96 vs. 0.94) 
of the fine mask further underscore its enhanced delineation 
quality. These results suggest that increased spatial detail in 

Table 1   Mean investigated 
metrics to evaluate the success 
of segmentation of the fine and 
coarse mask in comparison the 
manual segmentation (ground 
truth) for the four vitality 
classes, each class represented 
by three individual trees

Class Ground truth—fine mask Ground truth—coarse mask

IoU Precision Recall F1 IoU Precision Recall F1

Class 1 0.97 0.98 0.99 0.98 0.96 0.99 0.98 0.98
Class 2 0.95 0.96 0.99 0.98 0.93 0.96 0.98 0.97
Class 3 0.92 0.97 0.95 0.96 0.89 0.92 0.97 0.95
Class 4 0.93 0.86 0.98 0.91 0.94 0.78 0.97 0.85
Overall mean 0.94 0.94 0.98 0.96 0.93 0.91 0.97 0.94

Fig. 4   RGB image (a, e), detailed manual segmentation of a part of a tree crown (b, f), fine segmentation (c, g) and coarse segmentation (d, h) 
of the edge area of an ash tree crown (a–d) and a crown with severe gaps (e–h)
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crown segmentation enhances accuracy, particularly under 
conditions of elevated canopy heterogeneity.

Differences per mask type

Based on the 174 individual images of analysed ash trees 
derived from the different flight missions in June, July and 
October from both ash orchards, slightly higher NDVI val-
ues were recorded for the fine mask in comparison to the 
coarse mask. However, these differences were not statisti-
cally significant in any of the four vitality classes (Fig. 5). 
Independent from the mask type, a decrease in NDVI values 
was observed with an increasing damage due to ash dieback. 
Additionally, the mean NDVI calculated for the difference 
area (the region included in the coarse mask but excluded 
in the fine mask) was significantly lower than that of the 
fine mask in all vitality classes (p < 0.001), indicating that 
the excluded areas, mainly ground pixels beneath the crown 
and large exposed branches, have substantially lower NDVI 
values.

In contrast to the mean NDVI results, the SD values 
differed between the fine and coarse mask, with a signifi-
cant difference observed between mask types in both vital-
ity classes 2 and 3 (Fig. 5). The SD of the NDVI values 
increased with vitality class, demonstrating greater variabil-
ity in NDVI values for severely damaged ash tree crowns.

The proportionate difference area between the coarse 
and fine mask, demonstrated an increase with more 
severely damaged ash trees (Fig. 6). The Kruskal–Wallis 
test proved statistical significance (p = 0.022). While the 
area between the two mask types differed only slightly 

for class 1, the difference was much more pronounced 
in classes 3 and 4, indicating differing fine and coarse 
segmentations. The post-hoc test revealed a statistically 
significant difference only for class 1 and 3 (p = 0.033). 
However, these results indicate an increasing deviation of 
the segmented areas of the two mask types with increas-
ing damage severity, likely attributable to the increase of 
crown gaps with more severe damage.

Fig. 5   Boxplots of the mean and SD NDVI values calculated from the two mask types, analysed among the 174 images for both coarse and fine 
masks, for the four vitality classes at the two seed orchards

Fig. 6   Difference proportionate area between coarse and fine masks 
for the four vitality classes for the analysed 174 images from ash trees 
at the two seed orchards
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Homogeneity of NDVI values

To assess spatial variability of NDVI in relation to canopy 
condition, the SD and CV of NDVI values were calculated 
for individual trees applying the fine crown segmentation 
method and compared across vitality classes (Fig. 7). Box-
plot analysis revealed a significant increase in both NDVI 
SD (Kruskal–Wallis, p-value = 0.024) and NDVI CV 
(Kruskal–Wallis, p-value = 0.012) with declining tree vital-
ity. Notably, trees in class 4 exhibited significantly higher 
NDVI SD than those in class 1 to 3, indicating greater het-
erogeneity in canopy reflectance.

Moreover, the CV showed a consistent upward trend 
from class 1 to class 4, with a statistically significant differ-
ence between class 1 and 4. This suggests that, in addition 
to the observed decrease in NDVI values with increasing 
disease severity (Fig. 5), the relative variability of NDVI 
within individual tree crowns becomes more pronounced. 
While SD reflects the absolute spread of NDVI values, the 
CV normalizes this spread by accounting for mean differ-
ences between trees, thus emphasizing the disproportionate 
increase in heterogeneity among more severely damaged 
individuals. Therefore, healthier trees have both higher and 
more consistent NDVI values, whereas trees suffering from 
advanced ash dieback show lower NDVI and increased spa-
tial irregularity across their crowns.

Tree crown segmentation in orthophoto

The application of the newly developed workflow for a 
detailed tree crown segmentation was also successfully 

applied to an orthophoto generated from a UAV-survey. 
Despite the lower image resolution due to the flight height 
of 80 m, individual tree crowns were successfully delineated 
from their surroundings (Fig. 8). Not only the shape of the 
tree crowns was replicated but also gaps in the tree crowns 
(Fig. 8, purple frame), both in large trees and in smaller 
ash trees with severe damage (Fig. 8, orange frame). How-
ever, in cases where trees were in contact to surrounding 
trees, segmentation often merged them into a single object 
(Fig. 8, blue frame), highlighting a limitation of the method. 
These results emphasize the importance of spatial separation 
between individual trees for the segmentation technique to 
function reliably.

Discussion

Fine and coarse tree crown masks

A novel workflow for the detailed segmentation of ash tree 
crowns was developed in this study and successfully applied 
to multispectral close-up UAV imagery and an orthophoto 
of trees affected by ash dieback.

The ash trees investigated in this study were located on 
two ash tree orchards, with generous spacing between indi-
vidual trees. While this setup provides clear crown outlines, 
the surrounding vegetation, primarily tall grass and small 
bushes, adds background complexity. Despite these condi-
tions, both tree crown segmentation methods were able to 
successfully segment the crowns from their surroundings. 
Accurate segmentation of green plant material is readily 

Fig. 7   SD of the NDVI values of the fine mask per vitality class and CV of NDVI of the fine mask per vitality class with significant post-hoc 
results displayed as bars at the top for the analysed 174 images
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achievable when close-up images feature a uniform back-
ground. This has been demonstrated among others by Khan 
et al. (2022), who applied semantic segmentation techniques, 
and by Wacker et al. (2024), who employed multispectral 
imaging in combination with chlorophyll fluorescence to 
enable segmentation. However, as noted by Mishra et al. 
(2021), segmentation becomes considerably more challeng-
ing when the background contains vegetation with similar 
spectral properties. For instance, while deep-learning mod-
els were able to differentiate between crop and weed, dif-
ficulties in separating the plant material from the surround-
ing soil and similar vegetation were reported (Sahin et al. 
2023). However, the results of this study demonstrate that 
successful crown delineation is achievable even in semi-
structured environments with vegetation with similar spec-
tral properties.

Many studies on tree crown segmentation rely on remote 
sensing data acquired from UAVs or satellites (Heenkenda 
et al. 2015; Zhang et al. 2020; Lassalle et al. 2022). While 
these datasets often offer relatively high spatial resolution, 
they frequently lack the detail necessary to capture fine-scale 
crown structures, such as small canopy gaps, resulting in 
coarser crown outlines that may not accurately reflect true 
crown morphology. Only a few studies reported tree crown 
segmentation results with a level of detail comparable to that 
achieved in the present study. For instance, LiDAR point 
clouds have been used to accurately calculate crown volume 
and segment citrus trees with high morphological accuracy 
(Liu et al. 2021). Similarly, morphological image analysis 
applied to multispectral UAV data has enabled detailed 
crown segmentation in olive orchards (Sarabia et al. 2020), 

and similar methods were also successfully tested on other 
orchard species, including lemon and orange trees (Ponce 
et al. 2022). Additionally, adaptive thresholding combined 
with watershed segmentation enabled precise delineation of 
peach tree crowns (Mu et al. 2018). Beyond morphological 
techniques, deep learning models have shown considerable 
potential for high-precision crown segmentation. For exam-
ple, frameworks combining object detection models such as 
YOLOv4 with LiDAR-derived heightmaps have effectively 
segmented tree crowns (Sun et al. 2022). UAV-borne LiDAR 
datasets have been applied across diverse forest types (Chen 
et al. 2021), and multiple semantic segmentation architec-
tures have been evaluated on multispectral aerial and satel-
lite imagery, further demonstrating the versatility of deep 
learning approaches for crown segmentation (Ulku et al. 
2022).

A key strength of the novel approach developed in our 
study lies in its ability to segment tree crown areas without 
the need for annotated training data, making it particularly 
valuable for large study sites. The combination of spectral 
and textural indicators—such as NDVI, NIR reflectance, and 
GLCM-derived metrics—enhances robustness of the method 
against within-crown variability and background interfer-
ence. By incorporating edge information and applying 
unsupervised k-means clustering, the workflow effectively 
captures the structural heterogeneity commonly observed in 
high-resolution UAV imagery. The application of k-means 
clustering in this context has proven to be a viable tool for 
vegetation or tree crown segmentation, as supported by pre-
vious studies. For example, Moussaid et al. (2021) applied 
k-means clustering to multispectral satellite images of 

Fig. 8   Segmented tree crowns from an orthophoto with highlighted examples: the crown of a single ash tree (purple frame), detailed images of 
merged trees (blue frame) and a small, severely damaged ash (orange frame)
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orchards to segment overlapping tree crowns, successfully 
distinguishing vegetation from soil and shadows. Similarly, 
Cinat et al. (2019) compared k-means with other unsuper-
vised methods for segmenting vineyard canopies using UAV-
acquired RGB and NIR-Red-Green imagery, demonstrating 
the applicability of the method in agricultural contexts.

Texture features have been shown to significantly enhance 
the segmentation and classification of tree crowns. Both Wu 
et al. (2004) and Erdem and Bayrak (2023) demonstrated 
that incorporating texture information, ranging from sim-
ple image gradients to advanced radiomic descriptors, can 
improve accuracy in identifying crown boundaries and dis-
tinguishing species.

In our novel tree crown segmentation approach, the NIR 
image and derived NDVI serve as the basis input for all fur-
ther segmentation steps. The suitability of NDVI and NIR 
imagery for tree crown segmentation has been consistently 
demonstrated across multiple studies. Kang et al. (2017) 
showed that UAV-acquired NIR imagery provided strong 
spectral contrast between eucalyptus crowns and their sur-
roundings, enabling accurate segmentation. Furthermore, 
Safonova et al. (2021) highlighted, that models trained on 
NDVI and GNDVI (Green Normalized Difference Vegeta-
tion Index) outperformed those using RGB alone for seg-
menting olive tree crowns. These studies confirm that NDVI 
and NIR imagery can enhance crown visibility. Despite these 
advantages, using the NIR image for segmentation alone can 
introduce variability due to different illumination conditions, 
especially in shadowed areas within the crown diminishing 
visual consistency. Conversely, NDVI by itself often lacks 
sufficient contrast to clearly distinguish the tree crown from 
spectrally similar surrounding vegetation. As demonstrated 
in our study, generating a hybrid image by merging NIR and 
NDVI data enhances crown delineation. This fusion high-
lights crown structure while simultaneously reducing the 
visual impact of shadowed regions and thereby offering a 
more consistent and robust basis for segmentation.

The UAV close-up images were captured at two study 
sites from June to October, covering different stages of the 
vegetation period of the common ash. No differences in 
segmenting the images were noted for the three analysed 
months, indicating that the developed segmentation algo-
rithm can be applied to images captured during the entire 
vegetation period of the common ash. However, as Lu et al. 
(2022) pointed out, natural illumination can cause shaded 
and non-shaded areas within individual crowns. These 
effects were minimized by generating the hybrid NIR-NDVI 
image in our study. Additionally, a more evenly distribu-
tion of shadowed areas can be achieved by performing UAV 
surveys under overcast conditions, which avoids the harsh 
contrasts caused by direct sunlight.

Although the SAM model did not capture crown gaps 
and lacked detail along the crown edges, it was still able 

to generate tree crown masks that accurately represented 
the overall crown outline. However, in our study, the SAM 
model was applied exclusively to individual images of tree 
crowns, with the crown consistently positioned at the centre 
of each image. The SAM model was also able to detect and 
segment tree crowns to analyse changes in riparian wood-
land (Dawson et al. 2025). Similarly Balasundaram et al. 
(2024) reported successful background separation of plants 
using SAM. However, in a comparative evaluation, SAM 
underperformed relative to three other deep learning models 
(Speckenwirth et al. 2024). In our study, the SAM model 
was configured to generate three segmentation masks per 
ash tree crown. Each mask was manually reviewed, and the 
most accurate one was selected. However, relying solely on 
the model’s confidence scores would have occasionally led 
to the selection of an incorrect mask.

Validation of a representative subset of the data revealed 
a high IoU for both the fine and coarse segmentation masks. 
However, a closer examination of precision and F1-score 
metrics indicated that the fine mask more accurately cap-
tured the true shape of the tree crowns. These findings sug-
gest that, although both segmentation approaches performed 
reasonably well in delineating the general crown area, the 
fine mask provided a more accurate representation of the 
actual crown structure. This advantage was particularly evi-
dent in severely damaged trees, where accurate depiction of 
remaining leaf mass is critical. Therefore, fine-scale segmen-
tation is strongly recommended in contexts where detailed 
crown morphology and subtle structural variation are of 
analytical importance. This distinction proves as particu-
larly important when assessing the health condition of ash 
trees, where crown size and internal structure serve as key 
indicators of disease severity. In severely damaged crowns, 
structural complexity increases due to the emergence of epi-
cormic shoots (Enderle et al. 2015). These dense clusters can 
partially close crown gaps and create a more heterogeneous 
crown surface. As a result, the coarse segmentation approach 
tends to miss fine structural details and underestimates the 
distribution of living biomass, especially where small, scat-
tered shoots predominate.

Both the development of the fine-scale tree crown seg-
mentation workflow and the application of the SAM model 
were conducted on very high-resolution images of indi-
vidual ash trees. To assess the workflow’s transferability to 
coarser spatial scales, its performance was further evalu-
ated on lower resolution orthophotos. Despite the reduced 
resolution, the segmentation approach, designed to isolate 
leaf mass, proved effective when applied to an entire ash 
tree orchard. These results demonstrated the method’s scal-
ability and robustness, highlighting its potential for broader 
application in landscape-level crown analysis. While crown 
gaps were accurately identified and the reduced leaf mass in 
severely damaged trees was well captured, cases where tree 
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canopies overlapped often resulted in a single segmented 
crown encompassing multiple adjacent trees. This challenge 
was also observed by Mu et al. (2018) and Sarabia et al. 
(2020). However, additional processing steps like morpho-
logical erosion (Marques et al. 2019) or seed markers from 
regional maxima and a watershed algorithm (Ponce et al. 
2022) can further improve the tree crown masks and separate 
connecting masks.

NDVI analysis

One of the main objectives of this study was to assess 
whether delineating only the coarse crown outline is suf-
ficient for calculating mean vegetation index values in 
severely damaged ash tree crowns. In particular, we exam-
ined whether the increasing presence of crown gaps signifi-
cantly affects these values. While no significant differences 
in mean vegetation index values were observed between the 
fine and coarse crown segmentations, the analysis of the dif-
ference area, i.e., the part included in the coarse but excluded 
from the fine mask, revealed substantially lower NDVI val-
ues across all vitality classes. This suggests that although 
the inclusion of ground pixels does not markedly alter the 
overall mean index when comparing full crown masks, it 
does introduce a component with clearly lower vegetation 
activity, particularly reflecting gaps and exposed background 
beneath sparse crowns.

The observed decline in mean NDVI values with increas-
ing damage due to ash dieback is in accordance with the 
findings of Buchner et al. (2025), who also reported lower 
NDVI values in severely damaged ash trees compared to 
those with only mild symptoms. This decrease in NDVI is 
explained by the loss of chlorophyll-rich foliage in damaged 
crowns, leading to reduced reflectance in the NIR spectrum 
relative to the red spectrum.

The comparison between coarse and fine crown masks 
revealed notable differences in NDVI variability across vital-
ity classes. While SD of NDVI increased with declining tree 
vitality, significant differences between mask types were 
observed particularly in moderately damaged trees (classes 2 
and 3). In these cases, coarse masks yielded higher variabil-
ity, likely due to the inclusion of non-foliar elements such 
as exposed branches and crown gaps. In contrast, the fine 
masks, which focused on leaf mass, provided a more con-
sistent and presumably a more biologically relevant meas-
ure of canopy composition. The area difference between the 
fine and coarse masks also increased with damage severity, 
reflecting the greater inclusion of non-leaf pixels in coarse 
masks as crown gaps expanded.

The analysis of NDVI variability within in detail seg-
mented ash tree crowns, revealed a consistent increase in 
heterogeneity in index values with rising damage severity, 

indicating that NDVI values vary within the crown, espe-
cially in trees with severe damage. Similarly, Flynn et al. 
(2024) documented a spatial pattern in greenness (green 
chromatic coordinate) decline toward the crown extremi-
ties, whereas healthy ash trees, not affected by ash dieback, 
showed increased greenness at the edges. These results sug-
gest that infection increases within-crown heterogeneity. 
Accordingly, while mean NDVI values can reliably represent 
overall crown condition in trees with mild symptoms, they 
may not fully capture the internal variability of crowns in 
more severely damaged individuals.

The proposed workflow, designed to account for signifi-
cant crown gaps in ash trees affected by dieback, proved 
effective in evaluating the influence of external pixel inclu-
sion on mean vegetation index values and in capturing dif-
ferences in crown homogeneity across damage classes. Its 
main limitation lies in the requirement for isolated ash trees 
without overlapping foliage from surrounding vegetation. 
However, the workflow offers considerable flexibility, such 
as adjustable hybrid blending and clustering parameters, 
making it readily adaptable to other vegetation types and 
research objectives.

Conclusion

Detailed segmentation of the leaf mass in ash trees affected 
by ash dieback is feasible and can be applied not only to 
individual close-range multispectral UAV images but also 
to orthophotos generated from broader UAV surveys. This 
novel workflow effectively captures both fine crown edges 
and internal crown gaps. However, as demonstrated by the 
comparison between fine and coarse crown segmentation, 
there was no significant difference in mean vegetation index 
values per crown, indicating that coarse tree crown seg-
mentation is sufficient for such calculations. Nonetheless, 
the fine segmentation revealed increasing heterogeneity in 
NDVI values with greater symptom severity. Therefore, for 
in-depth crown analysis, particularly when assessing struc-
tural integrity or spatial variation in canopy health, the fine 
segmentation method is recommended. Our approach sup-
ports remote, scalable, and reproducible monitoring of forest 
health, applicable beyond ash dieback and relevant to tree 
species under similar stressors.
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