Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Which insights can research on achievement motivation gain from network analysis? : Comparing different network methods empirically

Titelangaben

Verfügbarkeit überprüfen

Jähne, Miriam F. ; Naumann, Alexander ; Moeller, Julia ; Baars, Jessica ; Dietrich, Julia:
Which insights can research on achievement motivation gain from network analysis? : Comparing different network methods empirically.
In: Motivation Science / Society for the Study of Motivation. (9. Juni 2025).
ISSN 2333-8121 ; 2333-8113

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1037/mot0000397

Kurzfassung/Abstract

Research on learning and achievement motivation often relies on the analysis of multivariate covariance with structural equation models. Recently, network analyses have been proposed as alternative or additional analytical methods with the potential to provide novel insights to motivation research. However, there are many different versions of network analyses, many different kinds of data and calculations that can be fed into and illustrated by a network, and it remains so far unclear which kind of network will provide which kind of insight to the psychology of motivation. In this article we, first, give an overview of different versions of network analyses and the kinds of research questions they potentially address. Second, we empirically compare four network analysis methods by analyzing one data set with these four approaches to compare which kinds of insights one method provides and the other possibly overlooks. We used self-report data of expectancy–value appraisals collected from N = 309 first-year university students. We chose six task value facets of intrinsic, attainment, and utility value (one facet each) and cost value (three facets) along with expectancy to represent aspects of achievement motivation specified in Eccles and Wigfield’s expectancy–value theory. These were analyzed as nodes in four different network analyses: (a) using zero-order correlations as edges, (b) using partial correlations as edges, (c) using intraindividual coendorsements, and (d) corejections among the facets. We demonstrate that conclusions about associations can differ between different network approaches and that the specific research question should determine which network to choose.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Philosophisch-Pädagogische Fakultät > Pädagogik > Professur für Empirische Bildungsforschung
DOI / URN / ID:10.1037/mot0000397
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:American Psychological Association Inc.
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:35552
Eingestellt am: 26. Aug 2025 13:09
Letzte Änderung: 26. Aug 2025 13:09
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/35552/
AnalyticsGoogle Scholar