Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Statistical inference for wavelet curve estimators of symmetric positive definite matrices

Titelangaben

Verfügbarkeit überprüfen

Rademacher, Daniel ; Krebs, Johannes ; von Sachs, Rainer:
Statistical inference for wavelet curve estimators of symmetric positive definite matrices.
In: Journal of statistical planning and inference. 231 (Juli 2024): 106140.
ISSN 0378-3758

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1016/j.jspi.2023.106140

Kurzfassung/Abstract

In this paper we treat statistical inference for a wavelet estimator of curves of symmetric positive definite (SPD) using the log-Euclidean distance. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second-generation wavelet estimator is based on average-interpolation (AI) and allows the same powerful properties, including fast algorithms, known from nonparametric curve estimation with wavelets in standard Euclidean set-ups. The core of our work is the proposition of confidence sets for our AI wavelet estimator in a non-Euclidean geometry. We derive asymptotic normality of this estimator, including explicit expressions of its asymptotic variance. This opens the door for constructing asymptotic confidence regions which we compare with our proposed bootstrap scheme for inference. Detailed numerical simulations confirm the appropriateness of our suggested inference schemes.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Statistik
DOI / URN / ID:10.1016/j.jspi.2023.106140
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:North-Holland Publ. Co.
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:35551
Eingestellt am: 26. Aug 2025 11:54
Letzte Änderung: 26. Aug 2025 11:54
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/35551/
AnalyticsGoogle Scholar