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Abstract
We study the �1-summability of functions in the d-dimensional torus Td and so-called �1-
invariant functions. Those are functions on the torus whose Fourier coefficients depend only
on the �1-norm of their indices. Such functions are characterized as divided differences
that have cos θ1, . . . , cos θd as knots for (θ1 . . . , θd) ∈ T

d . It leads us to consider the d-
dimensional Fourier series of univariate B-splines with respect to its knots, which turns out
to enjoy a simple bi-orthogonality that can be used to obtain an orthogonal series of the
B-spline function.

Keywords Fourier series · �1-invariant · B-spline function · Biorthogonality · Positive
definite function

Mathematics Subject Classification 41A15 · 42A16 · 42A32

1 Introduction

We consider a problem originating from the �1-summability of multivariate Fourier series.
Let f be a 2π-periodic function in L2(Td) and let f̂α be the Fourier coefficient of f with
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the multi-index α = (α1, . . . , αd) ∈ Z
d . Let

S(1)
n ( f ; θ) =

∑

|α|≤n

f̂αe
iα·θ , θ ∈ T

d , n ∈ N0,

be the n-th �1-partial sum of its Fourier series, where |α| = |α|1 = |α1| + · · · + |αd |, so that
the summation is over indices in the �1-ball of radius n. The �1-summability has been studied
in [2, 5, 8–11] and it is closely related to the summability of Fourier series of orthogonal
polynomials on the cube [12]. The Dirichlet kernel of S(1)

n ( f ) turns out to be a divided
difference to be defined below in the form

D(1)
n (θ) = [cos θ1, . . . , cos θd ]Gn,d , θ ∈ T

d ,

where Gn,d is a function of one variable as shown in [2, 12] (see (2.2) in the next section).
The divided difference can be written as an integral with a Peano kernel; in particular, for a
(d − 1)-times differentiable function F : [−1, 1] → C,

[cos θ1, . . . , cos θd ]F =
∫ 1

−1
F (d−1)(u)Md−1(u| cos θ1, . . . , cos θd)du,

where u �→ Md−1(u| cos θ1, . . . , cos θd) is the B-spline function, which is a piecewise poly-
nomial function inCd−2([−1, 1])with cos θ1, . . . , cos θd as its knots (see the next section for
its definition). Motivated by the �1-summability and functions defined by the above divided
difference,we call a function �1-invariant if f̂α = f̂β whenever |α| = |β| and study properties
of such functions.

Our analysis is partially motivated by the study in [2], where the �1-summability of the
Fourier transform in R

d , defined by

R(1)
ρ,d( f ; x) =

∫

|v|1≤ρ

f̂ (v)eiv·xdv, x ∈ R
d and ρ ≥ 0,

is treated and its associated Dirichlet kernel is shown to be given as a divided difference,
namely

Dρ,d(x) = [
x21 , . . . , x

2
d

]
Gρ,d , x ∈ R

d ,

where Gρ,d is a function of one variable. The Fourier transform of the B-spline function
x �→ Md−1(u|x21 , . . . , x2d ), considered as a function of its knots, is analyzed in [2], which
turns out to enjoy a rich structure and provides necessary tools for studying the class of
�1-invariant functions f (‖ · ‖1) defined on Rd . In particular, it leads to a characterization of
f : R+ → R so that x �→ f (‖ · ‖1) is a positive definite function on R

d .
Wewill show that the �1-invariant functions on the torus are all given bydivided differences

with knots cos θ1, . . . , cos θd , and we will study the Fourier series of the B-spline θ �→
Md−1(u| cos θ1, . . . , cos θd), which is �1-invariant. While the Fourier transform of the B-
spline x �→ Md−1(u|x21 , . . . , x2d ) on R

d satisfies an integral recursive relation in dimension
d , the Fourier coefficients of the B-spline x �→ Md−1(u| cos θ1, . . . , cos θd) on T

d satisfy
a somewhat surprising biorthogonal relation with a family of polynomials. Let mn,d denote
the Fourier coefficients of the B-spline function with the index |α| = n. Then there is a
sequence of polynomials hn,d , given in terms of the Gegenbauer polynomials, such that
{mn,d : n ∈ N0} and {hn,d : n ∈ N0} are biorthogonal in the sense that

∫ 1

−1
mn,d(u)h�,d(u) du = δn,�, n, � = 0, 1, 2, . . . .
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This orthogonal relation can be used to derive the Fourier orthogonal series of the B-spline
function in the Gegenbauer polynomials explicitly; the first term of the series gives, in par-
ticular, that

1

(2π)d

∫

Td
Md−1(u| cos θ1, . . . , cos θd) dθ = 	( d+1

2 )√
π	( d2 )(d − 1)! (1 − u2)

d−2
2+ ,

an identity that appears to be new.Wewill also give a characterization of �1-invariant functions
that are either positive definite or strictly positive definite on T

d .
The paper is organized as follows. We recall the definition and basic properties of �1-

summability in the next section and establish several necessary identities. The Fourier
orthogonal series of the B-spline with respect to its knot is given in the third section. The
positive definite functions among �1-invariant functions are discussed in the fourth section.

2 �1-summability on T
d

Let f be a 2π-periodic function defined on T
d . If f ∈ L2(Td), then the Fourier series of f

is defined by

f (x) =
∑

α∈Zd

f̂αe
iα·x , x ∈ T

d , with f̂α = 1

(2π)d

∫

Td
f (y)eiα·y dy, α ∈ Z

d .

We study the class of periodic functions that we call �1-invariant.

Definition 2.1 A function f : Td → R is called �1-invariant if

f̂α = f̂β whevever |α| = |β| forα, β ∈ Z
d .

We denote the Fourier coefficient f̂α of such a function by f̂|α|.

If f is �1-invariant, then its Fourier series is of the form

f (x) =
∞∑

n=0

f̂n En(x), En(x) =
∑

|α|=n

eiα·x , x ∈ T
d , (2.1)

where |α| is the �1-norm, that is |α| := |α1| + · · · + |αd |, of α ∈ Z
d .

A function f on T
d is called �1-summable if its partial sum S(1)

n f over the expanding
�1-ball, defined by

S(1)
n f (x) =

∑

|α|≤n

f̂αe
iα·x , x ∈ T

d ,

converges to f . The partial sum can be written as an integral operator

S(1)
n f (x) = 1

(2π)d

∫

Td
f (y)Dn,d(x − y) dy = f ∗ Dn,d(x),

where the kernel Dn,d is the analog of the Dirichlet kernel defined by

Dn,d(y) :=
∑

|α|≤n

eiα·y, y ∈ T
d .
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53 Page 4 of 16 M. Buhmann et al.

It is shown in [2, 12] that the kernel Dn,d can be written as a divided difference

Dn,d(x) = [cos x1, . . . , cos xd ]Gn,d ,

where Gn,d is a univariate function defined by

Gn,d(cos θ) = (−1)�
d−1
2 �2 cos θ

2 (sin θ)d−2 ×
{
cos(n + 1

2 )θ for d even,

sin(n + 1
2 )θ for dodd.

(2.2)

We briefly recall the notion of a divided difference of a function that is at least continuous.
Let f be a real or complex function on R, and let m ∈ N0. The m-th divided difference of f
at the (pairwise distinct) knots, x0, x1, . . . , xm in R is defined inductively as

[x0] f = f (x0) and [x0, . . . , xm] f = [x0, . . . , xm−1] f − [x1, . . . , xm] f

x0 − xm
.

The divided difference is a symmetric function of the knots. The knots of the divided dif-
ference may coalesce. In particular, if all knots coalesce and if the function is sufficiently
differentiable, then the divided difference collapses to

[x0, . . . , xm] f = f (m)(x0)

m! if x0 = x1 = · · · = xm . (2.3)

Our analysis depends heavily on an integral representation of the divided difference, for
which we need the definition of B-spline. For x0 < · · · < xm , the B-spline of order m with
knots x0, . . . , xm is defined by

R 
 u → Mm(u|x0, . . . , xm) = [x0, . . . , xm]
{

( · − u)m−1+
(m − 1)!

}
.

The B-spline vanishes outside the interval (x0, xm) and it is strictly positive on the interval
itself, and

∫

R

Mm(u|x0, . . . , xm) du = 1

m! .

For better reference, we state the integral representation of the divided difference as a lemma.

Lemma 2.2 Let f : R → C be m-times continuously differentiable. Then

[x0, . . . , xm] f =
∫

R

f (m)(u)Mm(u|x0, . . . , xm) du.

We shall also need the B-splines’ recurrence relation (Powell, 1982) [6]

Mm+1(u|x0, . . . , xm, xm+1) = (u − x0)Mm(u|x0, . . . , xm)

xm+1 − x0

+ (xm+1 − u)Mm(u|x1, . . . , xm+1)

xm+1 − x0
.

We first write the function En as an integral against the B-spline. We will need the Gegen-
bauer polynomials, which are orthogonal polynomials with respect to the weight function

wλ(t) = (1 − t2)λ− 1
2 , λ > − 1

2 ,
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on the interval [−1, 1]. Let (a)n = a(a+1) · · · (a+n−1) denote the Pochhammer symbol.
The Gegenbauer polynomial of degree n is denoted byCλ

n and normalized byCλ
n (1) = (2λ)n

n! .
The Gegenbauer polynomials satisfy the orthogonality

cλ

∫ 1

−1
Cλ
n (t)Cλ

m(t)wλ(t) dt = λ

n + λ
Cλ
n (1)δn,m, n,m ∈ N0,

where cλ is a constant so that cλ

∫ 1
−1 wλ(t) dt = 1. For convenience, we also define

Zλ
n (t) := n + λ

λ
Cλ
n (t).

The generating function of the Gegenbauer polynomials is given by

1

(1 − 2r t + r2)λ
=

∞∑

n=0

Cλ
n (t)rn, 0 ≤ r < 1.

Throughout this paper we define Cλ
n (t) = 0 whenever n < 0.

Lemma 2.3 For θ = (θ1, . . . , θd) ∈ T
d , the function En satisfies

En(θ) = [cos θ1, . . . , cos θd ]Hn,d (2.4)

=
∫ 1

−1
hn,d(u)Md−1(u| cos θ1, . . . , cos θd) du,

where Hn,d and hn,d are defined by H0,d = G0,d and, for n ≥ 1,

Hn,d(cos θ) = 2(−1)�
d−1
2 �(sin θ)d−1 ×

{
− sin(nθ) ford even,

cos(nθ) for d odd,
(2.5)

and hn,d is a polynomial of degree n given by, h0,d = 1 and, for n ≥ 1,

hn,d(u) = (d − 1)!
d∑

j=0

(−1) j
(
d

j

)
Cd
n−2 j (u) (2.6)

= (d − 1)!
d−1∑

j=0

(−1) j
(
d − 1

j

)
Zd−1
n−2 j (u).

Proof By its definition, En(θ) = Dn(θ) − Dn−1(θ), so that En(θ) is a divided difference
of Hn,d = Gn,d − Gn−1,d , from which (2.4) follows readily with hn,d = H (d−1)

n,d and the

identity (2.5) follows as a consequence of (2.2) and the trigonometric identities cos(n+ 1
2 )θ −

cos(n − 1
2 )θ = −2 sin nθ sin θ

2 and sin(n + 1
2 )θ − sin(n − 1

2 )θ = 2 cos nθ sin θ
2 . Now, it is

shown in [2] that

gn,d(t) = G(d−1)
n,d (t) = fn,d(t) + fn−1,d(t),

where fn,d is given in terms of the Gegenbauer polynomials by

fn,d(t) = (d − 1)!
d−1∑

j=0

(−1) j
(
d − 1

j

)
Cd
n−2 j (t).

Using the relation [7, (4.7.29)]

(n + λ)Cλ
n (t) = λ

[
Cλ+1
n (t) − Cλ+1

n−2 (t)
]

123
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with λ = d − 1, we then obtain

hn,d = fn,d − fn−2,d = (d − 1)!
d∑

j=0

(−1) j
(
d − 1

j

) [
Cd
n−2 j (t) − Cd

n−2 j−2(t)
]

which is the second expression of hn,d in (2.6) by recursion with Zd
n . Furthermore, the first

identity in (2.6) follows from
(d−1

j

) + (d−1
j−1

) = (d
j

)
and

hn,d = fn,d − fn−2,d = (d − 1)!
d∑

j=0

(−1) j
((

d − 1

j

)
+

(
d − 1

j − 1

))
Cd
n−2 j ,

where we define for convenience
(d−1

m

) = 0 if m = −1 or m = d . ��
Let Nd(n) = #{α ∈ N

d
0 : |α| = n} be the cardinality of the set {α : |α| = n}. Then,

Nd(n) = En(0). As a consequence of the identities (2.4) and (2.6), we obtain

Nd(n) = En(0) = hn,d(1)

(d − 1)! =
d∑

j=0

(−d) j (2d)n−2 j

j !(n − 2 j)! ,

where (a)n = a(a + 1) · · · (a + n − 1) is the Pochhammer symbol. The last sum can be
written as a hypergeometric 3F2 function evaluated at 1,

but the series is not balanced so it does not have a closed-form formula. The first values
of N (n, d) are given below

N2(n) = 4n, N3(n) = 4n2 + 2, N4(n) = 8

3
n(n2 + 2).

The function hn,d satisfies a generating function identity which we state as the following
result.

Lemma 2.4 Let 0 ≤ r < 1. Then

(d − 1)! (1 − r2)d

(1 − 2ru + r2)d
=

∞∑

n=0

hn,d(u)rn . (2.7)

Proof By the explicit formula of hn,d , we obtain

1

(d − 1)!
∞∑

n=0

hn,d(u)rn =
∞∑

n=0

d∑

j=0

(−1) j
(
d

j

)
Cd
n−2 j (u)rn

=
d∑

j=0

(−1) j
(
d

j

) ∞∑

n=2 j

Cd
n−2 j (u)rn−2 j r2 j

=
d∑

j=0

(−1) j
(
d

j

)
r2 j

∞∑

n=0

Cd
n (u)rn

= (1 − r2)d
1

(1 − 2ru + r2)d
,

where we have used the generating function of the Gegenbauer polynomials. ��
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Our next result is of interest in itself, which gives an explicit formula for the divided
difference of the function

Pr (t) := 1

1 − 2r t + r2
, 0 ≤ r < 1, t ∈ [−1, 1].

Proposition 2.5 For 0 ≤ r < 1,

(d − 1)!
∫ 1

−1

1

(1 − 2ru + r2)d
Md−1(u| cos θ1, . . . , cos θd) du

= 1
∏d

i=1(1 − 2r cos θi + r2)
. (2.8)

In particular,

[cos θ1, . . . , cos θd ]Pr = (2r)d−1

∏d
i=1(1 − 2r cos θi + r2)

. (2.9)

Proof We start with the elementary identity

1 − r2

1 − 2r cosφ + r2
=

∞∑

n=0

rneinφ.

Reorganizing the d-fold product of this identity and setting θ = (θ1, . . . , θd) as above, we
obtain the equalities

(1 − r2)d
∏d

i=1(1 − 2r cos θi + r2)
=

∞∑

n=0

rn
∑

|α|=n

eiα·θ

=
∞∑

n=0

rn En(θ) =
∞∑

n=0

rn[cos θ1, . . . , cos θd ]Hn,d

=
∞∑

n=0

rn
∫ 1

−1
hn,d(u)Md−1(u| cos θ1, . . . , cos θd) du, (2.10)

from which the identity (2.8) follows from the generating function of hn,d . Now, taking
derivatives of Pr , we obtain readily that

P(d−1)
r (u) = (d − 1)!(2r)d−1

(1 − 2ru + r2)d
,

so that the left-hand side of (2.8) can be identified with the divided difference of Pr , which
gives (2.9). ��

3 Fourier series of B-splines with respect to its knots

As a function of its knots, the B-spline function is a periodic function on Td ,

T
d 
 θ �→ Md−1(u| cos θ1, . . . , cos θd) ∈ R,

for each u, and we also define for convenience

Md(α; θ) := Md−1(cosα| cos θ1, . . . , cos θd).

123
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Studying this case is sufficient since for |u| ≥ 1, Md−1(u| cos θ1, . . . , cos θd) = 0 by defini-
tion, for all θ ∈ T

d . We first show that it is an integrable function on Td .

Proposition 3.1 For u ∈ (−1, 1), the function θ �→ Md−1(u| cos θ1, . . . , cos θd) is in
L1(Td).

Proof Let u = cosα for 0 < α < π be fixed. Since the function Md(α; ·) is obviously
even in each of its variables, we only need to consider θ ∈ [0, π]d . Furthermore, the divided
difference is a symmetric function of its knots, the functionMd(α; ·) is a symmetric function
and it is nonnegative, so we only need to show that it is an L1 function on the domain

�d = {θ = (θ1, . . . , θd) ∈ T
d : 0 ≤ θd ≤ θd−1 ≤ · · · ≤ θ1 ≤ π}.

Indeed, the above consideration leads readily to
∫

Td
Md−1(u| cos θ1, . . . , cos θd) dθ = 2dd!

∫

�d

Md−1(u| cos θ1, . . . , cos θd) dθ.

We start with the case d = 2; the univariate case is trivial by continuity and compact
support. On the domain �2, the function is given by

M2(α; θ) = χ[θ2,θ1](α)

cos θ2 − cos θ1
=

⎧
⎪⎨

⎪⎩

0 α ≤ θ2,
1

cos θ2−cos θ1
θ2 < α < θ1,

0 α ≥ θ1.

Hence, it follows readily that
∫

�2

M2(α; θ) dθ =
∫ π

α

∫ α

0

1

cos θ2 − cos θ1
dθ2 dθ1

=
∫ π

α

∫ α

0

1

2 sin θ1−θ2
2 sin θ1+θ2

2

dθ2 dθ1

≤ π

min{sin α
2 , cos α

2 }
∫ π

α

∫ α

0

1

θ1 − θ2
dθ2 dθ1,

where we have used the inequality sin θ1−θ2
2 ≥ θ1−θ2

π
and, if θ1+θ2

2 ≤ π
2 , sin

θ1+θ2
2 ≥ sin θ2

2 ≥
sin α

2 , whereas if
θ1+θ2

2 > π
2 , sin

θ1+θ2
2 = sin( π−θ1

2 + π−θ2
2 ) ≥ sin π−α

2 = cos α
2 . The last

integral is equal to −α ln α +π ln π + (α −π) ln(π −α), which is bounded for 0 < α < π ,
so that M1(α; θ) ∈ L1(T2) for 0 < α < π .

For d > 2, we use induction on d and the already stated recurrence relation from above
for B-splines. Since

Md+1(α|θ) = cosα − cos θ1

cos θd+1 − cos θ1
Md(α|θ1, . . . , θd)

+ cos θd+1 − cosα

cos θd+1 − cos θ1
Md(α|θ2, . . . , θd+1)

and Md+1(α|θ) = 0 if α /∈ (θ1, θd+1), it follows that for α ∈ [0, π] and θ ∈ �d ,

Md+1(α|θ) ≤ Md(α|θ1, . . . , θd) + Md(α|θ2, . . . , θd+1).

Consequently, the integrability ofMd+1(α|θ) follows from the integrability ofMd(α|θ) by
induction. ��
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SinceMd(α; ·) is a nonnegative integrable function,we can expand it intomultiple Fourier
series,which leads us to consider the Fourier coefficients of theB-spline function as a function
of its knots. More interestingly, we consider the �1-sum of its Fourier coefficients.

Definition 3.2 For d ≥ 2 and n ∈ N0, we define

mn,d(u) := 1

(2π)d

∫

Td
Md−1(u| cos θ1, . . . , cos θd)

En(θ)

Nd(n)
dθ.

By the definition of En(θ), mn,d is the �1 mean of the Fourier transform of the B-spline
function θ �→ Md−1(u| cos θ1, . . . , cos θd) with respect to its knots.

Theorem 3.3 The family of functions {mn,d : n ∈ N0} and the family of functions {hn,d : n ∈
N0} are biorthogonal; more precisely,

∫ 1

−1
mn,d(u)hn′,d(u) du = δn,n′ , n, n′ ∈ N0. (3.1)

Proof Multiplying the first identity of (2.10) by En(θ) and integrating over θ ∈ T
d , we

obtain

rn = 1

(2π)d

∫

Td

(1 − r2)d
∏d

i=1(1 − 2r cos θi + r2)

En(θ)

Nd(n)
dθ.

Using (2.8) and exchanging the order of integrals on the right-hand side, we obtain

rn = (d − 1)!
(2π)d

∫ 1

−1

(1 − r2)d

(1 − 2ru + r2)d

∫

Td
Md−1(u| cos θ1, . . . , cos θd)

En(θ)

Nd(n)
dθ du

= (d − 1)!
∫ 1

−1

(1 − r2)d

(1 − 2ru + r2)d
mn,d(u) du

=
∞∑

k=0

∫ 1

−1
hk,d(u)mn,d(u) du rk,

where the last step follows from (2.7). Since the above identity holds for |r | < 1, comparing
the coefficients of rn proves (3.1) by linear independence. ��

Using the orthogonality, we can now derive a series expansion of mn,d . Let us start with
d = 2.

Proposition 3.4 For n = 0, 1, 2, . . ., mn,2(u) = 0 if |u| ≥ 1, and furthermore

mn,2(cosα) = 2

π

∞∑

k=0

sin((n + 2k + 1)α)

n + 2k + 1
, 0 < α < π. (3.2)

Proof Let n ≥ 0 be fixed. Since mn,2(±1) = 0, we assume that mn,2(u) contains a factor√
1 − u2 and takes the form

mn,2(u) = 2

π

√
1 − u2

∞∑

k=0

ak
Un+2k(u)

n + 2k + 1
,

where the coefficients ak are real numbers that will be determined by the biorthogonality of
(3.1) andUn are as usual the Chebyshev polynomials of the second kind, satisfyingUn = C1

n .
Using the orthogonality of Un ,

2

π

∫ 1

−1
Un(t)Um(t)

√
1 − t2 dt = δn,m, n,m ≥ 0,
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and the second explicit formula, in (2.6),

h�,2(u) = (� + 1)U�(u) − (� − 1)U�−2(u), � ≥ 0,

we see that (3.1) becomes, for � = 0, 1, . . .,

δ�,n =
∫ 1

−1
mn,2(u)h�,2(u) du =

∞∑

k=0

ak
2

π

∫ 1

−1

Un+2k(u)

n + 2k + 1
h�,2(u)

√
1 − u2 du.

If � and n have different parity, then both the right-hand and the left-hand side are zero.
Assume now that � and n have the same parity. If � < n, then the right-hand side is trivially
zero by the orthogonality ofUn . Thus, we only need to consider � = n+2 j for j = 0, 1, . . .,
for which the identity becomes

δ j,0 = a j − a j−1, j = 0, 1, 2, . . . ,

where a−1 = 0, so that a0 = 1 and a j = a j−1 for j ≥ 0. Hence, a j = 1 for j = 0, 1, . . ..
Now, setting u = cosα, then we get

√
1 − u2Un+2k(u) = sin((n + 2k + 1)α), which gives

the expression mn,d in (3.2). ��
It turns out, surprisingly, that the expression (3.2) can be written, for each n, as a finite

sum.

Theorem 3.5 For n = 0, 1, 2, . . ., and 0 < α < π ,

m2n,2(cosα) = 1

2
− 2

π

n−1∑

k=0

sin((2k + 1)α)

2k + 1
, (3.3)

m2n+1,2(cosα) = 1

2
− α

π
− 2

π

n∑

k=1

sin(2kα)

2k
. (3.4)

In particular, we obtain

m0,2(u) = 1

(2π)2

∫

T2
M1(u| cos θ1, cos θ2) dθ1 dθ2 =

⎧
⎪⎨

⎪⎩

0 u ≤ −1,
1
2 −1 < u < 1,

0 u ≥ 1.

(3.5)

Proof Let f0 and f1 be odd 2π -periodic functions so that their restriction on [0, π] are defined
by

f0(θ) =

⎧
⎪⎨

⎪⎩

0 θ = 0,
π
4 0 < θ < π,

0, θ = π,

and f1(θ) =
{

θ
2 0 ≤ θ < π,

0, θ = π.

A quick computation shows that the Fourier series of f0 is given by

f0(θ) =
∞∑

k=0

sin(2k + 1)θ

2k + 1
, −π ≤ θ ≤ π,

where the convergence is pointwise. This gives immediately (3.5). Furthermore, for m2n,2,
we obtain from (3.2)

m2n,2(cosα) = 2

π

∞∑

k=n

sin((2k + 1)α)

(2k + 1)
= 2

π

[
π

4
−

n−1∑

k=0

sin((2k + 1)α)

(2k + 1)

]
,
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which is (3.3). Another quick computation shows that the Fourier series of f1(θ) is

f1(θ) =
∞∑

n=1

(−1)n−1 sin(nθ)

n
=

∞∑

n=0

sin((2n + 1)θ)

2n + 1
−

∞∑

n=1

sin(2nθ)

2n
,

which shows in particular, together with the Fourier series of f0,

∞∑

n=1

sin(2nθ)

2n
= π

4
− θ

2
, 0 < θ < π.

Thus, for m2n+1,2, we obtain from (3.2) that

m2n+1,2(cosα) = 2

π

∞∑

k=n+1

sin(2kα)

2k
= 2

π

[
π

4
− α

2
−

n∑

k=0

sin(2kα)

2k

]
,

which is (3.4). ��
Proposition 3.6 For d > 2, the function mn,d is of the form

mn,d(u) = (1 − u2)d− 3
2

cd−1

(d − 1)!
∞∑

k=0

(d − 1)k
k!

Cd−1
n+2k(u)

Cd−1
n+2k(1)

, −1 ≤ u ≤ 1, (3.6)

where cd−1 is the normalization constant defined by its reciprocal

c−1
d−1 =

∫ 1

−1
(1 − u2)d− 3

2 du = 	
( 1
2

)
	

(
d − 1

2

)

(d − 1)! .

Proof For d > 2, the function u �→ Md−1(u| cos{·}1, . . . , cos{·}d) has support in (−1, 1)
and has d − 2 continuous derivatives, therefore it follows that mn,d is a continuous and

m( j)
n,d(±1) = 0 for j = 0, 1, . . . , d − 2. We assume that mn,d has the series expansion

mn,d(u) = cd−1

(d − 1)! (1 − u2)d− 3
2

∞∑

k=0

ank
Cd−1
n+2k(u)

Cd−1
n+2k(1)

,

where the coefficients ank are to be determined by the biorthogonality, and the choice of index
n + 2k comes from (3.1) and the parity of hn,d . Now, the orthogonality of the Gegenbauer
polynomials is equivalent to

cd−1

∫ 1

−1

Cd−1
n (u)

Cd−1
n (1)

Zd−1
m (u)(1 − u2)d− 3

2 du = δn,m . (3.7)

Using the second explicit formula of hn,d in (2.6), which shows that the term of the highest
degree in hn,d is (d−1)!Zd−1

n , whereas the term of the lowest degree inmn,d containsCd−1
n ,

or the term k = 0 in the sum, the orthogonality (3.7) implies that the identity (3.1) for n′ = n
becomes

an0 = δn,n = 1, ∀n ∈ N0;
moreover, for n′ = n + 2� and � = 1, 2, 3, . . ., (3.1) becomes

0 =
∫ 1

−1
mn,d(u)hn+2�,d(u) du = (d − 1)!

d−1∑

j=0

(−1) j
(
d − 1

j

)
an�− j .
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Thus, using anj = 0 for j < 0 and recalling that an0 = 1, we see that anj satisfy

�∑

j=0

(−1) j
(
d − 1

j

)
an�− j = δ0,�, � = 0, 1, . . . , d − 1. (3.8)

It shows, in particular, that the anj are independent of n and that they can be determined
recursively so that the solution is unique. It turns out that the solution (3.8) is given explicitly
by a j = (d − 1) j/ j !. To verify that this is indeed the case, we write

(
d − 1

j

)
= (−1) j (−d + 1) j/ j ! and a�− j = (d − 1)�− j

(� − j)! = (d − 1)�(−�) j

�!(2 − � − d) j
,

where the second identity follows from (−x)�− j = (−x)�(−1) j (1 − � − x) j , so that the
right-hand side of (3.8) can be written as a hypergeometric function, namely

�−1∑

j=0

(−1) j
(
d − 1

j

)
an�− j = (d − 1)�

�! 2F1

(−�, 1 − d
2 − d − �

; 1
)

= (d − 1)�(1 − �)�

�!(2 − d − �)�
,

where the last step follows from theChu-Vandermonde identity [1, p. 67]. Since (−�+1)� = 0
for � ∈ N, this verifies that a j = (d − 1) j/ j ! is the solution of (3.8). ��
Theorem 3.7 For d > 2 and −1 ≤ u ≤ 1,

m0,d(u) = 1

(2π)d

∫

Td
Md−1(u| cos θ1, . . . , cos θd) dθ

= 	( d+1
2 )√

π	( d2 )(d − 1)! (1 − u2)
d−2
2 .

Proof Let g(u) = (1 − u2)− d−1
2 . We compute the Fourier-Gegenbauer coefficients ĝd−1

n
defined by

ĝd−1
n = cd−1

∫ 1

−1
g(t)Cd−1

n (t)(1 − t2)d− 3
2 dt

= cd−1

∫ 1

−1
Cd−1
n (t)(1 − t2)

d−2
2 dt .

By the parity of Cd−1
n , ĝd−1

n = 0 if n is odd. To compute ĝd−1
2n , we use the connection

coefficients of Gegenbauer polynomials [1, Theorem 7.1.4’, p. 360], which gives

Cd−1
2n (t) =

n∑

k=0

(d − 1)2n−k(
d−1
2 )k

( d−1
2 + 1)2n−kk!

Z
d−1
2

2n−2k(u).

Using the orthogonality of Z
d−1
2

m , we then conclude that

ĝd−1
n = cd−1

c d−1
2

(d − 1)n( d−1
2 )n

( d−1
2 + 1)nn! = cd−1

c d−1
2

(d − 1)n
n!

d − 1

2n + d − 1
.

(Note that c· is also defined for a non-integer index.) Consequently, the Fourier-Gegenbauer
expansion of g is given by

g(u) =
∞∑

n=0

ĝd−1
n

Cd−1
n (u)

hd−1
n

= cd−1

c d−1
2

∞∑

n=0

(d − 1)n
n!

Cd−1
2n (u)

Cd−1
2n (1)

,
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where hλ
n denotes the L

2([−1, 1], (1 − t2)λ− 1
2 ) norm of Cλ

n (t) and it is equal to

hλ
n = λ

n + λ
Cλ
n (1), n = 0, 1, 2, . . . .

Comparing with (3.6) with n = 0, we see that

m0,d(u) = (1 − u2)d− 3
2

c d−1
2

(d − 1)!g(u) =
c d−1

2

(d − 1)! (1 − u2)
d−2
2 , (3.9)

which is the stated result. ��
In the case of d = 2, it is easy to see that the explicit formula (3.2) implies the relation

mn,2(u) − mn+2,2(u) = 2

π

sin(n + 1)α

n + 1
= 2

π

√
1 − u2

Un(u)

Un(1)
, u = cosα.

The following corollary gives a d-dimensional version of this recursive relation for mn,d .

Corollary 3.8 For d ≥ 2, n = 0, 1, 2, . . .,

(d − 1)!
d−1∑

j=0

(−1) j
(
d − 1

j

)
mn+2 j,d(u) = cd−1(1 − u2)d− 3

2
Cd−1
n (u)

Cd−1
n (1)

. (3.10)

Proof Using the explicit formula of mn,d in (3.6), we obtain

(d − 1)!
d−1∑

j=0

(−1) j
(
d − 1

j

)
mn+2 j,d(u)

= (1 − u2)d− 3
2 cd−1

d−1∑

j=0

(−1) j
(
d − 1

j

) ∞∑

k= j

(d − 1)k− j

(k − j)!
Cd−1
n+2k(u)

Cd−1
n+2k(1)

= (1 − u2)d− 3
2 cd−1

∞∑

k=0

d−1∑

j=0

(−1) j
(
d − 1

j

)
(d − 1)k− j

(k − j)!
Cd−1
n+2k(u)

Cd−1
n+2k(1)

,

where we have used the convention that (d−1)k− j = 0 if j > k and
(d−1

j

) = 0 if j > d−1.
The stated result then follows from (3.8). ��

In particular, the identity (3.10) shows that the finite combination ofmn,d on the left-hand

side is a polynomial of degree n multiplied by (1 − t2)d− 3
2 . The recursive formula can be

used to determine mn,d if we know the first d − 1 elements m0,d , . . . ,md−1,d . However,

notice that the explicit expression of m0,d in (3.9) contains the factor (1 − u2)
d−2
2 , which

has a power different from the power d − 3
2 on the right-hand side of (3.10), we see that an

analog of (3.3) is unlikely to hold for d > 2; in particular, mn,d will not be a polynomial
when n is even for d > 2.

4 Positive definite �1-invariant functions

A function f ∈ C(Td) is a positive definite function (PDF) if for every
N = {�1, . . . , �N }
of pairwise distinct points in T

d and N ∈ N0, the matrix

f [
N ] = [
f (�i − � j )

]N
i, j=1
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is nonnegative definite; it is called a strictly positive definite function (SPDF) if the matrix is
always positive definite. Let �(Td) denote the set of PDFs on Td . By the definition of PDF,
the space �(Td) is closed under linear combination with nonnegative coefficients; that is, if
f , g ∈ �(Td) and ci and nonnegative constants, then c1 f + c2g ∈ �(Td). The PDFs on Td

are characterized by the following theorem:

Theorem 4.1 A function f ∈ C(Td) is a PDF on T
d if and only if the Fourier coefficients

f̂α are nonnegative for all α ∈ N
d
0 .

One direction of the theorem follows readily from the closedness of�(Td) and from the fact
that the exponential functions eiα·x ∈ �(Td) for all α ∈ N

d
0 , since

N∑

i=1

N∑

j=1

ci c je
iα·(�i−� j ) =

∣∣∣∣∣

N∑

i=1

cie
iα·�i

∣∣∣∣∣

2

≥ 0.

In the other direction, if f is PDF on Td then by the periodicity of f ,
∫

Td
f (θ) dθ = 1

(2π)d

∫

Td

∫

Td
f (θ − φ) dθ dφ.

The right-hand side is nonnegative if f is a trigonometric polynomial, as can be seen by
applying a positive cubature rule for the integral over Td and using the positive definiteness
of f . In particular, this shows that the left-hand side integral is nonnegative. Since eiα·θ is
PDF, it follows from Schur’s theorem that

f̂α = 1

(2π)d

∫

Td
f (θ)e−iα·θ dθ ≥ 0, ∀α ∈ N

d
0 .

Recall that a function f : Td → R is �1-invariant if f̂α = f̂β for all |α| = |β|, α, β ∈ N
d
0 .

These functions are given as follows.

Theorem 4.2 A function f ∈ L1(Td) is �1-invariant if and only if

f (θ1, . . . , θd) = [cos θ1, . . . , cos θd ]Fd , (4.1)

where Fd : [−1, 1] → R is a (d − 1)-times differentiable function and satisfies

Fd(cos θ) = 2(−1)�
d+1
2 �(sin θ)d−1

∞∑

n=0

an

{
− sin(nθ) for deven,

cos(nθ) for d odd,
(4.2)

with a sequence of real numbers {an}n≥0.

Proof If f is the given divided difference of Fd provided in (4.2), then

f (θ) =
∞∑

n=0

an[cos θ1, . . . , cos θd ]Hn,d = 1

2

∞∑

n=0

anEn(θ).

By the definition of En(θ), it follows readily that f̂α = f̂β if |α| = |β|. Moreover, when its
knots coalesce, the divided difference becomes a derivative as we have mentioned before.
By (2.3) and the (d − 1)-times differentiability of F , f is continuous.

In the other direction, if f is �1-invariant, then its Fourier series is given by (2.1). By (2.4),
we obtain that f (θ1, . . . , θd) = [cos θ1, . . . , cos θd ]F with F given by

F(u) =
∞∑

n=0

f̂n Hn,d(u),
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so that F is of the form (4.2) with an = f̂n by (2.5). The continuity of f requires that F has
continuous derivatives of (d − 1) orders by (2.3). ��

If f is �1-invariant, then f̂α = f̂|α|, so that f̂α ≥ 0 if and only if f̂n ≥ 0 in (2.1).
Consequently, the following characterization of PDFs holds.

Theorem 4.3 Let f ∈ C(Td) be �1-invariant. Then f is a PDF on T
d if and only if f is

given by (4.1) and (4.2) with f̂n ≥ 0 for all n ∈ N0.

The SPDFs have been characterized in [4, Theorem 1], where it is proved that a PDF
function is also SPDF if and only if the set of indices G = {α ∈ Z

d | f̂α > 0} intersects all
the translations of each subgroup of Zd that has the form

(a1Z, a2Z, . . . , adZ), a1, α2, . . . , ad ∈ N.

More precisely, for every pair of vectors γ ∈ Z
d , β ∈ N

d , there exists a z ∈ Z
d with f̂α > 0

and α j = γ j + z jβ j , j = 1, . . . , d . For �1-invariant functions, the SPDFs are characterized
below.

Theorem 4.4 Let f ∈ C(Td) be �1-invariant. Then f is a SPDF on T
d if and only if f is

given by (4.1) and (4.2), f is PDF and for any pair n < � ∈ N there is an m ∈ N with
f̂n+m� > 0 or f̂(�−n)+m� > 0.

Proof We prove that the given condition is equivalent to the condition given in [4], if we
assume the kernel to be �1-summable.

We start with sufficiency. Suppose f is PDF and satisfies the condition of the theorem. For
any two vectors γ ∈ Z

d , β ∈ N
d ,we can assumewithout loss of generality that 0 ≤ γ j ≤ β j ,

j = 1, . . . d . We define n = |γ | and � = |β|. Then there exists an m ∈ N0 with f̂n+�m > 0
or f̂(�−n)+�m > 0. If f̂n+�m > 0, then

f̂γ+mβ = f̂n+�m > 0

since |γ + mβ| = n + m�. Whereas if f̂(n−�)+�m > 0, we can choose m′ = m + 1. Now
|γ − m′β| = |γ − β − mβ| = (� − n) + m� implies

f̂γ−m′β = f̂(n−�)+�m > 0.

For the necessity, suppose the assumption of the theorem does not hold, then there exists
� > n ∈ N such that f̂n+m� = 0 and f̂(�−n)+�m = 0 for all m ∈ N. Set

γ = (n, 0, . . . , 0) ∈ Z
d , β = (�, . . . , �) ∈ Z

d .

Then for any z ∈ Z
d define α ∈ Z

d , α j = γ j + z jβ j , so that with m = |z|,

|α| = |n + z1�| + �

d−1∑

j=2

|z j | =
{
n + m�, z1 ≥ 0,

(� − n) + (m − 1)�, z1 < 0.

Thereby, there would be no coefficients f̂α > 0, α j = γ j + z jβ j for this choice of γ and β,
contradicting strict positive definiteness. ��
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