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Abstract

We study the £!-summability of functions in the d-dimensional torus T¢ and so-called £-
invariant functions. Those are functions on the torus whose Fourier coefficients depend only
on the £'-norm of their indices. Such functions are characterized as divided differences
that have coséy, ..., cos6; as knots for (0; ...,60,) € T, 1t leads us to consider the d-
dimensional Fourier series of univariate B-splines with respect to its knots, which turns out
to enjoy a simple bi-orthogonality that can be used to obtain an orthogonal series of the
B-spline function.

Keywords Fourier series - ¢!-invariant - B-spline function - Biorthogonality - Positive
definite function
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1 Introduction

We consider a problem originating from the £'-summability of multivariate Fourier series.
Let f be a 27-periodic function in L2(T?) and let f,, be the Fourier coefficient of f with
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the multi-index « = (o, ..., o) € Z%. Let
SOF10) =Y fue™’, 0T neN,
lae|=<n
be the n-th Kl—partial sum of its Fourier series, where |o| = |¢|1 = |o1| 4 - - - + |ag], so that

the summation is over indices in the £!-ball of radius n. The ¢! -summability has been studied
in [2, 5, 8-11] and it is closely related to the summability of Fourier series of orthogonal
polynomials on the cube [12]. The Dirichlet kernel of S,(ll)( f) turns out to be a divided
difference to be defined below in the form

D) = [coshy,...,cos041Gpa, O €T,

where G, 4 is a function of one variable as shown in [2, 12] (see (2.2) in the next section).
The divided difference can be written as an integral with a Peano kernel; in particular, for a
(d — 1)-times differentiable function F : [—1, 1] — C,

1
[cosOy,...,cos80,4]F = / F(d_l)(u)Md_l(ul cosfy,...,cos0;)du,
where u — Mj_1(u|cos 0, ..., cosby) is the B-spline function, which is a piecewise poly-
nomial function in C4=2([—1, 1]) with cos 6y, . . . , cos 64 as its knots (see the next section for
its definition). Motivated by the £'- -summability and functions defined by the above divided
difference, we call a function £!-invariant if fa = fﬁ whenever |«| = | 8] and study properties
of such functions.

Our analysis is partially motivated by the study in [2], where the £!-summability of the
Fourier transform in R, defined by

RUN(f1x) = /u f)e’ dv, xeR? and p >0,
vj1=p

is treated and its associated Dirichlet kernel is shown to be given as a divided difference,
namely

Dpalx) = [xl,...,xfl] Gp.d, X G]Rd,

where &, 4 is a function of one variable. The Fourier transform of the B-spline function
X = My, (u|x12, R xﬁ), considered as a function of its knots, is analyzed in [2], which
turns out to enjoy a rich structure and provides necessary tools for studying the class of
¢'-invariant functions £l - ll1) defined on R?. In particular, it leads to a characterization of
f Ry — Rsothatx — f(|| - ||1) is a positive definite function on R¢.

We will show that the £!-invariant functions on the torus are all given by divided differences
with knots cos 6y, ..., cosfy, and we will study the Fourier series of the B-spline 6 +—
My_(u|cosby, ..., cos0y), which is £!-invariant. While the Fourier transform of the B-
spline x — M,_ (u|x12, e, xﬁ) on R satisfies an integral recursive relation in dimension
d, the Fourier coefficients of the B-spline x — My;_1(u|cos0y,...,cosb;) on o satisfy
a somewhat surprising biorthogonal relation with a family of polynomials. Let m, 4 denote
the Fourier coefficients of the B-spline function with the index |«¢| = n. Then there is a
sequence of polynomials &, 4, given in terms of the Gegenbauer polynomials, such that
{mnpq:n e Np}and {h, 4 : n € Ny} are biorthogonal in the sense that

1
/ Mp,gWheq(u)du = 6,4, nt=0,1,2,....
-1
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This orthogonal relation can be used to derive the Fourier orthogonal series of the B-spline
function in the Gegenbauer polynomials explicitly; the first term of the series gives, in par-
ticular, that

(4

d—2
2 _ 2\ 2
/ My_1(u|cosby,...,cos0;)do = nF(%)(d—l)!(l u),;’

an identity that appears to be new. We will also give a characterization of ¢! -invariant functions
that are either positive definite or strictly positive definite on T¢.

The paper is organized as follows. We recall the definition and basic properties of £!-
summability in the next section and establish several necessary identities. The Fourier
orthogonal series of the B-spline with respect to its knot is given in the third section. The
positive definite functions among ¢!-invariant functions are discussed in the fourth section.

(271)“

2 ¢'-summability on T

Let f be a 27-periodic function defined on T?. If f € L?(T¢), then the Fourier series of f
is defined by

fx) = Z fue®* x eT¢, with f, =

aeZd

Gt [, FOE dy ae

We study the class of periodic functions that we call £!-invariant.
Definition 2.1 A function f : T¢ — R is called £!-invariant if

fa = f,g whevever |«| = || fora, B € z°.
We denote the Fourier coefficient fa of such a function by ﬁa‘.

If fis ¢! invariant, then its Fourier series is of the form

o0
fO) =) FPEx),  Ex)= ) e xeT’ @.1)
= lo|=n
where || is the £'-norm, that is || := 1| + - - - + |agl, of & € Z9.

A function f on T is called £'-summable if its partial sum S,(ll)f over the expanding
¢!-ball, defined by

Sr(Ll)f(x) _ Z faeic&x’ X e Td,

lee|<n

converges to f. The partial sum can be written as an integral operator

SO f(x) =

37 oy FOIPrats = 3)dy = £ 5 Dy,

where the kernel D,, 4 is the analog of the Dirichlet kernel defined by

Drat) = Y 0 ye.

loe|<n
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It is shown in [2, 12] that the kernel D, 4 can be written as a divided difference
Dy q(x) = [cosxy, ..., c08x4]1Gp a,

where G, 4 is a univariate function defined by

cos(n + %)9 for d even,

Gpa(cos0) = (—D)LT12.cos & (sin0) 2 x ;
' sin(n + )0  for dodd.

(2.2)

We briefly recall the notion of a divided difference of a function that is at least continuous.
Let f be a real or complex function on R, and let m € Ny. The m-th divided difference of f
at the (pairwise distinct) knots, xo, x1, ..., X, in R is defined inductively as

[x0s - os 1] f — [x1s oo Xl f
X0 — Xm

[xo] f = f(x0) and [x0,...,xn]f =

The divided difference is a symmetric function of the knots. The knots of the divided dif-
ference may coalesce. In particular, if all knots coalesce and if the function is sufficiently
differentiable, then the divided difference collapses to

™M xo)
[xo,...,xm]f=T ifxo=x1=---=x,. 2.3)
Our analysis depends heavily on an integral representation of the divided difference, for
which we need the definition of B-spline. For xo < - -+ < xy,, the B-spline of order m with
knots xo, . .., x,, is defined by

o ym—1
Rou — Mm(ulxow--’xm):[xo""’xm][((mf);r)!]'

The B-spline vanishes outside the interval (xg, x,,) and it is strictly positive on the interval
itself, and

1
/ My, (u|xo, ..., xp) du = —.
R m!

For better reference, we state the integral representation of the divided difference as a lemma.

Lemma 2.2 Let f : R — C be m-times continuously differentiable. Then

(X0, -+ s Xm] f =/ £ W) M,y (u|x, - . ., Xm) du.
R

We shall also need the B-splines’ recurrence relation (Powell, 1982) [6]

( — x0) My (ulxo, . .., Xm)
M1 (ulxo, ... Xmy Xmg1) =
Xm+1 — X0
+ Xm1 — WMy (ulx1, ... Xpt1)
Xm+1 — X0

We first write the function E,, as an integral against the B-spline. We will need the Gegen-
bauer polynomials, which are orthogonal polynomials with respect to the weight function
wi () = (1 =23, > -1
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on the interval [—1, 1]. Let (a), = a(a+1) - - - (@ +n — 1) denote the Pochhammer symbol.
The Gegenbauer polynomial of degree n is denoted by C; and normalized by C7 (1) = (2’\)” .
The Gegenbauer polynomials satisfy the orthogonality

1
A
C/\/ Cr)Ch(Owy (1) dt = ——Cy(D8ym,  n.m € No,
-1 n + A
where c;, is a constant so that ¢, fll wy () dt = 1. For convenience, we also define

Zh) = 7C)‘(t)

The generating function of the Gegenbauer polynomials is given by

SR E— Ch i 0<r<l.
(1—2rt+r2)A Z @, 0=r<

Throughout this paper we define C}(t) = 0 whenever n < 0.
Lemma23 Forf = (6;,...,6y) € T, the function E,, satisfies

E,(0) =[cosby,...,cos04]1Hy g 2.4)
1
:/ hyaW)Mg—1(u|cosfy, ..., cosby)du,
-1

where H, 4 and h,, 4 are defined by Hy 4 = Go 4 and, forn > 1,

) —sin(nf) ford
Hy 4(cos8) = 2(— )L (sin gyd—1 » | ~Sin(0) ford even, (2.5)
’ cos(nf)  ford odd,

and hy, q is a polynomial of degree n given by, hg 4 = 1 and, forn > 1,

d
hpa() = (d =Dy (=1)/ (J) o2y (1) (2.6)
j=0
d—1
(d—1
=(d—1)!2(—1)f< . >Z§f ;).
j=0 /

Proof By its definition, E, () = D, (0) — D,—1(0), so that E,(6) is a divided difference
of Hy g = Gn.g — Gp—1,4, from which (2.4) follows readily with 4, 4 = H,E’dd_l) and the
identity (2.5) follows as a consequence of (2.2) and the trigonometric identities cos(n + %)9 —
cos(n — %)6 = —25sinn6 sin % and sin(n + %)9 —sin(n — %)9 = 2 cosné sin % Now, it is
shown in [2] that

gna® =GV = fua®) + fur.a(0).

where f;, 4 is given in terms of the Gegenbauer polynomials by

d—1 d—1
fn,d<r>=(d—1)!2<—1>f< ; ) n—2; (-
j=0

Using the relation [7, (4.7.29)]
(n+ MCH(t) = A [C,’}“(t) c“‘(z)]
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with A = d — 1, we then obtain
—1
hnd = fad = fu- M—(d—l)'Z( 1)/( )[ 40—l 0]
j=0

which is the second expression of /1, 4 in (2.6) by recursion with Z;‘f. Furthermore, the first
identity in (2.6) follows from (dj_.l) + (‘{_l) = (‘;) and

Jj—1
d ((d—1 d—1
hid = fod = fo2.a = (d = DY (=1)/ (( . ) + ( ) )) cly)
=0 J =1 -
where we define for convenience (d 1) =0ifm=—1lorm=d. |

Let Ny(n) = #{a € Ng . la| = n} be the cardinality of the set {« : |«| = n}. Then,
Ng4(n) = E,(0). As a consequence of the identities (2.4) and (2.6), we obtain

ha(l) i (=)} 2d)u—2;

Nam = En Q) =1 = 2 i =21

where (@), = a(a + 1)---(a + n — 1) is the Pochhammer symbol. The last sum can be
written as a hypergeometric 3 F; function evaluated at 1,

but the series is not balanced so it does not have a closed-form formula. The first values
of N(n, d) are given below

8
No(n) = 4n, N3(n) =4n*>+2, Na(n) = gn(n2 +2).

The function &, 4 satisfies a generating function identity which we state as the following
result.

Lemma24 LetO <r < 1. Then

1
(d— 1)!((2;’TI’ZY1 Z ). 2.7)

Proof By the explicit formula of 4, 4, we obtain

1 o0
@=D > haau)r” ZZ( 1)/( ) 4"
n=0 n=0 j=0

= Z(—l)/( ) 3y w2
Jj=0 n=2j
d N

= Z(—l)/< .)rzf ZC,‘f(u)r"
= J n=0

1

S R S S

( ) (1 —2ru+r2)d
where we have used the generating function of the Gegenbauer polynomials. O
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Our next result is of interest in itself, which gives an explicit formula for the divided
difference of the function

1
P(t)y:=——, 0< I, te[-1,1].
r() 1—2rt+r2 =r= L !
Proposition 2.5 For0 <r < 1,
! 1
(d — 1)' [1 defl(l” COSQ[, ey COSQd) du
= ! (2.3)
[T, (1 = 2rcos6; 4 r2) '
In particular,
2 d—1
[cosb, ..., cos 1P, = — @) . 2.9)
[Ti=, (1 —2r cos6; +r?)
Proof We start with the elementary identity
12 . n,in
_ ¢
_ = e?.
1 —2rcos¢ +r? Zr
n=0
Reorganizing the d-fold product of this identity and setting 6 = (61, ..., ;) as above, we

obtain the equalities
(1—r2)d
M2, (1 = 2r cos6; +r2)

Nk

n Z ela-@

n=0 la|=n
oo o

= Zr"En(Q) = Zr"[cos@l, e, co8041Hy 4
n=0 n=0

o 1
:Zr"/ hn.a(W)My_1(u|cosby, ..., cos6;) du, (2.10)
0 /-1

from which the identity (2.8) follows from the generating function of 4, 4. Now, taking
derivatives of P, we obtain readily that

(d —1)!@2r)d!

(1 =2ru+r2)d’

so that the left-hand side of (2.8) can be identified with the divided difference of P, which
gives (2.9). O

P D) =

3 Fourier series of B-splines with respect to its knots

As a function of its knots, the B-spline function is a periodic function on T4,
T 56 My_1(u|cosby,...,cos6y) € R,
for each u, and we also define for convenience

My(a; 0) := My_1(cosa|cosbOy,...,cos0;).
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Studying this case is sufficient since for |u| > 1, My_1(u|cos 0y, ..., cosf;) = 0 by defini-
tion, for all & € T9. We first show that it is an integrable function on T,

Proposition 3.1 For u € (—1,1), the function 6 +— My_1(u|cosby,...,cos0y) is in
LY(T%).

Proof Let u = cosa for 0 < a < 7 be fixed. Since the function My («; -) is obviously
even in each of its variables, we only need to consider 8 € [0, 714, Furthermore, the divided
difference is a symmetric function of its knots, the function M (¢; -) is a symmetric function
and it is nonnegative, so we only need to show that it is an L' function on the domain

Ag={0=1....00) €T :0<0 <041 < <6 <7}
Indeed, the above consideration leads readily to
/ My_1(u|cosby,...,cos0;)do = 2441 Mg_1(u|cosby,...,cosb;)d6.
Td VAV/]

We start with the case d = 2; the univariate case is trivial by continuity and compact
support. On the domain A,, the function is given by

@) 0 o < 6,

oy XI62,6111&X _ 1

Ma(e:0) = cos@y —cos@; | costa—cos O < <01,
0 o > 0.

Hence, it follows readily that
b o 1
Mo (a; 6)do :/ / ——d6, do;
Ao 0 Cosbr —cosb
- / / 2sin 85 02 0”2'92 46246

< —/ / do, déy,
min{sin £ 5, COS 2} 91 - 02

where we have used the inequality sin O 202 > 0202 4 if 6”'02 < g, sin 0';62 > sin 622 >
sin §, whereas if w > 7, sin 9‘;92 = sin(Z54 201 + Z 292) > sin 5% = cos 5. The last
integral is equal to —a Ina + 7 In 7 + (o — ) In(;r — &), which is bounded for 0 < @ < 7,
so that M (a; 0) € Ll(Tz) for0 <a < .

For d > 2, we use induction on d and the already stated recurrence relation from above

for B-splines. Since

cosa — cos 0
Mat1(a]f) = ———— My(@|0y, ..., 04)
cosB441 — cos O
cos 6 41 — cosa
+—Md(a|62,...,6’d+1)
c0s 041 — cos b

and Mgy1(x|0) = 0if o & (01, 0441), it follows that for & € [0, 7] and 6 € Ay,
May1(a]0) < Mg(@|0y, ...,60q) + Ma(alfa, ..., 0441).

Consequently, the integrability of M1 (c|@) follows from the integrability of M, («|0) by
induction. o
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Since M («; -) is anonnegative integrable function, we can expand it into multiple Fourier
series, which leads us to consider the Fourier coefficients of the B-spline function as a function
of its knots. More interestingly, we consider the £!-sum of its Fourier coefficients.

Definition 3.2 Ford > 2 and n € N, we define

[%
L E,(0) 40
2m) Ng(n)

By the definition of E,,(0), mj 4 is the ¢! mean of the Fourier transform of the B-spline
function 0 — My_1(u|cos by, ..., cos6y) with respect to its knots.

My q(u) = / Mg_1(u|cosby,...,cos0;)

Theorem 3.3 The family of functions {my q4 : n € No} and the family of functions {h, 4 : n €
No} are biorthogonal; more precisely,

1
/ mn,d(”)hn’,d(u) du = 811,;1’7 n, I’l/ € NO- (31)
-1

Proof Multiplying the first identity of (2.10) by E,(f) and integrating over § € T¢, we
obtain

a1 (1—r2d E,(0)
~@m)d Jpa T, (1 = 2r cos 6; 4 r2) Na(n)

Using (2.8) and exchanging the order of integrals on the right-hand side, we obtain

,_@d=D o a—r Myi( ) Q)A)Md
r' = @y /1(1—2ru+r2)d/ d—1(ulcosby,...,cosby Ny o) u

(-
S /1 (11— 2rur+ r2)d my, 4 () du

= Z / hica )my a(u) du r,
k=01

where the last step follows from (2.7). Since the above identity holds for |r| < 1, comparing
the coefficients of r" proves (3.1) by linear independence. O

Using the orthogonality, we can now derive a series expansion of m,, 4. Let us start with
d=2.

Proposition3.4 Forn=0,1,2,..., my,2m) = 0if|u| > 1, and furthermore

my 2(cosa) = 2 Z sin((n + 2k + Da)

, 0 . 3.2
k1 <a<T 3.2)

k=0

Proof Let n > 0 be fixed. Since m, >(£1) = 0, we assume that m, »(u) contains a factor
+/1 — u? and takes the form

2 (1) = mZ Unqor ()

n+2k+1’

where the coefficients a; are real numbers that will be determined by the biorthogonality of
(3.1) and U, are as usual the Chebyshev polynomials of the second kind, satisfying U, = C,.
Using the orthogonality of U,,,

2 1
*/ Un(t)Um(l)Vl_tzdtzfsn,ma n,m >0,
)
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and the second explicit formula, in (2.6),
heo(u) =€+ DUe(u) — (€ = DUg—2@m), €=0,
we see that (3.1) becomes, for £ =0, 1, ...,

! = 2 (! U 5
Sen =/ My 2Whe o () du = Zak;/ I hea )V 1 — u? du.
-1 k=0

gn+2k+1

If £ and n have different parity, then both the right-hand and the left-hand side are zero.
Assume now that £ and n have the same parity. If £ < n, then the right-hand side is trivially
zero by the orthogonality of U,,. Thus, we only need to consider { = n+2j for j =0, 1, ...,
for which the identity becomes

djo=aj—aj1, j=0,1,2,...,
where a_; = 0, sothatag = 1 and a; = aj_ for j > 0. Hence,a; = 1for j =0,1,....
Now, setting u = cos «, then we get v/ 1 — u?U,,2x(u) = sin((n + 2k + 1)a), which gives
the expression m,, 4 in (3.2). O

It turns out, surprisingly, that the expression (3.2) can be written, for each n, as a finite
sum.

Theorem3.5 Forn =0,1,2,...,and0 < o < 7,
12 sin(@k+ 1
Map2(cosa) = — — — M, (3.3)
’ 2 7 2k 4+ 1
k=0
1 o 2 sinka)
- ___Z ket 34
Mo 2(C080) = 5 = — = — k; o (34)
In particular, we obtain
0 u<-I,
moo(u) = G / M (u|cosby,cos6r)dOrdby = 15 —1 <u <1, (3.5)
0 u=>1.

Proof Let fyand f1 be odd 27 -periodic functions so that their restriction on [0, 7] are defined
by

O

> O
IA

g

TOA
S

fo®)=1% 0<6 <m  and fl(é)):{

A quick computation shows that the Fourier series of fj is given by

i sin(2k + 1)6

fo®) = 2k + 1

., —nm=0=m,

k=0
where the convergence is pointwise. This gives immediately (3.5). Furthermore, for my, 2,
we obtain from (3.2)

1

2 Ssin(k 4+ Da) 2 "= Gin((2k + Da)
mz”’Z(COS“)_;k; Qk+ 1) _[ ; k+1) }
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which is (3.3). Another quick computation shows that the Fourier series of fi(0) is

(=D)"!sin(no) sin((2n 4 1)0) o= sin(2n0)
o= 3 I _ZTH_ZT’

n=1 n=1
which shows in particular, together with the Fourier series of fo,
2n6 0
Z sin@nf) _ 70 o g
2n 4 2

n=1

Thus, for m2,41,2, we obtain from (3.2) that

2 & sinka) 2w o . sin(Cka)
m2n+l,2(00505)—; Z Tk 7w Z_E_I;)T )

k=n+1
which is (3.4). O

Proposition 3.6 For d > 2, the function m,, 4 is of the form

o0
_3 Cd-1 d—1 C n+2k (u)
Mpa() = (1 —u?)?3 > el “l1<us<l, (36
d-Dti= Cn+2k(1)
where cq_1 is the normalization constant defined by its reciprocal
1
= [t = T
d— 1 = = .
(d—-1!
Proof For d > 2, the function u +—> Mg_1(u|cos{-}1, ..., cos{-}4) has support in (—1, 1)
and has d — 2 continuous derivatives, therefore it follows that m, 4 is a continuous and
,(1/21(:!:1) =0forj=0,1,...,d —2. We assume that m,, 4 has the series expansion
d—1 =, C

Cd— _3
mia@) = (=) Y e

k=0 n+2k(1 )

where the coefficients a; are to be determined by the biorthogonality, and the choice of index
n + 2k comes from (3.1) and the parity of 4, 4. Now, the orthogonality of the Gegenbauer
polynomials is equivalent to

et g a-3

cd_I/ 1 78wy (1 — u?) 7 du = 8y, 3.7)
-1 G, (D)

Using the second explicit formula of &, 4 in (2.6), which shows that the term of the highest

degree in 1, 4 is (d — 1)! 297!, whereas the term of the lowest degree in m,, 4 contains C¢~!,

or the term k = 0 in the sum, the orthogonality (3.7) implies that the identity (3.1) forn’ = n

becomes

ay =8, =1, VneNp;

moreover, forn’ =n+2¢and £ =1,2,3,...,(3.1) becomes
1 d—1 ld—1
0= / My a(Whnt0.aw) du = (d — 1)! Z(—l)/( ; )azt -
—1 N !
j=0
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53 Pagel12of16 M. Buhmann et al.

Thus, using a? = 0 for j < 0 and recalling that a;; = 1, we see that a;? satisfy

)4

Z(—l)-’d_l noo_§ (=01 d—1 3.8
j o) = =0.1,..., : (3.8)

Jj=0

It shows, in particular, that the a;‘ are independent of n and that they can be determined
recursively so that the solution is unique. It turns out that the solution (3.8) is given explicitly
by a;j = (d — 1);/j!. To verify that this is indeed the case, we write

(d—=1¢—j (d—1De(=0);
€—j  0R—-t—d;’

(dj__1>:(—1)f(—d+1)j/j! and ap_; =

where the second identity follows from (—x),—; = (=x)e(=DI (1 = ¢ = x)j, so that the
right-hand side of (3.8) can be written as a hypergeometric function, namely

—1
i(d—=1\ , (d—1)¢ —0,1—d )\ (d— D1 -0y
j;(_l)1< J )‘f =gk (2—d—£’1>_m’

where the last step follows from the Chu-Vandermonde identity [1, p. 67]. Since (—¢+1), = 0

for £ € N, this verifies thata; = (d — 1)/ ! is the solution of (3.8). O
Theorem 3.7 Ford > 2and —1 <u <1,
mo.q(u) = (27‘[)d / My_1(u|cosby,...,cos0;)do
d+1 _
_ —El ) a-HE
\/J?F(*)(d - !
Proof Let g(u) = (1 — u2) . We compute the Fourier-Gegenbauer coefficients gd 1
defined by
1
~d— _ _3
gt = cdflf gOCIT (1 — )1 de
-1
1 d—1 2,432
= c4—1 / C, 1 —1t7) 7 dr.
By the parity of C,‘,’ ! §;‘f 1 = 0if n is odd. To compute g2n , we use the connection

coefficients of Gegenbauer polynomials [1, Theorem 7.1.4°, p. 360], which gives

_ " (d — Don—i (451
cd-1(1) — 2 Z
(0 ]; (E T 1) ikl 2n— 2k(“)

—1
Using the orthogonality of Z,, 2 , we then conclude that
it a1 @ =Du(F0 g1 @=1, d-1
BT e (Gl car ol Ztd— 1

2 2

(Note that c. is also defined for a non-integer index.) Consequently, the Fourier-Gegenbauer
expansion of g is given by

o) = ig”“ CI )  ca i d— 1), C5, " ()
- n d—1 - d—1 ’
n=0 h” C% n=0 n! C2n (1)
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where hf‘l denotes the L2([—1, 1], (1 — tz)k_’) norm of C)‘(t) and it is equal to

hh = ?Ck(l) n=0,12,....
Comparing with (3.6) with n = 0, we see that
2d— Cd 1
moalu) = (1 =)' 1),g( 0= =) =, (3.9)
which is the stated result. O

In the case of d = 2, it is easy to see that the explicit formula (3.2) implies the relation

2 sin(n + Do U u
My 2(U) — mui22(u) = 7¥ = \/ (1) u = cosa.
T n+l Un(l)

The following corollary gives a d-dimensional version of this recursive relation for m, 4.

Corollary3.8 Ford >2,n=0,1,2,...,

—1
(d—1 _,C (u)
(d— 1)!;)(—1)]( j )mn+2j,d(u) =cg1(1—u ) 2 W (3.10)

Proof Using the explicit formula of m,, 4 in (3.6), we obtain

d—1 d -1
(d—1)! Z(—l)]< i )mn+2j,d(u)
=0

d—1 d—1
_3 (d— d—)p_; C¥ o (w)
R P (—1)]( . ) I _nt
ey )& e
oo d—1 d—1
3 (d—1\(d—1)— C 2k(u)
=1 —u?? 3%122(—1)/( . ) ) ke
k=0 j=0 J k=D iy

where we have used the convention that (d — 1);—; = 0if j > k and (dj_.]) =0ifj>d—1.
The stated result then follows from (3.8). O

In particular, the identity (3.10) shows that the finite combination of m,, 4 on the left-hand
side is a polynomial of degree n multiplied by (1 — tZ)d_f The recursive formula can be
used to determine m, 4 if we know the first d — 1 elements mg 4, ..., Mmg4—14. However
notice that the explicit expression of my, d in (3.9) contains the factor (1 — uz) o , which
has a power different from the power d — on the right-hand side of (3.10), we see that an
analog of (3.3) is unlikely to hold for d > 2; in particular, m,, 4 will not be a polynomial
when n is even for d > 2.

4 Positive definite £1-invariant functions

A function f € C (T9 isa positive definite function (PDF) if forevery Ey = {©1, ..., Oy}
of pairwise distinct points in T¢ and N € Ny, the matrix

fIEN = [f@ —0p]"

i,j=1
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is nonnegative definite; it is called a strictly positive definite function (SPDF) if the matrix is
always positive definite. Let ®(T¢) denote the set of PDFs on T¢. By the definition of PDF,
the space QD(Td) is closed under linear combination with nonnegative coefficients; that is, if
f.g € ®(T%) and ¢; and nonnegative constants, then ¢ f +cg € & (T?). The PDFs on T¢
are characterized by the following theorem:

Theorem 4.1 A function f € C(T?) is a PDF on T if and only if the Fourier coefficients
fa are nonnegative for all o € Nd

One direction of the theorem fol}ows readily from the closedness of ® (T9) and from the fact
that the exponential functions e'*”* € ®(T9) for all & € N¢, since

ZZCCCW(O’ 0)) _ ch

i=1 j=1
In the other direction, if f is PDF on T¢ then by the periodicity of f,

1
/w f(e)dQZwa » f(0 —¢)dode.

The right-hand side is nonnegative if f is a trigonometric polynomial, as can be seen by
applying a positive cubature rule for the integral over T¢ and using the positive definiteness
of f. In particular, this shows that the left-hand side integral is nonnegative. Since e is
PDF, it follows from Schur’s theorem that

2

N

fu = / f@)e*%ds >0, VaeNd.

(27T)d

Recall that a function f : T¢ — R is ¢!-invariant if fa = f/g forall |o| = |Bl,a, B € Ng.
These functions are given as follows.

Theorem 4.2 A function f € L'(T¢) is £'-invariant if and only if
fO1,...,604) =[cosby,...,cosb,]Fy, “4.1)
where Fy : [—1, 1] > Ris a (d — 1)-times differentiable function and satisfies

d+1 > —sin(nf) for deven
Fy(cos0) =2(=DI5 sin) ™" > "a, ’ (4.2)
= cos(nf)  ford odd,

with a sequence of real numbers {an}n>0.

Proof If f is the given divided difference of F; provided in (4.2), then

o0
f6) = Za,, [cos by, ..., cos041Hyqg = %ZanEn(G).
n=0
By the definition of E, (0), it follows readily that fa = flg if |@| = |B]|. Moreover, when its
knots coalesce, the divided difference becomes a derivative as we have mentioned before.
By (2.3) and the (d — 1)-times differentiability of F, f is continuous.
In the other direction, if f is £!-invariant, then its Fourier series is given by (2.1). By (2.4),
we obtain that f(6y,...,60y) = [cosby, ..., cosOy]F with F given by

Fu) = fuHya(w),
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so that F is of the form (4.2) with a, = ﬂ by (2.5). The continuity of f requires that F' has
continuous derivatives of (d — 1) orders by (2.3). O

If f is ¢'-invariant, then f, = fiq|, s0 that f, > 0 if and only if f, > 0 in (2.1).
Consequently, the following characterization of PDFs holds.

Theorem4.3 Let f € C(Td)Abe 2L -invariant. Then f is a PDF on T¢ if and only if f is
given by (4.1) and (4.2) with f, > 0 for all n € Ny.

The SPDFs have been characterized in [4, Theorem 1], where it is proved that a PDF
function is also SPDF if and only if the set of indices G = {« € il fo > 0} intersects all
the translations of each subgroup of Z¢ that has the form

(a1 Z, arZ., ...,aq7), ai,a2,...,aq €N.
More precisely, for every pair of vectors y € Z¢, f € N, there exists a z € Z¢ with f, > 0
andaj =y;+zjBj,j=1,...,d.For ¢!-invariant functions, the SPDFs are characterized
below.

Theorem 4.4 Let f € C(T?) be ¢'-invariant. Then f is a SPDF on T if and only if f is
given by (4.1) qnd (4.2), f is PDF and for any pairn < £ € N there is an m € N with
Jatme > 0or f(lfn)+m£ > 0.

Proof We prove that the given condition is equivalent to the condition given in [4], if we
assume the kernel to be £!-summable.

We start with sufficiency. Suppose f is PDF and satisfies the condition of the theorem. For
any two vectors y € Z4, B € N, we can assume without loss of generality that 0 < y i < Bj,

j=1,...d. We define n = |y| and £ = |B|. Then there exists an m € Ny with f,,.Mm >0
or fu—ny+em > 0.If fupem > 0, then

fy+mﬂ = fuyrem >0

since |y + mpB| = n + m{. Whereas if ﬁn_g)+gm > 0, we can choose m’ = m + 1. Now
ly —m'Bl = |y — B —mpB| = (£ — n) + me implies

fyﬂn/ﬂ = f(n—ﬁ)-!—(m > 0.

For the necessity, suppose the assumptlon of the theorem does not hold, then there exists
¢ > n € N such that f,,+mg =0and f(e —n)+em = 0 forall m € N. Set

y=@m0,...,00eZ B=(,....0)eZ

Then for any z € Z9 define @ € Z%, aj = y; + z; B}, so that with m = |z|,

d—1
+mé, >0,
ol = 4zt + €3 jz =0T “
= €—m+@m-Det 2z <0.

Thereby, there would be no coefficients fa > 0,a; = y; +z;B; for this choice of y and 8,
contradicting strict positive definiteness. O
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