Loquens 12

December 2025, €116

eISSN: 2386-2637
https://doi.org/10.3989/loquens.2025.e116

Evaluation of German Automatic Speech Recognition solutions in the
context of speech and language therapy support of people with aphasia

Eugenia Rykova
University of Eastern Finland, Finland
Technical University of Applied Sciences TH Wildau, Germany
Catholic University Eichstitt-Ingolstadt, Germany
eugenryk@uef.fi, ORCID iD: https://orcid.org/0000-0003-3819-0949

Mathias Walther
Technical University of Applied Sciences TH Wildau, Germany
mathias.walther@th-wildau.de, ORCID iD: https://orcid.org/0009-0001-8451-8290

Submitted: 11/06/2024; Accepted: 31/07/2024; Published online: 30/06/2025

Citation: Rykova, E. & Walther, M. (2025). Evaluation of German Automatic Speech Recognition solutions in
the context of speech and language therapy support of people with aphasia. Loguens, 12, ell6. https://doi.org/
10.3989/loquens.2025.e116.

ABSTRACT: Those who suffer from aphasia benefit from digital speech and language therapy solutions, and automatic
speech recognition (ASR) has been already used for giving feedback on the correctness of the answers in naming
exercises. AphaDIGITAL application is to provide German-speaking users with detailed feedback on phonemic/phonetic
and semantic errors, based on automatic speech and language processing. For this purpose, open-source ASR solutions for
German were evaluated on different corpora of atypical speech, including two small datasets with aphasic speech samples.
Character error rate, the number of precisely recognized items and empty outputs served as evaluation metrics. The four
selected models are generally robust to the deteriorated condition of speech and audio quality and consistently outperform
commercial models in atypical speech recognition. Applying error acceptance threshold, additional use of phonemic error
rate, and other valuable insights for ASR implementation in aphaDIGITAL are discussed.

Keywords: aphasia; automatic speech recognition; speech and language therapy; digital health.

RESUMEN: Evaluacion de soluciones de reconocimiento automatico del habla en aleman en el contexto del apoyo a la
terapia del lenguaje para las personas con afasia. Aquellos que sufren de afasia se benefician de soluciones digitales de
terapia del lenguaje, y el reconocimiento automatico del habla (RAH) ya se ha utilizado para proporcionar retroalimentacion
sobre la correccion de las respuestas en ejercicios de denominacion. La aplicacion aphaDIGITAL debe ofrecer a los
usuarios germanohablantes una realimentacion detallada sobre errores fonémicos/fonéticos y semanticos, basada en el
procesamiento automatico del habla y lenguaje. A tal fin, se evaluaron soluciones del RAH de codigo abierto para el
aleman con diferentes corpus de habla atipica, incluidos dos pequefios conjuntos de datos con muestras de habla afésica.
Se utilizaron como métricas de evaluacion la tasa de errores en los caracteres, el nimero de elementos precisamente
reconocidos y las salidas vacias. Los cuatro modelos seleccionados son generalmente robustos frente al deteriorado estado
del habla y la calidad del audio, y consistentemente superan a los modelos comerciales en el reconocimiento del habla
atipica. Se discuten la aplicacion del umbral de aceptacion de errores, el uso adicional de la tasa de errores en fonemas y
otros conocimientos valiosos para la implementacion del RAH en aphaDIGITAL.
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1. INTRODUCTION

Using automatic speech processing tools, including Automatic Speech Recognition (ASR), in speech and language
pathology has become increasingly popular in the last two decades. Such tools provide valuable help in diagnostics and
therapy when used by a speech and language therapy (SLT) practitioner (Keshet, 2018), on the one hand, and on the other
hand, contribute to more autonomous healthcare (Honig & Noth, 2016). In particular, mobile applications to support SLT
are becoming popular (Griffel et al., 2019; Vaezipour ef al., 2020).

Aphasia is a language disorder that occurs after completed language development due to brain damage, which in 80%
of the cases is caused by a stroke. Every year, aphasia affects 25,000 new patients in Germany (Wichage & Heide, 2016).
SLT improves functional communication of those who suffer from aphasia, with certain benefits brought by high
intensity and duration of the therapy (Bhogal and Speechley, 2003; Brady et al., 2016). In reality, not everyone has
enough access to extensive or even sufficient SLT because of geographical remoteness, lack of specialists, or other
reasons. Nevertheless, in-person therapy can be efficiently supplemented with digital therapy solutions used independently
(van de Sandt-Koenderman, 2011; Des Roches and Kiran, 2017; Braley et al., 2021), and oral speech production exercises
with adequate feedback are highly desired by users (Kitzing et al., 2009). Vaezipour et al. (2020) have analyzed SLT apps
for English-speaking people with aphasia (PWA), and from those 70 meeting the eligibility criteria only 24% offer exercises
on perceiving and producing oral speech, and while some of them provide automatic feedback, it does not necessarily have
high quality.

The aphaDIGITAL project (TDG, 2021) focuses on developing a mobile application for German-speaking PWA that
is to provide detailed feedback with the help of speech and text processing in a variety of exercises (cf. Griffel et al.,2019).
There are different requirements for the speech recognition solution(s) in the framework of the aphaDIGITAL app. First,
it must provide certain phonetic precision (reflecting acoustic modeling), in other words, be able to produce output
independently (at least partially) from the existing vocabulary and spelling of the language, or pronunciation and language
models in terms of ASR (Keshet, 2018). This is needed for the feedback on pronunciation, which incorporates the
committed error(s), for example, phoneme deletion or substitution. On the other hand, a pronounced word must be
recognized as an existing one (or at least close to the language reality) in order to be passed further in the pipeline for
semantic and grammatical analysis (Rykova & Walther, 2024a). The current paper presents the process of evaluating and
selecting ASR solutions for the aphaDIGITAL app, answering the following research questions (RQs):

1. Which existing ASR solutions are suitable for the task-specific speech of German-speaking PWA?
2. How do open-source ASR models perform in comparison to commercial solutions?

3. Which aspects should be considered when implementing an ASR solution for SLT support of PWA?

2. BACKGROUND
2.1. Aphasia speech features in the light of ASR

Aphasia could be translated as “speechlessness” from (Ancient) Greek (Ryalls, 1984). It affects all language
modalities: reading and listening (comprehension), and speaking and writing (production). There are several typical clinical
pictures of the disorder, but some linguistic symptoms can be considered the most noticeable and universal across PWA.
Anomia, or word-finding problems, is one of them (Benson, 1988). This deficit is treated with naming-oriented semantic
exercises, which can be automated with the help of ASR (see Section 2.2.2).

Aachen Aphasia Test (AAT) (Huber, 1983) is considered the gold standard in Germany for aphasia diagnosis.
Assessment at phonetic and phonemic levels includes a mostly qualitative description of fluidity, vocalization, preciseness,
speed, and rhythm (articulation and prosody level), and a quantitative evaluation of the phonemic structure correctness:
added, dropped, repeated, or shuffled phonemes in speech output.

Contrary to motor speech disorders, phonetic and phonemic errors in aphasia (a language disorder) are mostly
inconsistent and unpredictable. Aphasia can be, however, comorbid with motor speech disorders: apraxia of speech (AOS),
and, much less frequently, dysarthria. In AOS, the neurologic mechanisms for motor planning and programming are
affected, while the motor function itself remains intact (Qualls, 2011). That results in phonemic structure distortions,
speech disfluency, prolonged sound duration, and other prosodic/temporal abnormalities (Le et al., 2016, see also
Wambaugh et al., 1996). Dysarthria manifests itself in weakness, slowness, poor coordination, and restricted and imprecise
movements of muscles that take part in oral speech production. That causes low intelligibility of speech in general, and
such particular deviations as, for example, slower speech rate, strained phonation, irregular articulation, and reduction or
deletion of word-initial consonants (Caballero Morales and Cox, 2009; Qualls, 2011). The research on ASR for dysarthric
speakers is actively ongoing, for example in adapting acoustic models or modeling the errors (Gutz, 2022).

Aphasia generally affects more men than women, and age is another risk factor for stroke and aphasia
(Schulz and Werner, 2019; see also Johnson et al., 2022). Furthermore, older individuals tend to recover from
aphasia slower and to a lesser extent. Age per se can influence speech production on various linguistic levels, including
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acoustics. For example, older individuals speak at a slower speech rate (Johnson et al, 2022). Changes in acoustic
features are reflected in poorer ASR performance for older speakers, which might be more drastic for female voices
(Vipperla et al., 2008).

2.2. ASR in aphasia diagnostics and therapy
2.2.1. PWA’s speech assessment

Plenty of studies have explored the potential of ASR systems to automatically assess the intelligibility of pathological
speech (for reviews see Jamal et al., 2017; Keshet, 2018; Adikari et al., 2024). In general, deteriorated condition of
speech, high variability among speakers, and insufficiency of data make it difficult to use ASR for aphasic speech.
The corresponding solutions should be dynamic and flexible, in the best-case scenario allowing personal tailoring
(van de Sandt-Koenderman, 2011). It must be noted that commercial systems with excellent results in many applications
for typical speakers demonstrate poor performance on the material of impaired speech. In its turn, personalized models can
reach very high recognition rates for the latter (Green et al., 2021).

As applied to aphasia, Le and colleagues explore the possibilities of automatic assessment of the continuous speech
produced by English speakers with aphasia (Le et al., 2016), the ways of improving the automatic recognition of aphasic
speech (Le & Provost, 2016) and consequent detection of phonemic and neologistic paraphasias (Le et al., 2017).
Torre et al. (2021) set a new benchmark in ASR for PWA in English and provide the first adapted system for Spanish.

Lee et al. (2016) evaluate the feasibility and challenges of assessing continuous speech of Cantonese speakers with
aphasia with the help of ASR. Chatzoudis et al. (2022) propose fine-tuning of ASR models that share cross-lingual speech
representation to low-resource languages and present models for detecting aphasia and transcribing PWA’s speech for
French and Greek.

Another area of ASR in aphasia assessment includes automatic transcription of the PWA’s speech and further analysis
of text features, possibly in combination with acoustic features. Such work has been done, for example, on the material
of English (Fraser ef al., 2013) and Cantonese (Qin et al., 2018; Qin et al., 2020). Kohlschein et al. (2018) aim at
an automatic version of German AAT (Huber, 1983), which uses acoustic features, phonemic structure, and higher-level
linguistic features for diagnosing and classifying aphasia.

2.2.2. Automatic feedback in naming exercises

Virtual Therapist for Aphasia Treatment (VIRTHEA) in European Portuguese, introduced in
2011 (Pompili et al.,2011), seems to be the first system that uses ASR (an in-house ASR engine) to process what is said by
the user and evaluate whether the answer was correct or incorrect — a verification task, in other words. The system focuses on
naming exercises to improve the word-retrieval ability. Abad ez al. (2013) state that since VIRTHEA is assumed to be used
by PWA with very low (or none) motor speech deficits, a general acoustic model can be used without retraining. However,
PWA'’s speech may contain a considerable number of hesitations, repetitions, and other disruptive factors that weaken ASR
performance. Therefore, a keyword spotting method is proposed in order to verify that a correct word has been pronounced
during the analyzed speech segment. The system demonstrates promising results on a corpus of nomination tests from native
Portuguese speakers with different types of aphasia, in particular high correlation between human and automatic naming
scores, and high word verification rates — 82% accuracy on average. VIRTHEA is positively perceived by SLT practitioners
and is being updated according to the wishes of the latter (Pompili et al., 2020).

Ballard and colleagues (2019) evaluate an open-source ASR engine to provide binary feedback (correct/incorrect) in
a picture-naming task for Australian English and reach a mean accuracy performance of 75%. Naming Utterance Verifier
for Aphasia Treatment (NUVA), developed by Barbera ef al. (2021) for British English, reaches a mean accuracy of
89.5% with a smaller range than VIRTHEA and the system for Australian English (see Barbera et al., 2021 for a detailed
comparison). In NUVA, a word pronounced by a user with aphasia is compared to two recordings of healthy speakers and
classified as correct or incorrect using a verification threshold. Different threshold calibration methods are applied to a
proposed ASR model with a phone error rate of 15.85%. This model consequently outperforms Google Cloud Platform
speech-to-text service used as an ASR baseline.

Several research teams work on SLT solutions for German-speaking PWA with ASR-based feedback. Nevertheless,
to the best of the authors’ knowledge, there are currently no such apps in active use. Lin et al. (2022) report 83%
recognition accuracy of target words pronounced by PWA in the research for neolexon Aphasie-App (2023) and propose
that an SLT specialist should posteriorly analyze the problem cases. Dietmar Bothe, project manager of aphavox (2020),
presents the app with automatic recognition of PWA’s speech and corresponding feedback in an interview (Halling, 2023).
RehaLingo (2023) seeks to combine several speech recognizers and model possible erroneous inputs (Hirsch et al., 2023).
LingoTalk (LingoLab, 2020) exploits built-in iOS or Android ASR software in naming exercises and reaches 98% accuracy
with typical speech, but there is no data on PWA’s speech (Netzebandt et al., 2022).
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3. MATERIALS AND METHODS
3.1. Process and models overview

In the present research, the ASR selection process consisted of several steps. First, more than 50 open-source
ASR solutions, including models available from Alpha Cephei (2022), Mozilla Deepspeech (Xu et al., 2020), and via
Hugging Face (2022), were screened for further suitability (Rykova et al.,2022). The screening procedure was also applied
to the commercial models. Next, 13 selected open-source models were evaluated with a considerable amount of atypical
speech data. They are presented in Table 1. Eleven models were accessed via Hugging Face framework, and ims_0 and
ims_35 are modified versions of the original model with language model (Im) weights set to 0 and 0.35, respectively.

Table 1: Thirteen open-source ASR models evaluated after the initial screening.

Model name in the current paper Author(s) Description given by the author(s) of the model
Fine-tuned Facebook’s Wav2Vec2-XLS-R-1B model

andrew McDovwell, 2022 (Babu et al., 2022) on German Common Voice (CV) 8.0 dataset.
ims_0 (Im weight = 0) The original IMS model (Im weight = 0.7) was trained using
Denisov and Vu. 2019 kaldi German ASR recipe and implemented with ESPnet end-

ims_35 (Im weight = 0.35) ’ to-end speech recognition toolkit. Datasets: Tuda-De, SWC, M-

AILABS, Verbmobil 1 and 2, VoxForge, RVG 1, PhonDatl.
Fine-tuned Facebook’s Wav2Vec2-XLSR-53 model

jonatas33 Grosman, 2022a (Conneau et al., 2021) on German CV 6.1 dataset.
Fine-tuned Facebook’s Wav2Vec2-XLS-R-1B model
jonatas1b Grosman, 2022b on German using CV 8.0, Multilingual TEDx,

Multilingual LibriSpeech, and Voxpopuli datasets.
Fine-tuned Facebook’s Wav2Vec2-XLS-R-1B

jsnily Jsnily, 2022 model on German CV 8.0 dataset.
marcel Bischoff, 2022 Fine-tuned Facebook’s WavZVecZ-XLSR-53 model
on German using the CV dataset.
. Fine-tuned Facebook’s Wav2Vec2-XLSR-53 model
maxidl Idahl, 2022 on German using the CV dataset.
Fine-tuned Facebook’s Wav2Vec2-XLS-R-300M model
mfleck Fleck, 2022 (Conneau et al., 2021) on German CV dataset.

- A "large" version of Conformer model, trained on several thousand
nvidial NVIDIA, 20222 hours of German speech data, NeMo toolkit (Kuchaiev et al., 2019).
. A "large" version of Conformer-Transducer model, trained on
nvidia2 NVIDIA, 2022b several thousand hours of German speech data, NeMo toolkit.

. Fine-tuned Facebook’s Wav2Vec2-XLSR-53 on
olivers Guhr, 20222 German CV 8.0 dataset.
oliver9 Guhr, 2022b Fine-tuned Facebook’s Wav2Vec2-XLSR-53 on

German CV 9.0 dataset.

Lastly, the thirteen open-source models and the commercial ones were tested with the PWA’s speech. Four commercial
models were subject to comparison, namely Fraunhofer German ASR (fr-hofer), European Media Lab transcription service
(eml), Google Speech Cloud ASR (google), and IBM Watson ASR (watson). The outputs were obtained via BAS web
services, available for academic purposes (Kisler ez al., 2017). One may use these services for a limited amount of data
only, therefore the commercial models were not evaluated together with the open-source ones at the previous step.

During the evaluation, a new highly performing ASR model, Whisper (Radford et al., 2023) was released. A screening
with PWA’s samples showed, however, that this model would not be suitable for aphaDIGITAL purposes because it failed
to recognize speech in the given samples.

3.2. Datasets

Due to the requirements of some ASR models, all audio recordings described below were (if necessary) converted
to one channel and resampled to 16 kHz. For the screening step, individual recordings were selected from the following
German corpora:

* speech of cochlear implants (CI) users and normal-hearing speakers from CI Articulation Corpus
(Neumeyer, 2009) — hereinafter CI corpus,
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+ speech of intoxicated and sober speakers from Alcohol Language Corpus (Schiel et al., 2008) — hereinafter
ALC corpus,

*  speech of a person with aphasia from AphasiaBank (MacWhinney et al., 2011),
»  speech of eight PWA extracted from a YouTube video (Rhein-Zeitung, 2018),
» typical speech from PHONDAT?2 (Hess ef al., 1995) for comparison (cf. Wirth and Peinl, 2022).

The transcriptions provided together with the audio were used for the recordings from CI, ALC and
PHONDAT?2 corpora, and AphasiaBank. The YouTube video was transcribed by the speech science students. The
annotators followed the principle of phonemic orthography: they transcribed actual pronunciation rather than a standard
orthographic form but used the German graphemes as the output form.

In the absence of necessary data from PWA, test material from other corpora with atypical speech was considered for
the main evaluation. Thus, the speech of adult CI users can be characterized by decreased vowel exactness and precision
of articulatory movements. It is considered deteriorated, especially with a longer period of deafness or pre-lingual onset,
which is also reflected in automatic recognition rates (Ruff et al.,2017; Arias-Vergara et al., 2022). The changes in speech
production under intoxicated condition include decreased speech rate and weakened speech motor control, which can be
captured by both human perception and digital acoustical analysis (Pisoni & Martin, 1989; Tisljar-Szab6 et al., 2014).
Hence, the selected 13 models were evaluated with the help of material from ALC and CI corpora, which covers female
and male speakers of different ages, presented in Table 2.

Table 2: Datasets of atypical speech used for the evaluation of ASR models.

Dataset name Number of elements Description

NA_phrases 1274 phrases uttered by sober speakers from ALC corpus
A_phrases 1404 phrases uttered by intoxicated speakers from ALC corpus
NA_ words 1976 words, automatically segmented out of the tongue-twisting

lists uttered by sober speakers from ALC corpus

words, automatically segmented out of the tongue-twisting

A_words 2249 lists uttered by intoxicated speakers from ALC corpus
NORM words 1032 words, automatically segmented out of the sentences
- uttered by normal-hearing speakers from CI corpus
CI words 1021 words, automatically segmented out of the

sentences uttered by CI users from CI corpus

For the last evaluation and comparison step, two datasets with aphasic speech, internally named AvEv and UniSt,
were used. AvEv is a small dataset obtained from four PWA who took part in the avatar evaluation experiment
(Zeuner et al., 2022). While selecting the correct option in a PC-based picture-naming task, the participants incidentally
pronounced the corresponding words. The experiment was videotaped. The audio was extracted from the videos and the
words were segmented out, which made a set of 39 single words. It must be, however, kept in mind that the quality of these
recordings is low. Besides that, a lot of words were pronounced in a manner deviating from the standard pronunciation
(e.g., due to dialectal differences or the presence of aphasia). Two speech science students provided separate annotations
(based on the principle of phonemic orthography described above) as alternative ground truth in addition to a standard
orthographic form of the target words. UniSt is a dataset comprising 61 words uttered by SLT specialists, and 79 recordings
of PWA’s responses. The recordings had been made during AAT screening sessions (repetition and picture-naming tasks)
with six PWA and were obtained on request from University of Stuttgart Institute for Natural Language Processing, where
they are used as learning material in neurolinguistics online tutorial (Universitit Stuttgart, 2023). These recordings were
also transcribed by the speech science students, following the principle described above. Phonemic transcriptions were
generated automatically with a slightly modified version of Deep Phonemizer (Schifer et al., 2023). Additionally, an SLT
specialist classified the PWA’s responses in UniSt dataset as containing no error, a phonemic/phonetic error, or a semantic
error. A phonemic/phonetic error was understood as such a deviation in a segmental structure of the word that would result
in a transcription distinct from the standard orthographic form. The answers with no error or phonemic/phonetic error were
considered semantically acceptable. The SLT specialist also provided finer classification of errors according to the ICF
(International Classification of Functioning, Disability and Health) guidelines (Schneider et al., 2021).

3.3. Measurements

Character Error Rate (CER) was the main accuracy metric to evaluate the ASR systems:
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_S+D+1 _ S+D+1
CER = N — S+D+C

S — the number of substitutions,
D — the number of deletions,
I — the number of insertions,
N — the number of characters in the reference (target),
C — the number of correct characters.

If there are too many substitutions and/or insertions in the ASR transcription, the CER value can be higher than 1 (or
100%). For some comparisons, a normalized CER was calculated. In this case, the total number of substitutions, deletions,
and insertions is divided by the maximum length of the sequences in question. CER does not only reflect the performance
of an ASR system, but is relevant for granular analysis of impaired speech input. It was calculated separately for each
of the evaluation material sets (according to the target phrase/word) and then ranked. The HITS measurement was used
to assess the number of precisely recognized words. In word sets, the percentage of empty outputs was also taken into
consideration in the evaluation process. Thus, each of the metrics was ranked, and the mean rank was calculated for each
model/dataset. CER and HITS (correctly recognized words) were computed with the help of the JIWER Python library
(Python Software Foundation, 2022).

CER values were subject to Student’s t-test (datasets from ALC and CI corpora) and Wilcoxon Rank Sum Test (AvEv
and UniSt datasets). It was decided not to use any correction for multiple comparisons to decrease the risk of Type II error.
In other words, it was more important to detect the difference between the models’ performance when it was insignificant
than miss a significant difference. All the analyses were performed in R (R Core Team, 2023) at 95% confidence.

4. RESULTS

4.1. Model selection

Rykova et al. (2022) show some preliminary results of the ASR model screening. Table 3 contains mean CER values
(in percent), mean ranks, HITS (H), and empty outputs (E) percentage for each of the 13 models obtained with atypical
speech from ALC and CI corpora, CER values for typical and atypical speech are in most cases significantly different.
Recognition results on the other datasets can be found in the Annex A. The last two columns present the mean (M) rank
for all the datasets used for evaluation and its absolute value (ab), respectively. For words datasets, CER values are given
ignoring the missing values. The lowest CER values, the highest ranks and HITS are in bold. The CER values that are
significantly lower than the others in a pairwise t-test comparison (p-values < 0.05) are marked with an asterisk.

Table 4 contains mean CER values (in percent), HITS (H), and empty outputs (E) percentage for the 13 open-source
models and 4 commercial ones obtained with AvEv and UniSt datasets. For the open-source models, the mean (M) rank
per dataset is given for the comparison among them only, and the absolute (ab) rank value is given for the comparisons
among all 17. The last column presents the absolute rank among the open-source and commercial models for PWA’s
speech from AvEv and UniSt datasets. For the AvEv dataset, manual transcriptions differ equally from the orthographic
target (normalized CER = 26% and 25%) and achieve a 17% normalized CER in comparison to each other. However,
there are no statistical differences between CER values, obtained in the three comparisons: ASR output vs target and
ASR output vs two manual transcriptions. To avoid any bias, the CER values obtained from comparisons with target
orthographic transcriptions are considered. For the UniSt dataset, manual transcriptions achieve a 4% normalized CER in
comparison to each other, and there are no significant differences in CER values obtained in the comparisons of ASR output
vs manual transcriptions, so the quantitative results are presented for one of the manual transcriptions only. The results for
speech therapists’ and PWA’s speech are treated separately, as the CER values differ significantly. The best results among
open-source models are marked in bold.

Three models with the highest ranks, namely jonatas53, mfleck, and oliver9, are selected as those providing phonetic
level granularity, on the one hand, and robust to degraded speech and audio quality, on the other. Additionally, nvidia2 is
selected as the model that is able to recognize words close to language reality (i.e., in accordance with pronunciation and
language models). They are marked with grey in Table 3 and Table 4. Some further details on the performance of these
models can be found in Rykova and Walther (2024b).

4.2. Open-source vs commercial models

The results of the screening phase (Rykova et al., 2022) demonstrate that although google, fr-hofer, and, to some
extent, watson models show top results in precise word recognition, this performance drops on atypical speech, which
includes both speech in deteriorated condition and unusual phrases uttered by typical speakers. Besides that, the mean CER
values of commercial models are noticeably higher than those of open-source ones.
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Table 3: ASR results for 13 models obtained with atypical speech from ALC and CI corpora.

A phrases A words CI_words all datasets

Model rank
CER H M rank | CER H E M rank | CER H E M rank ™ -
andrew 7.4 64.3 11.6 12.5 49.4 0 4.4 33.7 37.6 2.4 7.3 7.0 9
ims_0 9.2 69.8 12.1 23.1 373 1.2 10.6 55.9 24.0 26.8 10.4 10.4 12
ims_35 8.6 75.1 9.1 25.1 39.7 2.8 11.0 64.0 21.4 38.9 11.9 10.4 13
jonatas53 5.3 76.4 5.6 14.0 447 0 5.3 20.9* | 59.5 0 1.3 4.2 2
jonataslb 5.4 79.5 4.4 16.4 57.5 0.3 6.2 37.0 36.9 4.9 8.7 5.6 6
jsnfly 5.8 72.4 8.1 12.5 58 0 2.3 31.5 47.0 0 4.5 52 4
marcel 6.8 70.2 10.0 13.4 46.8 0 5.0 23.8 454 0 4.0 7.0 10

maxidl 6.6 73.2 8.4 13.8 49.6 0 4.6 27.5 49.9 0 3.8 6.6

mfleck 5.2 77.4 4.1 10.9* | 57.5 0 2.4 24.6 54.3 0 3.2 2.7 1
nvidial 3.8* 86.9 2.9 44.1 28.2 19.6 12.9 78.7 17.0 55.5 12.8 8.7 11
nvidia2 3.7* 87.0 1.3 21.2 55.6 7.4 8.7 65.0 314 27.2 10.7 6.7 8
oliver8 5.7 71.7 8.1 12.7 52.3 0 3.8 23.6 54.6 0 2.7 5.5 5
oliver9 5.2 77.3 53 12.1 52.2 0 4.1 24.7 58.1 0.1 4.4 4.3 3

CER - character error rate (in percent); H — HITS percentage; E — empty outputs percentage; M — mean value; ab — absolute value.
The lowest CER values, the highest ranks and HITS are in bold. The CER values that are significantly lower are marked with an asterisk.
The models selected for the current app after the evaluation are marked with grey.

Table 4: ASR results for 13 open-source and 4 commercial models obtained with AvEv and UniSt datasets.

AvEv UniSt therapist UniSt PWA il

PWA
Model rank rank rank ab
CER | H E CER | H E CER | H E
M ab M ab M ab | rank
andrew 656/ 51| 26 6.0 8| 382 164 0| 6.0 10| 49.1] 63 0] 33 4 5
ims_0 584| 26| 795 8.0 12| 29.8] 19.7| 29.5| 8.0 14| 62.8] 32| 304 11 15 14
ims_35 86.5 0| 89.7) 123 16| 29.1) 21.3| 42,6/ 173 13| 63.3] 53| 38.0 11 15 16
jonatas 53 67.8| 1.7 0] 43 3| 41.3] 246 0/ 50 4/ 585 63 0 4 6 4
jonatas 1b 622 77) 26| 47 6| 43.5| 31.1 0] 47 4| 585| 12.6 0 2 2
jsnfly 98.2 0 0| 87 13| 42.7| 23.0 0 5.7 7| 544 84 0] 33 5 8
marcel 709| 2.6/ 26| 83 1] 522 49 0| 9.0 15| 687, 1.1 0 9 12 13
maxidl 649 26 103| 7.7 9| 39.7) 197 0 5.7 7| 623, 42| 13} 93 12 12
mfleck 54.0/ 17.9 0| 1.7 1| 28.00 31.1 0 13 1| 451 12.6 0 1 1 1
nvidial 741 5.1] 410/ 93 14| 344 295 49 6.0 7| 60.6) 10.5| 89| 6.7 7 11
nvidia2 53.1| 205 205/ 4.0 2| 399 328 66| 6.7 11 633 105 12.7 8 10
oliver8 664 5.1 0 4.7 6| 439 197 0 73 12| 63.6) 6.3 0/ 67 9 7
oliver9 69.2) 103 0] 43 3| 389 213 0] 47 3/ 589| 10.5 0] 33 3 3
eml n/a 0| 100 17| 658 49| 672 17| 73.8] 11| 77.2 17 17
fr-hofer 56.6| 23.1| 23.1 3| 386 41.0] 6.6 4/ 67.1) 95| 127 11 9
google 53.7) 26| 84.6 10| 26.3) 393 213 2| 501 95| 38.0 8 10
watson 78.1 0| 66.7 15| 43.2) 18.0| 36.1 16| 60.0/ 63| 45.6 12 15

CER - character error rate (in percent); H — HITS percentage; E — empty outputs percentage; M — mean value; ab — absolute value.
The lowest CER values, the highest ranks and HITS are in bold.
The models selected for the current app after the evaluation are marked with grey.
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From the evaluation of the AvEv dataset, the performance of the fr-hofer model seems to be the best among the
commercial models and comparable to the top open-source models. It also has the highest percentage of HITS among all
models and a relatively low CER value, yet this holds true for about three-quarters of the initial data only (non-empty
output). Although the mean CER value for the google model also is relatively low, it only accounts for less than 16% of
the initial data, and the number of HITS is in the lowest range.

The performance of the fr-hofer and google models on therapists’ speech from the UniSt dataset is at the top: among
all the models, they have the highest number of HITS and the mean CER for google is the lowest (but on about 80% of
the data only). The results change extremely when the models deal with PWA’s speech. Thus, both the mean CER value
and the percentage of empty outputs for google almost double, and the number of HITS decreases more than four times.
The drop in the fr-hofer model performance is similar (its mean CER value increases 1.7 times). The mean CER values
of the four selected open-source models increase approximately 1.5 times; the highest numbers of HITS (obtained with
mfleck and nvidia2) decrease 2.5-3 times; and the empty output of nvidia2 doubles, while the other three selected models
produce results on all the data. Furthermore, none of the commercial models recognizes distorted pronunciations as the
human transcribers, producing HITS only on canonical transcriptions of existing words, in distinction to jonatas53, mfleck,
and oliver9.

4.3. Evaluating the models on PWA’s speech

The lowest mean CER value for the whole AvEv dataset — 54% (ranging from 0 to 125%, standard deviation
SD = 34.6%) — is achieved with the mfleck model. To compare, a mean CER value of 53.1% (ranging from 0 to 150%,
SD =42%) is achieved with nvidia2, but on 80% of the data (20% is empty output). If this value is taken as a threshold for
accepting ASR output text as correct, the total number of the words accepted by any of the four selected models reaches
28, which is 72% of the given dataset.

The lowest mean CER values for both parts of the UniSt dataset are also reached with the mfleck model: 28%
on therapists’ speech (ranging from 0 to 117%, SD = 29.5%), and 45.1% on PWA’s speech (ranging from 0 to 150%,
SD = 32.1%). Most of the HITS are obtained on the orthographic form of existing words, even when these represent
erroneous speech production. For example, a person says “twist” instead of the target Zwist ‘dispute’, and “twist” is
recognized correctly by an ASR model (i.e., it’s a HIT), but meanwhile Twist ‘twist’ is an actual word, too. Few non-existing
forms, representing different degrees of deterioration, are recognized: “schwern” (target Stern ‘star’) — with oliver9;
“schweibmaschine” (target Schreibmaschine ‘typewriter’) — with jonatas53; “schwo” (target Strumpf ‘stocking’), “losig”
(separately pronounced part of target Verantwortunglosigkeit ‘irresponsibility’), and “poloret” (target Lotterie ‘lottery’)
— with mfleck. Considering transcriptions of both transcribers as a possible target, the four selected models together can
recognize 54% HITS on the speech of speech therapists, and 24% on the PWA’s speech.

It must be noted that German orthography principles include several ambiguities, and the same sounds or sound
combinations can be transcribed in different ways, which is especially relevant for non-existing words. For example,
spellings “schweibmaschine” (jonatas53) and “schwaibmaschine” (mfleck) correspond to the same pronunciation; or the
initial phoneme /7 is transcribed as “sch” or “s” in “schwern” and “stern”, respectively. Thus, an additional comparison of
(automatically generated) phonemic transcriptions (i.e., CER for phonemic transcriptions — PER) might be relevant. In the
case of the UniSt dataset, such comparison brings one more HIT among non-existing words. In the AvEv dataset, there are
two additional words, whose PER is lower than the 54% threshold, which increases the joint acceptance rate to 77%.

The proposed approach was tested using 54% as a CER/PER threshold to accept PWA’s answers as semantically
correct (the error rate value is below the threshold) or not. First, the human transcriptions were compared to the
corresponding orthographic target as if that were an ideal ASR model. For six recordings, there was a mismatch between
human and threshold-based answer acceptance. One error, classified as semantic paraphasia by the SLT specialist
(“kraftfahr brief” vs target Kraftfahrzeugschein, which refer to two different documents), would be automatically attributed
to a phonemic/phonetic error because more than half of the word is pronounced correctly. Five of them were classified as
a phonemic/phonetic error by the SLT specialist (in particular, phonemic conduite d’approche — “approaching” the target
with self-corrections, and phonemic neologisms — phonemic changes in the target that make the latter hard to recognize),
but the error rates exceeded 54%. Non-normalized error rates are especially sensitive to insertions, which can be ignored
by a human listener to recognize the target word surrounded by extra phonemes (e.g., “likurk” vs target Kur ‘cure’). In this
case, using normalized error rates could be a solution, which reduces the total number of error classification mismatches
to five. It must be noted that for two more semantically accepted phonemic neologisms, the CER/PER values were only
slightly below the threshold (50%).

Furthermore, PWA might utter extra words together with the target word (e.g., articles or false starts). If the target is
pronounced correctly, there will be a HIT, but the CER value will be higher than 0, including higher than the acceptance
threshold. If there is a deviation in pronunciation or a flaw in automatic recognition, apart from high error rates, there
will be no HIT, although an SLT specialist would accept such an answer. Thus, it seems reasonable not only to look for a
target word in the uttered phrase but perform a CER/PER analysis for each recognized word of the output. On the other
hand, some PWA speak so slowly and carefully/laboriously that the syllables of one word are recognized as separate words.
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That causes a rise in CER/PER values, which might lead to the rejection of an answer that would be accepted by an SLT
specialist. In this case, deleting the spaces between the output chunks and treating the whole output as one word might
be useful.

Taking into consideration the above-mentioned points and using the 54% normalized CER/PER acceptances
threshold, ASR outputs of the four selected models were compared to the target words with a subsequent automatic error
classification. The comparison of the manual and automatic error classification is displayed in Table 5. Five cases of
error mismatches described above are excluded from the table. The ASR outputs in these cases yield the same results
(i.e. mismatches) as the human transcriptions.

Table 5: Manual and automatic error classification on the UniSt PWA dataset.

. . Automatic classification
Manual classification

no error phonemic/phonetic error semantic error

20
+ 3 gained through error rate normalization
+ 1 gained through separate analysis of each word
+ 2 gained through deleting the spaces

16
phonemic/ phonetic error 0 + 3 gained through separate analysis of each word 4
+ 1 gained through deleting the spaces

no error 12

semantic error 0 0 9

As one can see, there are no false positives among the automatically classified errors. From the samples accepted by the
SLT practitioner, 10.8% are erroneously classified as semantic errors. In 63% of the fully correct answers, ASR models are
only able to reach the level of a phonemic/phonetic error, although the answer would be accepted as semantically correct.

5. DISCUSSION

5.1. Selection of the open-source models for aphasic speech recognition (RQ 1)

Based on the experiments with various speech material in German, including speech samples from PWA and other
atypical speech, four open-source ASR models are selected for the backend of the aphaDIGITAL app. Three of these models
(jonatas53, mfleck, oliver9) are to a certain extent independent of pronunciation and language models and are suitable for
phoneme-level pronunciation analysis, while the fourth model (nvidia2) gives only existing orthographic forms as output,
which is more suitable for subsequent semantic and grammatical error analysis. The error-analysis component will use
every distinct ASR output for comparison to the target. The selected four models present a possibility to be fine-tuned: to
PWA'’s speech or speech of a particular user in a customized version, and to word recognition task rather than continuous
speech recognition.

5.2. Comparison of the selected open-source models to the commercial ones (RQ?2)

The selected models have consistently outperformed commercial systems in recognition of atypical speech, which in
the current paper is primarily reflected in a high amount of empty outputs in the experiments with PWA’s speech, and a great
contrast between the results on speech therapists’ and PWA’s speech samples from UniSt dataset (cf. Green et al., 2021
and Wirth and Peinl, 2022). Results of the screening phase (Rykova et al., 2022) suggest that when Google Speech Cloud
ASR and Fraunhofer German ASR recognize the words, they recognize them precisely, but imprecisely recognized words
are far from the target (cf. Barbera et al., 2021). Such precise recognition of Google and Fraunhofer models holds true
for the data from the AvEv dataset (orthographical form was used as the target in the experiments) and for canonically
pronounced words from the UniSt dataset when the target (manual transcription) coincided with the orthographic form of
the word. The commercial models cannot recognize distorted pronunciations as such, in contrast to the “rule-independent”
open-source models.

5.3. Model performance on PWA’s speech (RQ 3)

The experiments with the AvEv corpus suggest that the selected models together can reach a 72% recognition rate if the
CER threshold of acceptance is set to 54%. For the UniSt dataset, manual transcription was used as the target, and the four
selected models together transcribed 24% of the words uttered by PWA exactly like human experts (cf. 54% of words uttered
by speech therapists in the same dataset), including some non-existing forms. Considering the ambiguities of German
orthography principles, incorporating phonemic comparisons and an additional PER threshold seems to be reasonable for
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the proposed application. Introducing PER with the same 54% threshold allows increasing the joint acceptance rate on the
AvEv dataset to 77%. Further research will be dedicated to exploring the threshold further, evaluating false positives. On
the other hand, a number of dialect variations seen in the data suggest the relevance of incorporating the knowledge on
systematic dialect changes into the pipeline (cf. Pompili et al., 2011).

The variability of answers produced by PWA suggests the following ASR implementation concerns. First, to overcome
the fact that there might be other words in the answer besides the target, the ASR output should be segmented into separate
words for further analysis. To reduce the adverse effect of insertions further, the CER/PER threshold should be used for a
normalized comparison, in other words, the distance between orthographic/phonemic transcriptions should be divided not
by the length of the target, but by the length of the longest word in the comparison. Finally, due to PWA’s laborious speech
production, ASR output could be considered as one word, removing the spaces between the segments (if applicable).

The proposed threshold-based acceptance approach has proven to be valid on most of the manual transcriptions of
PWA’s speech samples from the UniSt dataset. Thus, it has not worked for conduite d’approche type of error, for 40% of the
semantically acceptable phonemic neologisms, and for semantic paraphasia as part of a compound word. The transcriptions
of ASR models yield the same results on these samples. Detecting and further analysis of these types of errors is a subject
for further research.

On the rest of the UniSt PWA data, the four selected models reach 90.3% acceptance accuracy, with 100% specificity
and 89.2% sensitivity, which is one of the top results among the existing applications (see Section 2.2.2). However, more
than half of PWA’s fully correct answers were recognized as containing a phonemic/phonetic error due to the audio quality
and flaws of ASR models. Working on the models’ improvement and testing them with a designated device are seen as the
next steps.

6. CONCLUSIONS

The paper describes the evaluation of open-source German ASR solutions for further use in a mobile SLT application.
As a result, four open-source models have been selected. These models fulfill the suitability requirements for both
phoneme-level pronunciation analysis and subsequent semantic and grammatical error analysis. They also outperform
commercial models in atypical speech recognition, including audio recordings of low quality.

Using 54% as a normalized error acceptance threshold for orthographic/phonemic transcriptions, analyzing ASR
output segment per segment, on the one hand, and as one word with no spaces, on the other, allows reaching promising
results in the experiments with aphasic speech data. Improving ASR models’ performance (e.g. combining several
models in a model ensemble or speaker adaptation techniques), making the approach more sensitive to error types, and
implementing and evaluating the whole speech analysis pipeline are foreseen for the following stages of the project.

ANNEX A

Recognition results for 13 open-source models on NA phrases, NA_words, and NORM_words datasets.
Akl NA_phrases NA_words NORM_words

CER HITS M rank CER HITS empty | M rank CER HITS empty | M rank
andrew 6.0 66.5 11.3 12.2 49.7 5.1 24.6 26.6 1.5 7.7
ims_0 7.3 71.1 12.3 21.8 39.0 1.3 10.3 52.4 21.8 20.3 10.5
ims_35 6.8 77.0 9.1 23.1 41.9 2.5 10.7 61.4 19.9 31.6 11.7
jonatas53 3.9 79.2 5.4 12.9 48.1 52 12.9 47.1 1.3
jonataslb 4.0 82.5 43 17.6 56.1 0.1 7.3 31.8 29.7 3.5 8.5
jsnfly 43 76.4 7.1 12.2 58.6 2.8 19.9 31.2 4.6
marcel 5.1 72.8 9.5 12.0 50.1 4.6 18.6 35.9 34
maxidl 52 76.1 9.1 13.0 51.6 0.1 6.8 19.3 35.9 3.8
mfleck 4.0 80.3 5.0 10.7 58.7 2.3 15.6 393 32
nvidial 2.3 90.2 2.0 43.0 27.8 17.9 12.9 70.2 8.7 60.7 12.7
nvidia2 2.5 89.7 1.8 21.3 57.3 8.1 8.5 56.4 233 35.7 11.0
oliver8 4.6 74.2 9.1 11.5 54.9 4.0 17.0 41.3 2.9
oliver9 4.0 80.5 5.1 11.0 56.7 3.0 15.5 432 0.1 43

CER - character error rate (in percent); empty — empty outputs percentage; M — mean value.
The lowest CER values, the highest ranks and HITS are in bold.
The models selected for the current app after the evaluation are marked with grey.
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AphasiaBank (https://aphasia.talkbank.org/) data was accessed with the permission for research and education purposes.

The samples of UniSt dataset were obtained with the permission for research and education purposes from the Institute for
Natural Language Processing of the University of Stuttgart (https://www?2.ims.uni-stuttgart.de/sgtutorial/index.html).
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