ANNALES POLONICI MATHEMATICI

Online First version

On interpolation free disks of polynomials converging maximally to power series

Hans-Peter Blatt

Dedicated to Wiesław Pleśniak on the occasion of his 80th birthday

Abstract. We construct a power series f with radius R of convergence, $0 < R < \infty$, such that for any σ , $0 < \sigma < R$, there exists a subset $\Lambda \subset \mathbb{N}$, a parameter r_{σ} , $0 < r_{\sigma} < \sigma$, and a sequence $\{p_n\}_{n\in\mathbb{N}}$ of polynomials converging maximally to f on the disk

$$\overline{D}_{r_{\sigma}} = \{ z \in \mathbb{C} : |z| \le r_{\sigma} \}$$

such that p_n has no points of interpolation to f on \overline{D}_{σ} for $n \in \Lambda$.

1. Introduction. For $B \subset \mathbb{C}$, we denote by \overline{B} its closure and by ∂B the boundary of B and we write $\|\cdot\|_B$ for the supremum norm on B. Let $\mathcal{A}(B)$ be the class of functions that are holomorphic in some neighborhood of B.

Let E be compact and connected in the complex plane \mathbb{C} with connected complement $\Omega = \overline{\mathbb{C}} \setminus E$ and positive logarithmic capacity cap E and let $g_{\Omega}(z, \infty)$ denote the Green function of Ω with pole at ∞ . For $\sigma > 1$, let

$$E_{\sigma} := \{ z \in \Omega : g_{\Omega}(z, \infty) < \log \sigma \} \cup E$$

denote the *Green domains* with boundaries Γ_{σ} .

Let \mathcal{P}_n denote the collection of algebraic polynomials of degree at most n. If $f \in \mathcal{A}(E)$, then there exists $\rho > 1$ and polynomials $p_n \in \mathcal{P}_n$, $n \in \mathbb{N}$, such that

$$\limsup_{n \to \infty} \|f - p_n\|_E^{1/n} \le \frac{1}{\rho},$$

due to a result of Walsh [6]. If f is holomorphic on E, but not an entire function, then there exists a maximal parameter $\rho(f) > 1$, $1 < \rho(f) < \infty$,

convergence, weak* convergence, equilibrium measure. Received 11 December 2024; revised 31 March 2025.

Published online 23 June 2025.

²⁰²⁰ Mathematics Subject Classification: Primary 30E10; Secondary 41A05, 41A10. Key words and phrases: interpolation, complex approximation, near-circularity, maximal

such that f is holomorphic in E_{ρ} and there exist polynomials $p_n \in \mathcal{P}_n$ such that

$$\limsup_{n \to \infty} \|f - p_n\|_E^{1/n} = \frac{1}{\rho(f)}.$$

Such a sequence $p_n \in \mathcal{P}_n$ is said to *converge maximally* to f on E (see [6, Sect. 4.7, Theorem 7]).

Let $\{p_n\}_{n\in\mathbb{N}}$, $p_n\in\mathcal{P}_n$, be a sequence of polynomials converging maximally to f on E. We consider for $1<\sigma<\rho(f)$ the point set

$$Z_n(\sigma) := \{ z \in E_\sigma : p_n(z) = f(z) \},$$

i.e., $Z_n(\sigma)$ is the set of points of interpolation of p_n to f on E_{σ} , each point listed according to its multiplicity as a zero of $f - p_n$, and we denote by $m_n(\sigma)$ the number of points of $Z_n(\sigma)$. Since f is holomorphic in $E_{\rho(f)}$, the number $m_n(\sigma)$ is finite.

In the investigation of the asymptotic behavior of $Z_n(\sigma)$, near-circularity in capacity is the essential property, especially well-known for Carathéodory–Fejér approximations of power series (cf. Trefethen [5]).

DEFINITION ([2, 3]). Let $\{p_n\}_{n\in\mathbb{N}}$ be a sequence of polynomials converging maximally to f on E, let $\Lambda\subset\mathbb{N}$ be an infinite subset and let $1<\sigma<\rho(f)<\infty$. Then the error functions $f-p_n,\ n\in\Lambda$, are called near-circular at σ_- if there exist two sequences

$$\{\sigma_n\}_{n\in\Lambda}, \quad 1 < \sigma_n \le \sigma < \rho(f), \lim_{n\in\Lambda, n\to\infty} \sigma_n = \sigma,$$

$$\{\varepsilon_n\}_{n\in\Lambda}, \quad \varepsilon_n > 0, \lim_{n\in\Lambda, n\to\infty} \varepsilon_n = 0,$$

such that

$$\frac{\sigma_n}{\rho(f)}e^{-\varepsilon_n} < \min_{z \in \Gamma_{\sigma_n}} |f(z) - p_n(z)|^{1/n} \le ||f - p_n||_{\Gamma_{\sigma_n}}^{1/n} < \frac{\sigma_n}{\rho(f)}e^{\varepsilon_n}, \quad n \in \Lambda.$$

PROPOSITION (cf. [3, Lemma 4.1, Corollary 3.2]). Let $\{p_n\}_{n\in\mathbb{N}}$ converge maximally to f on E and let $1<\sigma<\rho(f)$. Then there exists $\Lambda\subset\mathbb{N}$ such that $f-p_n,\,n\in\Lambda$, are near-circular at σ_- with associated sequences $\{\sigma_n\}_{n\in\Lambda}$ and $\{\varepsilon_n\}_{n\in\Lambda}$ such that

$$\limsup_{n \in \Lambda, \, n \to \infty} \frac{n}{m_n(\sigma)} \le \limsup_{n \in \Lambda, \, n \to \infty} \frac{n}{m_n(\sigma_n)} \le 1.$$

In other words, the Proposition implies that for any σ , $1 < \sigma < \rho(f)$, there exists $\Lambda \subset \mathbb{N}$ such that there are at least

$$n + o(n)$$
 $(n \in \Lambda, n \to \infty)$

points of interpolation of p_n to f on E_{σ} .

The situation of the Proposition is well-understood for the special case of a rational function f = P/Q, holomorphic on E: Let P and Q have no

common divisors and let k_n denote the number of zeros of $f - p_n$ in \mathbb{C} . Then

$$k_n = \max(\deg(P), \deg(p_n) + \deg(Q))$$

and

$$\lim_{n \to \infty} \frac{n}{k_n} = 1$$

(see [1, Lemma 2]). Moreover, if ν_n denotes the normalized zero-counting measure of the zeros of $f - p_n$ in \mathbb{C} , then

$$\widehat{\nu_n|_E} + \nu_n|_{\Omega} \xrightarrow[n \to \infty]{*} \mu_E,$$

where $\nu_n = \nu_n|_E + \nu_n|_{\Omega}$ and $\nu_n|_E$, resp. $\nu_n|_{\Omega}$, is the restriction of ν_n to E, resp. Ω , and $\widehat{\nu_n|_E}$ is the balayage of $\nu_n|_E$ onto the boundary ∂E of E (see [1, Theorem 1]).

Hence,

$$\lim_{n \to \infty} \nu_n(K) = 0$$

for any compact set K in $\overline{\mathbb{C}} \setminus E$, and

$$\lim_{n\to\infty}\frac{n}{m_n(\sigma)}=1$$

for any σ , $1 < \sigma < \infty$.

The objective of the paper is to show that the Proposition is sharp, namely we show that

$$\limsup_{n \in \mathbb{N}, \, n \to \infty} \frac{n}{m_n(\sigma)} \le 1$$

cannot be universally true, even for the approximation of power series by maximally converging polynomials.

Finally, let us mention that we will use in our main result a strengthened version of the Definition: $f - p_n$, $n \in \Lambda$, are called *near-circular at* σ if

$$\sigma_n = \sigma, \quad n \in \Lambda,$$

in the Definition.

2. The crucial power series. Let

$$D_r := \{ z : |z| < r \}, \quad r > 0,$$

denote the open disc, and let D_r be its closure, with boundary Γ_r .

Let f be a power series with finite radius of convergence R. If s_n denotes the nth partial sum of f and if $m(s_n; r)$ denotes the number of zeros of $f - s_n$ in D_r , then $\{s_n\}_{n \in \mathbb{N}}$ converges maximally to f on every closed disk \overline{D}_r , 0 < r < R, and

$$\lim_{n \in \mathbb{N}, n \to \infty} \frac{n}{m_n(s_n; r)} \le 1.$$

More specifically, let

$$\Lambda_0 := \{2^{\nu}\}_{\nu \in \mathbb{N}},$$

and let R, $1 < R < \infty$, be fixed. Then we define

(2.2)
$$a_k = \begin{cases} (1/R)^k & \text{if } k \in \Lambda_0, \\ 0 & \text{if } k \notin \Lambda_0, \end{cases}$$

and so

$$(2.3) f(z) = \sum_{k=0}^{\infty} a_k z^k$$

is a power series with radius of convergence R. As above, let s_n denote the nth partial sum of f,

$$s_n(z) = \sum_{k=0}^n a_k z^k.$$

Then for $\nu \in \mathbb{N}$,

$$s_{2^{\nu}} = s_{2^{\nu}+1} = \dots = s_{2^{\nu+1}-1}.$$

Define

$$\Lambda_1 := \{2^{\nu+1} - 1\}_{\nu \in \mathbb{N}},$$

and consider

$$2^{\nu} + \frac{2^{\nu+1} - 2^{\nu}}{2} = 2^{\nu} + 2^{\nu-1} = 3 \cdot 2^{\nu-1}.$$

Then the subset

(2.5)
$$\Lambda := \{2^{\nu} + 2^{\nu-1}\}_{\nu \in \mathbb{N}} = \{3 \cdot 2^{\nu-1}\}_{\nu \in \mathbb{N}}$$

satisfies

$$2^{\nu} < 2^{\nu} + 2^{\nu-1} = 3 \cdot 2^{\nu-1} < 2^{\nu+1}$$
.

THEOREM. Let f be the power series with radius of convergence R, defined by (2.1)–(2.3), with partial sums s_n . If Λ_1 is defined by (2.4), then for any ρ , $0 < \rho < R$, the error functions $f - s_n$, $n \in \Lambda_1$, are near-circular at ρ and

(2.6)
$$\lim_{n \in \Lambda_1, n \to \infty} \frac{n}{m(s_n; \rho)} = 1.$$

Let $0 < \sigma < \rho < R$ be fixed and let

$$r_{\sigma} = \sigma \left(\frac{\rho}{R}\right)^{1/28}.$$

Then there exists a sequence $\{p_n\}_{n\in\mathbb{N}}$, $p_n\in\mathcal{P}_n$, converging maximally to f on $\overline{D}_{r_{\sigma}}$ such that $f-p_n$, $n\in\Lambda$, have no zeros on \overline{D}_{σ} , where Λ is defined by (2.5).

The following Corollary defines a lower bound for parameters r, $0 < r < \sigma$, such that $\{p_n\}_{n \in \mathbb{N}}$ converges maximally to f on \overline{D}_r .

COROLLARY. Let f, Λ , and $\{p_n\}_{n\in\mathbb{N}}$ be as in the Theorem. Then there exists a minimal parameter r_{σ}^* ,

$$0 < \left(\frac{\sigma^4}{R}\right)^{1/3} \le r_\sigma^* \le \sigma,$$

such that $\{p_n\}_{n\in\mathbb{N}}$ converges maximally to f on $\overline{D}_{r_{\sigma}^*}$.

The Corollary is reminiscent of results of Saff and Totik [4] on the behavior of polynomials p_n of best uniform approximation of functions f on a compact set E, where the error $f - p_n$ does not decrease faster at interior points of E than on E itself.

3. Proofs

3.1. Proof of the Theorem. For $z \in D_R$ we obtain

$$(f - s_{2^{\nu}})(z) = (f - s_{2^{\nu+1}})(z) = \dots = (f - s_{2^{\nu+1}-1})(z)$$
$$= \left(\frac{z}{R}\right)^{2^{\nu+1}} \left(1 + \left(\frac{z}{R}\right)^{2^{\nu+1}} + \left(\frac{z}{R}\right)^{2^{\nu+1} \cdot 3} + \left(\frac{z}{R}\right)^{2^{\nu+1} \cdot 7} + \dots\right).$$

Hence, for $z \in D_R$,

$$|(f - s_{2^{\nu}})(z)| = |(f - s_{2^{\nu+1}})(z)| = \dots = |(f - s_{2^{\nu+1}-1})(z)|$$

$$= \left|\frac{z}{R}\right|^{2^{\nu+1}} \left|1 + \left(\frac{z}{R}\right)^{2^{\nu+1}} + \left(\frac{z}{R}\right)^{2^{\nu+1} \cdot 3} \left(\frac{z}{R}\right)^{2^{\nu+1} \cdot 7} + \dots \right|$$

$$\leq \left|\frac{z}{R}\right|^{2^{\nu+1}} \left(1 + \left|\frac{z}{R}\right|^{2^{\nu+1}} \frac{R^{2^{\nu+1}}}{R^{2^{\nu+1}} - |z^{2^{\nu+1}}|}\right)$$

$$= \left|\frac{z}{R}\right|^{2^{\nu+1}} (1 + B(z, \nu)),$$

where

$$B(z,\nu) := \left| \frac{z}{R} \right|^{2^{\nu+1}} \frac{R^{2^{\nu+1}}}{R^{2^{\nu+1}} - |z^{2^{\nu+1}}|} \xrightarrow{\nu \to \infty} 0.$$

We define, for $0 < \rho < R$,

$$C(\rho,\nu) := \max_{z \in \varGamma_\rho} B(z,\nu) = \left(\frac{\rho}{R}\right)^{2^{\nu+1}} \frac{R^{2^{\nu+1}}}{R^{2^{\nu+1}} - \rho^{2^{\nu+1}}}.$$

Then

$$C(\rho, \nu) \xrightarrow{\nu \to \infty} 0$$

and

(3.1)
$$||f - s_{2^{\nu+1}-1}||_{\Gamma_{\rho}} \le \left(\frac{\rho}{R}\right)^{2^{\nu+1}} (1 + C(\rho, \nu)).$$

On the other hand,

$$|(f - s_{2^{\nu}})(z)| = |(f - s_{2^{\nu+1}})(z)| = \dots = |(f - s_{2^{\nu+1}-1})(z)|$$

$$= \left|\frac{z}{R}\right|^{2^{\nu+1}} \left|1 + \left(\frac{z}{R}\right)^{2^{\nu+1}} + \left(\frac{z}{R}\right)^{2^{\nu+1} \cdot 2} + \dots \right|$$

$$\geq \left|\frac{z}{R}\right|^{2^{\nu+1}} \left(1 - \left|\frac{z}{R}\right|^{2^{\nu+1}} - \left|\frac{z}{R}\right|^{2^{\nu+1} \cdot 2} - \dots \right)$$

$$\geq \left|\frac{z}{R}\right|^{2^{\nu+1}} \left(1 - \left|\frac{z}{R}\right|^{2^{\nu+1}} \frac{R^{2^{\nu+1}}}{R^{2^{\nu+1}} - |z^{2^{\nu+1}}|}\right)$$

$$= \left|\frac{z}{R}\right|^{2^{\nu+1}} (1 - B(z, \nu)).$$

Then

(3.2)
$$\min_{z \in \Gamma_{\rho}} |(f - s_{2\nu})(z)| \ge \left(\frac{\rho}{R}\right)^{2^{\nu+1}} (1 - C(\rho, \nu)).$$

For $n = 2^{\nu+1} - 1 \in \Lambda_1$, let

(3.3)
$$\varepsilon_n(\rho) := \frac{2^{\nu+1}}{2^{\nu+1} - 1} \left(\log(1 + C(\rho, \nu)) + \log \frac{1}{1 - C(\rho, \nu)} \right), \quad \nu \in \mathbb{N}.$$

Then (3.1) and (3.2) yield, for $n \in \Lambda_1$,

$$(3.4) \qquad \frac{\rho}{R}e^{-\varepsilon_n(\rho)} < \min_{z \in \Gamma_0} |f(z) - s_n(z)|^{1/n} \le ||f - s_n||_{\Gamma_\rho}^{1/n} < \frac{\rho}{R}e^{\varepsilon_n(\rho)}.$$

Hence, the functions $f - s_n$, $n \in \Lambda_1$, are near-circular at ρ . Due to Rouché's Theorem, $m(s_n; \rho) = 2^{\nu+1}$ for $n \in \Lambda_1$ and (2.6) holds.

Concerning the second part of the Theorem, let us fix the parameters σ and ρ such that

$$0 < \sigma < \rho < R$$
.

For $n \in \mathbb{N}$, let

$$z_0^{(n)}, z_1^{(n)}, \dots, z_n^{(n)}$$

denote the (n+1)th roots of unity, and define

$$\xi_i^{(n)} := \sigma z_i^{(n)}, \quad 0 \le i \le n.$$

We construct for $n = 3 \cdot 2^{\nu - 1} \in \Lambda$ the polynomial

$$p_{0,n}(z) = z^{2^{\nu}} q_{2^{\nu-1}}(z) \in \mathcal{P}_n,$$

by interpolating the function

$$f - s_{2^{\nu}} = f - s_{2^{\nu}+1} = \dots = f - s_{2^{\nu+1}-1}$$

at the points

$$\xi_i^{(2^{\nu-1})}, \quad 0 \le i \le 2^{\nu-1},$$

and at 0 with multiplicity 2^{ν} .

Then the error formula for Lagrange–Hermite interpolation of $f - s_n$ by $p_{0,n}$, $n = 3 \cdot 2^{\nu-1} \in \Lambda$, at $z \in D_{\rho}$ yields

(3.5)
$$f(z) - s_n(z) - p_{0,n}(z) = \frac{1}{2\pi i} \int_{\Gamma_\rho} \frac{z^{2^\nu}}{t^{2^\nu}} \frac{w_{2^{\nu-1}}(z)}{w_{2^{\nu-1}}(t)} \frac{f(t) - s_n(t)}{t - z} dt$$

with

$$w_{2^{\nu-1}}(z) = \prod_{i=0}^{2^{\nu-1}} (z - \xi_i^{(2^{\nu-1})}), \quad z \in \mathbb{C}.$$

Let us denote by μ_n the normalized counting measure of the point set

$$\{\xi_i^{(2^{\nu-1})}: 0 \le i \le 2^{\nu-1}\} \subset \Gamma_{\sigma}, \quad n = 3 \cdot 2^{\nu-1} \in \Lambda.$$

Then

$$\mu_n \xrightarrow{*} \mu_\sigma \quad \text{as} n = 3 \cdot 2^{\nu - 1}, \ \nu \to \infty,$$

where μ_{σ} is the equilibrium measure of Γ_{σ} (resp. \overline{D}_{σ}).

Next, we fix r such that

$$0 < \sigma < r < \rho < R$$
.

Then the logarithmic potentials U^{μ_n} converge uniformly to $U^{\mu_{\sigma}}$ on compact subsets of $\overline{\mathbb{C}} \setminus \Gamma_{\sigma}$ as $n \to \infty$. Hence, for $\varepsilon > 0$, there exists $\nu_0 \in \mathbb{N}$ such that

$$(3.6) |U^{\mu_n}(z) - U^{\mu_\sigma}(z)| < \varepsilon, \quad z \in \overline{D}_\rho \setminus D_r,$$

for $n = 3 \cdot 2^{\nu-1} \in \Lambda$ and $\nu \geq \nu_0$. By (3.5) we deduce for $n = 3 \cdot 2^{\nu-1} \in \Lambda$ and $z \in \Gamma_r$ that

(3.7)
$$\frac{1}{n+1} \log |(f - s_n - p_{0,n})(z)|$$

$$\leq \frac{1}{n+1} (2^{\nu-1} + 1) \left(\max_{t \in \Gamma_{\rho}} U^{\mu_n}(t) - U^{\mu_n}(z) \right)$$

$$+ \frac{1}{n+1} \left(\log \|f - s_{2^{\nu}}\|_{\Gamma_{\rho}} + 2^{\nu} \log \frac{r}{\rho} + c_1 \right),$$

where

(3.8)
$$c_1 := \log \max_{t \in \Gamma_\rho} \max_{t \in \Gamma_r} \frac{1}{|t - z|} + \log \frac{\operatorname{length}(\Gamma_\rho)}{2\pi} = \log \frac{1}{\rho - r} + \log \rho,$$

and by (3.1),

(3.9)
$$\log \|f - s_{2^{\nu}}\|_{\Gamma_{\rho}} \leq 2^{\nu+1} \log \frac{\rho}{R} + \log(1 + C(\rho, \nu))$$
$$\leq 2^{\nu+1} \log \frac{\rho}{R} + C(\rho, \nu).$$

Since

$$U^{\mu_{\sigma}}(z) = \log \frac{\sigma}{r}, \quad z \in \Gamma_r, \quad \text{and} \quad U^{\mu_{\sigma}}(z) = \log \frac{\sigma}{\rho}, \quad z \in \Gamma_\rho,$$

by the uniform convergence of U^{μ_n} to U^{μ_σ} we obtain, for $z \in \Gamma_r$,

(3.10)
$$\max_{t \in \Gamma_{\rho}} U^{\mu_{n}}(t) - U^{\mu_{n}}(z) = \max_{t \in \Gamma_{\rho}} (U^{\mu_{n}}(t) - U^{\mu_{\sigma}}(t)) - (U^{\mu_{n}}(z) - U^{\mu_{\sigma}}(z)) + \log \frac{r}{\rho} \le \log \frac{r}{\rho} + 2\varepsilon.$$

Using (3.7)–(3.10), for $n = 3 \cdot 2^{\nu-1} \in \Lambda$ and $\nu \ge \nu_0$ we get

$$\frac{1}{n+1} \log \|f - s_n - p_{0,n}\|_{\Gamma_r}
\leq \frac{1}{n+1} \left((2^{\nu-1} + 1) \left(\log \frac{r}{\rho} + 2\varepsilon \right) + 2^{\nu+1} \log \frac{\rho}{R} \right)
+ \frac{1}{n+1} \left(C(\rho, \nu) + 2^{\nu} \log \frac{r}{\rho} + c_1 \right)
= \frac{1}{n+1} \left((2^{\nu-1} + 1) \log \frac{r}{\rho} + 2^{\nu+1} \log \frac{\rho}{R} \right)
+ \frac{1}{n+1} \left(C(\rho, \nu) + (2^{\nu} + 2)\varepsilon + 2^{\nu} \log \frac{r}{\rho} + c_1 \right)
= \frac{1}{n+1} \left((2^{\nu-1} + 2^{\nu} + 1) \log \frac{r}{\rho} + 2^{\nu+1} \log \frac{\rho}{R} \right)
+ \frac{1}{n+1} ((2^{\nu} + 2)\varepsilon + C(\rho, \nu) + c_1)
= \log \frac{r}{\rho} + \frac{2^{\nu+1}}{2^{\nu} + 2^{\nu-1} + 1} \log \frac{\rho}{R} + \frac{1}{n+1} ((2^{\nu} + 2)\varepsilon + C(\rho, \nu) + c_1)
\leq \log \frac{r}{\rho} + \log \frac{\rho}{R} + \frac{1}{n+1} ((2^{\nu} + 2)\varepsilon + C(\rho, \nu) + c_1).$$

Since ε can be chosen to be arbitrarily small and r close to σ , we deduce for $\sigma \le r < \rho < R$ and $n = 3 \cdot 2^{\nu - 1} \in \Lambda$ that

$$\limsup_{n \in \Lambda, n \to \infty} \frac{1}{n+1} \log \|f - s_n - p_{0,n}\|_{\Gamma_r} \le \log \frac{r}{R} + \log \frac{\rho}{R}.$$

Next, we define the sequence $\{p_{1,n}\}_{n\in\mathbb{N}}$ by

(3.11)
$$p_{1,n} := \begin{cases} s_n + p_{0,n} & \text{if } n \in \Lambda, \\ s_n & \text{if } n \notin \Lambda. \end{cases}$$

This sequence converges maximally to the power series f on \overline{D}_{σ} .

Next, we consider a parameter r^* such that

$$0 < r^* < \sigma < R$$

and let $\varepsilon > 0$ be such that $U^{\mu_n} - U^{\mu_\sigma}$ satisfies (3.6). Then there exists $\nu_1 \geq \nu_0, \ \nu_1 \in \mathbb{N}$, such that

$$(3.12) |U^{\mu_n}(z) - U^{\mu_\sigma}(z)| < \varepsilon, \quad z \in \Gamma_{r^*} \cup \Gamma_{\rho},$$

for $n = 3 \cdot 2^{\nu - 1} \in \Lambda$ and $\nu \ge \nu_1$ and we deduce by (3.5) for $n = 3 \cdot 2^{\nu - 1} \in \Lambda$ and $z \in \Gamma_{r^*}$ that

$$(3.13) \quad \frac{1}{n+1} \log |f(z) - p_{1,n}(z)| = \frac{1}{n+1} \log |f(z) - s_n(z) - p_{0,n}(z)|$$

$$\leq \frac{1}{n+1} (2^{\nu-1} + 1) \left(\max_{t \in \Gamma_{\rho}} U^{\mu_n}(t) - U^{\mu_n}(z) \right)$$

$$+ \frac{1}{n+1} \left(\log ||f - s_{2^{\nu}}||_{\Gamma_{\rho}} + 2^{\nu} \log \frac{r^*}{\rho} + c_2 \right),$$

where

(3.14)
$$c_2 := \log \max_{t \in \Gamma_\rho} \max_{t \in \Gamma_{r^*}} \frac{1}{|t - z|} + \log \frac{\operatorname{length}(\Gamma_\rho)}{2\pi} = \log \frac{\rho}{r^*} + \log \rho$$

and, by (3.1),

(3.15)
$$\log \|f - s_{2^{\nu}}\|_{\Gamma_{\rho}} \leq 2^{\nu+1} \log \frac{\rho}{R} + \log(1 + C(\rho, \nu))$$
$$\leq 2^{\nu+1} \log \frac{\rho}{R} + C(\rho, \nu),$$

We see that

$$U^{\mu_{\rho}}(z) = -\log \operatorname{cap} D_{\rho} = -\log \rho, \quad z \in \Gamma_{\rho},$$

$$U^{\mu_{\sigma}}(z) = -\log \operatorname{cap} D_{\sigma} = -\log \sigma, \quad z \in \overline{D}_{\sigma}.$$

Therefore, by the uniform convergence of U^{μ_n} to $U^{\mu_{\sigma}}$ in (3.12) we obtain, for $z \in \Gamma_{r^*}$,

$$(3.16) \quad \max_{t \in \Gamma_{\rho}} U^{\mu_n}(t) - U^{\mu_n}(z)$$

$$= \max_{t \in \Gamma_{\rho}} (U^{\mu_n}(t) - U^{\mu_{\sigma}}(t)) - (U^{\mu_n}(z) - U^{\mu_{\sigma}}(z)) + \log \frac{\sigma}{\rho} \le \log \frac{\sigma}{\rho} + 2\varepsilon.$$

Using (3.13)–(3.16), for $n = 3 \cdot 2^{\nu-1} \in \Lambda$ and $\nu \geq \nu_1$ we get

$$(3.17) \frac{1}{n+1} \log \|f - p_{1,n}\|_{\Gamma_{r^*}}$$

$$\leq \frac{1}{n+1} (2^{\nu-1} + 1) \left(\log \frac{\sigma}{\rho} + 2\varepsilon \right)$$

$$+ \frac{1}{n+1} \left(2^{\nu+1} \log \frac{\rho}{R} + C(\rho, \nu) \right) + \frac{1}{n+1} \left(2^{\nu} \log \frac{r^*}{\rho} + c_2 \right)$$

$$= \frac{1}{n+1} \left((2^{\nu-1} + 1) \log \frac{\sigma}{\rho} + 2^{\nu+1} \log \frac{\rho}{R} + 2^{\nu} \log \frac{r^*}{\rho} \right)$$

$$+ \frac{1}{n+1} ((2^{\nu} + 2)\varepsilon + C(\rho, \nu) + c_2)$$

$$= C_0(r^*, \nu) + C_1(\varepsilon, \nu),$$

where

$$(3.18) C_0(r^*, \nu) := \frac{1}{n+1} \left((2^{\nu-1} + 1) \log \frac{\sigma}{\rho} + 2^{\nu+1} \log \frac{\rho}{R} + 2^{\nu} \log \frac{r^*}{\rho} \right)$$

and

$$C_1(\varepsilon, \nu) := \frac{1}{n+1} ((2^{\nu} + 2)\varepsilon + C(\rho, \nu) + c_2)$$

with

(3.19)
$$\lim_{\varepsilon \to 0} \lim_{\nu \to \infty} C_1(\varepsilon, \nu) = 0$$

Consequently,

$$C_0(r^*, \nu) = \frac{1}{n+1} \left((2^{\nu-1} + 1) \log \frac{\sigma}{\rho} + 2^{\nu+1} \log \frac{\rho}{R} + 2^{\nu} \log \frac{r^*}{\rho} \right)$$

$$= \frac{1}{n+1} \left((n+1) \log \frac{r^*}{\rho} - 2^{\nu-1} \log \frac{r^*}{\rho} - \log \frac{r^*}{\rho} \right)$$

$$+ \frac{1}{n+1} \left(2^{\nu+1} \log \frac{\rho}{R} + (2^{\nu-1} + 1) \log \frac{\sigma}{\rho} \right)$$

$$= \log \frac{r^*}{\rho} + \frac{1}{n+1} (2^{\nu-1} + 1) \log \frac{\rho}{r^*}$$

$$+ \frac{1}{n+1} \left(2^{\nu+1} \log \frac{\rho}{R} + (2^{\nu-1} + 1) \log \frac{\sigma}{\rho} \right)$$

or

(3.20)
$$C_0(r^*, \nu) = \log \frac{r^*}{\rho} + \frac{1}{n+1} \left((2^{\nu-1} + 1) \log \frac{\sigma}{r^*} + 2^{\nu+1} \log \frac{\rho}{R} \right).$$

Since

$$\frac{2^{\nu-1}+1}{n+1} \le \frac{1}{2} \quad \text{and} \quad \frac{2^{\nu+1}}{n+1} \ge \frac{8}{7} \quad \text{ for } n = 3 \cdot 2^{\nu-1}, \ \nu \in \mathbb{N}, \ \nu \ge 2,$$

for $\nu \in \mathbb{N}$, $\nu \geq 2$, we obtain

(3.21)
$$C_0(r^*, \nu) \le C_0(r^*) := \log \frac{r^*}{\rho} + \frac{1}{2} \log \frac{\sigma}{r^*} + \frac{8}{7} \log \frac{\rho}{R}.$$

Since ε can be chosen to be arbitrarily small, by (3.17)–(3.21).

$$(3.22) \quad \limsup_{n \in \Lambda, \, n \to \infty} \frac{1}{n+1} \log \|f - p_{1,n}\|_{\Gamma_{r^*}} \le \log \frac{r^*}{\rho} + \frac{1}{2} \log \frac{\sigma}{r^*} + \frac{8}{7} \log \frac{\rho}{R}.$$

Remark 1. The sequence $\{p_{1,n}\}_{n\in\mathbb{N}}$ converges maximally to f on \overline{D}_{r^*} if

$$C_0(r^*) = \log \frac{r^*}{\rho} + \frac{1}{2} \log \frac{\sigma}{r^*} + \frac{8}{7} \log \frac{\rho}{R} \le \log \frac{r^*}{R}$$

$$\iff \frac{1}{2} \log \frac{\sigma}{r^*} \le \frac{1}{7} \log \frac{R}{\rho} \iff r^* \ge \sigma \left(\frac{\rho}{R}\right)^{2/7}.$$

Remark 2.

$$C_0(r^*) = \log \frac{r^*}{\rho} + \frac{1}{2} \log \frac{\sigma}{r^*} + \frac{8}{7} \log \frac{\rho}{R} \le \log \frac{r^*}{R} + \frac{1}{14} \log \frac{\rho}{R}$$

$$\iff \frac{1}{2} \log \frac{\sigma}{r^*} \le \frac{1}{14} \log \frac{R}{\rho} \iff r^* \ge \sigma \left(\frac{\rho}{R}\right)^{1/7}.$$

Let us fix

$$r^* := \sigma \left(\frac{\rho}{R}\right)^{1/7}.$$

Then

$$0 < r^* < \sigma < \rho < R,$$

and by Remark 1 the sequence $\{p_{1,n}\}_{n\in\mathbb{N}}$ converges maximally to f on \overline{D}_{r^*} . By (3.22) and Remark 2 we obtain, for all r with $r^* \leq r \leq \sigma$,

(3.23)
$$\limsup_{n \in A} \frac{1}{n+1} \log \|f - p_{1,n}\|_{\Gamma_r} \le \log \frac{r}{R} + \frac{1}{14} \log \frac{\rho}{R}.$$

Now, we modify the sequence $\{p_{1,n}\}_{n\in\mathbb{N}}$ by

$$p_n := \begin{cases} p_{1,n} + 2\|f - p_{1,n}\|_{\Gamma_{\sigma}} & \text{if } n \in \Lambda, \\ p_{1,n} = s_n & \text{if } n \notin \Lambda. \end{cases}$$

Let us fix an auxiliary parameter $\varepsilon > 0$, which will be specified later. Then for $z \in \Gamma_r$, $r^* \le r \le \sigma$, by (3.23) we obtain

$$|f(z) - p_n(z)| \le |f(z) - p_{1,n}(z)| + 2||f - p_{1,n}||_{\Gamma_{\sigma}}$$

$$\le \left(\frac{r}{R} \left(\frac{\rho}{R}\right)^{1/14} e^{\varepsilon}\right)^{n+1} + 2\left(\frac{\sigma}{R} \left(\frac{\rho}{R}\right)^{1/14} e^{\varepsilon}\right)^{n+1}$$

$$\le 3\left(\frac{\sigma}{R} \left(\frac{\rho}{R}\right)^{1/14} e^{\varepsilon}\right)^{n+1}$$

for all sufficiently large $n = 2^{\nu} + 2^{\nu-1} \in \Lambda$, or

(3.24)
$$\frac{1}{n+1} \log |f(z) - p_n(z)| \le \log \frac{\sigma}{R} + \frac{1}{14} \log \frac{\rho}{R} + \varepsilon + \frac{\log 3}{n+1}$$

$$= \log \frac{r}{R} + \log \frac{\sigma}{r} + \frac{1}{14} \log \frac{\rho}{R} + \varepsilon + \frac{\log 3}{n+1} .$$

Now, we specify ε by

$$\varepsilon := \frac{1}{28} \log \frac{R}{\rho}$$

and fix the parameter r_{σ} by

$$\log \frac{\sigma}{r_{\sigma}} + \frac{1}{14} \log \frac{\rho}{R} + \varepsilon = \log \frac{\sigma}{r_{\sigma}} + \frac{1}{28} \log \frac{\rho}{R} = 0.$$

Then

$$r_{\sigma} = \sigma \left(\frac{\rho}{R}\right)^{1/28}$$

and $r^* < r_{\sigma} < \sigma$. Moreover, by (3.24),

$$\limsup_{n \in A} \frac{1}{n \to \infty} \frac{1}{n+1} \log \|f - p_n\|_{\Gamma_r} \le \log \frac{r}{R}, \quad r_{\sigma} \le r \le \sigma.$$

Consequently, the sequence $\{p_n\}_{n\in\mathbb{N}}$ converges maximally to f on $\overline{D}_{r_{\sigma}}$. On the other hand,

$$f(z) - p_n(z) = f(z) - p_{1,n}(z) - 2||f - p_{1,n}||_{\Gamma_{\sigma}},$$

and therefore, for $n \in \Lambda$ and $z \in \overline{D}_{\sigma}$,

(3.25)
$$|f(z) - p_n(z)| \ge 2||f - p_{1,n}||_{\Gamma_{\sigma}} - |f(z) - p_{1,n}(z)|$$
$$\ge ||f - p_{1,n}||_{\Gamma_{\sigma}} > 0,$$

since f is not a polynomial.

Summarizing, the error function $f - p_n$, $n \in \Lambda$, has no zeros in \overline{D}_{σ} and $\{p_n\}_{n \in \mathbb{N}}$ converges maximally to f on $\overline{D}_{r_{\sigma}}$, and the Theorem is proven.

3.2. Proof of the Corollary. Because of (3.25),

$$\min_{z \in \overline{D}_{\sigma}} |f(z) - p_n(z)| \ge ||f - p_{1,n}||_{\Gamma_{\sigma}}, \quad n \in \Lambda.$$

Since $p_{1,n} \in \mathcal{P}_{3\cdot 2^{\nu-1}} \subset \mathcal{P}_m$ with $m := 2^{\nu+1} - 1 \in \Lambda_1$, we obtain

(3.26)
$$\min_{z \in \overline{D}_{\sigma}} |f(z) - p_n(z)| \ge ||f - p_{1,n}||_{\Gamma_{\sigma}} \ge \min_{q_m \in \mathcal{P}_m} ||f - q_m||_{\Gamma_{\sigma}}.$$

By (3.3) and (3.4),

$$\frac{\sigma}{R} e^{-\varepsilon_m(\sigma)} < \min_{z \in \Gamma_\sigma} |f(z) - s_m(z)|^{1/m} \le ||f - s_m||_{\Gamma_\sigma}^{1/m} < \frac{\sigma}{R} e^{\varepsilon_m(\sigma)}, \quad m \in \Lambda_1,$$

where $\lim_{m \in \Lambda_1, m \to \infty} \varepsilon_m(\sigma) = 0$. Now, we claim that, for $m = 2^{\nu+1} - 1 \in \Lambda_1$,

(3.28)
$$||f - \widetilde{q}_m||_{\Gamma_{\sigma}} = \min_{q_m \in \mathcal{P}_m} ||f - q_m||_{\Gamma_{\sigma}} > \left(\frac{\sigma}{R}\right)^m e^{-m\varepsilon_m(\sigma)},$$

where \widetilde{q}_m is the best uniform approximation of f on Γ_{σ} with respect to \mathcal{P}_m . Let us assume that the claim is false; then

$$||f - \widetilde{q}_m||_{\Gamma_{\sigma}} \le \left(\frac{\sigma}{R}\right)^m e^{-m\varepsilon_m(\sigma)}.$$

Using (3.27), Rouché's Theorem implies that the functions $f - s_m$ and

$$f - s_m - (f - \widetilde{q}_m) = \widetilde{q}_m - s_m \in \mathcal{P}_m$$

have $2^{\nu+1} = m+1$ zeros in D_{σ} , contradicting $s_m \neq \tilde{q}_m$. Hence (3.28) holds. By (3.26) and (3.28), for $m \in \Lambda_1$,

$$\min_{z \in \overline{D}_{\sigma}} |f(z) - p_n(z)| \ge \min_{q_m \in \mathcal{P}_m} ||f - q_m||_{\Gamma_{\sigma}} > \left(\frac{\sigma}{R}\right)^m e^{-m\varepsilon_m(\sigma)}$$

or

$$\left(\frac{\sigma}{R}\right)^{m/n} e^{-\varepsilon_m(\sigma)m/n} < \min_{z \in \overline{D}_\sigma} |f(z) - p_n(z)|^{1/n} \le \min_{z \in \overline{D}_r} |f(z) - p_n(z)|^{1/n}.$$

Then

$$\lim_{m \in A_1, m \to \infty} \varepsilon_m(\sigma) = 0 \text{ and } 1 \le \frac{m}{n} = \frac{2^{\nu+1} - 1}{3 \cdot 2^{\nu-1}} \le \frac{4}{3}, \quad \nu \in \mathbb{N}.$$

If the sequence $\{p_n\}_{n\in\mathbb{N}}$ converges maximally to f on \overline{D}_r for $r\leq \sigma$, we obtain

$$\left(\frac{\sigma}{R}\right)^{4/3} \leq \liminf_{n \in \Lambda, \, n \to \infty} \min_{z \in \overline{D}_{\sigma}} |f(z) - p_n(z)|^{1/n}
\leq \liminf_{n \in \Lambda, \, n \to \infty} \min_{z \in \overline{D}_{r}} |f(z) - p_n(z)|^{1/n} \leq \limsup_{n \in \mathbb{N}, \, n \to \infty} ||f - p_n||_{\Gamma_r}^{1/n} = \frac{r}{R}.$$

Hence,

$$r \ge \left(\frac{\sigma^4}{R}\right)^{1/3}$$

and there exists a minimal r_{σ}^* , with

$$0 < \left(\frac{\sigma^4}{R}\right)^{1/3} \le r_\sigma^* \le \sigma,$$

such that $\{p_n\}_{n\in\mathbb{N}}$ converges maximally to f on $\overline{D}_{r^*_{\sigma}}$, and the Corollary is proven.

References

[1] H.-P. Blatt and R. Grothmann, Interpolation characteristics of maximal polynomial approximants to rational functions, Ann. Polon. Math. 123 (2019), 155–169.

- [2] H.-P. Blatt, Near-circularity in capacity and maximally convergent polynomials, Comput. Methods Funct. Theory 25 (2025), 279–300.
- [3] H.-P. Blatt, Intrinsic interpolation, near-circularity and maximal convergence, J. Approx. Theory 312 (2025), art. 106201, 29 pp.
- [4] E. B. Saff and V. Totik, Behavior of polynomials of best uniform approximation, Trans. Amer. Math. Soc. 316 (1989), 567–593.
- [5] L. N. Trefethen, Near-circularity of the error curve in complex Chebyshev approximation, J. Approx. Theory 31 (1981), 344–367.
- [6] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, 4th ed., Amer. Math. Soc. Colloq. Publ. 20, Amer. Math. Soc., Providence, RI, 1965.

Hans-Peter Blatt Mathematisch-Geographische Fakultät Katholische Universität Eichstätt-Ingolstadt 85071 Eichstätt, Germany E-mail: hans.blatt@ku.de