
Γ
R
J
a

b

c

A

M
4
3
7

K
N
N
L
Γ

1

c
g
a
s

w
f
b
a
f
t
a

h
R

Nonlinear Anal. RWA 85 (2025) 104371 

A
1
(

 

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

journal homepage: www.elsevier.com/locate/nonrwa  

-convergence involving nonlocal gradients with varying horizon: 
ecovery of local and fractional models
avier Cueto a , Carolin Kreisbeck b , Hidde Schönberger c ,∗

Department of Mathematics, Faculty of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt-Ingolstadt, Ostenstraße 28, 85072 Eichstätt, Germany
Institute of Analysis and Scientific Computing, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria

 R T I C L E  I N F O

SC:
9J45
5R11
4A70

eywords:
onlocal variational problems
onlocal and fractional gradients
ocalization
-convergence

 A B S T R A C T

This work revolves around the rigorous asymptotic analysis of models in nonlocal hyperelastic-
ity. The corresponding variational problems involve integral functionals depending on nonlocal 
gradients with a finite interaction range 𝛿, called the horizon. After an isotropic scaling of the 
associated kernel functions, we prove convergence results in the two critical limit regimes of 
vanishing and diverging horizon. While the nonlocal gradients localize to the classical gradient 
as 𝛿 → 0, we recover the Riesz fractional gradient as 𝛿 → ∞, irrespective of the nonlocal 
gradient we started with. Besides rigorous convergence statements for the nonlocal gradients, 
our analysis in both cases requires compact embeddings uniformly in 𝛿 as a crucial ingredient. 
These tools enable us to derive the 𝛤 -convergence of quasiconvex integral functionals with 
varying horizon to their local and fractional counterparts, respectively.

. Introduction

Nonlocal-to-local limits constitute a pivotal aspect in nonlocal modeling. They can provide a useful consistency check in 
onfirming the compatibility of a (new) nonlocal model with a local counterpart that is covered by well-established theories. More 
enerally speaking, the asymptotic analysis of critical parameter regimes can yield new insights about limit models from their 
pproximations and vice versa. In this paper, we address these topics in the context of models with nonlocal gradients, which have 
een a great rise in interest in the last few years, see e.g., [1–8].
For a general radial kernel 𝜌, the nonlocal gradient of a function 𝑢 ∶ R𝑛 → R𝑚 associated to 𝜌 is defined as 

𝐷𝜌𝑢(𝑥) = ∫R𝑛
𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦|

⊗
𝑥 − 𝑦
|𝑥 − 𝑦|

𝜌(𝑥 − 𝑦) 𝑑𝑦 for 𝑥 ∈ R𝑛, (1.1)

henever this integral exists. A widely studied special case is the Riesz fractional gradient given by 𝐷𝑠 ∶= 𝐷𝜌𝑠  with 𝜌𝑠 = | ⋅ |−(𝑛+𝑠−1)

or the fractional parameter 𝑠 ∈ (0, 1). It satisfies natural physical invariance requirements [3] and was brought to the spotlight 
y Shieh & Spector [1,9], who established useful counterparts of results from classical Sobolev space theory and showed that the 
ssociated function spaces coincide with the Bessel potential spaces 𝐻𝑠,𝑝(R𝑛;R𝑚). This paved the way for the forthcoming works on 
ractional variational problems [5,7,10], which were proposed as alternatives to the standard models in continuum mechanics. Due 
o the reduced regularity requirements imposed by the fractional derivatives in comparison to the classical ones, these models admit 
 broader class of admissible deformations, which allows to account also for discontinuity effects, such as fracture and cavitation.
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Despite the desirable properties of the Riesz fractional gradient, an intrinsic drawback from the perspective of continuum 
mechanical modeling is that it involves integration over the whole space R𝑛, which is not suitable for models on bounded domains. 
This shortcoming can be resolved by considering kernel functions 𝜌 with compact support, meaning that the range of interactions 
between individual points, called the horizon 𝛿 > 0, is finite. In [6,11], Bellido, Cueto & Mora-Corral used finite-horizon fractional 
gradients as a basis to propose models of nonlocal hyperelasticity.

Note that the concept of a horizon stems originally from peridynamics [12,13], a nonlocal formulation of continuum mechanics 
that, in contrast to classical modeling, avoids the use of derivatives, and instead considers the interaction between individual particles 
that are not necessarily at an infinitesimal distance. Since its introduction in the 2000s, it has led to a vast literature, ranging from 
applied to theoretical contributions, see e.g. [14–16]. While energetic approaches in the context of bond-based peridynamics typically 
involve double-integrals, the energy functionals of nonlocal hyperelasticity, which are integrals depending on nonlocal gradients, 
can be interpreted in the context of state-based peridynamics [17]; one of the advantages of this framework is that it allows to 
model a broad range of material properties, e.g., general Poisson ratios in isotropic elastic materials, in contrast to the bond-based 
formulation [17].

A first step in putting the nonlocal hyperelastic models on a solid mathematical foundation is to guarantee the existence of 
solutions, which has been addressed in [6,11,18] for the case of finite-horizon gradients. The arguments rely essentially on two 
key techniques: a nonlocal version of the fundamental theorem of calculus [6], which is needed to prove Poincaré inequalities and 
compact embeddings, and a translation method established in [6,18] that expresses the nonlocal gradient as the classical gradient 
composed with a convolution. These tools were recently extended in [19] to general nonlocal gradients with compactly supported 
radial kernels, and we utilize this in Section 2.3 to develop an existence theory in this broadened setting.

Our focus in this work lies on the study of the critical parameter regimes for the horizon 𝛿, which can be seen as an important 
next step towards understanding and validating nonlocal hyperelasticity. While the widely used bond-based models are only able to 
recover a considerably restrictive class of models through a nonlocal-to-local limit passage [20,21], we establish in this paper that 
the models involving nonlocal gradients are compatible with their local counterpart via a vanishing horizon limit. For a complete 
picture of the horizon-dependence, we also analyze the other extreme regime of diverging horizon, providing a rigorous connection 
with purely fractional models.

In the following, we adopt the framework for general nonlocal gradients from the recent paper [19] by Bellido, Mora-Corral 
& Schönberger. Starting with a fixed radial kernel 𝜌 satisfying the hypotheses of [19] (see (H0)–(H4) in Section 2.2) with horizon 
equal to 1, i.e., supp 𝜌 = 𝐵1(0), we apply an isotropic rescaling to obtain the kernels 

𝜌𝛿 = 𝑐𝛿𝜌
( ⋅
𝛿

)

(1.2)

with horizon 𝛿 > 0 and scaling constants 𝑐𝛿 > 0 to be chosen suitably depending on the targeted parameter regime for 𝛿, cf. (i) and 
(ii) below; examples of admissible realizations of kernel functions 𝜌 can be found in Example  2.5.

Our aim in this work is to study the asymptotic behavior of the nonlocal gradients associated to the kernels 𝜌𝛿 in (1.2) for both 
limits of vanishing and diverging horizon, that is,

(i) 𝛿 → 0 and (ii) 𝛿 → ∞,

and prove the convergence of minimizers via 𝛤 -convergence (cf. [22,23]) for the corresponding families of 𝛿-dependent functionals 
𝛿 . They consist of vectorial integrals of the form 

𝛿(𝑢) ∶= ∫𝛺𝛿
𝑓 (𝑥,𝐷𝜌𝛿 𝑢) 𝑑𝑥, (1.3)

where the involved quantities are given as follows: The set 𝛺 ⊂ R𝑛 is a bounded domain, 𝛺𝛿 = 𝛺 + 𝐵𝛿(0) is its expansion by the 
horizon parameter, and the integrand 𝑓 ∶ R𝑛 × R𝑛×𝑚 → R is assumed to have 𝑝-growth for 𝑝 ∈ (1,∞) and to be quasiconvex in its 
second argument. The space of admissible functions for (1.3) is 𝐻𝜌,𝑝,𝛿

0 (𝛺;R𝑚), the natural nonlocal Sobolev space associated to the 
gradient 𝐷𝜌𝛿  with a zero complementary-value conditions, meaning that the functions vanish in 𝛺𝑐 , see  Section 2 for more details. 
Let us now give a brief overview of our findings on the two limit passages 𝛿 → 0 and 𝛿 → ∞.

(i) Localization via shrinking horizon 𝛿 → 0. With the scaling factors 𝑐𝛿 = 𝛿−𝑛 in (1.2), which preserves the mass of the kernel 
𝜌𝛿 , we confirm for each 𝑢 ∈ 𝑊 1,𝑝(R𝑛;R𝑚) the convergence of the nonlocal gradients to the classical one, precisely,

𝐷𝜌𝛿 𝑢 → ∇𝑢  in 𝐿𝑝(R𝑛;R𝑚×𝑛) as 𝛿 → 0,

see Lemma  3.1; for sufficiently smooth functions, the convergence is uniform and the optimal rate of convergence is explicitly 
determined by 𝛿2.

As our main result within (i), Theorem  3.7 states the 𝛤 -convergence of (𝛿)𝛿 from (1.3) with respect to the strong 𝐿𝑝-topology 
as 𝛿 → 0 to the limit functional 0 given by

0(𝑢) = ∫𝛺
𝑓 (𝑥,∇𝑢) 𝑑𝑥  for 𝑢 ∈ 𝑊 1,𝑝

0 (𝛺;R𝑚),

and provides along with this, the corresponding equi-coercivity of (𝛿)𝛿 ; the latter constitutes the major novelty of Theorem  3.7, 
as explained below. Consequently, the minimizers of 𝛿 , which exist by Theorem  2.11, converge (up to subsequences) in 𝐿𝑝 to a 
minimizer of  .
0
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The key technical ingredient for our proof of equi-coercivity for (𝛿)𝛿 is the estimate (1.4), which can be seen as an enhanced 
Poincaré-type inequality. The proof of (1.4) uses the isotropic scaling from (1.2) to identify the dependence of the Fourier symbol of 
𝐷𝜌𝛿  on 𝛿. Together with the results on the Fourier symbol of 𝐷𝜌 for a fixed kernel [19], we then deduce from the Mihlin-Hörmander 
theorem that the spaces 𝐻𝜌,𝑝,𝛿(𝛺;R𝑚) do not change with 𝛿 > 0 and that there is a 𝛿-independent constant 𝐶 > 0 such that 

‖𝑢‖𝐻𝜎,𝑝(R𝑛;R𝑚) ≤ 𝐶‖𝐷𝜌𝛿 𝑢‖𝐿𝑝(R𝑛;R𝑚×𝑛) for all 𝑢 ∈ 𝐻𝜌,𝑝,𝛿(𝛺;R𝑚) and 𝛿 ∈ (0, 1], (1.4)

where 𝜎 > 0 is related to the kernel 𝜌, see Theorem  3.3 and Corollary  3.4.
To set our contribution into context with the existing literature, we mention that closely related localization results for nonlocal 

gradients in various relevant topologies can be found in [4] or deduced from the results in the recent paper [24] by Arroyo-Rabasa, 
which addresses more general nonlocal first-order linear operators. Mengesha & Spector in [4, Theorem 1.7] also present a first 
𝛤 -convergence result for scalar and convex variational problems in their setting. Beyond the fact that we consider more general 
quasiconvex integrands in the vectorial case, the only minor difference with our set-up (see (1.1) and (1.3)) lies in the definition 
of the nonlocal gradient, where they consider interactions only between points within the domain 𝛺. Accordingly, some of our 
arguments regarding the liminf-inequality and the construction of recovery sequences share similarities with [4]. However, in 
contrast to our work, [4] does not contain any compactness results (uniformly in 𝛿) or equi-coercivity results, and, therefore, cannot 
guarantee the existence or the convergence of minimizers for the involved integral functionals. On the other hand, in a different 
setting of non-symmetric half-space nonlocal gradients for the case 𝑝 = 2, such compactness results have recently been obtained 
uniformly in 𝛿 [25].

(ii) Fractional models via diverging horizon 𝛿 → ∞. For the regime of large horizons, we identify the scaling factors 
𝑐𝛿 = 𝜌(1∕𝛿)−1 in (1.2), with 𝜌 the radial representation of 𝜌, and assume additionally that the kernels 𝜌𝛿 converge pointwise to 
a function 𝜌∞; the scaling factors ensure that 𝜌∞ is equal to 1 on the unit sphere. It turns out that the limit kernel 𝜌∞ will always 
be a fractional kernel, that is, 

𝜌∞ = | ⋅ |−(𝑛+𝑠∞−1) (1.5)

with some 𝑠∞ ∈ (0, 1) characteristic for 𝜌, see Lemma  4.2. Even though this observation may be surprising, given that the strong 
singularity of the kernel at the origin will generally not be of a fractional type, it follows because of the fact that the radial 
representation of 𝜌∞ gains multiplicativity through the limit process, and is thus, a power function.

In view of (1.5), we then deduce in Proposition  4.6 the convergence of the nonlocal gradients to a Riesz fractional gradient. 
Precisely, it holds for 𝑢 ∈ 𝑊 1,𝑝(R𝑛;R𝑛) that 

𝐷𝜌𝛿 𝑢 → 𝐷𝑠∞𝑢  in 𝐿𝑝(R𝑛;R𝑚×𝑛) as 𝛿 → ∞. (1.6)

Using a similar strategy as in (i), we can specify the dependence of the Fourier symbol of 𝐷𝜌𝛿  on 𝛿 and show the analogue of (1.4) for 
large 𝛿, see Proposition  4.7. This facilitates along with (1.6) the proof of our main theorem on 𝛤 -convergence and equi-coercivity 
of the family (𝛿)𝛿 (cf. (1.3)) as 𝛿 → ∞; explicitly, Theorem  4.10 yields the 𝛤 -limit 𝛤 (𝐿𝑝)- lim𝛿→∞ 𝛿 = ∞ with 

∞(𝑢) = ∫R𝑛
𝑓 (𝑥,𝐷𝑠∞𝑢) 𝑑𝑥 for 𝑢 ∈ 𝐻𝑠∞ ,𝑝

0 (𝛺;R𝑚). (1.7)

In particular, we have that the minimizers of 𝛿 converge (up to subsequence) in 𝐿𝑝 to a minimizer of a variational integral 
depending on Riesz fractional gradients.

Note that the resulting limit objects, that is, fractional functionals of the type (1.7), have been well-studied in the last years under 
different assumptions on the integrand, see e.g. [1,5,7,26]. The aspects addressed include weak lower semicontinuity, relaxation, 
existence of minimizers, and Euler–Lagrange equations.

The prototypical example that illustrates our results is a truncated version of the Riesz fractional kernel, that is,
𝜌 = 𝑤

| ⋅ |𝑛+𝑠−1
for 𝑠 ∈ (0, 1),

where 𝑤 ∶ R𝑛 → [0,∞) is a suitable smooth, radial cut-off function compactly supported in the closed unit ball of R𝑛, cf. Example 
2.5 (a). Applying the two scaling choices of (i) and (ii) gives the scaled kernels

𝜌𝛿 = 𝛿𝑠−1
𝑤( ⋅ ∕𝛿)
| ⋅ |𝑛+𝑠−1

and 𝜌𝛿 = 𝑤(1∕𝛿)−1
𝑤( ⋅ ∕𝛿)
| ⋅ |𝑛+𝑠−1

,

respectively, where 𝑤 denotes the radial representation of 𝑤. Both these kernels are supported in the ball 𝐵𝛿(0) of radius 𝛿 around the 
origin and give rise to the finite-horizon fractional gradients 𝐷𝑠

𝛿 studied in [6,11,18,27,28]; we remark that in those references the 
dependence of the kernel on 𝛿 is not made explicit, since the horizon was always considered fixed. As a consequence of the results 
in this paper, variational problems involving the gradients 𝐷𝑠

𝛿 are confirmed to approximate their local analogue with classical 
gradients in the limit of vanishing horizon. As 𝛿 → ∞, we justify the intuitive connection with the fractional case, which reflects an 
infinite range of interaction.

Let us close the introduction by briefly pointing out some interesting further connections for broader context. We observe that for 
fractional gradients, localization also occurs by letting the fractional index 𝑠 tend to 1. This was demonstrated for the Riesz fractional 
gradient 𝐷𝑠 in [10] and for its finite-horizon version 𝐷𝑠

𝛿 in [18,28]. Among the first works on nonlocal-to-local limit passages were 
those in the context of bond-based peridynamics [29–32], which successfully recover various classical models. However, as shown 
in [20,21], there are classical energies that cannot be obtained from double-integral functionals as 𝛿 goes to 0, as opposed to the 
3 
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setting of this paper. Finally, the limit of diverging horizon is less common in the literature. Nevertheless, the convergence of 
finite-horizon versions of the fractional 𝑝-Laplacian has been established in [33,34] for both 𝛿 → 0 and 𝛿 → ∞, recovering the 
classical and fractional 𝑝-Laplacian, respectively.

The manuscript is organized as follows. After introducing in Section 2 the nonlocal gradients and associated function spaces that 
we are going to work with, we specify the required conditions on the kernel 𝜌 and collect some technical tools and preliminary 
results. The core of the paper are Sections 3 and 4, where we address the limit analysis of 𝛿 → 0 and 𝛿 → ∞ to recover the classical 
and fractional models, respectively. These two sections, which are each presented in a self-contained way, share a parallel structure: 
First, showing the convergence of the varying horizon nonlocal gradients, then, compactness statements uniformly in 𝛿, and, finally, 
the 𝛤 -convergence of the energy functionals in (1.3).

2. Preliminaries

2.1. Notation

We write |𝑥| = (
∑𝑛
𝑖=1 𝑥

2
𝑖
)1∕2 for the Euclidean norm of a vector 𝑥 = (𝑥1,… , 𝑥𝑛) ∈ R𝑛 and |𝐴| for the Frobenius norm of a matrix 

𝐴 ∈ R𝑚×𝑛. The ball centered at 𝑥 ∈ R𝑛 and with radius 𝑟 > 0 is denoted by 𝐵𝑟(𝑥) = {𝑦 ∈ R𝑛 ∶ |𝑥 − 𝑦| < 𝑟} and the distance between 
𝑥 ∈ R𝑛 and a set 𝐸 ⊂ R𝑛 is written as dist(𝑥,𝐸). For an open set 𝛺 ⊂ R𝑛 and 𝛿 > 0, we define 

𝛺𝛿 ∶= 𝛺 + 𝐵𝛿(0) = {𝑥 ∈ R𝑛 ∶ dist(𝑥,𝛺) < 𝛿} (2.1)

and set 𝛺−𝛿 ∶= {𝑥 ∈ 𝛺 ∶ dist(𝑥,𝛺𝑐 ) > 𝛿}. The complement of a set 𝐸 ⊂ R𝑛 is indicated by 𝐸𝑐 ∶= R𝑛 ⧵ 𝐸, its closure by 𝐸, and its 
boundary by 𝜕𝐸. We take

1𝐸 (𝑥) =

{

1 for 𝑥 ∈ 𝐸,
0 otherwise,

𝑥 ∈ R𝑛,

to be the indicator function of a set 𝐸 ⊂ R𝑛. The extension of a function 𝑢 ∶ 𝐸 → R to R𝑛 as zero is sometimes explicitly denoted as 
1𝐸 𝑢. For a function 𝑢 ∶ R𝑛 → R, we denote its support by supp 𝑢, and, if 𝑢 is Lipschitz continuous, its Lipschitz constant by Lip(𝑢).

For 𝑈 ⊂ R𝑛 open, we adopt the standard notation for the space of smooth functions with compact support 𝐶∞
𝑐 (𝑈 ), the Lebesgue 

space 𝐿𝑝(𝑈 ) and the Sobolev space 𝑊 1,𝑝(𝑈 ) with 𝑝 ∈ [1,∞]. The spaces can be extended componentwise to vector-valued functions; 
the target space is explicitly mentioned in the notation, like, for example, 𝐿𝑝(𝑈 ;R𝑚). We use the usual multi-index notation for 
partial derivatives 𝜕𝛼 with 𝛼 ∈ N𝑛0. Our convention for the Fourier transform of 𝑓 ∈ 𝐿1(R𝑛) is

𝑓 (𝜉) = ∫R𝑛
𝑓 (𝑥) 𝑒−2𝜋𝑖𝑥⋅𝜉 𝑑𝑥, 𝜉 ∈ R𝑛,

see e.g., [35] for more details.
For real functions, we use the monotonicity properties of being increasing and decreasing in the non-strict sense. A function 

𝑓 ∶ R → R is called almost decreasing if there is a 𝐶 > 0 such that 𝑓 (𝑡) ≥ 𝐶𝑓 (𝑠) for 𝑡 ≤ 𝑠, and an analogous definition holds for 
almost increasing.  For a radial function 𝑝 ∶ R𝑛 → R, we denote its radial representation by 𝑝 ∶ [0,∞) → R, i.e., 𝑝(𝑥) = 𝑝(|𝑥|) for 
𝑥 ∈ R𝑛,  and call 𝑝 radially decreasing or increasing, if its radial representation is decreasing or increasing, respectively.

Finally, throughout the manuscript, we use generic constants, which may change from line to line without renaming.

2.2. Nonlocal gradients

We now introduce the key elements of our setting, that is, the nonlocal gradients for general kernels 𝜌 as recently studied in [19]; 
for related work see also [8,36,37], as well as [6,11,18] on the special case of finite-horizon fractional gradients. 

Assume throughout that 𝜌 ∶ R𝑛 ⧵ {0} → [0,∞) is a radial kernel such that

(H0) inf𝐵𝜀(0) 𝜌 > 0 for some 𝜖 > 0 and 𝜌 min{1, | ⋅ |−1} ∈ 𝐿1(R𝑛).

Under this condition, the kernel gives rise to an associated nonlocal gradient. 

Definition 2.1 (Nonlocal Gradient). The nonlocal gradient 𝐷𝜌𝜑 ∶ R𝑛 → R𝑛 for 𝜑 ∈ 𝐶∞
𝑐 (R𝑛) is given by

𝐷𝜌𝜑(𝑥) = ∫R𝑛
𝜑(𝑥) − 𝜑(𝑦)

|𝑥 − 𝑦|
𝑥 − 𝑦
|𝑥 − 𝑦|

𝜌(𝑥 − 𝑦) 𝑑𝑦, 𝑥 ∈ R𝑛.

We collect here some key properties of 𝐷𝜌 that will be used later on. First of all, with 𝜌 ∶ (0,∞) → [0,∞) the radial representation 
of 𝜌, i.e., 𝜌 = 𝜌(| ⋅ |), the nonlocal gradient can be written as the convolution of the classical gradient with the locally integrable 
function

𝑄𝜌(𝑥) ∶= ∫

∞

|𝑥|

𝜌(𝑟)
𝑟
𝑑𝑟, 𝑥 ∈ R𝑛 ⧵ {0},

that is, 
𝐷 𝜑 = 𝑄 ∗ ∇𝜑 = ∇(𝑄 ∗ 𝜑) for all 𝜑 ∈ 𝐶∞(R𝑛), (2.2)
𝜌 𝜌 𝜌 𝑐

4 
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see [19, Propositions 2.6]. When 𝜌 ∈ 𝐿1(R𝑛), then also 𝑄𝜌 ∈ 𝐿1(R𝑛) and one obtains after taking the Fourier transform that 

𝐷𝜌𝜑(𝜉) = 2𝜋𝑖𝜉𝑄̂𝜌(𝜉)𝜑̂(𝜉) for 𝜉 ∈ R𝑛, (2.3)

see [19, Propositions 2.5  (𝑖𝑖𝑖) and 2.6].
An important property of the nonlocal gradient is the presence of a duality relation with the nonlocal divergence, as conveyed 

by the following integration by parts formula, cf. [19, Proposition 3.2].

Lemma 2.2 (Integration by Parts, [19]). Let 𝜑 ∈ 𝐶∞
𝑐 (R𝑛) and 𝜓 ∈ 𝐶∞

𝑐 (R𝑛;R𝑛). Then 

∫R𝑛
𝐷𝜌𝜑 ⋅ 𝜓 𝑑𝑥 = −∫R𝑛

𝜑 div𝜌 𝜓 𝑑𝑥, (2.4)

where

div𝜌 𝜓(𝑥) ∶= ∫R𝑛
𝜓(𝑥) − 𝜓(𝑦)

|𝑥 − 𝑦|
⋅
𝑥 − 𝑦
|𝑥 − 𝑦|

𝜌(𝑥 − 𝑦) 𝑑𝑦.

Note that the integration over the whole space in (2.4) is sufficient for our purpose, since we will be working mainly with 
compactly supported functions; an alternative version of integration by parts over a bounded domain giving rise to boundary terms 
was recently proven in [27].

The previous lemma motivates a distributional definition of nonlocal gradients. 

Definition 2.3 (Weak Nonlocal Gradients). Let 𝑢 ∈ 𝐿1(R𝑛) + 𝐿∞(R𝑛). We say that 𝑉 ∈ 𝐿1
loc(R

𝑛;R𝑛) is the weak nonlocal gradient of 
𝑢, and write 𝐷𝜌𝑢 = 𝑉 , if

∫R𝑛
𝑉 ⋅ 𝜓 𝑑𝑥 = −∫R𝑛

𝑢 div𝜌 𝜓 𝑑𝑥  for all 𝜓 ∈ 𝐶∞
𝑐 (R𝑛;R𝑛).

In analogy to classical Sobolev spaces, one introduces for 𝑝 ∈ (1,∞) the 𝜌-nonlocal Sobolev spaces as
𝐻𝜌,𝑝(R𝑛) ∶= {𝑢 ∈ 𝐿𝑝(R𝑛) ∶ 𝐷𝜌𝑢 ∈ 𝐿𝑝(R𝑛;R𝑛)},

endowed with the norm 
‖𝑢‖𝐻𝜌,𝑝(R𝑛) ∶= ‖𝑢‖𝐿𝑝(R𝑛) + ‖𝐷𝜌𝑢‖𝐿𝑝(R𝑛;R𝑛), (2.5)

see [19, Definition 3.4]. Note that these spaces can be equivalently characterized as the closure of 𝐶∞
𝑐 (R𝑛) under the norm in (2.5) 

in light of [19, Theorem 3.9 (i)]. Additionally, we define for an open 𝛺 ⊂ R𝑛 the subspaces

𝐻𝜌,𝑝
0 (𝛺) ∶= 𝐶∞

𝑐 (𝛺)
‖⋅‖𝐻𝜌,𝑝 (R𝑛 ) ,

where the elements of 𝐶∞
𝑐 (𝛺) are interpreted as extended to R𝑛 by zero. If 𝛺 is a bounded Lipschitz domain, 𝐻𝜌,𝑝

0 (𝛺) agrees with the 
complementary-value space of the functions in 𝐻𝜌,𝑝(R𝑛) that are zero in 𝛺𝑐 , see [19, Theorem 3.9 (iii)]. Prescribed complementary 
values can be viewed as the nonlocal analogue of Dirichlet boundary conditions in the local setting.

Example 2.4 (Riesz Fractional Gradient and Bessel Potential Spaces). The special choice of kernel function 

𝜌𝑠 ∶= 1
| ⋅ |𝑛+𝑠−1

 with 𝑠 ∈ (0, 1) (2.6)

gives rise to the Riesz 𝑠-fractional gradient 𝐷𝑠 ∶= 𝐷𝜌𝑠 , given for 𝜑 ∈ 𝐶∞
𝑐 (R𝑛) by

𝐷𝑠𝜑(𝑥) = ∫R𝑛
𝜑(𝑥) − 𝜑(𝑦)
|𝑥 − 𝑦|𝑛+𝑠

𝑥 − 𝑦
|𝑥 − 𝑦|

𝑑𝑦, 𝑥 ∈ R𝑛,

cf. [1,9]. Commonly, 𝐷𝑠 features a normalization constant 𝑐𝑛,𝑠, which we omit here for the sake of a cleaner presentation in Section 4. 
The associated nonlocal Sobolev space 𝐻𝜌𝑠,𝑝(R𝑛) coincides with the Bessel potential space 𝐻𝑠,𝑝(R𝑛) as shown in [1, Theorem 1.7]. 
A property we will often exploit is that 

𝐻𝑠,𝑝(R𝑛) is compactly embedded into 𝐿𝑝loc(R𝑛), (2.7)

see e.g., [9, Theorem 2.2] or [5, Theorem 2.3]. Moreover, we set 𝐻𝑠,𝑝
0 (𝛺) = {𝑢 ∈ 𝐻𝑠,𝑝(R𝑛) ∶ 𝑢 = 0 a.e. in 𝛺𝑐}. ▵

Besides the previously introduced hypothesis (H0) on the kernel 𝜌, used for the definition of the nonlocal gradient, we require 
a few more properties in order to have a wider variety of technical tools, such as compact embeddings and Poincaré inequalities, 
at our disposal. In accordance with [19] (see also [19, Remark 4.1]), we make the following assumptions:

Let 𝜀 be as in (H0), 𝜈 > 0 and 0 < 𝜎 ≤ 𝛾 < 1.

(H1) The function 𝑓 ∶ (0,∞) → R, 𝑟↦ 𝑟𝑛−2𝜌(𝑟) is decreasing on (0,∞) and 𝑟 ↦ 𝑟𝜈𝑓 (𝑟) is decreasing on (0, 𝜀);
𝜌 𝜌

5 
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(H2) 𝑓𝜌 is smooth outside the origin and for every 𝑘 ∈ N there exists a 𝐶𝑘 > 0 with
|

|

|

|

𝑑𝑘

𝑑𝑟𝑘
𝑓𝜌(𝑟)

|

|

|

|

≤ 𝐶𝑘
𝑓𝜌(𝑟)
𝑟𝑘

for 𝑟 ∈ (0, 𝜀);

(H3) the function 𝑟 ↦ 𝑟𝑛+𝜎−1𝜌(𝑟) is almost decreasing on (0, 𝜀);
(H4) the function 𝑟 ↦ 𝑟𝑛+𝛾−1𝜌(𝑟) is almost increasing on (0, 𝜀).

Most of the time, we will not work directly with these hypotheses, but instead make use of the results and tools proven in [19]; 
we refer to that paper for a more detailed discussion of (H0)–(H4). The Riesz potential kernel from (2.6) satisfies all these properties, 
as one can easily check. Beyond that, we list here a few examples with compactly supported kernels from [19, Example 5.1] that 
fit into the setting. These will be revisited also in the later sections to illustrate our findings.

Example 2.5 (Selected Kernel Functions 𝜌). Let 𝑤 ∈ 𝐶∞
𝑐 (R𝑛) be a non-negative radial function with 𝑤(0) > 0.

(a) Let 𝑠 ∈ (0, 1) and suppose that 𝑤∕| ⋅ |1+𝑠 is radially decreasing. Then,

𝜌(𝑥) =
𝑤(𝑥)

|𝑥|𝑛+𝑠−1
, 𝑥 ∈ R𝑛 ⧵ {0},

satisfies (H0)–(H4) with 𝜎 = 𝛾 = 𝑠. The associated nonlocal gradient 𝐷𝜌 is referred to as a finite-horizon fractional gradient. In fact, 
it holds that 𝐻𝜌,𝑝(R𝑛) = 𝐻𝑠,𝑝(R𝑛) with equivalent norms by [19, Proposition 3.10].

(b) Let 𝑠 ∈ (0, 1) and 𝜅 ∈ {−1, 1}. If supp(𝑤) ⊂ 𝐵1(0) and 𝑤 log𝜅 (1∕| ⋅ |)∕| ⋅ |1+𝑠 is radially decreasing, then the kernel function given 
by

𝜌(𝑥) =
𝑤(𝑥) log𝜅 (1∕|𝑥|)

|𝑥|𝑛+𝑠−1
, 𝑥 ∈ R𝑛 ⧵ {0},

satisfies (H0)–(H4) with 𝜎 = 𝑠 and any 𝛾 ∈ (𝑠, 1) if 𝜅 = 1 and with any 𝜎 ∈ (0, 𝑠) and 𝛾 = 𝑠 if 𝜅 = −1.
(c) Consider a smooth function 𝑠 ∶ [0,∞) → (0, 1) and let 𝑤∕| ⋅ |1+𝑠(| ⋅ |) be radially decreasing. Then,

𝜌(𝑥) =
𝑤(𝑥)

|𝑥|𝑛+𝑠(|𝑥|)−1
, 𝑥 ∈ R𝑛 ⧵ {0},

is a kernel with spatially varying fractional parameter satisfying (H0)–(H4) with 𝜎 = min[0,𝜀] 𝑠 and 𝛾 = max[0,𝜀] 𝑠 for any 𝜀 > 0. ▵

The following auxiliary result from [19, Lemma 4.3, 4.10 and 7.1] will be exploited in Sections 3 and 4 to prove compactness 
results uniformly in the horizon parameter. It provides bounds on the Fourier transform of 𝑄𝜌 and its derivatives in terms of the 
radial representation of 𝜌. 

Lemma 2.6 (Estimates on 𝑄̂𝜌 and Its Derivatives, [19]). Let 𝜌 ∶ R𝑛 ⧵ {0} → [0,∞) be a radial kernel with compact support satisfying 
(H0)–(H4). Then 𝑄̂𝜌 is smooth, positive, and there exists a constant 𝐶 > 0 such that 

1
𝐶
𝜌̄(1∕|𝜉|)
|𝜉|𝑛

≤ 𝑄̂𝜌(𝜉) ≤ 𝐶
𝜌̄(1∕|𝜉|)
|𝜉|𝑛

for all |𝜉| ≥ 1∕𝜀. (2.8)

Moreover, for every 𝛼 ∈ N𝑛0, one has 
|

|

|

𝜕𝛼𝑄̂𝜌(𝜉)
|

|

|

≤ 𝐶𝛼|𝜉|
−|𝛼| |

|

|

𝑄̂𝜌(𝜉)
|

|

|

for all 𝜉 ≠ 0 (2.9)

with constants 𝐶𝛼 > 0.

Finally, Poincaré-type inequalities will be indispensible tools for our analysis. We present here a particular consequence of [19, 
Theorem 4.11], that suffices for our setting.

Lemma 2.7 (Poincaré Inequalities and Compact Embedding, [19]). Let 𝛺 ⊂ R𝑛 be open and bounded and suppose that the radial kernel 
function 𝜌 satisfies (H0)–(H4) and has compact support. Then there is a 𝐶 > 0 such that 

‖𝑢‖𝐿𝑝(R𝑛) ≤ 𝐶‖𝐷𝜌𝑢‖𝐿𝑝(R𝑛;R𝑛) for all 𝑢 ∈ 𝐻𝜌,𝑝
0 (𝛺), (2.10)

and 𝐻𝜌,𝑝
0 (𝛺) is compactly embedded into 𝐿𝑝(R𝑛).

In fact, comparing 𝜌 as in the previous lemma with the kernel from Example  2.5 (a) with 𝑠 = 𝜎 leads to a stronger estimate that 
will be utilized several times in what follows. Precisely, by using (H3) and [19, Theorem 7.2], we find that there is a 𝐶 > 0 such 
that 

‖𝑢‖𝐻𝜎,𝑝(R𝑛) ≤ 𝐶‖𝐷𝜌𝑢‖𝐿𝑝(R𝑛;R𝑛) for all 𝑢 ∈ 𝐻𝜌,𝑝
0 (𝛺). (2.11)

Remark 2.8 (Relaxed Assumptions on 𝜌). Note that according to [19, Propofsition 3.10], there is an equivalence between the function 
spaces and Poincaré inequalities associated to kernels that agree around the origin. Hence, (2.10) and (2.11) hold even when the 
smoothness in (H1) only holds locally, or when the assumption of 𝜌 having compact support is dropped. For example, one could 
replace the function 𝑤 in Example  2.5 (a) by an indicator function 1𝐵𝛿 (0) with 𝛿 > 0 or by an exponentially decaying function 𝑒−𝛼| ⋅ |
with 𝛼 > 0, which leads to the truncated and tempered fractional kernel of [8, Examples 2 and 3], respectively. ▵
6 
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2.3. Existence theory for nonlocal variational problems

Let us address next the solvability of vectorial variational problems involving the nonlocal gradients as introduced in the previous 
section. Besides being of general interest, the existence statement of Theorem  2.11 is needed below to conclude the convergence of 
minimizers for the variational problems with varying horizon in Sections 3 and 4. We remark that the results presented here are 
new in this generality, but can be derived by following closely the techniques of [18], where the direct method in the calculus of 
variations is applied to the special case of functionals depending on finite-horizon fractional gradients. The adaptation of the proofs 
is straightforward and left to the reader.

Throughout this section, we assume that 𝑝 ∈ (1,∞), 𝛺 ⊂ R𝑛 is a bounded Lipschitz domain, and the kernel 𝜌 satisfies (H0)–(H4) 
and has compact support. The following result, which allows us to translate the nonlocal gradients into classical gradients, can be 
proven by extending (2.2) via density as in [18, Theorem 2  (𝑖)]. 

Lemma 2.9 (From Nonlocal to Local Gradients). The linear map 𝜌 ∶ 𝐻𝜌,𝑝(R𝑛) → 𝑊 1,𝑝(R𝑛), 𝑢 ↦ 𝑄𝜌 ∗ 𝑢 is bounded and it holds for all 
𝑢 ∈ 𝐻𝜌,𝑝(R𝑛) that

𝐷𝜌𝑢 = ∇(𝜌𝑢).

Another ingredient is the strong convergence of nonlocal gradients in the complement of 𝛺, which follows as in [18, Lemma 3] 
by utilizing the compact embedding of 𝐻𝜌,𝑝

0 (𝛺) into 𝐿𝑝(R𝑛) (see Lemma  2.7) and the Leibniz rule in [19, Lemma 3.8]. 

Lemma 2.10 (Strong Convergence in the Complement). Let (𝑢𝑗 )𝑗 ⊂ 𝐻𝜌,𝑝
0 (𝛺) be a sequence that converges weakly to 𝑢 in 𝐻𝜌,𝑝(R𝑛). Then, 

for any 𝜂 > 0 it holds that
𝐷𝜌𝑢𝑗 → 𝐷𝜌𝑢 in 𝐿𝑝((𝛺𝜂)𝑐 ;R𝑛) as 𝑗 → ∞,

recalling the definition 𝛺𝜂 = 𝛺 + 𝐵𝜂(0), see (2.1).

With these two technical tools and the Poincaré inequality from Lemma  2.7 at hand, one can argue as in the sufficiency part 
of [18, Theorem 5] and [18, Corollary 2] to obtain the existence of minimizers for vectorial variational problems with quasiconvex 
integrands. 

Theorem 2.11 (Existence of Minimizers). Let 𝛿 > 0 be such that supp 𝜌 = 𝐵𝛿(0) and let 𝑓 ∶ 𝛺𝛿 × R𝑚×𝑛 → R be a Carathéodory integrand 
such that

𝑐|𝐴|𝑝 − 𝐶 ≤ 𝑓 (𝑥,𝐴) ≤ 𝐶(1 + |𝐴|𝑝) for a.e. 𝑥 ∈ 𝛺𝛿 and all 𝐴 ∈ R𝑚×𝑛.

If 𝐴 ↦ 𝑓 (𝑥,𝐴) is quasiconvex for a.e. 𝑥 ∈ 𝛺, then the functional 

 ∶ 𝐻𝜌,𝑝
0 (𝛺;R𝑚) → R,  (𝑢) ∶= ∫𝛺𝛿

𝑓 (𝑥,𝐷𝜌𝑢) 𝑑𝑥 (2.12)

admits a minimizer.

Note that taking 𝛿 > 0 such that supp 𝜌 = 𝐵𝛿(0) ensures that 𝐷𝜌𝑢 is zero in 𝛺𝑐
𝛿 for all 𝑢 ∈ 𝐻𝜌,𝑝

0 (𝛺). Hence, the functional 
in (2.12) defined as an integral over the bounded set 𝛺𝛿 captures all the non-trivial parts of 𝐷𝜌.

Quasiconvexity, which is well-known to characterize the weak lower semicontinuity of integral functionals in the classical 
case [38,39], is indeed the natural convexity notion also in the context of variational integrals depending on nonlocal gradients. This 
observation can be seen as a generalization of [7, Theorem 1.1] and [18, Theorem 5] and relies on Lemma  2.9 and the following 
inverse translation operator. 

Lemma 2.12 (From Local to Nonlocal Gradients). There is a bounded linear operator 𝜌 ∶ 𝑊 1,𝑝(R𝑛) → 𝐻𝜌,𝑝(R𝑛) such that 𝜌 = (𝜌)−1. 
In particular, for all 𝑣 ∈ 𝑊 1,𝑝(R𝑛) we have

∇𝑣 = 𝐷𝜌(𝜌𝑣).

Proof.  We define the operator

𝜌 ∶ (R𝑛) → (R𝑛), 𝜌𝑣 ∶=
(

𝑣∕𝑄̂𝜌
)∨
,

which is well-defined given that 1∕𝑄̂𝜌 is smooth with polynomially bounded derivatives by Lemma  2.6, (H3) and (H4). It is also 
clear that 𝜌 = (𝜌)−1 and 𝐷𝜌◦𝜌 = ∇ on the space (R𝑛), so it is sufficient to prove that 𝜌 extends to a bounded operator from 
𝑊 1,𝑝(R𝑛) to 𝐿𝑝(R𝑛). By Lemma  2.6, (H3) and the Mihlin-Hörmander theorem (cf. e.g. [35, Theorem 6.2.7]), it can be verified that 
⟨⋅⟩𝜎−1 ∕𝑄̂𝜌 is an 𝐿𝑝-multiplier, where ⟨𝜉⟩ ∶=

√

1 + |𝜉|2 for 𝜉 ∈ R𝑛. Hence, arguing as in [28, Section 2.3], we find that 𝜌 extends to 
a bounded operator from 𝐻1−𝜎,𝑝(R𝑛) to 𝐿𝑝(R𝑛) and, in particular, it is also bounded from 𝑊 1,𝑝(R𝑛) to 𝐿𝑝(R𝑛). □
7 
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The following can now be proven as in [18, Remark 8], given that we have both translation operators 𝜌,𝜌, the Leibniz rule 
from [19, Lemma 3.8], and the compact embedding of 𝐻𝜌,𝑝

0 (𝛺) into 𝐿∞(R𝑛) for 𝑝 > 𝑛∕𝜎 (cf. [19, Theorem 6.5]). 

Corollary 2.13 (Nonlocal Representation of Quasiconvexity). Let 𝛿 > 0 be such that supp 𝜌 = 𝐵𝛿(0). A continuous function ℎ ∶ R𝑚×𝑛 → R
is quasiconvex if and only if

ℎ(𝐴) ≤ 1
|𝛺𝛿| ∫𝛺𝛿

ℎ(𝐴 +𝐷𝜌𝑢) 𝑑𝑥 for all 𝐴 ∈ R𝑚×𝑛 and 𝑢 ∈ 𝐻𝜌,∞
0 (𝛺;R𝑚),

with 𝐻𝜌,∞
0 (𝛺;R𝑚) ∶= {𝑢 ∈ 𝐿∞(R𝑛;R𝑚) ∶ 𝐷𝜌𝑢 ∈ 𝐿∞(R𝑛;R𝑚×𝑛), 𝑢 = 0 a.e. in 𝛺𝑐}.

2.4. Scaled kernels

We introduce here the setting and notations for varying horizon nonlocal gradients obtained via scaling of a fixed nonlocal 
gradient, as they will be used in the limits of vanishing and diverging horizon in Sections 3 and 4.

Our starting point is a radial kernel 𝜌 that satisfies (H0)–(H4) and is normalized in the sense that 

supp 𝜌 = 𝐵1(0) and ∫R𝑛
𝜌 𝑑𝑥 = 𝑛. (2.13)

One can then compute that 

∫R𝑛
𝑄𝜌 𝑑𝑥 = 1,  or equivalently, 𝑄̂𝜌(0) = 1. (2.14)

Notice that the kernels from Example  2.5 can all be rescaled and normalized to satisfy (2.13).
The rescaled family of kernels (𝜌𝛿)𝛿 for horizons 𝛿 > 0 is then defined by 

𝜌𝛿(𝑥) = 𝑐𝛿𝜌
(𝑥
𝛿

)

, 𝑥 ∈ R𝑛, (2.15)

with (𝑐𝛿)𝛿 ⊂ (0,∞) a suitable sequence of scaling factors. Precisely, they are chosen as 𝑐𝛿 = 𝛿−𝑛 for the limit 𝛿 → 0 and as 𝑐𝛿 = 𝜌(1∕𝛿)−1

for the limit 𝛿 → ∞.
We collect here a few general observations about the rescaled kernels and associated gradients. First, it follows that supp 𝜌𝛿 =

𝐵𝛿(0), which makes 𝐷𝜌𝛿  a nonlocal gradient with horizon 𝛿; in particular, the initial gradient 𝐷𝜌 corresponds with the gradient 
𝐷𝜌1  with horizon distance equal to 1. Moreover, the rescaling preserves the key properties of the kernel function, that is, for any 
𝛿 > 0, the kernel 𝜌𝛿 also satisfies (H0)–(H4). This makes all the results in the previous sections applicable to these kernels as well, 
in particular, the existence result of Theorem  2.11. Finally, we observe that the kernel associated to 𝜌𝛿 satisfies 

𝑄𝜌𝛿 = 𝑐𝛿𝑄𝜌
( ⋅
𝛿

)

and 𝑄̂𝜌𝛿 = 𝑐𝛿𝛿
𝑛𝑄̂𝜌(𝛿⋅), (2.16)

where we have used [35, Proposition 2.3.22 (7)] for the interaction between scaling and Fourier transforms.
To highlight the dependence on the horizon parameter, we denote the spaces associated to 𝐷𝜌𝛿  by

𝐻𝜌,𝑝,𝛿(R𝑛) = {𝑢 ∈ 𝐿𝑝(R𝑛) ∶ 𝐷𝜌𝛿 𝑢 ∈ 𝐿𝑝(R𝑛;R𝑛)},

and similarly for 𝐻𝜌,𝑝,𝛿
0 (𝛺); it holds specifically that 𝐻𝜌,𝑝(R𝑛) = 𝐻𝜌,𝑝,1(R𝑛).

3. Localization when 𝜹 → 𝟎

This section is devoted to the localization process, that is, to the asymptotic analysis in the limit of vanishing horizon. We start 
by showing that the suitably scaled nonlocal gradients converge to the classical one as 𝛿 → 0, and subsequently prove compactness 
results uniformly in the horizon parameter 𝛿. Finally, we utilize these tools to establish the 𝛤 -convergence of integral functionals 
depending on scaled nonlocal gradients to their local counterparts as the horizon tends to zero.

For this analysis, we fix a radial kernel 𝜌 that satisfies (H0)–(H4) and (2.13), and consider for 𝛿 ∈ (0, 1], the scaled kernels

𝜌𝛿 =
1
𝛿𝑛
𝜌
( ⋅
𝛿

)

and 𝑄𝜌𝛿 =
1
𝛿𝑛
𝑄𝜌

( ⋅
𝛿

)

,

which corresponds to (2.15) with the scaling factors 𝑐𝛿 = 𝛿−𝑛. Observe that this choice of scaling preserves the normalizations 
∫R𝑛 𝜌𝛿 𝑑𝑥 = 𝑛 and ∫R𝑛 𝑄𝜌𝛿 𝑑𝑥 = 1 for each 𝛿 ∈ (0, 1], and (2.16) specifies to 

𝑄̂𝜌𝛿 = 𝑄̂𝜌(𝛿 ⋅ ). (3.1)

Throughout this section, we take 𝑝 ∈ (1,∞) and assume 𝛺 to be a bounded Lipschitz domain.
8 



J. Cueto et al. Nonlinear Analysis: Real World Applications 85 (2025) 104371 
3.1. Localization of the nonlocal gradient

Here, we present the convergence of the scaled nonlocal gradients to the classical gradient. Starting with the case of smooth 
functions, which features an explicit convergence rate, we subsequently extend the analysis to Sobolev functions on bounded domains 
and the whole space R𝑛. In the case of bounded domains, the nonlocal gradient is defined on a smaller set than the classical one, 
but this difference vanishes as 𝛿 → 0. Closely related localization results can be found in [4,24]. 

Lemma 3.1 (Localization of Nonlocal Gradients). The following statements hold:
(i) For each 𝜑 ∈ 𝐶∞

𝑐 (R𝑛) and for all 𝛿 ∈ (0, 1], one has that 

‖𝐷𝜌𝛿𝜑 − ∇𝜑‖𝐿∞(R𝑛;R𝑛) ≤ 𝛿2Lip(∇2𝜑). (3.2)

In particular, 𝐷𝜌𝛿𝜑→ ∇𝜑 uniformly on R𝑛 as 𝛿 → 0.
(ii) For each 𝑢 ∈ 𝑊 1,𝑝(𝛺), it holds that

1𝛺−𝛿
𝐷𝜌𝛿 𝑢 → ∇𝑢 in 𝐿𝑝(𝛺;R𝑛) as 𝛿 → 0;

recall that 𝛺−𝛿 ∶= {𝑥 ∈ 𝛺 ∶ dist(𝑥,𝛺𝑐 ) > 𝛿}.
(iii) For each 𝑢 ∈ 𝑊 1,𝑝(R𝑛), one has that 𝑢 ∈ 𝐻𝜌𝛿 ,𝑝(R𝑛) for all 𝛿 ∈ (0, 1], and

𝐷𝜌𝛿 𝑢 → ∇𝑢 in 𝐿𝑝(R𝑛;R𝑛) as 𝛿 → 0.

Proof.  Part (𝑖): Let 𝜓 ∈ 𝐶∞
𝑐 (R𝑛;R𝑛). Then the multivariate version of Taylor’s theorem with integral remainder shows for 𝑥 ∈ R𝑛

that

|𝑄𝜌𝛿 ∗ 𝜓(𝑥) − 𝜓(𝑥)| =
|

|

|

|

|

∫𝐵𝛿 (𝑥)
𝑄𝜌𝛿 (𝑥 − 𝑦)

(

𝜓(𝑦) − 𝜓(𝑥)
)

𝑑𝑦
|

|

|

|

|

≤
|

|

|

|

|

∫𝐵𝛿 (𝑥)
𝑄𝜌𝛿 (𝑥 − 𝑦)∇𝜓(𝑥)(𝑦 − 𝑥) 𝑑𝑦

|

|

|

|

|

+ ∫𝐵𝛿 (𝑥)
𝑄𝜌𝛿 (𝑥 − 𝑦)

|

|

|

|

|

∫

1

0

(

∇𝜓(𝑥 + 𝑡(𝑦 − 𝑥)) − ∇𝜓(𝑥)
)

(𝑦 − 𝑥) 𝑑𝑡
|

|

|

|

|

𝑑𝑦

≤ 𝛿2Lip(∇𝜓)∫𝐵𝛿 (𝑥)
𝑄𝜌𝛿 (𝑥 − 𝑦) 𝑑𝑦 = 𝛿2Lip(∇𝜓),

where we have used that ‖𝑄𝜌𝛿‖𝐿1(R𝑛) = 1, and also the radiality of 𝑄𝜌𝛿  to cancel the term in the second line. Applying this estimate 
with 𝜓 = ∇𝜑 for any 𝜑 ∈ 𝐶∞

𝑐 (R𝑛) proves the claim in light of (2.2).
Part (𝑖𝑖): Since 𝑢 ∈ 𝑊 1,𝑝(𝛺), the nonlocal gradient 𝐷𝜌𝛿 𝑢 is well-defined in 𝛺−𝛿 and coincides with 𝑄𝜌𝛿 ∗ ∇𝑢 on this set (cf. [19, 

Proposition 3.5]).  Let 𝑗 ∈ N and choose 𝜑𝑗 ∈ 𝐶∞
𝑐 (R𝑛) such that

‖𝜑𝑗 − 𝑢‖𝑊 1,𝑝(𝛺) ≤
1
𝑗
,

which is possible as 𝛺 is a bounded Lipschitz domain by assumption. Additionally, we can choose 𝛿 = 𝛿(𝑗) small enough in light of 
Part (𝑖) such that

‖𝐷𝜌𝛿𝜑𝑗 − ∇𝜑𝑗‖𝐿𝑝(𝛺;R𝑛) ≤
1
𝑗

and ‖∇𝑢‖𝐿𝑝(𝛺⧵𝛺−𝛿 ;R𝑛) ≤
1
𝑗
.

The previous estimates along with (2.2) then imply
‖1𝛺−𝛿

𝐷𝜌𝛿 𝑢 − ∇𝑢‖𝐿𝑝(𝛺;R𝑛) ≤ ‖𝐷𝜌𝛿 𝑢 −𝐷𝜌𝛿𝜑𝑗‖𝐿𝑝(𝛺−𝛿 ;R𝑛) + ‖𝐷𝜌𝛿𝜑𝑗 − ∇𝜑𝑗‖𝐿𝑝(𝛺−𝛿 ;R𝑛)

+ ‖∇𝜑𝑗 − ∇𝑢‖𝐿𝑝(𝛺−𝛿 ;R𝑛) + ‖∇𝑢‖𝐿𝑝(𝛺⧵𝛺−𝛿 ;R𝑛)

≤ ‖𝑄𝜌𝛿 ∗ ∇𝑢 −𝑄𝜌𝛿 ∗ ∇𝜑𝑗‖𝐿𝑝(𝛺−𝛿 ;R𝑛) +
3
𝑗

≤ ‖𝑄𝜌𝛿‖𝐿1(R𝑛)‖∇𝑢 − ∇𝜑𝑗‖𝐿𝑝(𝛺;R𝑛) +
3
𝑗
≤ 4
𝑗
,

where the last line is due to Young’s convolution inequality.
Part (𝑖𝑖𝑖): This follows with similar arguments as in Part  (𝑖𝑖) or, alternatively, from [24, Theorem C] with  = ∇. □

Remark 3.2.  (a) In view of estimate (3.2), 𝐷𝜌𝛿  converges to ∇ quadratically in 𝛿, given that ∇2𝜑 is Lipschitz continuous. More 
generally, if 𝜑 is twice differentiable such that ∇2𝜑 is 𝛼-Hölder continuous with 𝛼 ∈ (0, 1], a similar argument induces the convergence 
rate 𝛿1+𝛼 , while for a differentiable 𝜑 with 𝛼-Hölder continuous gradient, convergence takes place at a rate of 𝛿𝛼 .

(b) Our 𝛤 -convergence result in Section 3.3 is formulated for admissible functions with prescribed Dirichlet conditions in the 
complement of 𝛺. Therefore, Lemma  3.1 (𝑖𝑖𝑖) is sufficient for these purposes. However, the sharper result in Part  (𝑖𝑖) for bounded 
domains can be useful in the future for studying vanishing-horizon limits in more general settings, such as the Neumann-type 
problems considered in [28]. ▵
9 



J. Cueto et al. Nonlinear Analysis: Real World Applications 85 (2025) 104371 
3.2. Compactness uniformly in 𝛿 ∈ (0, 1]

In this section, we establish a compactness result for the nonlocal gradients that hold uniformly in the horizon parameter. The 
following theorem, which is also interesting in its own right (cf. (3.4) below), serves as a technical basis by providing a comparison 
between the norms of the nonlocal gradients with different horizons; this includes also the classical gradient, denoted for consistency 
by 𝐷𝜌0 ∶= ∇. Our proof relies on Fourier multiplier theory and takes inspiration from the one of [19, Theorem 7.2] for comparing 
Sobolev spaces associated to different nonlocal gradients. 

Theorem 3.3 (Comparison Between Scaled Nonlocal Gradients). Let 𝛿 > 0 and (𝛿1, 𝛿2) ∈ [𝛿, 1] × [0, 1]. Then, there exists a constant 
𝐶 = 𝐶(𝜌, 𝑛, 𝑝, 𝛿) > 0 such that

‖𝐷𝜌𝛿1
𝜑‖𝐿𝑝(R𝑛;R𝑛) ≤ 𝐶‖𝐷𝜌𝛿2

𝜑‖𝐿𝑝(R𝑛;R𝑛) for all 𝜑 ∈ 𝐶∞
𝑐 (R𝑛).

Proof.  Define the function 𝑚𝛿1 ,𝛿2 ∶ R𝑛 ⧵ {0} → (0,∞) by

𝑚𝛿1 ,𝛿2 (𝜉) ∶=
𝑄̂𝜌(𝛿1𝜉)

𝑄̂𝜌(𝛿2𝜉)
,

recalling that 𝑄̂𝜌 is non-negative. Then, we find in view of (2.3) and (3.1) that

𝐷𝜌𝛿1
𝜑 = 𝑚𝛿1 ,𝛿2𝐷𝜌𝛿2

𝜑.

for every 𝜑 ∈ 𝐶∞
𝑐 (R𝑛); in particular, the case 𝛿2 = 0 is valid given that 𝑄̂𝜌(0) = 1. It now suffices to show with the help the 

Mihlin-Hörmander theorem (cf. e.g. [35, Theorem 6.2.7]) that 𝑚𝛿1 ,𝛿2  are 𝐿𝑝-multipliers with estimates independent of 𝛿1 and 𝛿2. To 
this aim, we need to prove that for every 𝛼 ∈ N𝑛0 with |𝛼| ≤

𝑛
2 + 1, 

|

|

|

𝜕𝛼𝑚𝛿1 ,𝛿2 (𝜉)
|

|

|

≤ 𝐶|𝜉|−|𝛼| for all 𝜉 ≠ 0 (3.3)

with a constant 𝐶 > 0 depending only on 𝑛, 𝜌 and 𝛿.
To this aim, note that the second part of Lemma  2.6 together with the Leibniz and quotient rules for differentiation imply

|𝜕𝛼𝑚𝛿1 ,𝛿2 (𝜉)| ≤ 𝐶|𝜉|−|𝛼||𝑚𝛿1 ,𝛿2 (𝜉)| for all 𝜉 ≠ 0

with 𝐶 = 𝐶(𝑛) > 0.  Therefore, it only remains to verify (3.3) for 𝛼 = 0, that is, we need to show 𝑚𝛿1 ,𝛿2  is uniformly bounded 
independent of 𝛿1 and 𝛿2. We prove this by distinguishing two cases.

Case 1: 𝛿1 ≥ 𝛿2. For 0 < |𝜉| ≤ 1
𝛿2𝜀

 with 𝜀 > 0 the parameter in the hypotheses (H0)-(H4), one can estimate

|

|

|

𝑚𝛿1 ,𝛿2 (𝜉)
|

|

|

=
|

|

|

|

|

|

𝑄̂𝜌(𝛿1𝜉)

𝑄̂𝜌(𝛿2𝜉)

|

|

|

|

|

|

≤
(

min𝐵1∕𝜀(0)
𝑄̂𝜌

)−1,

considering that ‖𝑄̂𝜌‖𝐿∞(R𝑛) ≤ ‖𝑄𝜌‖𝐿1(R𝑛) = 1 by (2.14). On the other hand, we infer for |𝜉| ≥ 1
𝛿2𝜀

 from Lemma  2.6 that

|𝑚𝛿1 ,𝛿2 (𝜉)| =
|

|

|

|

|

|

𝑄̂𝜌(𝛿1𝜉)

𝑄̂𝜌(𝛿2𝜉)

|

|

|

|

|

|

≤ 𝐶
(

𝛿2
𝛿1

)𝑛 𝜌
(

1
𝛿1|𝜉|

)

𝜌
(

1
𝛿2|𝜉|

) = 𝐶
(

𝛿2
𝛿1

)1−𝛾 𝜌
(

1
𝛿1|𝜉|

)(

1
𝛿1|𝜉|

)𝑛+𝛾−1

𝜌
(

1
𝛿2|𝜉|

)(

1
𝛿2|𝜉|

)𝑛+𝛾−1

≤ 𝐶
(

𝛿2
𝛿1

)1−𝛾
≤ 𝐶𝛿𝛾−1,

where the second inequality uses the almost monotonicity in (H4).
Case 2: 𝛿1 ≤ 𝛿2. Similarly as in Case 1, we obtain for 0 < |𝜉| ≤ 1

𝛿1𝜀
 that

|

|

|

𝑚𝛿1 ,𝛿2 (𝜉)
|

|

|

=
|

|

|

|

|

|

𝑄̂𝜌(𝛿1𝜉)

𝑄̂𝜌(𝛿2𝜉)

|

|

|

|

|

|

≤
(

min𝐵𝛿2∕(𝛿1𝜀)(0)
𝑄̂𝜌

)−1 ≤
(

min𝐵1∕(𝛿𝜀)(0)
𝑄̂𝜌

)−1,

and for |𝜉| ≥ 1∕(𝛿1𝜀) by Lemma  2.6 that

|𝑚𝛿1 ,𝛿2 (𝜉)| =
|

|

|

|

|

|

𝑄̂𝜌(𝛿1𝜉)

𝑄̂𝜌(𝛿2𝜉)

|

|

|

|

|

|

≤ 𝐶
(

𝛿2
𝛿1

)𝑛 𝜌
(

1
𝛿1|𝜉|

)

𝜌
(

1
𝛿2|𝜉|

) ≤ 𝐶
(

𝛿2
𝛿1

)1−𝜎
≤ 𝐶𝛿𝜎−1,

with the second inequality due to (H3).
Finally, combining the two cases shows that |𝑚 (𝜉)| ≤ 𝐶 = 𝐶(𝜌, 𝛿) for all 𝜉 ≠ 0, which concludes the proof. □
|

|

𝛿1 ,𝛿2 |

|

10 
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Together with a density argument, the previous theorem shows that 𝐻𝜌,𝑝,𝛿1 (R𝑛) = 𝐻𝜌,𝑝,𝛿2 (R𝑛) and 𝐻𝜌,𝑝,𝛿1
0 (𝛺) = 𝐻𝜌,𝑝,𝛿2

0 (𝛺) for all 
𝛿1, 𝛿2 ∈ (0, 1] or equivalently, that 

𝐻𝜌,𝑝,𝛿(R𝑛) = 𝐻𝜌,𝑝(R𝑛) and 𝐻𝜌,𝑝,𝛿
0 (𝛺) = 𝐻𝜌,𝑝

0 (𝛺)  for all 𝛿 ∈ (0, 1]. (3.4)

In fact, by inspecting the proof of Theorem  3.3, it is not hard to see that (3.4) holds for all 𝛿 > 0, which shows that our nonlocal 
function spaces do not depend on the horizon parameter 𝛿. Based on this observation, we obtain the following corollary as a 
consequence of (2.11). 

Corollary 3.4.  There exists a constant 𝐶 = 𝐶(𝜌, 𝑛,𝛺, 𝑝) > 0 such that
‖𝑢‖𝐻𝜎,𝑝(R𝑛) ≤ 𝐶‖𝐷𝜌𝛿 𝑢‖𝐿𝑝(𝛺𝛿 ;R𝑛) for all 𝑢 ∈ 𝐻𝜌,𝑝,𝛿

0 (𝛺) and 𝛿 ∈ (0, 1].

Remark 3.5.  We observe that there is another way of proving Corollary  3.4 that does not pass through the stronger statement of 
Theorem  3.3. For this alternative argument, it suffices to require that the kernel 𝜌 satisfies (H0)–(H2) and

lim inf
|𝑥|→0

𝜌(𝑥)|𝑥|𝑛+𝜎−1 > 0.

Indeed, one can compare 𝜌𝛿 with the kernel from Example  2.5 (a) for 𝑠 = 𝜎 by arguing as in [19, Theorem 7.2] and checking that the 
constants are independent of 𝛿. When 𝑝 = 2, even (H2) is not necessary (cf. [19, Theorem 7.2]), so that also the truncated fractional 
gradients in Remark  2.8 are covered. ▵

In order to ensure the existence of convergent subsequences required for the forthcoming 𝛤 -convergence result (see Theorem 
3.7), we proceed with the following compactness statement.

Lemma 3.6 (Convergent Subsequences for Vanishing Horizon). Let (𝛿𝑗 )𝑗 ⊂ (0, 1] be a sequence with 𝛿𝑗 → 0 and suppose that 𝑢𝑗 ∈ 𝐻
𝜌,𝑝,𝛿𝑗
0 (𝛺)

for each 𝑗 ∈ N with
sup
𝑗∈N

‖𝐷𝜌𝛿𝑗
𝑢𝑗‖𝐿𝑝(𝛺𝛿𝑗 ;R𝑛) < ∞.

Then, there is a 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺) (extended to R𝑛 as zero) such that, up to a non-relabeled subsequence,

𝑢𝑗 → 𝑢 in 𝐿𝑝(R𝑛) and 𝐷𝜌𝛿𝑗
𝑢𝑗 ⇀ ∇𝑢 in 𝐿𝑝(R𝑛;R𝑛) as 𝑗 → ∞.

Proof.  By Corollary  3.4, the sequence (𝑢𝑗 )𝑗 is bounded in 𝐻𝜎,𝑝(R𝑛). Since each 𝑢𝑗 is supported in 𝛺, we conclude from the compact 
embedding 𝐻𝜎,𝑝(R𝑛) ↪↪ 𝐿𝑝loc(R

𝑛) (cf. (2.7)) that there is a 𝑢 ∈ 𝐿𝑝(R𝑛) with 𝑢 = 0 a.e. in 𝛺𝑐 such that, up to a non-relabeled 
subsequence,

𝑢𝑗 → 𝑢  in 𝐿𝑝(R𝑛) as 𝑗 → ∞.

Moreover, up to extracting a potential further subsequence, we find that 𝐷𝜌𝛿𝑗
𝑢𝑗 ⇀ 𝑉  in 𝐿𝑝(R𝑛;R𝑛) for some 𝑉 ∈ 𝐿𝑝(R𝑛;R𝑛). To 

deduce that 𝑉 = ∇𝑢, we compute for 𝜑 ∈ 𝐶∞
𝑐 (R𝑛) that

∫R𝑛
𝑉 𝜑𝑑𝑥 = lim

𝑗→∞∫R𝑛
𝐷𝜌𝛿𝑗

𝑢𝑗 𝜑𝑑𝑥

= − lim
𝑗→∞∫R𝑛

𝑢𝑗 𝐷𝜌𝛿𝑗
𝜑𝑑𝑥

= −∫R𝑛
𝑢∇𝜑𝑑𝑥,

where the last equality follows from the localization result for the nonlocal gradients in Lemma  3.1 (𝑖). This shows that 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺)

(extended to R𝑛 as zero) with ∇𝑢 = 𝑉 , which finishes the proof. □

3.3. 𝛤 -Convergence 𝛿 → 0

We are now in the position to make the conjectured localization of our variational problems in the limit 𝛿 → 0 rigorous, choosing 
𝛤 -convergence as a natural framework.

Before stating the theorem, let us collect the relevant objects. The family of vectorial energy functionals (𝛿)𝛿∈(0,1] with 𝛿 ∶
𝐿𝑝(R𝑛;R𝑚) → R∞ ∶= R ∪ {∞} for 𝛿 ∈ (0, 1] is given by 

𝛿(𝑢) ∶=
⎧

⎪

⎨

⎪

⎩

∫𝛺𝛿
𝑓 (𝑥,𝐷𝜌𝛿 𝑢) 𝑑𝑥 for 𝑢 ∈ 𝐻𝜌,𝑝,𝛿

0 (𝛺;R𝑚),

∞ else,
(3.5)

where 𝑓 ∶ 𝛺1 × R𝑚×𝑛 → R is a suitable Carathéodory integrand; considering that the functions in the domain of 𝛿 are defined on 
R𝑛 with zero Dirichlet conditions in 𝛺𝑐 , we may take, without loss of generality, the integrals over the bounded set 𝛺 .
𝛿

11 
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As prospective limit functional, we introduce 0 ∶ 𝐿𝑝(R𝑛;R𝑚) → R∞ given by 

0(𝑢) ∶=

⎧

⎪

⎨

⎪

⎩

∫𝛺
𝑓 (𝑥,∇𝑢) 𝑑𝑥 for 𝑢 ∈ 𝑊 1,𝑝

0 (𝛺;R𝑚),

∞ else;
(3.6)

here, functions in 𝑊 1,𝑝
0 (𝛺;R𝑚) are identified with their extension to R𝑛 as zero.

Theorem 3.7 (Localization for Vanishing Horizon Via 𝛤 -Convergence).  Let 𝑓 ∶ 𝛺1 × R𝑚×𝑛 → R be a Carathéodory integrand such that
𝑐|𝐴|𝑝 − 𝐶 ≤ 𝑓 (𝑥,𝐴) ≤ 𝐶(1 + |𝐴|𝑝) for a.e. 𝑥 ∈ 𝛺1 and all 𝐴 ∈ R𝑚×𝑛

with 𝑐, 𝐶 > 0. If 𝑓 (𝑥, ⋅) is quasiconvex for a.e. 𝑥 ∈ 𝛺, then the family (𝛿)𝛿∈(0,1] in (3.5) 𝛤 -converges with respect to 𝐿𝑝(R𝑛;R𝑚)-convergence 
to the functional 0 in (3.6) as 𝛿 → 0, that is,

𝛤 (𝐿𝑝)- lim
𝛿→0

𝛿 = 0.

Additionally, (𝛿)𝛿 is equi-coercive with respect to convergence in 𝐿𝑝(R𝑛;R𝑚).

Proof.  Let (𝛿𝑗 )𝑗 ⊂ (0, 1] be a sequence converging to 0 as 𝑗 → ∞.
Equi-coercivity: By the growth bound on 𝑓 from below and Corollary  3.4, we deduce that there are constants 𝑐′, 𝐶 ′ > 0 such that

𝛿𝑗 (𝑢) ≥ 𝑐′‖𝑢‖𝐻𝜎,𝑝(R𝑛) − 𝐶 ′

for all 𝑗 ∈ N and 𝑢 ∈ 𝐻
𝜌,𝑝,𝛿𝑗
0 (𝛺;R𝑚). This yields the equi-coercivity, given the compact embedding of 𝐻𝜎,𝑝(R𝑛) into 𝐿𝑝loc(R𝑛), cf. (2.7).

Liminf-inequality: Let (𝑢𝑗 )𝑗 ⊂ 𝐿𝑝(R𝑛;R𝑚) with 𝑢𝑗 → 𝑢 in 𝐿𝑝(R𝑛;R𝑚). Assuming without loss of generality that
lim inf
𝑗→∞

𝛿𝑗 (𝑢𝑗 ) = lim
𝑗→∞

𝛿𝑗 (𝑢𝑗 ) <∞,

we have that 𝑢𝑗 ∈ 𝐻
𝜌,𝑝,𝛿𝑗
0 (𝛺;R𝑚) for each 𝑗 ∈ N and

sup
𝑗∈N

‖𝐷𝜌𝛿𝑗
𝑢𝑗‖𝐿𝑝(𝛺𝛿𝑗 ;R𝑚) < ∞,

due to the lower bound on 𝑓 . Lemma  3.6 therefore yields a 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺;R𝑚) (extended to R𝑛 as zero) such that 𝐷𝜌𝛿𝑗

𝑢𝑗 ⇀ ∇𝑢 in 
𝐿𝑝(R𝑛;R𝑚×𝑛). If we use translation operators as in Lemma  2.9 to define

𝑣𝑗 ∶= 𝜌𝛿𝑗 𝑢𝑗 = 𝑄𝜌𝛿𝑗 ∗ 𝑢𝑗  for 𝑗 ∈ N,

then (𝑣𝑗 )𝑗 is a bounded sequence in 𝑊 1,𝑝(R𝑛;R𝑚) with ∇𝑣𝑗 = 𝐷𝜌𝛿𝑗
𝑢𝑗 ⇀ ∇𝑢 in 𝐿𝑝(R𝑛;R𝑚×𝑛) as 𝑗 → ∞. Consequently, it even holds that 

𝑣𝑗 ⇀ 𝑢 in 𝑊 1,𝑝(R𝑛;R𝑚), considering that the functions 𝑣𝑗 are zero outside of 𝛺1 for each 𝑗 ∈ N.  A standard lower semicontinuity 
result for functionals with quasiconvex integrands (cf. [39, Theorem 8.11]) then implies

lim inf
𝑗→∞

𝛿𝑗 (𝑢𝑗 ) = lim inf
𝑗→∞ ∫𝛺𝛿𝑗

𝑓 (𝑥,𝐷𝜌𝛿𝑗
𝑢𝑗 ) 𝑑𝑥

≥ lim inf
𝑗→∞ ∫𝛺

𝑓 (𝑥,𝐷𝜌𝛿𝑗
𝑢𝑗 ) 𝑑𝑥 − 𝐶|𝛺𝛿𝑗 ⧵𝛺|

= lim inf
𝑗→∞ ∫𝛺

𝑓 (𝑥,∇𝑣𝑗 ) 𝑑𝑥 ≥ ∫𝛺
𝑓 (𝑥,∇𝑢) 𝑑𝑥 = 0(𝑢),

which is the desired liminf-inequality.
Recovery sequence: Without loss of generality, consider 𝑢 ∈ 𝑊 1,𝑝

0 (𝛺;R𝑚). Then, we infer from Lemma  3.1 (𝑖𝑖𝑖) that 𝑢 ∈
𝐻
𝜌,𝑝,𝛿𝑗
0 (𝛺;R𝑚) for all 𝑗 ∈ N with 𝐷𝜌𝛿𝑗

𝑢 → ∇𝑢 in 𝐿𝑝(R𝑛;R𝑚×𝑛) as 𝑗 → ∞. The upper bound on 𝑓 enables the application of Lebesgue’s 
dominated convergence theorem to find

lim
𝑗→∞

𝛿𝑗 (𝑢) = lim
𝑗→∞∫𝛺𝛿𝑗

𝑓 (𝑥,𝐷𝜌𝛿𝑗
𝑢) 𝑑𝑥 = ∫𝛺

𝑓 (𝑥,∇𝑢) 𝑑𝑥 = 0(𝑢).

This shows that the constant sequence is a suitable recovery sequence. □

Remark 3.8.  (a) Under the assumptions of Theorem  3.7, for every 𝛿 ∈ (0, 1], the functional 𝛿 admits a minimizer according to 
Theorem  2.11.  Therefore, standard properties of 𝛤 -convergence imply that these minimizers converge, up to subsequence, to a 
minimizer of 0 as 𝛿 → 0.

Referring to the literature, a closely related 𝛤 -convergence result involving similar nonlocal gradients in the case 𝑚 = 1 can be 
found in [4, Theorem 1.7]. However, the latter does not feature the equi-coercivity required for the convergence of minimizers.

(b) Since the definition of 𝐷𝜌𝛿 𝑢 on 𝛺𝛿 only depends on the values of 𝑢 in 𝛺2𝛿 , the Dirichlet condition in 𝛺𝑐 can be equivalently 
replaced by prescribing zero values in 𝛺 ⧵𝛺. We remark that the papers [11, Theorem 6.1] and [18, Corollary 2] on finite-horizon 
2𝛿
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fractional gradients use a slightly different convention by considering the gradients on 𝛺 and requiring Dirichlet conditions in 
𝛺𝛿 ⧵ 𝛺−𝛿 . Clearly, both settings are equivalent by a suitable renaming of the domain. The reason for our choice is that only the 
setting used here is meaningful for both limit passages 𝛿 → 0 and 𝛿 → ∞.

(c) Theorem  3.7 can readily be extended to non-zero complementary values, that is, to admissible functions in the spaces 
𝑔 +𝐻𝜌,𝑝,𝛿

0 (𝛺;R𝑚) for any given 𝑔 ∈ 𝑊 1,𝑝(R𝑛;R𝑚). Indeed, since 𝑔 ∈ 𝐻𝜌,𝑝,𝛿(𝛺;R𝑚) for all 𝛿 > 0 with
‖𝐷𝜌𝛿 𝑔‖𝐿𝑝(R𝑛;R𝑚×𝑛) ≤ ‖𝑄𝜌𝛿‖𝐿1(R𝑛)‖∇𝑔‖𝐿𝑝(R𝑛;R𝑚×𝑛) = ‖∇𝑔‖𝐿𝑝(R𝑛;R𝑚×𝑛),

the argument follows through in the same manner with the domain of the 𝛤 -limit being 𝑔 +𝑊 1,𝑝
0 (𝛺;R𝑚). ▵

Example 3.9.  By applying Theorem  3.7 to the kernels of Example  2.5, we obtain the localization of functionals as in (3.5) with 
nonlocal gradients associated to the following scaled kernels:

(a) For 𝜌 as in Example  2.5 (a), one finds that

𝜌𝛿(𝑥) = 𝛿−𝑛
𝑤(𝑥∕𝛿)

|𝑥∕𝛿|𝑛+𝑠−1
= 𝛿𝑠−1

𝑤(𝑥∕𝛿)
|𝑥|𝑛+𝑠−1

, 𝑥 ∈ R𝑛 ⧵ {0}.

These scaled kernels coincide (up to a constant) with finite-horizon fractional gradients 𝐷𝑠
𝛿 from [6,11,18,28]. Theorem  3.7 then 

complements the localization result for 𝑠 ↑ 1 in [18, Theorem 7].
(b) The scaled versions of the kernels 𝜌 in Example  2.5 (b) read as

𝜌𝛿(𝑥) = 𝛿−𝑛
𝑤(𝑥∕𝛿) log𝜅 (𝛿∕|𝑥|)

|𝑥∕𝛿|𝑛+𝑠−1
= 𝛿𝑠−1

𝑤(𝑥∕𝛿)(log(𝛿) − log(|𝑥|))𝜅

|𝑥|𝑛+𝑠−1
, 𝑥 ∈ R𝑛 ⧵ {0}.

(c) With 𝜌 as in Example  2.5 (c), the scaled kernels are given by

𝜌𝛿(𝑥) = 𝛿−𝑛
𝑤(𝑥∕𝛿)

|𝑥∕𝛿|𝑛+𝑠(|𝑥∕𝛿|)−1
= 𝛿𝑠(|𝑥∕𝛿|)−1

𝑤(𝑥∕𝛿)
|𝑥|𝑛+𝑠(|𝑥∕𝛿|)−1

, 𝑥 ∈ R𝑛 ⧵ {0}. ▵

4. 𝜞 -Convergence 𝜹 → ∞

We focus now on the asymptotics of the nonlocal gradient as the horizon 𝛿 diverges to infinity. As proven below, the associated 
limiting object is the Riesz fractional gradient. While this is to be expected for finite-horizon fractional gradients, surprisingly, the 
same holds when starting from any general nonlocal gradient within our setting.  This section is structured in parallel to Section 3, 
showing first the convergence of the nonlocal gradients to the Riesz fractional gradient, then providing a uniform compactness 
result, and finally, proving the 𝛤 -convergence of the associated energy functionals.

Let 𝜌 again be a non-negative radial kernel that satisfies (H0)–(H4) and (2.13), and assume throughout that 𝑝 ∈ (1,∞) and 𝛺 is a 
bounded Lipschitz domain. The lack of integrability of the fractional kernel on R𝑛 calls for a different scaling procedure compared 
with Section 3.  Precisely, for 𝛿 ∈ (1∕𝜀,∞) (so that 𝜌(1∕𝛿) ≠ 0), we now define 

𝜌𝛿(𝑥) ∶= 𝜌
( 1
𝛿

)−1
𝜌
(𝑥
𝛿

)

, (4.1)

which corresponds to (2.15) with 𝑐𝛿 ∶= 𝜌(1∕𝛿)−1. In this way, the values of 𝜌𝛿 on the unit sphere 𝜕𝐵1(0) are normalized to 1 for any 
𝛿. In addition, we require that these kernels converge pointwise on R𝑛 ⧵ {0} as 𝛿 → ∞, and set 

𝜌∞(𝑥) ∶= lim
𝛿→∞

𝜌𝛿(𝑥) = lim
𝛿→∞

𝜌
( 1
𝛿

)−1
𝜌
(𝑥
𝛿

)

, 𝑥 ∈ R𝑛 ⧵ {0}. (4.2)

With the scaling (4.1), the kernel function 𝑄𝜌𝛿  and its Fourier transform satisfy 

𝑄𝜌𝛿 = 𝜌
( 1
𝛿

)−1
𝑄𝜌

( ⋅
𝛿

)

and 𝑄̂𝜌𝛿 = 𝛿𝑛𝜌
( 1
𝛿

)−1
𝑄̂𝜌(𝛿 ⋅ ). (4.3)

Let us point out that our chosen scaling is, up to a constant, the only relevant one. Indeed, if there is a sequence (𝑐𝛿)𝛿 of positive 
reals such that (𝑐𝛿𝜌(⋅∕𝛿))𝛿 converges pointwise as 𝛿 → ∞, then for 𝑥 ∈ 𝜕𝐵1(0),

lim
𝛿→∞

𝑐𝛿𝜌
(𝑥
𝛿

)

= lim
𝛿→∞

𝑐𝛿𝜌
( 1
𝛿

)

=∶ 𝑐.

Therefore, we obtain for all 𝑥 ∈ R𝑛 ⧵ {0} that

lim
𝛿→∞

𝑐𝛿𝜌
(𝑥
𝛿

)

= lim
𝛿→∞

𝑐𝛿𝜌
( 1
𝛿

)

𝜌
( 1
𝛿

)−1
𝜌
(𝑥
𝛿

)

= 𝑐𝜌∞(𝑥).

4.1. Convergence of nonlocal gradients as 𝛿 → ∞

This section is about establishing that the scaled nonlocal gradients converge to the Riesz fractional gradient as 𝛿 → ∞. We 
commence with some bounds on 𝜌𝛿 from (4.1) and the limit kernel 𝜌∞ that will be used repeatedly later. Recall that 𝜀 > 0 is as in 
(H0)–(H4), and that 𝜎, 𝛾 with 0 < 𝜎 ≤ 𝛾 < 1 are the parameters appearing in the hypotheses (H3) and (H4), respectively. 
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Lemma 4.1.  There exist constants 𝐶, 𝑐 > 0 such that for every 𝛿 > 1∕𝜀 and all 𝑥 ∈ 𝐵𝛿𝜀(0) ⧵ {0}, 

𝑐min
{

1
|𝑥|𝑛+𝜎−1

, 1
|𝑥|𝑛+𝛾−1

}

≤ 𝜌𝛿(𝑥) ≤ 𝐶 max
{

1
|𝑥|𝑛+𝜎−1

, 1
|𝑥|𝑛+𝛾−1

}

. (4.4)

In particular, it holds for all 𝑥 ∈ R𝑛 ⧵ {0} that

𝑐min
{

1
|𝑥|𝑛+𝜎−1

, 1
|𝑥|𝑛+𝛾−1

}

≤ 𝜌∞(𝑥) ≤ 𝐶 max
{

1
|𝑥|𝑛+𝜎−1

, 1
|𝑥|𝑛+𝛾−1

}

.

Proof.  Observe first that by (H3) and (H4), there are constants 𝑐′, 𝐶 ′ > 0 such that 

𝑐′
( 𝑡
𝑟

)𝑛+𝛾−1
𝜌(𝑡) ≤ 𝜌(𝑟) ≤ 𝐶 ′

( 𝑡
𝑟

)𝑛+𝜎−1
𝜌(𝑡) (4.5)

for all 𝑡, 𝑟 ∈ (0, 𝜀) with 𝑟 ≥ 𝑡.
Let 𝑥 ∈ 𝐵𝛿𝜀(0). If |𝑥| ≥ 1, we can apply (4.5) with the choice 𝑟 = |𝑥|∕𝛿 and 𝑡 = 1∕𝛿 to find

𝑐′

|𝑥|𝑛+𝛾−1
≤ 𝜌

( 1
𝛿

)−1
𝜌
(

|𝑥|
𝛿

)

≤ 𝐶 ′

|𝑥|𝑛+𝜎−1
.

As for the case 0 < |𝑥| ≤ 1, we resort to (4.5) as well, but take 𝑟 = 1∕𝛿 and 𝑡 = |𝑥|∕𝛿 instead, which gives
1

𝐶 ′
|𝑥|𝑛+𝜎−1

≤ 𝜌
( 1
𝛿

)−1
𝜌
(

|𝑥|
𝛿

)

≤ 1
𝑐′|𝑥|𝑛+𝛾−1

.

We conclude that (4.4) holds for suitably chosen constants 𝑐, 𝐶. □

As the next lemma shows, 𝜌∞ must be a fractional kernel, no matter the specific choice of 𝜌. This finding is a key ingredient for 
proving that only Riesz fractional gradients can be obtained as the limit of increasing horizon nonlocal gradients with the scaled 
sequence of kernels 𝜌𝛿 .

Lemma 4.2 (Limit Kernel 𝜌∞ is Fractional).  There is 𝑠∞ ∈ [𝜎, 𝛾] such that 𝜌∞ in (4.2) satisfies

𝜌∞(𝑥) = 𝜌𝑠∞ (𝑥) ∶= 1
|𝑥|𝑛+𝑠∞−1

for all 𝑥 ∈ R𝑛 ⧵ {0}.

Proof.  Our argument relies on proving that 𝜌∞ is a multiplicative function. To this aim, we consider 𝑟, 𝑡 > 0 and compute that

𝜌∞(𝑟 ⋅ 𝑡) = lim
𝛿→∞

𝜌
( 1
𝛿

)−1
𝜌
( 𝑟 ⋅ 𝑡
𝛿

)

= lim
𝛿→∞

𝜌
( 1
𝛿

)−1
𝜌
( 𝑟
𝛿

)

𝜌
( 𝑟
𝛿

)−1
𝜌
( 𝑟 ⋅ 𝑡
𝛿

)

= 𝜌∞(𝑟) lim
𝛿→∞

𝜌
(

1
𝛿∕𝑟

)−1
𝜌
(

𝑡
𝛿∕𝑟

)

= 𝜌∞(𝑟)𝜌∞(𝑡).

Since 𝜌∞ is also locally bounded away from 0 by Lemma  4.1, we deduce that 𝜌∞ must be a power function (cf. [40, Chapter 3, 
Proposition 6]). Together with Lemma  4.1, it follows therefore that 𝜌∞(𝑥) = 1∕|𝑥|𝑛+𝑠∞−1 for some 𝑠∞ ∈ [𝜎, 𝛾]. □

Remark 4.3.  The parameter 𝑠∞ associated to a limit kernel 𝜌∞ can be determined directly from 𝜌 via the limit
𝑠∞ = log(𝜌∞(1∕𝑒)) − 𝑛 + 1 = lim

𝛿→∞
log

(

𝜌(1∕𝛿)−1𝜌 (1∕(𝑒𝛿))
)

− 𝑛 + 1. ▵

Example 4.4.  One observes that the kernels 𝜌 from Example  2.5 satisfy (4.2), i.e., their rescaled versions converge pointwise. We 
identify the limiting fractional exponent 𝑠∞ for illustration:

(a) Let 𝜌 be as in Example  2.5 (a). Then, for 𝑥 ∈ R𝑛 ⧵ {0},

𝜌∞(𝑥) = lim
𝛿→∞

𝑤(1∕𝛿)−1

𝛿𝑛+𝑠−1
𝑤(𝑥∕𝛿)

|𝑥∕𝛿|𝑛+𝑠−1
= 1

|𝑥|𝑛+𝑠−1
= 𝜌𝑠(𝑥),

which yields 𝑠∞ = 𝑠.
(b) For the kernel 𝜌 of Example  2.5 (b), one obtains the same limit as in (a), that is, 𝜌∞ = 𝜌𝑠, and hence, 𝑠∞ = 𝑠. The detailed 

calculation reads

𝜌∞(𝑥) = lim
𝛿→∞

𝑤(1∕𝛿)−1 1
log𝜅 (𝛿)𝛿𝑛+𝑠−1

𝑤(𝑥∕𝛿) log𝜅 (𝛿∕|𝑥|)
|𝑥∕𝛿|𝑛+𝑠−1

= 1
|𝑥|𝑛+𝑠−1

lim
𝛿→∞

log𝜅 (𝛿∕|𝑥|)
log𝜅 (𝛿)

= 1
|𝑥|𝑛+𝑠−1

lim
𝛿→∞

(

log(𝛿) − log(|𝑥|)
log(𝛿)

)𝜅
= 1

|𝑥|𝑛+𝑠−1

for 𝑥 ∈ R𝑛 ⧵ {0}.
(c) In the case of 𝜌 from Example  2.5 (c), the limit fractional exponent becomes 𝑠∞ = 𝑠(0), as

𝜌∞(𝑥) = lim 𝑤(1∕𝛿)−1 1 𝑤(𝑥∕𝛿)

𝛿→∞ 𝛿𝑛+𝑠(1∕𝛿)−1 |𝑥∕𝛿|𝑛+𝑠(|𝑥|∕𝛿)−1
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= lim
𝛿→∞

1
𝛿𝑠(1∕𝛿)−𝑠(|𝑥|∕𝛿)|𝑥|𝑛+𝑠(|𝑥|∕𝛿)−1

= 1
|𝑥|𝑛+𝑠(0)−1

for 𝑥 ∈ R𝑛 ⧵ {0} shows. ▵

In the next step, we show that the nonlocal gradients converge to the fractional gradient induced by 𝜌∞ as 𝛿 → ∞, see Proposition 
4.6. The proof involves the following auxiliary result, which allows to control the integrability of the kernels during the limit passage.

Lemma 4.5.  It holds that
𝜌𝛿 min{1, | ⋅ |−1} → 𝜌∞ min{1, | ⋅ |−1} in 𝐿1(R𝑛) as 𝛿 → ∞.

Proof.  We already know the pointwise a.e. convergence by (4.2), and it follows from (4.4) that

1𝐵𝛿𝜀(0)𝜌𝛿 min{1, | ⋅ |−1} ≤ 𝐶 min{1, | ⋅ |−1}max
{

1
| ⋅ |𝑛+𝜎−1

, 1
| ⋅ |𝑛+𝛾−1

}

.

Since the right-hand side is integrable, Lebesgue’s dominated convergence theorem implies
1𝐵𝛿𝜀(0)𝜌𝛿 min{1, | ⋅ |−1} → 𝜌∞ min{1, | ⋅ |−1} in 𝐿1(R𝑛) as 𝛿 → ∞.

It remains to show that 
1𝐵𝛿𝜀(0)𝑐 𝜌𝛿 min{1, | ⋅ |−1} → 0 in 𝐿1(R𝑛) as 𝛿 → ∞. (4.6)

Considering that, in light of (H1), 𝜌(⋅∕𝛿) ≤ 𝐶 in 𝐵𝛿𝜀(0)𝑐 for some 𝐶 > 0, and 𝜌(⋅∕𝛿) = 0 on 𝐵𝛿(0)𝑐 by (2.13), we find
1𝐵𝛿𝜀(0)𝑐 𝜌𝛿 ≤ 𝐶1𝐵𝛿 (0)⧵𝐵𝛿𝜀(0)𝜌(1∕𝛿)

−1 ≤ 𝐶1𝐵𝛿 (0)⧵𝐵1(0)𝜌(1∕𝛿)
−1,

given that 𝛿𝜀 > 1. This yields

∫𝐵𝛿𝜀∕2(0)𝑐
𝜌𝛿(𝑥)min{1, |𝑥|−1} 𝑑𝑥 ≤ 𝐶𝜌

( 1
𝛿

)−1

∫𝐵𝛿 (0)⧵𝐵1(0)
|𝑥|−1 𝑑𝑥

≤

{

𝐶𝜌(1∕𝛿)−1(𝛿𝑛−1 − 1) if 𝑛 > 1,
𝐶𝜌(1∕𝛿)−1 log(𝛿) if 𝑛 = 1.

(4.7)

In either case, the expression in 4.5 converges to 0 as 𝛿 → ∞ in view of (H3), which gives rise to (4.6) and finishes the proof. □

As a consequence, we now obtain the convergence of the nonlocal gradients to the Riesz fractional gradient as 𝛿 → ∞ in the 
case of Sobolev functions.

Proposition 4.6 (Convergence to Fractional Gradient as 𝛿 → ∞). For any 𝑢 ∈ 𝑊 1,𝑝(R𝑛) it holds that
𝐷𝜌𝛿 𝑢 → 𝐷𝜌∞𝑢 = 𝐷𝑠∞𝑢 in 𝐿𝑝(R𝑛;R𝑛) as 𝛿 → ∞.

Proof.  In light of [8, Proposition 1] (cf. also the proof of [19, Proposition 3.5]), we deduce the estimate
‖𝐷𝜌𝛿 𝑢 −𝐷𝜌∞𝑢‖𝐿𝑝(R𝑛;R𝑛) ≤ 𝐶‖𝑢‖𝑊 1,𝑝(R𝑛)

‖

‖

‖

(𝜌𝛿 − 𝜌∞)min{1, | ⋅ |−1}‖‖
‖𝐿1(R𝑛)

,

for all 𝑢 ∈ 𝑊 1,𝑝(R𝑛), and the statement follows via Lemma  4.5. □

4.2. Compactness uniformly in 𝛿 ∈ (1∕𝜀,∞)

Next, we address the issue of compactness with the goal of deriving a counterpart of Lemma  3.6 in the setting of diverging 
horizon. This relies on the following analogue of the Poincaré-type inequality in Corollary  3.4. The proof is based on the comparison 
of the scaled nonlocal gradients 𝐷𝜌𝛿  with a suitable finite-horizon fractional gradient.

Proposition 4.7.  There exists a constant 𝐶 = 𝐶(𝜌, 𝑛,𝛺, 𝑝) > 0 such that
‖𝑢‖𝐻𝜎,𝑝(R𝑛) ≤ 𝐶‖𝐷𝜌𝛿 𝑢‖𝐿𝑝(𝛺𝛿 ;R𝑛) for all 𝑢 ∈ 𝐻𝜌,𝑝,𝛿

0 (𝛺) and 𝛿 ∈ (1∕𝜀,∞).

Proof.  Consider 𝐷𝜎
1 ∶= 𝐷𝜌𝜎1

 induced by the kernel function 

𝜌𝜎1 = 𝑤
| ⋅ |𝑛+𝜎−1

, (4.8)

where 𝑤 ∈ 𝐶∞
𝑐 (R𝑛) is a non-negative radially decreasing function with 𝑤(0) > 0 and supp𝑤 = 𝐵1(0); note that 𝜌𝜎1  falls into the setting 

of Example  2.5 (a) with 𝑠 = 𝜎 and recall that 𝜎 is the parameter appearing in the hypothesis (H3) on 𝜌.
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Then, by (2.11) there is a constant 𝐶 > 0 such that

‖𝑢‖𝐻𝜎,𝑝(R𝑛) ≤ 𝐶‖𝐷𝜎
1 𝑢‖𝐿𝑝(𝛺1;R𝑛) for all 𝑢 ∈ 𝐻

𝜌𝜎1 ,𝑝
0 (𝛺).

The remaining proof shows that there is a constant 𝐶 > 0 independent of 𝛿 such that 

‖𝐷𝜎
1𝜑‖𝐿𝑝(R𝑛;R𝑛) ≤ 𝐶‖𝐷𝜌𝛿𝜑‖𝐿𝑝(R𝑛;R𝑛) for all 𝜑 ∈ 𝐶∞

𝑐 (R𝑛) and 𝛿 ∈ (1∕𝜀,∞), (4.9)

from which the claim follows after a density argument.
Let us define 𝑚𝛿 ∶ R𝑛 ⧵ {0} → R as

𝑚𝛿(𝜉) ∶=
𝑄̂𝜌𝜎1 (𝜉)

𝑄̂𝜌𝛿 (𝜉)
,

and observe that, in light of (2.3),
𝐷𝜎

1𝜑 = 𝑚𝛿𝐷𝜌𝛿𝜑 for 𝜑 ∈ 𝐶∞
𝑐 (R𝑛).

The estimate (4.9) follows then directly from Fourier multiplier theory, once 𝑚𝛿 is confirmed to satisfy the Mihlin-Hörmander 
condition with uniform constants, that is, 

|𝜕𝛼𝑚𝛿(𝜉)| ≤ 𝐶|𝜉|−|𝛼| (4.10)

for all 𝛼 ∈ N𝑛0 with |𝛼| ≤ 𝑛∕2 + 1 and 𝐶 > 0 a constant independent of 𝛿.
To this aim, observe that (2.9) implies for 𝜉 ≠ 0 that

|

|

|

𝜕𝛼𝑄̂𝜌𝛿 (𝜉)
|

|

|

= |

|

|

𝜌(1∕𝛿)−1𝛿𝑛+|𝛼|𝜕𝛼𝑄̂𝜌(𝛿𝜉)
|

|

|

≤ 𝐶𝜌(1∕𝛿)−1𝛿𝑛+|𝛼||𝛿𝜉|−|𝛼| ||
|

𝑄̂𝜌(𝛿𝜉)
|

|

|

= 𝐶|𝜉|−|𝛼| ||
|

𝑄̂𝜌𝛿 (𝜉)
|

|

|

,

with 𝐶 > 0 independent of 𝛿. Since the same holds for 𝑄̂𝜌𝜎1 , we deduce via the Leibniz and quotient rule that

|𝜕𝛼𝑚𝛿(𝜉)| ≤ 𝐶|𝜉|−|𝛼||𝑚𝛿(𝜉)| for all 𝜉 ≠ 0.

Therefore, it remains to verify (4.10) for 𝛼 = 0, which corresponds to showing that 𝑚𝛿 is bounded independent of 𝛿. For simpler 
notation, we write ⟨𝜉⟩ ∶=

√

1 + |𝜉|2 for 𝜉 ∈ R𝑛. Since the estimate (2.8) in Lemma  2.6 along with (4.8) allows us to deduce

𝑄̂𝜌𝜎1 (𝜉) ≤ 𝐶 ⟨𝜉⟩𝜎−1 for all 𝜉 ∈ R𝑛,

the proof of (4.10) for 𝛼 = 0 can be reduced to verifying that 

𝑄̂𝜌𝛿 (𝜉) ≥ 𝐶 ⟨𝜉⟩𝜎−1 for all 𝜉 ∈ R𝑛. (4.11)

Let us first consider |𝜉| ≤ 1∕(𝛿𝜀). Then, in view of (4.3), 

𝑄̂𝜌𝛿 (𝜉) ≥ 𝜌(1∕𝛿)−1𝛿𝑛min𝐵1∕𝜀(0)
𝑄̂𝜌 ≥ 𝐶 ≥ 𝐶 ⟨𝜉⟩𝜎−1 , (4.12)

where 𝐶 is independent of 𝛿 because 𝜌(1∕𝛿)−1𝛿𝑛 → ∞ as 𝛿 → ∞ by (H4). For the case |𝜉| > 1∕(𝛿𝜀), we use Lemmas  2.6 and 4.1 to 
infer 

𝑄̂𝜌𝛿 (𝜉) ≥ 𝐶𝜌(1∕𝛿)−1𝛿𝑛|𝛿𝜉|−𝑛𝜌(1∕|𝛿𝜉|)

≥ 𝐶|𝜉|−𝑛min
{

|𝜉|𝑛+𝜎−1, |𝜉|𝑛+𝛾−1
}

= 𝐶 min
{

|𝜉|𝜎−1, |𝜉|𝛾−1
}

≥ 𝐶 ⟨𝜉⟩𝜎−1 .

(4.13)

Finally, (4.12) together with (4.13) gives (4.11), and thus, (4.10). This finishes the proof in light of the Mihlin-Hörmander theorem 
(see e.g. [35, Theorem 6.2.7]). □

Remark 4.8.  While the previous proof is built on (4.9), we mention that a statement parallel to Theorem  3.3 cannot be expected to 
hold for an unbounded parameter range of 𝛿. Indeed, this is due to the fact that the singular behavior of 𝜌∞ and 𝜌𝛿 at the origin may 
be different, as one can see, for instance, from the two kernels in Example  4.4 (b); they feature a stronger and weaker singularity 
than 𝜌∞, respectively. ▵

By combining Propositions  4.6 and 4.7, we can now deduce the following compactness statement.

Lemma 4.9 (Convergent Subsequences for Diverging Horizon). Let (𝛿𝑗 )𝑗 ⊂ (1∕𝜀,∞) be a sequence with 𝛿𝑗 → ∞ and suppose that 
𝑢𝑗 ∈ 𝐻

𝜌,𝑝,𝛿𝑗
0 (𝛺) for each 𝑗 ∈ N with
sup ‖𝐷𝜌𝛿 𝑢𝑗‖𝐿𝑝(𝛺𝛿 ;R𝑛) < ∞.

𝑗∈N 𝑗 𝑗
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Then, there is a 𝑢 ∈ 𝐻𝑠∞ ,𝑝
0 (𝛺), such that, up to a non-relabeled subsequence,

𝑢𝑗 → 𝑢 in 𝐿𝑝(R𝑛) and 𝐷𝜌𝛿𝑗
𝑢𝑗 ⇀ 𝐷𝑠∞𝑢 in 𝐿𝑝(R𝑛;R𝑛) as 𝑗 → ∞.

Moreover, for every 𝜂 > 0 it holds that

𝐷𝜌𝛿𝑗
𝑢𝑗 → 𝐷𝑠∞𝑢 in 𝐿𝑝((𝛺𝜂)𝑐 ;R𝑛) as 𝑗 → ∞.

Proof.  We infer from Proposition  4.7 that (𝑢𝑗 )𝑗 is a bounded sequence in 𝐻𝜎,𝑝(R𝑛). Then, the compact embedding 𝐻𝜎,𝑝(R𝑛) ↪↪

𝐿𝑝loc(R
𝑛) (see (2.7)) together with the fact that each 𝑢𝑗 is supported in 𝛺 yields the existence of a 𝑢 ∈ 𝐿𝑝(R𝑛) with 𝑢 = 0 a.e. in 𝛺𝑐

such that, up to a non-relabeled subsequence, 

𝑢𝑗 → 𝑢  in 𝐿𝑝(R𝑛) as 𝑗 → ∞. (4.14)

After selecting a potential further subsequence, we find that 𝐷𝜌𝛿𝑗
𝑢𝑗 ⇀ 𝑉  in 𝐿𝑝(R𝑛;R𝑛) for some 𝑉 ∈ 𝐿𝑝(R𝑛;R𝑛). One can compute 

that

∫R𝑛
𝑉 𝜑𝑑𝑥 = lim

𝑗→∞∫R𝑛
𝐷𝜌𝛿𝑗

𝑢𝑗 𝜑𝑑𝑥

= − lim
𝑗→∞∫R𝑛

𝑢𝑗 div𝜌𝛿𝑗 𝜑𝑑𝑥 = −∫R𝑛
𝑢 div𝑠∞ 𝜑𝑑𝑥,

for any 𝜑 ∈ 𝐶∞
𝑐 (R𝑛;R𝑛), where the last equality employs Proposition  4.6 adapted to the nonlocal divergence. This allows us conclude 

that 𝑉 = 𝐷𝑠∞𝑢 and 𝑢 ∈ 𝐻𝑠∞ ,𝑝
0 (𝛺).

To prove the second part of the statement, we exploit that the nonlocal gradients on (𝛺𝜂)𝑐 can be expressed as a convolution. 
Precisely, let us define

𝑑𝛿(𝑧) ∶= −
𝑧𝜌𝛿(𝑧)
|𝑧|2

and 𝑑∞(𝑧) ∶= −
𝑧𝜌∞(𝑧)
|𝑧|2

for 𝑧 ∈ R𝑛 ⧵ {0}.

For 𝜑 ∈ 𝐶∞
𝑐 (𝛺), we can compute in view of the radiality of 𝜌 that for any 𝑥 ∈ (𝛺𝜂)𝑐 , 

𝐷𝜌𝛿𝜑(𝑥) = ∫R𝑛
−

𝜑(𝑦)
|𝑥 − 𝑦|

𝑥 − 𝑦
|𝑥 − 𝑦|

𝜌𝛿(𝑥 − 𝑦) 𝑑𝑦 = (1𝐵𝜂 (0)𝑐𝑑𝛿) ∗ 𝜑(𝑥); (4.15)

since 1𝐵𝜂 (0)𝑐𝑑𝛿 ∈ 𝐿1(R𝑛), the identity (4.15) can be extended via density to all 𝑢 ∈ 𝐻𝜌,𝑝,𝛿
0 (𝛺). In the same way, there is an analogous 

representation when considering the kernels 𝜌∞, that is,

𝐷𝑠∞𝑢 = 𝐷𝜌∞𝑢 = (1𝐵𝜂 (0)𝑐𝑑∞) ∗ 𝑢 on (𝛺𝜂)𝑐

for 𝑢 ∈ 𝐻𝑠∞ ,𝑝
0 (𝛺) = 𝐻𝜌∞ ,𝑝

0 (𝛺).
Furthermore, we observe that Lemma  4.5 induces the convergence

1𝐵𝜂 (0)𝑐𝑑𝛿 → 1𝐵𝜂 (0)𝑐𝑑∞  in 𝐿1(R𝑛) as 𝛿 → ∞.

This allows us to conclude by Young’s convolution inequality and (4.14) that

‖𝐷𝜌𝛿𝑗
𝑢𝑗 −𝐷𝑠∞𝑢‖𝐿𝑝((𝛺𝜂 )𝑐 ;R𝑛) = ‖(1𝐵𝜂 (0)𝑐𝑑𝛿) ∗ 𝑢𝑗 − (1𝐵𝜂 (0)𝑐𝑑∞) ∗ 𝑢‖𝐿𝑝((𝛺𝜂 )𝑐 ;R𝑛) → 0 as 𝛿 → 0. □

4.3. 𝛤 -Convergence 𝛿 → ∞

Based on the technical foundations provided in the previous sections, we are now in the position to prove the 𝛤 -convergence 
for diverging horizon. We consider for 𝛿 ∈ (1∕𝜀,∞) the functionals 𝛿 ∶ 𝐿𝑝(R𝑛;R𝑚) → R∞ ∶= R ∪ {∞} given by 

𝛿(𝑢) ∶=
⎧

⎪

⎨

⎪

⎩

∫𝛺𝛿
𝑓 (𝑥,𝐷𝜌𝛿 𝑢) 𝑑𝑥 for 𝑢 ∈ 𝐻𝜌,𝑝,𝛿

0 (𝛺;R𝑚),

∞ else,
(4.16)

where 𝑓 ∶ R𝑛 ×R𝑚×𝑛 → R is a suitable Carathéodory integrand and 𝜌𝛿 is the scaled version of the kernel 𝜌, cf (4.1). As made precise 
in Theorem  4.10 below, the limiting object for 𝛿 → ∞ is the functional ∞ ∶ 𝐿𝑝(R𝑛;R𝑚) → R∞, 

∞(𝑢) ∶=  𝑠∞ (𝑢) ∶=

⎧

⎪

⎨

⎪

⎩

∫R𝑛
𝑓 (𝑥,𝐷𝑠∞𝑢) 𝑑𝑥 for 𝑢 ∈ 𝐻𝑠∞ ,𝑝

0 (𝛺;R𝑚),

∞ else;
(4.17)

The fractional parameter 𝑠  is here related to the kernel 𝜌 via lim 𝜌 = 𝜌𝑠∞ , see (4.2), Lemma  4.2, and also Remark  4.3.
∞ 𝛿→∞ 𝛿

17 



J. Cueto et al. Nonlinear Analysis: Real World Applications 85 (2025) 104371 
Theorem 4.10 (𝛤 -Convergence for Diverging Horizon). Let 𝑓 ∶ R𝑛 × R𝑚×𝑛 → R be a Carathéodory integrand such that

𝑐|𝐴|𝑝 − 𝑎(𝑥) ≤ 𝑓 (𝑥,𝐴) ≤ 𝑎(𝑥) + 𝐶|𝐴|𝑝 for a.e. 𝑥 ∈ R𝑛 and all 𝐴 ∈ R𝑚×𝑛

with 𝑐, 𝐶 > 0 and 𝑎 ∈ 𝐿1(R𝑛). If 𝑓 (𝑥, ⋅) is quasiconvex for a.e. 𝑥 ∈ 𝛺, then the family (𝛿)𝛿∈(1∕𝜀,∞) in (4.16) 𝛤 -converges with respect to 
𝐿𝑝(R𝑛;R𝑚)-convergence to the functional ∞ in (4.17) as 𝛿 → ∞, that is,

𝛤 (𝐿𝑝)- lim
𝛿→∞

𝛿 = ∞.

Additionally, the sequence (𝛿)𝛿 is equi-coercive with respect to convergence in 𝐿𝑝(R𝑛;R𝑚).

Proof.  Let (𝛿𝑗 )𝑗 ⊂ (1∕𝜀,∞) be a sequence converging to ∞ as 𝑗 → ∞.
Equi-coercivity: From Proposition  4.7 and the lower bound on 𝑓 , we deduce that

𝛿𝑗 (𝑢) ≥ 𝐶‖𝑢‖𝐻𝜎,𝑝(R𝑛) − ‖𝑎‖𝐿1(R𝑛)

for all 𝑗 ∈ N and 𝑢 ∈ 𝐻
𝜌,𝑝,𝛿𝑗
0 (𝛺;R𝑚). The embedding (2.7) now immediately gives the stated equi-coercivity.

Liminf-inequality: Consider a sequence (𝑢𝑗 )𝑗 ⊂ 𝐿𝑝(R𝑛;R𝑚) with 𝑢𝑗 → 𝑢 in 𝐿𝑝(R𝑛;R𝑚) satisfying, without loss of generality,

lim inf
𝑗→∞

𝛿𝑗 (𝑢𝑗 ) = lim
𝑗→∞

𝛿𝑗 (𝑢𝑗 ) <∞.

Then, 𝑢𝑗 ∈ 𝐻
𝜌,𝑝,𝛿𝑗
0 (𝛺;R𝑚) for each 𝑗 ∈ N and sup𝑗∈N ‖𝐷𝜌𝛿𝑗

𝑢𝑗‖𝐿𝑝(𝛺𝛿𝑗 ;R𝑚) < ∞, so that Lemma  4.9 yields that 𝑢 lies in 𝐻𝑠∞ ,𝑝
0 (𝛺;R𝑚)

with 

𝐷𝜌𝛿𝑗
𝑢𝑗 ⇀ 𝐷𝑠∞𝑢  in 𝐿𝑝(R𝑛;R𝑚×𝑛) as 𝑗 → ∞. (4.18)

Similarly to the proof of Theorem  3.7, we perform a translation to the classical gradient setting in order to estimate the integral 
contribution over 𝛺. With 𝑣𝑗 ∶= 𝜌𝛿𝑗 𝑢𝑗 ∈ 𝑊 1,𝑝(R𝑛;R𝑚) for 𝑗 ∈ N, we have that ∇𝑣𝑗 = 𝐷𝜌𝛿𝑗

𝑢𝑗 due to Lemma  2.9. Moreover, 
there exists a 𝑣 ∈ 𝑊 1,𝑝

loc (R
𝑛;R𝑚) with ∇𝑣 = 𝐷𝑠∞𝑢 by [7, Proposition 3.1  (𝑖)]. We therefore obtain in view of (4.18) that ∇𝑣𝑗 ⇀ ∇𝑣 in 

𝐿𝑝(𝛺;R𝑚×𝑛), and (up to translation by constants) that 𝑣𝑗 ⇀ 𝑣 in 𝑊 1,𝑝(𝛺;R𝑚). A standard lower semicontinuity result for quasiconvex 
integrands (cf. [39, Theorem 8.11]) then yields 

lim inf
𝑗→∞ ∫𝛺

𝑓 (𝑥,𝐷𝜌𝛿𝑗
𝑢𝑗 ) 𝑑𝑥 = lim inf

𝑗→∞ ∫𝛺
𝑓 (𝑥,∇𝑣𝑗 ) 𝑑𝑥

≥ ∫𝛺
𝑓 (𝑥,∇𝑣) 𝑑𝑥 = ∫𝛺

𝑓 (𝑥,𝐷𝑠∞𝑢) 𝑑𝑥.
(4.19)

Regarding the integral contributions over 𝛺𝑐 , observe that for any 𝜂 > 0,

𝐷𝜌𝛿𝑗
𝑢𝑗 → 𝐷𝑠∞𝑢  in 𝐿𝑝((𝛺𝜂)𝑐 ;R𝑛) as 𝑗 → ∞. 

Together with the upper and lower bound on 𝑓 and Lebesgue’s dominated convergence theorem, we obtain

lim inf
𝑗→∞ ∫𝛺𝛿𝑗 ⧵𝛺

𝑓 (𝑥,𝐷𝜌𝛿𝑗
𝑢𝑗 ) 𝑑𝑥 ≥ lim inf

𝑗→∞ ∫𝛺𝛿𝑗 ⧵𝛺𝜂
𝑓 (𝑥,𝐷𝜌𝛿𝑗

𝑢𝑗 ) 𝑑𝑥 − ∫𝛺𝜂⧵𝛺
𝑎(𝑥) 𝑑𝑥

= ∫R𝑛⧵𝛺𝜂
𝑓 (𝑥,𝐷𝑠∞𝑢) 𝑑𝑥 − ∫𝛺𝜂⧵𝛺

𝑎(𝑥) 𝑑𝑥

≥ ∫R𝑛⧵𝛺
𝑓 (𝑥,𝐷𝑠∞𝑢) 𝑑𝑥 − ∫𝛺𝜂⧵𝛺

2𝑎(𝑥) + 𝐶|𝐷𝑠∞𝑢|𝑝 𝑑𝑥.

Letting 𝜂 → 0 under consideration of |𝜕𝛺| = 0 results in 

lim inf
𝑗→∞ ∫𝛺𝛿𝑗 ⧵𝛺

𝑓 (𝑥,𝐷𝜌𝛿𝑗
𝑢𝑗 ) 𝑑𝑥 ≥ ∫R𝑛⧵𝛺

𝑓 (𝑥,𝐷𝑠∞𝑢) 𝑑𝑥. (4.20)

The desired liminf-inequality follows from adding (4.19) and (4.20).
Recovery sequence: It suffices to consider 𝑢 ∈ 𝐻𝑠∞ ,𝑝

0 (𝛺;R𝑚). Let (𝑢𝑘)𝑘 ⊂ 𝐶∞
𝑐 (𝛺;R𝑚) be a sequence such that 𝑢𝑘 → 𝑢 in 𝐻𝑠∞ ,𝑝

0 (𝛺;R𝑚)
as 𝑘 → ∞. From Proposition  4.6 and the second part of Lemma  4.9, we deduce that

𝐷𝜌𝛿𝑗
𝑢𝑘 → 𝐷𝑠∞𝑢𝑘  in 𝐿𝑝(R𝑛;R𝑚×𝑛) as 𝑗 → ∞ for all 𝑘 ∈ N. 

Hence, the upper bound on 𝑓 and a twofold application of Lebesgue’s dominated convergence theorem shows

lim
𝑘→∞

lim
𝑗→∞∫𝛺𝛿𝑗

𝑓 (𝑥,𝐷𝜌𝛿𝑗
𝑢𝑘) 𝑑𝑥 = lim

𝑘→∞∫R𝑛
𝑓 (𝑥,𝐷𝑠∞𝑢𝑘) 𝑑𝑥 = ∫R𝑛

𝑓 (𝑥,𝐷𝑠∞𝑢) 𝑑𝑥.

Finally, a recovery sequence is obtained by extracting a suitable diagonal sequence in the sense of Attouch [41, Lemma 1.15, 
Proposition 1.16]. □
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Remark 4.11.  (a) We find as a consequence of the 𝛤 -convergence and equi-coercivity proven in Theorem  4.10 that the minimizers 
of the functionals 𝛿 in (4.16), whose existence is guaranteed by Theorem  2.11, converge (up to a subsequence) in 𝐿𝑝 to a minimizer 
of  𝑠∞ . In particular, this result applies to all kernels from Example  2.5 with their limiting fractional exponents 𝑠∞ computed in 
Example  4.4. 

(b) Note that Theorem  4.10 can be readily generalized to functionals defined on the spaces 𝑔 + 𝐻𝜌,𝑝,𝛿
0 (𝛺;R𝑚) with a given 

complementary value 𝑔 ∈ 𝑊 1,𝑝(R𝑛;R𝑚), considering that Proposition  4.6 holds for all Sobolev functions in 𝑊 1,𝑝(R𝑛). ▵
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