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MSC: This work revolves around the rigorous asymptotic analysis of models in nonlocal hyperelastic-
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gradients with a finite interaction range 5, called the horizon. After an isotropic scaling of the
associated kernel functions, we prove convergence results in the two critical limit regimes of
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These tools enable us to derive the I'-convergence of quasiconvex integral functionals with
varying horizon to their local and fractional counterparts, respectively.
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1. Introduction

Nonlocal-to-local limits constitute a pivotal aspect in nonlocal modeling. They can provide a useful consistency check in
confirming the compatibility of a (new) nonlocal model with a local counterpart that is covered by well-established theories. More
generally speaking, the asymptotic analysis of critical parameter regimes can yield new insights about limit models from their
approximations and vice versa. In this paper, we address these topics in the context of models with nonlocal gradients, which have
seen a great rise in interest in the last few years, see e.g., [1-8].

For a general radial kernel p, the nonlocal gradient of a function u : R” — R™ associated to p is defined as

Dﬂu(x)=/ M ® up(x—y)dy for x € R", (1.1
re |x =yl [x =yl
whenever this integral exists. A widely studied special case is the Riesz fractional gradient given by D* := D,s with p* = |- |~(+s=D

for the fractional parameter s € (0,1). It satisfies natural physical invariance requirements [3] and was brought to the spotlight
by Shieh & Spector [1,9], who established useful counterparts of results from classical Sobolev space theory and showed that the
associated function spaces coincide with the Bessel potential spaces H*?(R"; R™). This paved the way for the forthcoming works on
fractional variational problems [5,7,10], which were proposed as alternatives to the standard models in continuum mechanics. Due
to the reduced regularity requirements imposed by the fractional derivatives in comparison to the classical ones, these models admit
a broader class of admissible deformations, which allows to account also for discontinuity effects, such as fracture and cavitation.
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Despite the desirable properties of the Riesz fractional gradient, an intrinsic drawback from the perspective of continuum
mechanical modeling is that it involves integration over the whole space R”, which is not suitable for models on bounded domains.
This shortcoming can be resolved by considering kernel functions p with compact support, meaning that the range of interactions
between individual points, called the horizon § > 0, is finite. In [6,11], Bellido, Cueto & Mora-Corral used finite-horizon fractional
gradients as a basis to propose models of nonlocal hyperelasticity.

Note that the concept of a horizon stems originally from peridynamics [12,13], a nonlocal formulation of continuum mechanics
that, in contrast to classical modeling, avoids the use of derivatives, and instead considers the interaction between individual particles
that are not necessarily at an infinitesimal distance. Since its introduction in the 2000s, it has led to a vast literature, ranging from
applied to theoretical contributions, see e.g. [14-16]. While energetic approaches in the context of bond-based peridynamics typically
involve double-integrals, the energy functionals of nonlocal hyperelasticity, which are integrals depending on nonlocal gradients,
can be interpreted in the context of state-based peridynamics [17]; one of the advantages of this framework is that it allows to
model a broad range of material properties, e.g., general Poisson ratios in isotropic elastic materials, in contrast to the bond-based
formulation [17].

A first step in putting the nonlocal hyperelastic models on a solid mathematical foundation is to guarantee the existence of
solutions, which has been addressed in [6,11,18] for the case of finite-horizon gradients. The arguments rely essentially on two
key techniques: a nonlocal version of the fundamental theorem of calculus [6], which is needed to prove Poincaré inequalities and
compact embeddings, and a translation method established in [6,18] that expresses the nonlocal gradient as the classical gradient
composed with a convolution. These tools were recently extended in [19] to general nonlocal gradients with compactly supported
radial kernels, and we utilize this in Section 2.3 to develop an existence theory in this broadened setting.

Our focus in this work lies on the study of the critical parameter regimes for the horizon §, which can be seen as an important
next step towards understanding and validating nonlocal hyperelasticity. While the widely used bond-based models are only able to
recover a considerably restrictive class of models through a nonlocal-to-local limit passage [20,21], we establish in this paper that
the models involving nonlocal gradients are compatible with their local counterpart via a vanishing horizon limit. For a complete
picture of the horizon-dependence, we also analyze the other extreme regime of diverging horizon, providing a rigorous connection
with purely fractional models.

In the following, we adopt the framework for general nonlocal gradients from the recent paper [19] by Bellido, Mora-Corral
& Schonberger. Starting with a fixed radial kernel p satisfying the hypotheses of [19] (see (HO)—(H4) in Section 2.2) with horizon
equal to 1, ie., supp p = B;(0), we apply an isotropic rescaling to obtain the kernels

o= 3)

with horizon 6 > 0 and scaling constants ¢; > 0 to be chosen suitably depending on the targeted parameter regime for 6, cf. (i) and
(ii) below; examples of admissible realizations of kernel functions p can be found in Example 2.5.

Our aim in this work is to study the asymptotic behavior of the nonlocal gradients associated to the kernels p; in (1.2) for both
limits of vanishing and diverging horizon, that is,

@DHé6-0 and (ii) 6 = oo,

and prove the convergence of minimizers via I'-convergence (cf. [22,23]) for the corresponding families of 5-dependent functionals
F;. They consist of vectorial integrals of the form

Fs(u) := / Sf(x, Dy u)dx, (1.3)
9
where the involved quantities are given as follows: The set 2 c R” is a bounded domain, 25 = Q2 + B;(0) is its expansion by the
horizon parameter, and the integrand f : R” x R™” — R is assumed to have p-growth for p € (1, ) and to be quasiconvex in its
second argument. The space of admissible functions for (1.3) is H(’)”” 'E(Q;R”’), the natural nonlocal Sobolev space associated to the
gradient D, with a zero complementary-value conditions, meaning that the functions vanish in ©¢, see Section 2 for more details.
Let us now give a brief overview of our findings on the two limit passages 6 — 0 and § — oo.
(i) Localization via shrinking horizon § — 0. With the scaling factors ¢; = 67" in (1.2), which preserves the mass of the kernel
s> we confirm for each u € W1P(R";R™) the convergence of the nonlocal gradients to the classical one, precisely,

D, u— Vu in LP(R";R™") as § — 0,

see Lemma 3.1; for sufficiently smooth functions, the convergence is uniform and the optimal rate of convergence is explicitly
determined by §2.

As our main result within (i), Theorem 3.7 states the I'-convergence of (F;); from (1.3) with respect to the strong L?-topology
as 6 — 0 to the limit functional F,, given by

Folu) = / f(x,Vuwdx forue WO"”(Q;R'”),
Q

and provides along with this, the corresponding equi-coercivity of (F;);s; the latter constitutes the major novelty of Theorem 3.7,
as explained below. Consequently, the minimizers of F;, which exist by Theorem 2.11, converge (up to subsequences) in L” to a
minimizer of 7.
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The key technical ingredient for our proof of equi-coercivity for (F;);s is the estimate (1.4), which can be seen as an enhanced
Poincaré-type inequality. The proof of (1.4) uses the isotropic scaling from (1.2) to identify the dependence of the Fourier symbol of
D,,Ls on §. Together with the results on the Fourier symbol of D, for a fixed kernel [19], we then deduce from the Mihlin-Hérmander
theorem that the spaces H”??(Q;R™) do not change with § > 0 and that there is a §-independent constant C > 0 such that

llll gro-pggn-gomy < CUID,, ull poengmcny  for all u € HPPP(Q;R™) and § € (0.1], 1.4

where ¢ > 0 is related to the kernel p, see Theorem 3.3 and Corollary 3.4.

To set our contribution into context with the existing literature, we mention that closely related localization results for nonlocal
gradients in various relevant topologies can be found in [4] or deduced from the results in the recent paper [24] by Arroyo-Rabasa,
which addresses more general nonlocal first-order linear operators. Mengesha & Spector in [4, Theorem 1.7] also present a first
I'-convergence result for scalar and convex variational problems in their setting. Beyond the fact that we consider more general
quasiconvex integrands in the vectorial case, the only minor difference with our set-up (see (1.1) and (1.3)) lies in the definition
of the nonlocal gradient, where they consider interactions only between points within the domain Q. Accordingly, some of our
arguments regarding the liminf-inequality and the construction of recovery sequences share similarities with [4]. However, in
contrast to our work, [4] does not contain any compactness results (uniformly in §) or equi-coercivity results, and, therefore, cannot
guarantee the existence or the convergence of minimizers for the involved integral functionals. On the other hand, in a different
setting of non-symmetric half-space nonlocal gradients for the case p = 2, such compactness results have recently been obtained
uniformly in § [25].

(ii) Fractional models via diverging horizon § — . For the regime of large horizons, we identify the scaling factors
cs = E(l/&)‘1 in (1.2), with p the radial representation of p, and assume additionally that the kernels p; converge pointwise to
a function p_; the scaling factors ensure that p, is equal to 1 on the unit sphere. It turns out that the limit kernel p, will always
be a fractional kernel, that is,

Poo = | - |05~ (1.5)

with some s, € (0, 1) characteristic for p, see Lemma 4.2. Even though this observation may be surprising, given that the strong
singularity of the kernel at the origin will generally not be of a fractional type, it follows because of the fact that the radial
representation of p ., gains multiplicativity through the limit process, and is thus, a power function.

In view of (1.5), we then deduce in Proposition 4.6 the convergence of the nonlocal gradients to a Riesz fractional gradient.
Precisely, it holds for u € W'»(R";R") that

D, u~ Diey in LP(R";R™") as § — co. (1.6)

Using a similar strategy as in (i), we can specify the dependence of the Fourier symbol of D,  on ¢ and show the analogue of (1.4) for
large 5, see Proposition 4.7. This facilitates along with (1.6) the proof of our main theorem on I'-convergence and equi-coercivity
of the family (Fj); (cf. (1.3)) as § — oo; explicitly, Theorem 4.10 yields the I'-limit I'(L?)-lims_, o, F5 = F,, With

Foo(u) = / fx, D'=wydx  forue H*"(2;R™). 1.7)
Rn

In particular, we have that the minimizers of F; converge (up to subsequence) in L? to a minimizer of a variational integral
depending on Riesz fractional gradients.

Note that the resulting limit objects, that is, fractional functionals of the type (1.7), have been well-studied in the last years under
different assumptions on the integrand, see e.g. [1,5,7,26]. The aspects addressed include weak lower semicontinuity, relaxation,
existence of minimizers, and Euler-Lagrange equations.

The prototypical example that illustrates our results is a truncated version of the Riesz fractional kernel, that is,

w

W for s € (0, 1),

p =
where w : R" - [0, o) is a suitable smooth, radial cut-off function compactly supported in the closed unit ball of R”, cf. Example
2.5 (a). Applying the two scaling choices of (i) and (ii) gives the scaled kernels
L w(-/8)

| . |n+x—1 ’

and ps=w(1/6)"

respectively, where w denotes the radial representation of w. Both these kernels are supported in the ball B;(0) of radius § around the
origin and give rise to the finite-horizon fractional gradients Ds studied in [6,11,18,27,28]; we remark that in those references the
dependence of the kernel on 6 is not made explicit, since the horizon was always considered fixed. As a consequence of the results
in this paper, variational problems involving the gradients D; are confirmed to approximate their local analogue with classical
gradients in the limit of vanishing horizon. As 6 — oo, we justify the intuitive connection with the fractional case, which reflects an
infinite range of interaction.

Let us close the introduction by briefly pointing out some interesting further connections for broader context. We observe that for
fractional gradients, localization also occurs by letting the fractional index s tend to 1. This was demonstrated for the Riesz fractional
gradient D* in [10] and for its finite-horizon version D; in [18,28]. Among the first works on nonlocal-to-local limit passages were
those in the context of bond-based peridynamics [29-32], which successfully recover various classical models. However, as shown
in [20,21], there are classical energies that cannot be obtained from double-integral functionals as 5 goes to 0, as opposed to the
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setting of this paper. Finally, the limit of diverging horizon is less common in the literature. Nevertheless, the convergence of
finite-horizon versions of the fractional p-Laplacian has been established in [33,34] for both 6 — 0 and § — oo, recovering the
classical and fractional p-Laplacian, respectively.

The manuscript is organized as follows. After introducing in Section 2 the nonlocal gradients and associated function spaces that
we are going to work with, we specify the required conditions on the kernel p and collect some technical tools and preliminary
results. The core of the paper are Sections 3 and 4, where we address the limit analysis of § — 0 and § — o to recover the classical
and fractional models, respectively. These two sections, which are each presented in a self-contained way, share a parallel structure:
First, showing the convergence of the varying horizon nonlocal gradients, then, compactness statements uniformly in §, and, finally,
the I'-convergence of the energy functionals in (1.3).

2. Preliminaries
2.1. Notation

We write |x| = (ZLI xiz)l/ ? for the Euclidean norm of a vector x = (xq,...,x,) € R" and |A| for the Frobenius norm of a matrix
A € R™"_The ball centered at x € R" and with radius r > 0 is denoted by B,(x) = {y € R" : |x — y| < r} and the distance between
x € R" and a set E C R" is written as dist(x, E). For an open set 2 C R" and § > 0, we define

Qs =02+ Bs(0) = {x € R" : dist(x, 2) < 6} 2.1

and set 2_; = {x € 2 : dist(x,2°) > 5}. The complement of a set E C R” is indicated by E¢ := R" \ E, its closure by E, and its
boundary by dE. We take

1 forxekE,
1g(x)= i x € R,
0 otherwise,

to be the indicator function of a set E C R". The extension of a function u : E — R to R” as zero is sometimes explicitly denoted as
1 u. For a function u : R” —» R, we denote its support by suppu, and, if u is Lipschitz continuous, its Lipschitz constant by Lip(u).

For U C R" open, we adopt the standard notation for the space of smooth functions with compact support C®*(U), the Lebesgue
space LP(U) and the Sobolev space W -*(U) with p € [1, o). The spaces can be extended componentwise to vector-valued functions;
the target space is explicitly mentioned in the notation, like, for example, L?(U;R™). We use the usual multi-index notation for
partial derivatives 0* with « € Ng. Our convention for the Fourier transform of f € L'(R") is

o= / f)e ¥ dx, geR",
Rn

see e.g., [35] for more details.

For real functions, we use the monotonicity properties of being increasing and decreasing in the non-strict sense. A function
f ¢ R - R is called almost decreasing if there is a C > 0 such that f(r) > Cf(s) for t < s, and an analogous definition holds for
almost increasing. For a radial function p : R” — R, we denote its radial representation by p : [0,00) — R, ie., p(x) = p(|x|) for
x € R", and call p radially decreasing or increasing, if its radial representation is decreasing or increasing, respectively.

Finally, throughout the manuscript, we use generic constants, which may change from line to line without renaming.

2.2. Nonlocal gradients

We now introduce the key elements of our setting, that is, the nonlocal gradients for general kernels p as recently studied in [19];
for related work see also [8,36,37], as well as [6,11,18] on the special case of finite-horizon fractional gradients.
Assume throughout that p : R” \ {0} — [0, c0) is a radial kernel such that

(HO) infB—(O)p >0 for some e >0 and p min{l,|-|"'} € L'(R").

Under this condition, the kernel gives rise to an associated nonlocal gradient.
Definition 2.1 (Nonlocal Gradient). The nonlocal gradient D,¢ : R" — R" for ¢ € C®(R") is given by

Dyot) = [ LTI I px iy, xR,

We collect here some key properties of D, that will be used later on. First of all, with p : (0, 00) — [0, o) the radial representation
of p, i.e,, p = p(|-]), the nonlocal gradient can be written as the convolution of the classical gradient with the locally integrable
function

o —
Qp(x) :=/H @dr, x € R"\ {0},
X

that is,
D,p=0,%Vo=V(Q, ) foral ¢ € C R"), (2.2)
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see [19, Propositions 2.6]. When p € L!'(R"), then also Q , € L'(R") and one obtains after taking the Fourier transform that

D,0(&) = 27i£0,)p() for é €R", (2.3)

see [19, Propositions 2.5 (iii) and 2.6].
An important property of the nonlocal gradient is the presence of a duality relation with the nonlocal divergence, as conveyed
by the following integration by parts formula, cf. [19, Proposition 3.2].

Lemma 2.2 (Integration by Parts, [19]). Let ¢ € CX(R") and y € CXR";RM. Then

/ D,p-ydx= —/ @div,ydx, 2.4)
R" R
where

div, w(x) := /n W . ﬁﬂ(X—Y)dY-

Note that the integration over the whole space in (2.4) is sufficient for our purpose, since we will be working mainly with
compactly supported functions; an alternative version of integration by parts over a bounded domain giving rise to boundary terms
was recently proven in [27].

The previous lemma motivates a distributional definition of nonlocal gradients.

Definition 2.3 (Weak Nonlocal Gradients). Let u € L'(R") + L®(R"). We say that V € L}()C(R";R”) is the weak nonlocal gradient of
u, and write D,u =V, if

/ V-x//dx:—/ udiv,ydx for all y € C°(R";R").
Rn Rn

In analogy to classical Sobolev spaces, one introduces for p € (1, ) the p-nonlocal Sobolev spaces as
HP?(R") :={ue LP(R") : Due LP(R™; R™)},
endowed with the norm

”u”Hﬁ,F(R") = ||”||U7(]Rn) + ”Dpu”LP(R";]R”)’ (2.5)
see [19, Definition 3.4]. Note that these spaces can be equivalently characterized as the closure of C*(R") under the norm in (2.5)
in light of [19, Theorem 3.9 (i)]. Additionally, we define for an open Q2 C R” the subspaces

———llurp@n)

pp =y

HP(Q) 1= C2(2) ,

where the elements of C°(£2) are interpreted as extended to R” by zero. If Q is a bounded Lipschitz domain, H(‘)""’ (9) agrees with the
complementary-value space of the functions in H”-?(R") that are zero in Q¢, see [19, Theorem 3.9 (iii)]. Prescribed complementary
values can be viewed as the nonlocal analogue of Dirichlet boundary conditions in the local setting.

Example 2.4 (Riesz Fractional Gradient and Bessel Potential Spaces). The special choice of kernel function

p = —L  withse 1) (2.6)

| . |n+s—l

gives rise to the Riesz s-fractional gradient D* := D

Ds(ﬂ(x)=/ —(‘I(x)_l(ﬁ):)—lx_yl dy, xeR",
nx—y|"ts Ix—y

55 given for ¢ € CX(R") by

cf. [1,9]. Commonly, D* features a normalization constant ¢, ;, which we omit here for the sake of a cleaner presentation in Section 4.
The associated nonlocal Sobolev space H”*?(R") coincides with the Bessel potential space H*”(R") as shown in [1, Theorem 1.7].
A property we will often exploit is that

H*P(R") is compactly embedded into Lfoc(R”), 2.7)
see e.g., [9, Theorem 2.2] or [5, Theorem 2.3]. Moreover, we set HS’”(Q) ={ue HP(R") : u=0a.e. in 2°}. A

Besides the previously introduced hypothesis (HO) on the kernel p, used for the definition of the nonlocal gradient, we require
a few more properties in order to have a wider variety of technical tools, such as compact embeddings and Poincaré inequalities,
at our disposal. In accordance with [19] (see also [19, Remark 4.1]), we make the following assumptions:

Let e be asin (HO),v>0and 0<o <y < 1.

(H1) The function f, : (0,00) = R, r+~ =25(r) is decreasing on (0, o) and r — 1" f,(r) is decreasing on (0, ¢);
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(H2) f, is smooth outside the origin and for every k € N there exists a C, > 0 with

£,

<
<G

for r € (0, ¢);

dk
‘ Wf »()
(H3) the function r > r"™*°~15(r) is almost decreasing on (0, €);
(H4) the function r ~ r™7~15(r) is almost increasing on (0, €).

Most of the time, we will not work directly with these hypotheses, but instead make use of the results and tools proven in [19];
we refer to that paper for a more detailed discussion of (HO)-(H4). The Riesz potential kernel from (2.6) satisfies all these properties,
as one can easily check. Beyond that, we list here a few examples with compactly supported kernels from [19, Example 5.1] that
fit into the setting. These will be revisited also in the later sections to illustrate our findings.

Example 2.5 (Selected Kernel Functions p). Let w € C2(R") be a non-negative radial function with w(0) > 0.
(@) Let s € (0, 1) and suppose that w/| - |'** is radially decreasing. Then,

w(x)
p(x) = W >

x € R"\ {0},

satisfies (HO)—(H4) with ¢ = y = 5. The associated nonlocal gradient D, is referred to as a finite-horizon fractional gradient. In fact,
it holds that H*’(R") = H*P(R") with equivalent norms by [19, Proposition 3.10].

(b) Let s € (0, 1) and x € {—1, 1}. If supp(w) C B;(0) and wlog®(1/|-|)/|-|'** is radially decreasing, then the kernel function given
by

w(x)log*(1/]x])

o) = = XERM\(0),

satisfies (HO)-(H4) with ¢ = s and any y € (s, 1) if k = 1 and with any ¢ € (0,s) and y = s if x = —1.
(c) Consider a smooth function s : [0, 00) = (0, 1) and let w/| - |'+*("D be radially decreasing. Then,
w(x)

n
[ersted—17 € R\ {0},

p(x) =
is a kernel with spatially varying fractional parameter satisfying (H0)-(H4) with ¢ = miny,, s and y = max, s for any € >0. &

The following auxiliary result from [19, Lemma 4.3, 4.10 and 7.1] will be exploited in Sections 3 and 4 to prove compactness
results uniformly in the horizon parameter. It provides bounds on the Fourier transform of Q, and its derivatives in terms of the
radial representation of p.

Lemma 2.6 (Estimates on O , and Its Derivatives, [19]). Let p : R" \ {0} — [0, c0) be a radial kernel with compact support satisfying
(HO)—-(H4). Then é , 15 smooth, positive, and there exists a constant C > 0 such that

1 p(/1ED p(/1ED
c 11

Moreover, for every a € N, one has

<0,&<cC

fordll |&] > 1/e. (2.8)

"0, < €l

with constants C, > 0.

0,&)| foralle+0 (2.9)

Finally, Poincaré-type inequalities will be indispensible tools for our analysis. We present here a particular consequence of [19,
Theorem 4.11], that suffices for our setting.

Lemma 2.7 (Poincaré Inequalities and Compact Embedding, [19]). Let 2 C R" be open and bounded and suppose that the radial kernel
function p satisfies (H0)—(H4) and has compact support. Then there is a C > 0 such that

llull oceny < CIDull ooy for all u € HIP(<2), (2.10)
and Hé”” (£2) is compactly embedded into LP(R").

In fact, comparing p as in the previous lemma with the kernel from Example 2.5 (a) with s = ¢ leads to a stronger estimate that
will be utilized several times in what follows. Precisely, by using (H3) and [19, Theorem 7.2], we find that there is a C > 0 such
that

llll gro-ogeny < CUID pull Lognsgny  for all u € HYP(€). (2.11)

Remark 2.8 (Relaxed Assumptions on p). Note that according to [19, Propofsition 3.10], there is an equivalence between the function
spaces and Poincaré inequalities associated to kernels that agree around the origin. Hence, (2.10) and (2.11) hold even when the
smoothness in (H1) only holds locally, or when the assumption of p having compact support is dropped. For example, one could
replace the function w in Example 2.5 (a) by an indicator function 1, with 6 > 0 or by an exponentially decaying function el
with « > 0, which leads to the truncated and tempered fractional kernel of [8, Examples 2 and 3], respectively. A
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2.3. Existence theory for nonlocal variational problems

Let us address next the solvability of vectorial variational problems involving the nonlocal gradients as introduced in the previous
section. Besides being of general interest, the existence statement of Theorem 2.11 is needed below to conclude the convergence of
minimizers for the variational problems with varying horizon in Sections 3 and 4. We remark that the results presented here are
new in this generality, but can be derived by following closely the techniques of [18], where the direct method in the calculus of
variations is applied to the special case of functionals depending on finite-horizon fractional gradients. The adaptation of the proofs
is straightforward and left to the reader.

Throughout this section, we assume that p € (1, ), 2 C R" is a bounded Lipschitz domain, and the kernel p satisfies (H0)-(H4)
and has compact support. The following result, which allows us to translate the nonlocal gradients into classical gradients, can be
proven by extending (2.2) via density as in [18, Theorem 2 (i)].

Lemma 2.9 (From Nonlocal to Local Gradients). The linear map Q, : H”P(R") - WLP@RY), u - Q , * u is bounded and it holds for all
u € H”P(R") that

Du=V(Q,u).

Another ingredient is the strong convergence of nonlocal gradients in the complement of €2, which follows as in [18, Lemma 3]
by utilizing the compact embedding of Hg"’ () into LP(R") (see Lemma 2.7) and the Leibniz rule in [19, Lemma 3.8].

Lemma 2.10 (Strong Convergence in the Complement). Let (u;); C H(‘)”"7 () be a sequence that converges weakly to u in H?P(R"). Then,
for any n > 0 it holds that
Dyu; — Dyu in LP((£2,)°;R") as j — oo,
recalling the definition Q, =2+ B,(0), see (2.1).
With these two technical tools and the Poincaré inequality from Lemma 2.7 at hand, one can argue as in the sufficiency part

of [18, Theorem 5] and [18, Corollary 2] to obtain the existence of minimizers for vectorial variational problems with quasiconvex
integrands.

Theorem 2.11 (Existence of Minimizers). Let 5 > 0 be such that supp p = Bs(0) and let f : 25 x R™" — R be a Carathéodory integrand
such that

c|AIP —=C < f(x,A) <C(1 +|AlP) forae x € Qs and all A € R™".

If A f(x,A) is quasiconvex for a.e. x € £, then the functional
F:HIP(@R™) >R, F@) = | f(x.Du)dx (2.12)
(o5

admits a minimizer.

Note that taking § > 0 such that suppp = m ensures that D,u is zero in Qf for all u € H(’)”” (£2). Hence, the functional F
in (2.12) defined as an integral over the bounded set £2; captures all the non-trivial parts of D,,.

Quasiconvexity, which is well-known to characterize the weak lower semicontinuity of integral functionals in the classical
case [38,39], is indeed the natural convexity notion also in the context of variational integrals depending on nonlocal gradients. This
observation can be seen as a generalization of [7, Theorem 1.1] and [18, Theorem 5] and relies on Lemma 2.9 and the following
inverse translation operator.

Lemma 2.12 (From Local to Nonlocal Gradients). There is a bounded linear operator P, : WlP(R") » HPP(R") such that P,=(Q p)*l.
In particular, for all v € W'P(R") we have

Vu=D,(P,v).

Proof. We define the operator
n n ~1A v
P, SR = SR"), P, := (v/Q,,) ,

which is well-defined given that 1/ Q ) is smooth with polynomially bounded derivatives by Lemma 2.6, (H3) and (H4). It is also
clear that P, = (Q ,,)‘] and D,oP, = V on the space S(R"), so it is sufficient to prove that P, extends to a bounded operator from
WLP(R") to LP(R"). By Lemma 2.6, (H3) and the Mihlin-Hérmander theorem (cf. e.g. [35, Theorem 6.2.7]), it can be verified that

<~)"’1 /QP is an LP-multiplier, where (&) :=4/1+ |&]? for & € R”. Hence, arguing as in [28, Section 2.3], we find that P, extends to
a bounded operator from H'~°?(R") to L?(R") and, in particular, it is also bounded from W -*(R") to LP(R"). [
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The following can now be proven as in [18, Remark 8], given that we have both translation operators Q oo P s the Leibniz rule
from [19, Lemma 3.8], and the compact embedding of H(’)"p(.Q) into L*(R") for p > n/c (cf. [19, Theorem 6.5]).

Corollary 2.13 (Nonlocal Representation of Quasiconvexity). Let 6 > 0 be such that supp p = B,(0). A continuous function h : R™" —» R
is quasiconvex if and only if

h(A) < ﬁ/ h(A+ Dyuydx forall A€ R™" and u e HI(Q:R",
51 J o

with H/'®(Q:R™) :={u € L*(R";R") : Du€ LXR:R™"), u=0 ae. in Q.
2.4. Scaled kernels

We introduce here the setting and notations for varying horizon nonlocal gradients obtained via scaling of a fixed nonlocal
gradient, as they will be used in the limits of vanishing and diverging horizon in Sections 3 and 4.
Our starting point is a radial kernel p that satisfies (H0)-(H4) and is normalized in the sense that
supp p = B;(0) and pdx =n. (2.13)
RH

One can then compute that

Q,dx=1, or equivalently, QP(O) =1. (2.14)
]RVI

Notice that the kernels from Example 2.5 can all be rescaled and normalized to satisfy (2.13).
The rescaled family of kernels (p;); for horizons § > 0 is then defined by

ps(x) :cw(%), x eR", (2.15)

with (cs)s C (0, 0) a suitable sequence of scaling factors. Precisely, they are chosen as ¢; = 67" for the limit 6 — 0 and as ¢; = p(1/ 57!
for the limit § — 0.

We collect here a few general observations about the rescaled kernels and associated gradients. First, it follows that supp p5 =
B;(0), which makes D, a nonlocal gradient with horizon §; in particular, the initial gradient D, corresponds with the gradient
D, with horizon distance equal to 1. Moreover, the rescaling preserves the key properties of the kernel function, that is, for any
5 > 0, the kernel p; also satisfies (HO)-(H4). This makes all the results in the previous sections applicable to these kernels as well,
in particular, the existence result of Theorem 2.11. Finally, we observe that the kernel associated to p; satisfies

0,,=¢0,(5) and 0, =¢;"0,(6). (2.16)

where we have used [35, Proposition 2.3.22(7)] for the interaction between scaling and Fourier transforms.
To highlight the dependence on the horizon parameter, we denote the spaces associated to D, by

HPPYR") = {u € LP(R") : D, ue€ LP(R;RM)},

and similarly for Hg”’“S(Q); it holds specifically that H”?(R") = H/P!(R").

3. Localization when 6 — 0

This section is devoted to the localization process, that is, to the asymptotic analysis in the limit of vanishing horizon. We start
by showing that the suitably scaled nonlocal gradients converge to the classical one as 6 — 0, and subsequently prove compactness
results uniformly in the horizon parameter 6. Finally, we utilize these tools to establish the I'-convergence of integral functionals
depending on scaled nonlocal gradients to their local counterparts as the horizon tends to zero.

For this analysis, we fix a radial kernel p that satisfies (HO)—(H4) and (2.13), and consider for § € (0, 1], the scaled kernels

= do(z) e 0= L0,(5)

which corresponds to (2.15) with the scaling factors ¢; = 67". Observe that this choice of scaling preserves the normalizations
Jon psdx =nand [p, 0,, dx =1 for each 6 € (0,1], and (2.16) specifies to

0, =0,6). (3.1)

Throughout this section, we take p € (1, ) and assume 2 to be a bounded Lipschitz domain.
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3.1. Localization of the nonlocal gradient

Here, we present the convergence of the scaled nonlocal gradients to the classical gradient. Starting with the case of smooth
functions, which features an explicit convergence rate, we subsequently extend the analysis to Sobolev functions on bounded domains
and the whole space R”. In the case of bounded domains, the nonlocal gradient is defined on a smaller set than the classical one,
but this difference vanishes as § — 0. Closely related localization results can be found in [4,24].

Lemma 3.1 (Localization of Nonlocal Gradients). The following statements hold:
(1) For each ¢ € CX(R") and for all § € (0, 1], one has that
1D,,¢ = Vol o gnpny < 6°Lip(V@). (3.2)
In particular, D, ¢ — Vo uniformly on R" as § — 0.
(ii) For each u € W'?(Q), it holds that

1o ,D,u— Vu in L?(2;R") as 6 — 0;

recall that Q_s 1= {x € Q : dist(x, Q°) > 5}.
(iii) For each u € W-P(R"), one has that u € H?sP(R") for all § € (0,1], and

D,.u— Vu in LP(R";R") as 6 — 0.

Proof. Part (i): Let y € C*®(R";R"). Then the multivariate version of Taylor’s theorem with integral remainder shows for x € R”
that

10, * w(x) —w(x)| = ‘/ 0,,(x = (v —wk)dy
Bs(x)

<

Q,;x =NV ()(y —x)dy
B5(x)

+ Q,,(x—y)
Bs(x)

< &Lip(Vy) / 0,,(x - y)dy = 6Lip(Vy),
Bs(x)

1
/O (VG +1(y —x) = Vp(x))(y — x) dt| dy

where we have used that |Q osli@ny =1, and also the radiality of O s 1O cancel the term in the second line. Applying this estimate
with y = Vg for any ¢ € C*(R") proves the claim in light of (2.2).

Part (ii): Since u € WP(Q), the nonlocal gradient D,.u is well-defined in ©_; and coincides with Q s * Vi on this set (cf. [19,
Proposition 3.5]). Let j € N and choose ¢; € C(R") such that

1
”(P/ - ””Wl«p(g) < ;s

which is possible as 2 is a bounded Lipschitz domain by assumption. Additionally, we can choose § = §(j) small enough in light of
Part (i) such that

—

1
1D, 05 = Vol Loarn < 7 and  [|Vull pravo_mny < Ik

The previous estimates along with (2.2) then imply
”19,5 Dpéu - V“”LP(.Q;R") < ||Dp§u - Dpﬁ @; ||LP(975;R") + ||Dp§ P — V(pj”LP(_Qﬂ;;]R”)
+ Ve, - V"”LP(_Q%;R") + ||V”||LP(Q\975;RM)

3
< ||Qp(5 * Vu—Q, * V(ﬂj”Lp(_Q,é;Rn) + =

| &

J
3
NGy, i1 @y IV = Vol ppoirny + ; <-

~

where the last line is due to Young’s convolution inequality.
Part (iii): This follows with similar arguments as in Part (ii) or, alternatively, from [24, Theorem C] with A =V. []

Remark 3.2. (a) In view of estimate (3.2), D, converges to V quadratically in 6, given that V2¢ is Lipschitz continuous. More
generally, if ¢ is twice differentiable such that V?¢ is a-Hélder continuous with « € (0, 1], a similar argument induces the convergence
rate 6'+%, while for a differentiable ¢ with a-Hélder continuous gradient, convergence takes place at a rate of 5%.

(b) Our I'-convergence result in Section 3.3 is formulated for admissible functions with prescribed Dirichlet conditions in the
complement of Q. Therefore, Lemma 3.1 (iii) is sufficient for these purposes. However, the sharper result in Part (ii) for bounded
domains can be useful in the future for studying vanishing-horizon limits in more general settings, such as the Neumann-type
problems considered in [28]. &
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3.2. Compactness uniformly in 6 € (0, 1]

In this section, we establish a compactness result for the nonlocal gradients that hold uniformly in the horizon parameter. The
following theorem, which is also interesting in its own right (cf. (3.4) below), serves as a technical basis by providing a comparison
between the norms of the nonlocal gradients with different horizons; this includes also the classical gradient, denoted for consistency

by D, := V. Our proof relies on Fourier multiplier theory and takes inspiration from the one of [19, Theorem 7.2] for comparing
Sobolev spaces associated to different nonlocal gradients.

Theorem 3.3 (Comparison Between Scaled Nonlocal Gradients). Let § > 0 and (6,,5,) € [5,1] x [0,1]. Then, there exists a constant
C =C(p,n, p,5) > 0 such that

”D"&l Ol Lown:rny < C||D,,52(p||L,,(R,,;R,,) for all p € CP(R").

Proof. Define the function mg 5, + R"\ {0} = (0, 00) by

0,6,
0,69

ms, 5, (&) 1=

recalling that é » is non-negative. Then, we find in view of (2.3) and (3.1) that

Dﬂal @ =Ms 5, Dﬂaz ®-

for every ¢ € CX(R"); in particular, the case 6, = 0 is valid given that Qﬂ(O) = 1. It now suffices to show with the help the
Mihlin-Hérmander theorem (cf. e.g. [35, Theorem 6.2.7]) that mj .5, are LP-multipliers with estimates independent of §, and §,. To
this aim, we need to prove that for every a € Nj with |a| < g +1,

0" my, 5, ()| < ClEIT for all & #0 33

with a constant C > 0 depending only on n, p and 4.
To this aim, note that the second part of Lemma 2.6 together with the Leibniz and quotient rules for differentiation imply

10%m;, 5, ()] < CIEIT my 5, forall £ #0

with C = C(n) > 0. Therefore, it only remains to verify (3.3) for a = 0, that is, we need to show m; s is uniformly bounded
independent of §, and §,. We prove this by distinguishing two cases.
Case 1: 6; > 6,. For 0 < |¢] < ﬁ with £ > 0 the parameter in the hypotheses (H0)-(H4), one can estimate
2

0,6,
0,(6,6)

. A~ -1
|m51,52(§)‘ = < (mmBl/é(O) Qp) s

considering that ||ép||Lm(R,,) <NQ,ll1gn = 1 by (2.14). On the other hand, we infer for |£| > i from Lemma 2.6 that
2

|m51,52(§)| =

0,610 _ . <%> i) _, (@)H () (stm)

0,5, o (5 ) 5 2 (5 !
P02 ’ bzlél) /’(azm (52I§I)
s\
sc<—2> <cd,
51

where the second inequality uses the almost monotonicity in (H4).
Case 2: §; < 6,. Similarly as in Case 1, we obtain for 0 < [£]| < t that
1

0,6, A .
= < (min < (ming———
|m51.52(/§)‘ - (merd‘z/(h‘]E)(O) Qﬂ) - (mmBl/(s})(O) Ql’) >

0,(6,%)
and for |¢]| > 1/(6,¢) by Lemma 2.6 that

A —( 1

S npl —= I-c

Ims, 5, = %’( 1) §C<@> —<§'|§|) <C<é> <cé,
0,(6:%)

with the second inequality due to (H3).
Finally, combining the two cases shows that ‘m(;l‘(;z (5)‘ < C = C(p,d) for all & # 0, which concludes the proof. []

10
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Together with a density argument, the previous theorem shows that H?»%1(R") = H??%2(R") and H(’)”” 1) = H(’)"p 2(2) for all
51,6, € (0,1] or equivalently, that

HPPS(R") = HPP(R") and Hg"’*"(g) = H)"(Q) for all 6 € (0, 1]. (3.9)
In fact, by inspecting the proof of Theorem 3.3, it is not hard to see that (3.4) holds for all § > 0, which shows that our nonlocal
function spaces do not depend on the horizon parameter 5. Based on this observation, we obtain the following corollary as a
consequence of (2.11).

Corollary 3.4. There exists a constant C = C(p, n, £2, p) > 0 such that

llull sroony < CUID,,ull proyny for all u € HIP(2) and 6 € (0, 11.

Remark 3.5. We observe that there is another way of proving Corollary 3.4 that does not pass through the stronger statement of
Theorem 3.3. For this alternative argument, it suffices to require that the kernel p satisfies (H0)-(H2) and

liminf p(x)|x|"*°~! > 0.
|x|—=0

Indeed, one can compare ps with the kernel from Example 2.5 (a) for s = ¢ by arguing as in [19, Theorem 7.2] and checking that the
constants are independent of 6. When p = 2, even (H2) is not necessary (cf. [19, Theorem 7.2]), so that also the truncated fractional
gradients in Remark 2.8 are covered. a

In order to ensure the existence of convergent subsequences required for the forthcoming I'-convergence result (see Theorem
3.7), we proceed with the following compactness statement.
Lemma 3.6 (Convergent Subsequences for Vanishing Horizon). Let (5;); C (0, 1] be a sequence with 5, — 0 and suppose that u; € H(’; gclte))

for each j € N with

sup|D, uillpo, rry < .
eN Po; ¢ 555 )
Then, thereis a u € WO1 ?(Q) (extended to R" as zero) such that, up to a non-relabeled subsequence,

u; > u in LP(R™) and D, u; = Vu in LP(R";R") as j — oo.
J

Proof. By Corollary 3.4, the sequence (u;); is bounded in H°”(R"). Since each u; is supported in Q, we conclude from the compact
embedding H’(R") &< LIPOC(R”) (cf. (2.7)) that there is a u € L?(R") with u = 0 a.e. in Q¢ such that, up to a non-relabeled
subsequence,

u; > u in LP(R") as j - 0.
Moreover, up to extracting a potential further subsequence, we find that D, uy =~V in LP(R";R") for some V € LP(R";R"). To
deduce that V' = Vu, we compute for ¢ € C*(R") that !

/n dex=jlir£10/n D”5/uj @dx
=—Jlir{;/n u; Dﬂéj(pdx

=—/ uVedx,
Rfl

where the last equality follows from the localization result for the nonlocal gradients in Lemma 3.1 (i). This shows that u € Wol P(2)
(extended to R" as zero) with Vu =V, which finishes the proof. []

3.3. I'-Convergence 6 — 0

We are now in the position to make the conjectured localization of our variational problems in the limit § — 0 rigorous, choosing
I'-convergence as a natural framework.

Before stating the theorem, let us collect the relevant objects. The family of vectorial energy functionals (Fs)s¢ ) With F :
LP(R";R™) - Ry, :=R U {oo} for § € (0,1] is given by

f(x.D, uydx for ue H/P (Q:R™),
Fsu) :=4/05 (3.5)

) else,

where f : Q; x R™" — R is a suitable Carathéodory integrand; considering that the functions in the domain of 7; are defined on
R" with zero Dirichlet conditions in Q¢, we may take, without loss of generality, the integrals over the bounded set ;.

11
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As prospective limit functional, we introduce 7, : L?(R";R") - R_, given by

/ S, Vuydx forue W, (2R,
Q

Folu) := (3.6)

00 else;

here, functions in WO1 P(Q;R™) are identified with their extension to R” as zero.

Theorem 3.7 (Localization for Vanishing Horizon Via I'-Convergence). Let f : £; x R™" — R be a Carathéodory integrand such that
c|AP = C < f(x,A) <C(1 + |A]P) for ae x € 2, and all A € R™"

with ¢, C > 0. If f(x,) is quasiconvex for a.e. x € L, then the family (F5)s¢(,1) in (3.5) I'-converges with respect to LP(R"; R™)-convergence
to the functional F, in (3.6) as 6 — 0, that is,

C(LP)-1im Fs = F,.

(LP) 6‘_‘]5 5 0

Additionally, (Fs)s is equi-coercive with respect to convergence in LP(R";R™).

Proof. Let (6 ;); €(0,1] be a sequence converging to 0 as j — co.
Equi-coercivity: By the growth bound on f from below and Corollary 3.4, we deduce that there are constants ¢’,C’ > 0 such that

7:'5/ () > C,”u“HU‘P(]R") -C

forallj e Nandu € Hg'p’s" (2;R™). This yields the equi-coercivity, given the compact embedding of H??(R") into Lf; SR, cf. (2.7).

Liminf-inequality: Let (4;); C LP(R"; R™) with u; — u in LP(R";R"™). Assuming without loss of generality that

hjrr_l)glf Fﬁ/(uj) = Ilirgj 7-’51_ (u;) < 0,

D0
we have that u; € H:p 7 (£2; R™) for each j € N and

sup||D,. u; . < ©
jegll 03, J||Lp(gbj,JR"1) >

due to the lower bound on f. Lemma 3.6 therefore yields a u € Wl” (22;R™) (extended to R" as zero) such that D, u ; = Vuin

LP(R"; R™"), If we use translation operators as in Lemma 2.9 to deﬁne
—Qpa Q% xu; forjeN,

then (v;); is a bounded sequence in Wlp(R"; R™) with Vo =D, u; = Vuin LP(R"; R™") as j — co. Consequently, it even holds that
J
v; = uin WLP(R"; R™), considering that the functions v ; are zero outside of £, for each j € N. A standard lower semicontinuity

result for functionals with quasiconvex integrands (cf. [39, Theorem 8.11]) then implies

lljrigolf F(sl(uj) = 11jr2g°1f o) f(x, Dp5j u;)dx

>11m1nf/f(xD u)dx—C|.Q§ \ 2|

= liminf/ f(x,Vo;)dx > / fx, Vuydx = Fy(u),

which is the desired liminf-inequality.

Recovery sequence: Without loss of generality, consider u € WO]"’ (2;R™). Then, we infer from Lemma 3.1 (iii) that u €

”b’ (€;R™) for all j € Nwith D, u — Vu in LP(R"; R™") as j — co. The upper bound on f enables the application of Lebesgue’s

domlnated convergence theorem to “find
lim F5 (u) = lim / f&x,D, wdx= / f(x, Vu)dx = Fy(u).
Jj—© J J—oo QS ‘Sj Q
J
This shows that the constant sequence is a suitable recovery sequence. []

Remark 3.8. (a) Under the assumptions of Theorem 3.7, for every § € (0, 1], the functional 75 admits a minimizer according to
Theorem 2.11. Therefore, standard properties of I'-convergence imply that these minimizers converge, up to subsequence, to a
minimizer of 7 as 6 — 0.
Referring to the literature, a closely related I'-convergence result involving similar nonlocal gradients in the case m = 1 can be
found in [4, Theorem 1.7]. However, the latter does not feature the equi-coercivity required for the convergence of minimizers.
(b) Since the definition of D, u on £; only depends on the values of u in £,;, the Dirichlet condition in £¢ can be equivalently
replaced by prescribing zero values in £,; \ Q2. We remark that the papers [11, Theorem 6.1] and [18, Corollary 2] on finite-horizon

12
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fractional gradients use a slightly different convention by considering the gradients on Q2 and requiring Dirichlet conditions in
Q5 \ Q_;. Clearly, both settings are equivalent by a suitable renaming of the domain. The reason for our choice is that only the
setting used here is meaningful for both limit passages 6 — 0 and § — co.

(c) Theorem 3.7 can readily be extended to non-zero complementary values, that is, to admissible functions in the spaces
g+ H(’)’"’"s(.Q;R’") for any given g € W »(R";R™). Indeed, since g € H”P9(Q;R™) for all § > 0 with

||Dp5g||LP(R”;Rm><n) < ||Q,,5 ||Ll(Rn)”Vg”Lp(Rn;Rmxn) = ”Vg”LP(R";]R”‘X")’

the argument follows through in the same manner with the domain of the I'-limit being g + Wol’” ;R™. A

Example 3.9. By applying Theorem 3.7 to the kernels of Example 2.5, we obtain the localization of functionals as in (3.5) with
nonlocal gradients associated to the following scaled kernels:

(a) For p as in Example 2.5 (a), one finds that

w(x/s) 51 w(x/é)

|x/8]n+s=1 - |x|rts=1"
These scaled kernels coincide (up to a constant) with finite-horizon fractional gradients D; from [6,11,18,28]. Theorem 3.7 then
complements the localization result for s 1 1 in [18, Theorem 7].

(b) The scaled versions of the kernels p in Example 2.5 (b) read as

_n w(x/8)1og"(6/1x]) _ 51 w(x/6)(log(s) — log(Jx[)*

x € R"\ {0}.

ps(x)=67"

j— n
ps(x) =06 /51 s , xeR"\{0}.
(c) With p as in Example 2.5 (c), the scaled kernels are given by
_ s—n w(x/(s) — ss(|x/8)-1 W(X/ﬁ) n
p&(x)—(s W—é W, x€eR \{0} A

4. I'-Convergence 6 — oo

We focus now on the asymptotics of the nonlocal gradient as the horizon 6 diverges to infinity. As proven below, the associated
limiting object is the Riesz fractional gradient. While this is to be expected for finite-horizon fractional gradients, surprisingly, the
same holds when starting from any general nonlocal gradient within our setting. This section is structured in parallel to Section 3,
showing first the convergence of the nonlocal gradients to the Riesz fractional gradient, then providing a uniform compactness
result, and finally, proving the I'-convergence of the associated energy functionals.

Let p again be a non-negative radial kernel that satisfies (H0)-(H4) and (2.13), and assume throughout that p € (1, ) and Q is a
bounded Lipschitz domain. The lack of integrability of the fractional kernel on R” calls for a different scaling procedure compared
with Section 3. Precisely, for § € (1/¢, o) (so that p(1/6) # 0), we now define

-1
o =5(5)"o(3) @
which corresponds to (2.15) with ¢; := 5(1/6)"". In this way, the values of p; on the unit sphere dB,(0) are normalized to 1 for any
5. In addition, we require that these kernels converge pointwise on R” \ {0} as § — oo, and set
-1

puo == 3 (2)(2). xevon @

With the scaling (4.1), the kernel function Q s and its Fourier transform satisfy
-1

0u=3(3)"0,(;) o 0, =s5(!) 0o w

Let us point out that our chosen scaling is, up to a constant, the only relevant one. Indeed, if there is a sequence (¢;); of positive
reals such that (¢5p(-/6))s converges pointwise as § — oo, then for x € 9B, (0),

lim ¢, (5) = lim 5‘(1> =z
oo P\G ) T sh% P 5) T ¢
Therefore, we obtain for all x € R" \ {0} that
tim 250 (X) = 1im 257 (1) (1) 5 (%) = epato
5_”05!75—5_)005!’5/’5 P(S—/’oo~
4.1. Convergence of nonlocal gradients as 6 — oo
This section is about establishing that the scaled nonlocal gradients converge to the Riesz fractional gradient as § — co. We
commence with some bounds on p; from (4.1) and the limit kernel p, that will be used repeatedly later. Recall that £ > 0 is as in

(HO)—(H4), and that ¢,y with 0 < ¢ <y < 1 are the parameters appearing in the hypotheses (H3) and (H4), respectively.

13
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Lemma 4.1. There exist constants C,c > 0 such that for every 56 > 1/¢ and all x € B, (0) \ {0},

. 1 1 1 1
¢ min { ot e } < p5(x) < C'max { ot e } : “44)
In particular, it holds for all x € R" \ {0} that

. 1 1 1 1
omin{ (e e | € 7a 8 Cus{ o s b

Proof. Observe first that by (H3) and (H4), there are constants ¢’,C’ > 0 such that

(L 0 < < (£) T a0 @

for all ¢,r € (0,¢) with r > 1.
Let x € B;,(0). If |x| > 1, we can apply (4.5) with the choice r = |x|/é and r = 1/ to find

¢! <_<l>—l_ m < fel
|x|n+y—1 =P 5 4 ) - |x|n+a—1‘

As for the case 0 < |x| < 1, we resort to (4.5) as well, but take r = 1/§ and ¢ = |x|/5 instead, which gives

-1
(L) () e
C/|x|n+o'fl o S c/|x|n+yfl

We conclude that (4.4) holds for suitably chosen constants ¢,C. []

As the next lemma shows, p, must be a fractional kernel, no matter the specific choice of p. This finding is a key ingredient for
proving that only Riesz fractional gradients can be obtained as the limit of increasing horizon nonlocal gradients with the scaled
sequence of kernels p;.

Lemma 4.2 (Limit Kernel p, is Fractional). There is s, € [o,7] such that p, in (4.2) satisfies
1

|x|n+sm—1

Poo(X) = pPo(x) 1= for all x e R"\ {0}.

Proof. Our argument relies on proving that p_, is a multiplicative function. To this aim, we consider r,7 > 0 and compute that

_ I et (N NN et
putr0=Jim3(5) (5 ) =im3(5) #(5)7(5) 7(5)
-1
— | —( t — _
= Poo(")lslggﬂ <6_/r> p <5_/r> = Do (MNP (7).
Since p, is also locally bounded away from 0 by Lemma 4.1, we deduce that p,, must be a power function (cf. [40, Chapter 3,
Proposition 6]). Together with Lemma 4.1, it follows therefore that p.,(x) = 1/|x|"**«~! for some s, € [c,7]. [J

Remark 4.3. The parameter s, associated to a limit kernel p can be determined directly from p via the limit

Seo = 10g(pes(1/€)) = n+ 1 = lim log (p(1/6)7'5(1/(e8))) —n+1. A

Example 4.4. One observes that the kernels p from Example 2.5 satisfy (4.2), i.e., their rescaled versions converge pointwise. We
identify the limiting fractional exponent s, for illustration:
(a) Let p be as in Example 2.5 (a). Then, for x € R" \ {0},
w178 w(x/8) 1

— | — —_ A
”oo(x)‘,;ll,‘?o srs=l | x/5|mts—] - |x|rs=1 =p (%),

which yields s, = s.
(b) For the kernel p of Example 2.5 (b), one obtains the same limit as in (a), that is, p,, = p*, and hence, s, = s. The detailed
calculation reads

— log® log®
peo(x) = lim w(1/6)"! 1 wx/8)log"@/Ix) _ 1 . log (;3/|x|)
5—00 lOgK(5)5"+5_l |x/§|n+s—l |x|n+s—l s~ log(8)
_ U (log®) —log(xD\" _ 1
|1 6o log(6) x|

for x e R"\ {0}.
(c) In the case of p from Example 2.5 (¢), the limit fractional exponent becomes s, = s(0), as
1 w(x/5)
5n+s(|/5)—1 Ix/5|n+s(|x|/5)—l

Poo() = lim Twi(1/6)”"

14
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. 1 1
= lim - =
500 §31/8)=s(Ix1/8)| x |n+s(Ix]/8)=1 |x|n+s©)-1

for x € R"\ {0} shows. a

In the next step, we show that the nonlocal gradients converge to the fractional gradient induced by p , as § - o, see Proposition
4.6. The proof involves the following auxiliary result, which allows to control the integrability of the kernels during the limit passage.

Lemma 4.5. It holds that

ps min{L, ||} = p min{1,|-|7'} in L'(R") as 6 - co.

Proof. We already know the pointwise a.e. convergence by (4.2), and it follows from (4.4) that

1p, opsmin{1, |- "'} < Cmin{1,] - |} max { H% II% } :
Since the right-hand side is integrable, Lebesgue’s dominated convergence theorem implies
g, ps min{L,]-|7"} = p min{1,|-|7"} in L'(R") as 6 — co.
It remains to show that
Lp, oppsmin{l,|-|7'} -0 in L'(R") as 6 - oo. (4.6)
Considering that, in light of (H1), p(-/6) < C in B, (0)¢ for some C > 0, and p(-/5) = 0 on Bs(0)° by (2.13), we find
L, 025 < CLp,onB,, 0P(1/8)™" < Clp,o\,0p(1/8)".

given that e > 1. This yields

-1
[ seomintix s cr(3) [ ptax
By, (0 6 B5(O\B; ()

{05(1/5)—'(5"—1 -1 ifn>1,

<
Cp(1/8)~" log(5) ifn=1.

“4.7)

In either case, the expression in 4.5 converges to 0 as 6 — oo in view of (H3), which gives rise to (4.6) and finishes the proof. []

As a consequence, we now obtain the convergence of the nonlocal gradients to the Riesz fractional gradient as § — o in the
case of Sobolev functions.

Proposition 4.6 (Convergence to Fractional Gradient as 6 — o). For any u € W1»(R") it holds that

D/J&u — Dﬂmu = D'~y in LP(R";R") as 6 — co.

Proof. In light of [8, Proposition 1] (cf. also the proof of [19, Proposition 3.5]), we deduce the estimate

I1Dy,u = D, ull Lonigeny < Cllullyyriogeny || (05 = poo) min{1, | - |~ }”

LR

for all u € W1P(R"), and the statement follows via Lemma 4.5. []
4.2. Compactness uniformly in 6 € (1/¢, )

Next, we address the issue of compactness with the goal of deriving a counterpart of Lemma 3.6 in the setting of diverging
horizon. This relies on the following analogue of the Poincaré-type inequality in Corollary 3.4. The proof is based on the comparison
of the scaled nonlocal gradients D, with a suitable finite-horizon fractional gradient.

Proposition 4.7. There exists a constant C = C(p, n, £2, p) > 0 such that

D0
Nl ooy < CUID,ull oo,y for all u € HYP(2) and & € (1/e, 0.

Proof. Consider D := D o induced by the kernel function

o w

o= (4.8)

|'|n+671’

where w € CP(R") is a non-negative radially decreasing function with w(0) > 0 and supp w = B, (0); note that p falls into the setting
of Example 2.5 (a) with s = ¢ and recall that ¢ is the parameter appearing in the hypothesis (H3) on p.
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Then, by (2.11) there is a constant C > 0 such that
llll gro-oggeny < CUDSull oy, my  for all u & H;T’p(Q).
The remaining proof shows that there is a constant C > 0 independent of § such that
1050l Lo@nzeny < CIID,, @l ognpny for all ¢ € CX(R") and 6 € (1/, ), (4.9)

from which the claim follows after a density argument.
Let us define m; : R"\ {0} - R as

and observe that, in light of (2.3),
Djp=m;D, ¢ forpeCOR".

The estimate (4.9) follows then directly from Fourier multiplier theory, once m; is confirmed to satisfy the Mihlin-Hérmander
condition with uniform constants, that is,

[0%mg(&)] < Clg|™ (4.10)

for all « € Nj with |a| <n/2+1 and C > 0 a constant independent of é.
To this aim, observe that (2.9) implies for & # 0 that

0"0,,@)| = [pa/6y"6"115°0 (6¢)|
< Cp(1/8)™ 5" 1 |5¢ 7|0, (50)| = Clel ™

0,,@).
with C > 0 independent of . Since the same holds for O p7> We deduce via the Leibniz and quotient rule that
10%my(&)] < ClgI7 ms(©)| for all & # 0.
Therefore, it remains to verify (4.10) for « = 0, which corresponds to showing that m; is bounded independent of 6. For simpler
notation, we write (&) :=1/1 + |£|? for £ € R". Since the estimate (2.8) in Lemma 2.6 along with (4.8) allows us to deduce
sz]x(é) <C(&°" forall £ e R,
the proof of (4.10) for « = 0 can be reduced to verifying that
0,,&2C ()" forall éeR". (4.11)
Let us first consider || < 1/(¢). Then, in view of (4.3),

0, 2 3(1/6) 8" ming—75;0, > C 2 € (&), (4.12)

where C is independent of 5 because 7)(1/5)’15" — o0 as § — oo by (H4). For the case |¢| > 1/(5¢), we use Lemmas 2.6 and 4.1 to
infer

0,,(&) = Cp(1/8)™"6"16£17"5(1/18&])
> Cl&[™" min{|g|"ro L, g7} (4.13)
= Cmin{[g"" e} 2 C ey

Finally, (4.12) together with (4.13) gives (4.11), and thus, (4.10). This finishes the proof in light of the Mihlin-Hérmander theorem
(see e.g. [35, Theorem 6.2.7]1). [

Remark 4.8. While the previous proof is built on (4.9), we mention that a statement parallel to Theorem 3.3 cannot be expected to
hold for an unbounded parameter range of §. Indeed, this is due to the fact that the singular behavior of p, and p; at the origin may
be different, as one can see, for instance, from the two kernels in Example 4.4 (b); they feature a stronger and weaker singularity
than p,, respectively. a

By combining Propositions 4.6 and 4.7, we can now deduce the following compactness statement.

Lemma 4.9 (Convergent Subsequences for Diverging Horizon). Let (5;); C (1/e, o) be a sequence with 5; — co and suppose that
u; € Hg'p'é" () for each j € N with

sup ||D,. u; . < 00.
jeIg” s, Uill Lr; ey
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Then, thereis a u € HS“’"’ (), such that, up to a non-relabeled subsequence,

u; »u in LF(R") and Dﬂé, u; = D'~y in LP(R";R") as j — co.
Moreover, for every n > 0 it holds that

D‘,éj u; —» D~u in LP((2,)R") as j — co.

Proof. We infer from Proposition 4.7 that (u;); is a bounded sequence in H*?(R"). Then, the compact embedding H*?(R") <
LfOC(JR”) (see (2.7)) together with the fact that each u ; is supported in Q yields the existence of a u € L?(R") with u = 0 a.e. in Q¢
such that, up to a non-relabeled subsequence,

u; > u in L?(R") as j — oo. (4.14)

After selecting a potential further subsequence, we find that D, s u =V in LP(R";R") for some V € L?(R";R"). One can compute
that !
/nV(pdx:_lim Dpﬁjuj(pdx

J=® Jrn

= — lim u;, div, @pdx=-— u div’> g dx,
j=eo fgn TP n

for any ¢ € C°(R"; R"), where the last equality employs Proposition 4.6 adapted to the nonlocal divergence. This allows us conclude
that V = D'~u and u € H,*" ().

To prove the second part of the statement, we exploit that the nonlocal gradients on (£2,)° can be expressed as a convolution.
Precisely, let us define

zps(z) Zp(2)
d 4 =—
p 2 e EE

For ¢ € C(£2), we can compute in view of the radiality of p that for any x € (£2,)°,

ds(z) 1= — for z € R"\ {0}.

oy x-y
D, o(x) = /R" =l )] ps(x—y)dy= (13,,(0)6‘15) * @(x); (4.15)

since 1 B,0 45 € L'(R"), the identity (4.15) can be extended via density to all u € H(‘)’“’ (Q). In the same way, there is an analogous
representation when considering the kernels p_,, that is,

D'eu=D, u=(lgqede)*u  on (2,

for u € Hy*"(Q) = H{*"(Q).
Furthermore, we observe that Lemma 4.5 induces the convergence

Lp,01ds = 1 0¢deo in L'(R") as 6 — oo.
This allows us to conclude by Young’s convolution inequality and (4.14) that

”D”ﬁl u; — Dswulle((Qq)C;R”) = ||(]13”(0)Cd5) * U — (]an(O)cdm) * ulle((Qn)c;Rn) —-0asé—->0 [

4.3. I'-Convergence 6 — o

Based on the technical foundations provided in the previous sections, we are now in the position to prove the I'-convergence
for diverging horizon. We consider for § € (1/¢, o) the functionals 75 : LP(R";R™) - R, :=RU {0} given by

J(x.D,uydx forue H"’(QR™,
Fsw) =4 Ja, (4.16)

00 else,

where f : R"xXR"™" — R is a suitable Carathéodory integrand and p; is the scaled version of the kernel p, cf (4.1). As made precise
in Theorem 4.10 below, the limiting object for § — o is the functional 7, : L?(R";R") - R,

/ f(x,D’~u)ydx forue H(‘;""’p(_Q;R”’),
Rn

Foow) 1= Fio(u) 1= (4.17)

00 else;

The fractional parameter s, is here related to the kernel p via lim;_,, p5 = p°~, see (4.2), Lemma 4.2, and also Remark 4.3.
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Theorem 4.10 (I"-Convergence for Diverging Horizon). Let f : R" Xx R™" — R be a Carathéodory integrand such that
c|AlP —a(x) £ f(x,A) < a(x) + C|A|P for ae x € R" and all A € R™"

with ¢,C > 0 and a € L'(R"). If f(x,-) is quasiconvex for a.e. x € Q, then the family (Fs)se(1 Je,c0) I (4.16) I'-converges with respect to
LP(R"; R™)-convergence to the functional F, in (4.17) as 6 — oo, that is,

r(L")- lim Fs = F,,.
5—00
Additionally, the sequence (Fj); is equi-coercive with respect to convergence in LP(R"; R™).

Proof. Let (6;); C (1/e, ) be a sequence converging to oo as j — oo.
Equi-coercivity: From Proposition 4.7 and the lower bound on f, we deduce that

ng(u) > C”””Hﬁ:p(Rﬂ) - ||a||L1(]R")

forall jeNandue H{;’pﬁ" (£2; R™). The embedding (2.7) now immediately gives the stated equi-coercivity.
Liminf-inequality: Consider a sequence (u;); C LP(R"; R™) with u; — u in LP(R";R") satisfying, without loss of generality,

liﬂi‘,}f 7:'5/(14]-) = lli)rg) Fé, (u;) < oo.

D0 ) . . .
Then, u; € H(’;p /(2;R™) for each j € N and sup;cy “Dt)s, ujlle(_Qé/;Rm) < o0, so that Lemma 4.9 yields that u lies in HS"“"’(Q;R’")
with
D, u; — D>y in LP(R"; R™") as j — oo. (4.18)
J

Similarly to the proof of Theorem 3.7, we perform a translation to the classical gradient setting in order to estimate the integral

contribution over Q. With v; := Q,, U € wlP@R";R™) for j € N, we have that Vv ;= Dy u; due to Lemma 2.9. Moreover,
J J

there exists a v € Wkl)’cp (R"; R™) with Vv = D*=u by [7, Proposition 3.1 (i)]. We therefore obtain in view of (4.18) that Vov; = Vv in
LP(€2;R™™"), and (up to translation by constants) that v; -~ v in WP(Q;R™). A standard lower semicontinuity result for quasiconvex
integrands (cf. [39, Theorem 8.11]) then yields

liminf/f(x,ngiuj)dx=1iminf/f(x,ij)dx

(4.19)
> / f(x,Vv)dx = / f(x, D’~u)dx.
Q Q
Regarding the integral contributions over Q¢, observe that for any 5 > 0,
Dy, u; = D'=u in LP(€2,)R" as j = oo.
Together with the upper and lower bound on f and Lebesgue’s dominated convergence theorem, we obtain
liminf/ f&x, D, uj)dleiminf/ f(x, Dp(s uj)dx—/ a(x)dx
7 o \e K 7 Jas N\, ! 2\
:/ f(x,Dxmu)dx—/ a(x)dx
RM\Q, 2,\e
> / f(x,DSWu)dx—/ 2a(x) + C|D*=u|? dx.
RMQ n
Letting # — 0 under consideration of |d€2| = 0 results in
liminf/ f(x, D/,J uj)dx > / f(x,D’~u)dx. (4.20)
joe 2;,\2 J R"N\Q

The desired liminf-inequality follows from adding (4.19) and (4.20).
Recovery sequence: It suffices to consider u € H(‘;"""’ (2;R™). Let (uy), € CX(£2;R™) be a sequence such that u;, — u in Hg"""’ (£2;R™)
as k — oo. From Proposition 4.6 and the second part of Lemma 4.9, we deduce that

D, w — D'~u  in LP(R";R"™") as j — oo for all k € N.
J
Hence, the upper bound on f and a twofold application of Lebesgue’s dominated convergence theorem shows

lim lim (. D, u)dx = lim g f(x, DSou)dx = /R S Duydx.

k—o0 j—o0 Q5j

Finally, a recovery sequence is obtained by extracting a suitable diagonal sequence in the sense of Attouch [41, Lemma 1.15,
Proposition 1.16]. []
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Remark 4.11. (a) We find as a consequence of the I'-convergence and equi-coercivity proven in Theorem 4.10 that the minimizers
of the functionals F; in (4.16), whose existence is guaranteed by Theorem 2.11, converge (up to a subsequence) in L? to a minimizer
of F*~. In particular, this result applies to all kernels from Example 2.5 with their limiting fractional exponents s, computed in
Example 4.4.

(b) Note that Theorem 4.10 can be readily generalized to functionals defined on the spaces g + H(’)’”’“s(Q; R™) with a given
complementary value g € W»(R";R™), considering that Proposition 4.6 holds for all Sobolev functions in W!?(R"). a
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