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Abstract
We study the universality of complex-valued neural networks with bounded widths
and arbitrary depths. Under mild assumptions, we give a full description of those
activation functions � : C → C that have the property that their associated networks
are universal, i.e., are capable of approximating continuous functions to arbitrary
accuracy on compact domains. Precisely, we show that deep narrow complex-valued
networks are universal if and only if their activation function is neither holomorphic,
nor antiholomorphic, nor R-affine. This is a much larger class of functions than in the
dual setting of arbitrary width and fixed depth. Unlike in the real case, the sufficient
width differs significantly depending on the considered activation function. We show
that a width of 2n + 2m + 5 is always sufficient and that in general a width of
max {2n, 2m} is necessary. We prove, however, that a width of n +m + 3 suffices for
a rich subclass of the admissible activation functions. Here, n and m denote the input
and output dimensions of the considered networks. Moreover, for the case of smooth
and non-polyharmonic activation functions, we provide a quantitative approximation
bound in terms of the depth of the considered networks.

Keywords Complex-valued neural networks · Holomorphic function · Polyharmonic
function · Uniform approximation · Universality
Communicated by Wolfgang Dahmen.

All authors contributed equally to this work.

B Hannes Matt
hannes.matt@ku.de

Paul Geuchen
paul.geuchen@ku.de

Thomas Jahn
jahn.thomas@unijena.de

1 Mathematical Institute for Machine Learning and Data Science (MIDS), Catholic University of
Eichstätt–Ingolstadt (KU), Auf der Schanz 49, 85049 Ingolstadt, Germany

2 Institute for Mathematics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 1-2, 07737 Jena,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00365-025-09713-8&domain=pdf


362 Constructive Approximation (2025) 62:361–402

Mathematics Subject Classification 68T07 · 41A30 · 41A63 · 31A30 · 30E10

1 Introduction

This paper addresses the universality of deep narrow complex-valued neural networks
(CVNNs), i.e., the density of neural networks with arbitrarily large depths but bounded
widths, in spaces of continuous functions over compact domains with respect to the
uniform norm. Our main theorem is as follows.

Theorem 1.1 Let n,m ∈ N, and � : C → C be a continuous function which at some
point is real differentiable with non-vanishing derivative. Then NN �

n,m,2n+2m+5 is
universal if and only if � is neither holomorphic, nor antiholomorphic, nor R-affine.

HereNN �

n,m,W denotes the set of complex-valued neural networks with input dimen-
sion n, output dimension m, activation function �, and W neurons per hidden layer.
These neural networks are alternating compositions

VL ◦ �×W ◦ . . . ◦ �×W ◦ V0 : C
n → C

m

of affine maps V0 : C
n → C

W , V1, . . . , VL−1 : C
W → C

W , VL : C
W → C

m , and
componentwise applications of the activation function �, see Section 2 for a detailed
definition.

Studying the expressivity of neural networks is an important part of the mathemati-
cal analysis of deep learning. Theorem 1.1 is a qualitative result in that direction. Such
qualitative results naturally precede the investigation of approximation rates, i.e., the
decay of approximation errors as the class of approximants increases. Our focus is on
qualitative results, but to show how our methods can also be used to derive quantitative
bounds, we prove such a result for the case of smooth and non-polyharmonic activa-
tion functions, i.e., we derive an upper bound on the depth necessary to achieve an
approximation accuracy less than ε, for a prescribed approximation accuracy ε > 0;
see Theorem 5.3.

1.1 Complex-valued neural networks

Although mostly real-valued neural networks (RVNNs) are used in the field of Deep
Learning, recent years have shown a growing interest in the use of complex-valued
neural networks in various application areas [2, 20, 21, 32, 40], for instance Magnetic
Resonance Imaging (MRI) [9, 19, 36] and Polarimetric Synthetic Aperture Radar
(PolSAR) Imaging [3, 33, 41]. These application areas are usually characterized by
the fact that complex numbers naturally occur as inputs for machine learning models.
In such areas, CVNNs are, in contrast to real-valued neural networks, able to handle
the complex-valued nature of the inputs in a faithful way, for instance by using a
phase-preserving activation function. Note that this behavior cannot be achieved if
one applies a non-trivial real-valued activation function to real and imaginary part of
an input separately.
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The identificationR
2 ∼= Cmight suggest thatmost theoretical properties of CVNNs

can directly be derived by those of RVNNs. However, the two network classes differ
in the following two deciding aspects:

• The activation function in a CVNN is a function � : C → C (i.e., R
2 → R

2),
whereas the activation function in anRVNNis a functionR → R.Hence, regarding
the activation function, CVNNs are more versatile than RVNNs.

• The affine maps in a CVNN are required to beC-affine, whereas the affine maps in
an RVNN only need to be R-affine. Therefore, regarding the affine maps, CVNNs
are more restrictive than RVNNs.

The observation that CVNNs are on the one hand more versatile and on the other
hand more restrictive than RVNNs shows that it is not possible to obtain theoretical
properties ofCVNNsas a special case of those ofRVNNsor vice versa. In fact, studying
the universality of neural networks of fixed depth [22, 37] has already uncovered
significant differences between RVNNs and CVNNs; see also Section 1.3.

1.2 Related work

In the neural network context, universal approximation theorems date back to the 1980s
and 1990s [10, 22], where it was shown that real-valued shallow neural networks with
output dimension 1 and a fixed continuous activation function are universal if and only
if the activation function is not a polynomial. Modifications of the setting in which
universal approximation is studied appear in the neural network literature over the
past decades. These variants of the problem refer to, e.g., the input and the output
dimension, the target space (typically L p for 1 ≤ p ≤ ∞, continuous functions, also
modulo the action of a group), the choice of activation functions (only ReLU vs. any
continuous non-polynomial function), constraints on either the width or depth of the
neural network (narrow vs. wide, shallow vs. deep networks), or constraints on the
norm or the sparsity of the weights, see for instance [7, 15, 17, 24, 27, 29, 39] and
the references therein. Furthermore, changes in the network architecture [31, 42], the
incorporation of randomness [25], and changes in the nature of the inputs [6, 23] are
also subjects of investigation in the literature on universal approximation.

Moreover, the literature contains numerous quantitative statements about the
approximation properties of neural networks (see for instance [4, 26, 30, 38] and the
references therein). We explicitly mention the paper [18], which provides quantitative
approximation bounds for deep narrow RVNNs in terms of the depth of the considered
networks (see [18, Proposition 53]). In the present work, we prove a statement similar
to [18, Proposition 53(i)] for CVNNs with a smooth and non-polyharmonic activation
function (see Theorem 5.3).

Remarkably, the theory mostly covers real-valued neural networks. Yet, the fact
that CVNNs are applied successfully in various application areas (see Section 1.1)
motivates the theoretical study of their approximative capabilities. To the best of our
knowledge, the only qualitative and quantitative results in that direction are [28, 37],
and [8, 13], respectively. The article [37] provides a characterization of activation
functions, for which shallow CVNNs are universal. This characterization is crucial for
the purposes of the paper at hand and is therefore given in Theorem 4.1 below. For both
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the shallow and the deep narrow (real-valued and complex-valued) neural networks
with analytic activation functions, it is shown in [28] that the closures of these classes
in C(K ) coincides with the closure of polynomials, where K is a compact subset of
R
n or C

n . An application of the Stone–Weierstrass theorem or Mergelyan’s theorem
then yields universality of neural networks in the set of continuous functions in the
real-valued case or holomorphic functions in the complex-valued case. The authors
of [8] prove quantitative bounds for the approximation of Ck-functions on C

n using
complex-valued neural networks with themodReLU activation function. Those results
have recently been generalized in [13], where the same approximation bounds have
been proven for the rich class of complex-valued activation functions that are smooth
and non-polyharmonic on some non-empty open set. This class in particular includes
the modReLU.

1.3 Contribution

In the real-valued case, undermild assumptions on their regularity, activation functions
that yield universal neural networks have been characterized in the literature. In the
complex-valued case, however, such a characterization is only known in the case of
neural networks with fixed depths and arbitrary widths. To complete the picture, we
give in Theorem 1.1 a characterization of activation functions for which CVNNs with
bounded widths and arbitrary depths are universal.

Recall that polynomial activation functions are precisely the ones for which real-
valued neural networks with arbitrary widths and fixed depth are not universal, as
shown by Kidger and Lyons in [17, Section 1]. Yet, in the dual situation, where
depth is arbitrary and widths are bounded, polynomial activation functions (of mini-
mum degree 2) do give rise to universal real-valued neural networks, see again [17,
Theorem 3.2]. The situation is different in the complex-valued case. For continuous
activation functions, Voigtlaender shows in [37, Theorem 1.3] that shallow CVNNs
are universal if and only if the activation function is non-polyharmonic. CVNNs of
arbitrary widths and fixed depth> 1 are universal if and only if the activation function
does not coincide with a polynomial in z and z, and is neither holomorphic nor anti-
holomorphic, cf. [37, Theorem 1.4]. In the deep narrow regime studied in Theorem
1.1, the requirements on the activation function for universality are again weaker in
the sense that not being a polynomial in z and z is replaced by not being R-affine.

In this work, we consider continuous complex-valued activation functions which
have non-vanishing derivative (in the sense of real variables) at some point. Our anal-
ysis roughly splits into two parts: polyharmonic and non-polyharmonic activation
functions. While this distinction mainly impacts the proof techniques, the bounds on
the widths of the CVNNs are actually governed by the properties of the Wirtinger
derivatives of the activation function at the point of differentiability. Fig. 1 is a graph-
ical guide through our results.

For non-polyharmonic activation functions, we show universality of CVNNs with
input dimension n and output dimension m, where the number of neurons per hidden
layer is 2n + 2m + 1 or even n + m + 1, see Theorem 4.2. The proofs in that case
are based on the fact that for non-polyharmonic activation functions shallow CVNNs
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Fig. 1 Our results in a nutshell

are universal, as shown by Voigtlaender in [37, Theorem 1.3]. We combine this with
an adaptation of the register model technique developed by Kidger and Lyons [17,
Theorem 3.2]. There, they used this technique to deduce universality of deep narrow
real-valued neural networks from the classical result on universality of shallow real-
valued neural networks [10, 22]. For polyharmonic activation functions, we show
that CVNNs with input dimension n, output dimension m, and 2n + 2m + 5 or even
n + m + 3 neurons per hidden layer are universal, see Theorem 4.9. This is done by
approximating polynomials in z and z uniformly on compact sets and invoking the
Stone–Weierstrass theorem.

Moreover, based on the ideas from [18, Proposition 59], we provide a quantitative
approximation bound in terms of the depth of the considered networks for the case
of a smooth and non-polyharmonic activation function � ∈ C(C; C). Precisely, given
a function f ∈ C([−1, 1]n + i · [−1, 1]n; C

m) and ε > 0, we show that one can
approximate f up to precision ε with deep narrow networks using activation function
� and a depth of at most

⎛
⎝32 ·
[
ω−1

(
f ,

ε

3 · √
2m ·(1 + n

2

)
)]−2

+ 9

⎞
⎠

2n

;

see Theorem 5.3. Here, ω−1( f , ·) denotes the inverse modulus of continuity of the
function f , see (5.1). We believe that our techniques combined with those from [18,
Appendix B.2] can also be used to derive depth estimates for deep narrow CVNNs
for the case of more general activation functions � ∈ C(C; C). However, since the
present paper focuses on the aspect of universality, this is left as future work.
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1.4 Organization of our paper

In Section 2 we fix our notation and recall some basics from complex and functional
analysis and the theory of neural networks. Section 3 introduces the register model and
shows how the identity map onC and complex conjugation can be approximated using
CVNNs. For non-polyharmonic functions, the proof of Theorem 1.1 can be found in
Section 4.1. In Section 4.2, we present the proof of universality claimed in Theorem1.1
in the case of polyharmonic activation functions which are neither holomorphic, nor
antiholomorphic, nor R-affine. In Section 5, we prove the quantitative approximation
bound in terms of the depth of the considered networks. In Section 6, we show that
CVNNs whose activation function is holomorphic or antiholomorphic or R-affine are
never universal, regardless of the number of neurons per hidden layer. Moreover, we
show that there exist activation functions satisfying the assumptions from Theorem
1.1 for which a width of max {2n, 2m} is necessary in order to provide universal
CVNNs. In the appendix, we provide basics on the relationship between local uniform
convergence and universal approximation, and on Taylor approximations in terms of
Wirtinger derivatives.

2 Preliminaries

In this section, we recall facts from complex analysis, functional analysis, and the
theory of neural networks behind the phrases in Theorem 1.1. The presentation is
loosely based on [34, Chapter 7], [35, Chapter 11], and [14, Section 1].

2.1 Complex and functional analysis

We use the symbols N, R, and C to denote the natural, real, and complex numbers,
respectively.ByRe(z), Im(z), and z,wedenote the componentwise real part, imaginary
part, and complex conjugate of a vector z ∈ C

n , respectively. We call the function
� : C → C partially differentiable at z0, if the partial derivatives

∂�

∂x
(z0) := lim

R\{0}	h→0

�(z0 + h) − �(z0)

h

and
∂�

∂ y
(z0) := lim

R\{0}	h→0

�(z0 + ih) − �(z0)

h

exist. Higher-order partial derivatives are defined in the standard manner. We write
� ∈ Ck(C; C) if � admits partial derivatives up to order k at each point of C and
the kth-order partial derivatives are continuous functions C → C. Likewise, we write
� ∈ C∞(C; C) if � ∈ Ck(C; C) for all k ∈ N. If ∂�

∂x (z0) and
∂�
∂ y (z0) exist and the

identity

lim
C\{0}	h→0

�(z0 + h) − �(z0) − ∂�
∂x (z0)Re(h) − ∂�

∂ y (z0) Im(h)

h
= 0 (2.1)
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holds true, then � is called real differentiable at z0 with derivative (
∂�
∂x (z0),

∂�
∂ y (z0)).

Similarly, � is called complex differentiable at z0 if

lim
C\{0}	h→0

�(z0 + h) − �(z0) − ch

h
= 0

for some number c ∈ C, which in that case is given by

∂wirt�(z0) := 1

2

(
∂�

∂x
(z0) − i

∂�

∂ y
(z0)

)
.

Complex differentiability of � at z0 can be equivalently stated as

∂wirt�(z0) := 1

2

(
∂�

∂x
(z0) + i

∂�

∂ y
(z0)

)
= 0.

The differential operators ∂wirt and ∂wirt are calledWirtinger derivatives. If ∂wirt�(z) =
0 for all z ∈ C, then � is a holomorphic function. The function � is called antiholo-
morphic if the function � : C → C, �(z) := Re(�(z)) − i Im(�(z)) is holomorphic
or, equivalently, ∂wirt�(z) = 0 for all z ∈ C. As the linear operator that maps
the partial derivatives onto the Wirtinger derivatives is invertible, it follows that
(
∂�
∂x (z0),

∂�
∂ y (z0)) = (0, 0) if and only if (∂wirt�(z0), ∂wirt�(z0)) = (0, 0). Further-

more, the symmetry of mixed partial derivatives implies for � ∈ C2(C; C) that

4∂wirt∂wirt� = 4∂wirt∂wirt� =
(

∂2

∂x2
+ ∂2

∂ y2

)
� =: ��. (2.2)

If � ∈ C∞(C; C) and �m� = 0 for some m ∈ N, then � is called polyharmonic of
order m. Because of (2.2), holomorphic and antiholomorphic functions are harmonic,
i.e., polyharmonic of order 1.

The following well-known lemma generalizes the classical real-valued Taylor
expansion to the complex-valued setting; see Lemma B.1 for a proof.

Lemma 2.1 Let � ∈ C(C; C) and z, z0 ∈ C. If � is real differentiable at z0, then

�(z + z0) = �(z0) + ∂wirt�(z0)z + ∂wirt�(z0)z + �1(z) (2.3)

for a function �1 : C → C with limC\{0}	z→0
�1(z)

z = 0. If � ∈ C2(C; C), then

�(z + z0) = �(z0) + ∂wirt�(z0)z + ∂wirt�(z0)z + 1

2
∂2wirt�(z0)z

2 + ∂wirt∂wirt�(z0)zz

+ 1

2
∂
2
wirt�(z0)z

2 + �2(z) (2.4)

for a function �2 : C → C with limC\{0}	z→0
�2(z)
z2

= 0.
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On C
m , we consider the topology induced by the Euclidean norm

‖(z1, . . . , zm)‖Cm =
⎛
⎝

m∑
j=1

∣∣z j
∣∣2
⎞
⎠

1
2

.

For K ⊆ C
n , we denote the vector space of continuous functions K → C

m by
C(K ; C

m). When K ⊆ C
n is compact, the expression

‖ f ‖C(K ;Cm ) := sup
z∈K

‖ f (z)‖Cm

defines a norm on C(K ; C
m), called the uniform norm, which renders C(K ; C

m) a
Banach space. The convergence of a sequence ( f j ) j∈N of elements f j ∈ C(K ; C

m)

to a limit f ∈ C(K ; C
m)with respect to ‖·‖C(K ;Cm ) is written as f j → f as j → ∞,

uniformly on K . Similarly, a sequence ( f j ) j∈N of functions f j ∈ C(Cn; C
m) is said

to converge locally uniformly to a function f ∈ C(Cn; C
m) if it converges uniformly

to f on every compact subset K ⊆ C
n . Since compositions of continuous functions

are continuous, we have NN �

n,m,W ⊆ C(Cn; C
m) when � ∈ C(C; C). The main

objective of the paper at hand is to show that under certain additional assumptions on
� andW , the elements ofNN �

n,m,W are arbitrarily close to the elements ofC(Cn; C
m)

in the following sense.

Definition 2.2 We say that a function classF ⊆ C(Cn; C
m) has the universal approx-

imation property (or is universal) if for every function g ∈ C(Cn; C
m), every compact

subset K ⊆ C
n and every ε > 0 there exists a function f ∈ F such that

sup
z∈K

‖ f (z) − g(z)‖Cm < ε.

The universal approximation property ofF is equivalent to saying that for every given
function g ∈ C(Cn; C

m) there exists a sequence ( f j ) j∈N with f j ∈ F for every
j ∈ N that converges locally uniformly to g. Likewise, this is equivalent to saying
that the class F is dense in C(Cn; C

m) with respect to the compact-open topology.
We elaborate this equivalence in Appendix A. By F we denote the closure of F with
respect to the compact-open topology. Notice that we also use the notation z to denote
the complex conjugate of z ∈ C. The precise meaning will be clear from the context.

2.2 Neural networks

A (fully connected feed-forward) complex-valued neural network (CVNN) is a func-
tion

VL ◦ �×NL . . . ◦ �×N1 ◦ V0 : C
N0 → C

NL+1

where

• L ∈ N is called the depth of the CVNN,
• N j ∈ N is the width of the j th layer,
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• max {N0, . . . , NL+1} is the width of the CVNN,
• Vj : C

N j → C
N j+1 is a C-affine map, abbreviated as Vj ∈ Aff(CN j ; C

N j+1), i.e.,
there exist A j ∈ C

N j+1×N j and b j ∈ C
N j+1 such that Vj (z) = A j z + b j for all

z ∈ C
N j ,

• �×N j (z1, . . . , zN j ) = (�(z1), . . . , �(zN j )) is the componentwise application of a
(potentially non-affine) map � : C → C called the activation function.

We refer to the numbers N0 and NL+1 as the input dimension and output dimension,
respectively. The numbers N1, . . . , NL are the widths of the hidden layers of the
CVNN. Since it is always possible to pad matrices and vectors by additional zero rows
and columns, we may and will assume without loss of generality that N1 = N2 =
. . . = NL .

We introduce a short-hand notation for the CVNNs that arise this way.

Definition 2.3 Let n,m,W , L ∈ N and � : C → C. We denote by NN �

n,m,W ,L the
set of CVNNs with depth L , input dimension n, output dimension m, and N j = W
for j ∈ {1, . . . , L}. In view of cases where the depth is not relevant, we let

NN �

n,m,W :=
⋃
L∈N

NN �

n,m,W ,L .

The elements of NN �

n,m,W are thus alternating compositions

VL ◦ �×W ◦ . . . ◦ �×W ◦ V0 : C
n → C

m (2.5)

of C-affine maps Vj and the componentwise applications of the activation function �.
In the subsequent Sections 4.2 and 4.1, we have W ≥ max {n,m}, such that W turns
out to be the width of the neural networks under consideration.

A typicalway of thinking about neural networks is viewing the component functions
of �×N j+1 ◦Vj as building blocks called neurons. Each neuron performs a computation
of the form

z 
→ �(w�z + b)

where z is the output of the previous layer, w a vector of weights, and b a number
called bias.

Since the composition of affine maps is affine, it is also possible to think about
neural networks as maps

(
�L ◦ �×W ◦ 	L

) ◦ (�L−1 ◦ �×W ◦ 	L−1
) ◦ . . . ◦ (�1 ◦ �×W ◦ 	1

)
,

where each of the maps 	k, �k is affine. This allows to perceive shallow networks,
see Definition 2.4, as building blocks for neural networks. This point of view is similar
to the notion of enhanced neurons in [17].

For a fixed activation function �, different choices of theC-affine functions Vj may
lead to the same composite function (2.5). In view of this, both depth and width of a
CVNN are not properties of the function (2.5) but of the tuple (V1, . . . , VL). For this
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reason, a different terminology is sometimes used in the literature where (V1, . . . , VL)

is called the neural network and (2.5) is its realization, cf. [14, Section 1].
Apart from the choice of the activation function �, restrictions on the depth or the

width are common ingredients in the analysis of (fully connected feed-forward) neural
networks. A CVNN is called shallow if its depth equals 1, and deep otherwise. Since
shallow networks play a special role in our analysis, we introduce an own notation for
them.

Definition 2.4 Let n,m,W ∈ N and � : C → C. We denote by

SN �

n,m,W := NN �

n,m,W ,1

the set of shallow CVNNs with W hidden neurons. We write

SN �
n,m :=

⋃
W∈N

SN �

n,m,W .

In contrast to shallowness, narrowness is not an individual property of CVNNs but a
class property. A set F of CVNNs is said to be narrow if it does not contain CVNNs
of arbitrarily large widths, i.e., if F ⊆ NN �

n,m,W for suitable n,m,W ∈ N and
� : C → C.

3 Building blocks and register model

In this section, we prove several preliminary statements that are crucial for the results
derived in Section 5 and 4. Specifically, in Section 3.1, we construct building blocks to
approximate elementary functions locally uniformly by shallow CVNNs. In Section
3.2, we consider the fundamental concept of the register model to transform shallow
networks into deep narrow networks.

3.1 Building blocks

In this section we introduce various building blocks for complex-valued networks, i.e.,
small neural network blocks that are able to represent elementary functions (e.g., the
complex identity idC or complex conjugation idC) up to an arbitrarily small approx-
imation error. These building blocks are used in Sections 4.2 and 4.1 to construct
the deep narrow networks that we use to approximate a given continuous function.
Throughout the chapter, we assume that the used activation function � : C → C

is differentiable (in the real sense) at one point with non-vanishing derivative at that
point. In fact, the strategy for constructing these building blocks is always going to
be similar: By using the first- and second-order Taylor expansion of the activation
function � as introduced in Lemma 2.1 one can localize the activation function around
its point of differentiability where it behaves like a complex polynomial in z and z of
degree 1 and 2, respectively. This enables us to extract elementary functions from that
Taylor expansion.
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Proposition 3.1 is fundamental for the universality results introduced in Sections
4.2 and 4.1. It shows that it is possible to uniformly approximate the complex identity
or complex conjugation on compact sets using neural networks with a single hidden
layer and width at most 2. If the activation function (or its complex conjugate) is not
just real but even complex differentiable, the width can be reduced to 1. See Fig. 2 for
an illustration of the building blocks.

Proposition 3.1 Let � ∈ C(C; C). Assume that there exists z0 ∈ C such that � is real
differentiable at z0 with (∂wirt�(z0), ∂wirt�(z0)) �= (0, 0). Furthermore, let K ⊆ C be
compact and ε > 0.

(i) If ∂wirt�(z0) �= 0 and ∂wirt�(z0) = 0, there exist φ,ψ ∈ Aff(C; C) such that

sup
z∈K

|(ψ ◦ � ◦ φ)(z) − z| < ε.

(ii) If ∂wirt�(z0) = 0 and ∂wirt�(z0) �= 0, there exist φ,ψ ∈ Aff(C; C) such that

sup
z∈K

|(ψ ◦ � ◦ φ)(z) − z| < ε.

(iii) If ∂wirt�(z0) �= 0 �= ∂wirt�(z0), there existφ ∈ Aff(C; C
2) andψ ∈ Aff(C2; C

2)

such that
sup
z∈K

∥∥∥(ψ ◦ �×2 ◦ φ)(z) − (z, z)
∥∥∥
C2

< ε

Proof Recall that Lemma 2.1 yields the existence of a function � : C → C satisfying
lim
z→0

�(z)
z = 0 and

�(z + z0) = �(z0) + ∂wirt�(z0)z + ∂wirt�(z0)z + �(z)

for every z ∈ C.
If ∂wirt�(z0) = 0 and ∂wirt�(z0) �= 0 we see for all h > 0 and z ∈ K that

�(z0 + hz) − �(z0)

∂wirt�(z0)h
= z + �(hz)

∂wirt�(z0)h
. (3.1)

Similarly, if ∂wirt�(z0) �= 0 and ∂wirt�(z0) = 0, we get for all h > 0 and z ∈ K that

�(z0 + hz) − �(z0)

∂wirt�(z0)h
= z + �(hz)

∂wirt�(z0)h
. (3.2)

If ∂wirt�(z0) �= 0 �= ∂wirt�(z0), consider

i�(z0 + hz) + �(z0 + ihz) − (1 + i)�(z0)

2ih∂wirt�(z0)
= z + i�(hz) + �(ihz)

2ih∂wirt�(z0)
(3.3)
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Fig. 2 Illustration of the neural
network building blocks from
Proposition 3.1. Neurons in the
input and output layers are
depicted in filled dots at the top
and bottom, respectively.
Applications of the activation
function � are shown as circles

as well as

−i�(z0 + hz) + �(z0 + ihz) − (1 − i)�(z0)

−2ih∂wirt�(z0)
= z + −i�(hz) + �(ihz)

−2ih∂wirt�(z0)
. (3.4)

It remains to show that the second summands on the right-hand sides of (3.1), (3.2),
(3.3), and (3.4) tend to 0 as h ↓ 0. Since K is compact there exists L > 0 satisfying
|z| ≤ L for all z ∈ K . Let ε′ > 0 be arbitrary and take δ > 0 such that

∣∣∣∣
�(w)

w

∣∣∣∣ <
ε′

L

for every w ∈ C \ {0} with |w| < δ. Let h ∈ (0, δ/L) and z ∈ K . Since |hz| < δ we
see for every z ∈ K \ {0} that

∣∣∣∣
�(hz)

h

∣∣∣∣ ≤ L ·
∣∣∣∣
�(hz)

hz

∣∣∣∣ < ε′

and since ε′ has been taken arbitrarily

lim
h↓0 supz∈K

�(hz)

h
= 0.

Here, we concluded �(0) = 0 from (2.3) to also cover the case z = 0. ��
Proposition 3.2 is important for the case of polyharmonic activation functionswhich

is considered in Section 4.2. It essentially states that, given an activation functionwhich
is not R-affine, one can approximate one of the functions z 
→ zz, z 
→ z2 or z 
→ z2

by using a shallow neural network of width 4, see Fig. 3 for an illustration.

Proposition 3.2 Let

f1 : C → C, f1(z) = zz, f2 : C → C, f2(z) = z2, and

f3 : C → C, f3(z) = z2.

Moreover, let � ∈ C2(C; C) be not R-affine. Then there exists a function f ∈
{ f1, f2, f3} with the following property: For every compact subset K ⊆ C and every
ε > 0 there exist affine maps φ ∈ Aff(C; C

4) and ψ ∈ Aff(C4; C) such that
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sup
z∈K

∣∣∣(ψ ◦ �×4 ◦ φ)(z) − f (z)
∣∣∣ < ε

holds true.

Proof Since � is not R-affine, there exists z0 ∈ C such that ∂2wirt�(z0) �= 0,

∂wirt∂wirt�(z0) �= 0, or ∂
2
wirt�(z0) �= 0, see, e.g., Proposition B.2. Using the second-

order Taylor expansion stated in Lemma 2.1, there exists a function � : C → C

satisfying lim
w→0

�(w)

w2 = 0 and

�(z0 + w) = �(z0) + ∂wirt�(z0)w + ∂wirt�(z0)w + 1

2
∂2wirt�(z0)w

2

+ ∂wirt∂wirt�(z0)ww + 1

2
∂
2
wirt�(z0)w

2 + �(w)

for every w ∈ C. Applying this identity to −w in place of w and adding up, we infer
for any w ∈ C that

�(z0 + w) + �(z0 − w) = 2�(z0) + ∂2wirt�(z0)w
2 + 2∂wirt∂wirt�(z0)ww

+ ∂
2
wirt�(z0)w

2 + �(w) + �(−w).

Let h > 0 and z ∈ K . If ∂wirt∂wirt�(z0) �= 0, we see with w = hz and w = ihz that

�(z0 + hz) + �(z0 − hz) + �(z0 + ihz) + �(z0 − ihz) − 4�(z0)

4h2∂wirt∂wirt�(z0)

= zz + �(hz) + �(−hz) + �(ihz) + �(−ihz)

4h2∂wirt∂wirt�(z0)
. (3.5)

If ∂wirt∂wirt�(z0) = 0 and ∂2wirt�(z0) �= 0, consider w = hz and w = √
ihz, where

√
i

is a fixed square root of i:

�(z0 + hz) + �(z0 − hz) − i�(z0 + √
ihz) − i�(z0 − √

ihz) + 2(−1 + i)�(z0)

2h2∂2wirt�(z0)

= z2 + �(hz) + �(−hz) − i�(
√
ihz) − i�(−√

ihz)

2h2∂2wirt�(z0)
. (3.6)

Last, if ∂2wirt�(z0) = ∂wirt∂wirt�(z0) = 0, consider w = hz:

�(z0 + hz) + �(z0 − hz) − 2�(z0)

h2∂
2
wirt�(z0)

= z2 + �(hz) + �(−hz)

h2∂
2
wirt�(z0)

. (3.7)

It remains to show that the second summands on the right-hand sides of (3.5), (3.6),
and (3.7) tend to 0 as h ↓ 0. Since K is bounded, there exists L > 0 with |z| ≤ L for
every z ∈ K . For given ε′ > 0 there exists δ > 0 such that
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Fig. 3 Illustration of the neural network building block from Proposition 3.2. Neurons in the input and
output layers are depicted in filled dots at the top and bottom, respectively. Applications of the activation
function � are shown as circles

∣∣∣∣
�(w)

w2

∣∣∣∣ <
ε′

L2

for every w ∈ C \ {0} with |w| < δ. Hence, we see for every h ∈ (0, δ/L) and all
z ∈ K \ {0} that ∣∣∣∣

�(hz)

h2

∣∣∣∣ ≤ L2 ·
∣∣∣∣
�(hz)

(hz)2

∣∣∣∣ < ε′

where we used that |hz| < δ. Therefore, we conclude

lim
h↓0 supz∈K

�(hz)

h2
= 0,

using �(0) = 0 from (2.4) to also cover the case z = 0. ��
In order to approximate arbitrary polynomials in the variables z1, . . . , zn and

z1, . . . , zn , we will compute iterative products of two complex numbers in Theorem
4.9. The following result enables the approximation of such products. An illustration
of the CVNN blocks appearing in the proof are given in Fig. 4.

Proposition 3.3 Let

mul1 : C × C → C, mul1(z, w) = zw,

mul2 : C × C → C, mul2(z, w) = zw,

mul3 : C × C → C, mul3(z, w) = zw.

Moreover, let � ∈ C2(C; C) be not R-affine. Then there exists mul ∈ {mul1,mul2,
mul3} with the following property: For every compact subset K ⊆ C

2 and ε > 0 there
exist φ ∈ Aff(C2; C

12) and ψ ∈ Aff(C12; C) such that

sup
(z,w)∈K

∣∣∣(ψ ◦ �×12 ◦ φ)(z, w) − mul(z, w)

∣∣∣ < ε

holds true.

Proof The main steps of the proof are to use a variant of the polarization identity to
reconstruct the three multiplication operators from their values on the diagonal, and
then to apply Proposition 3.2 to approximate the latter.
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Fig. 4 Illustration of the neural network building block from Proposition 3.3. Neurons in the input and
output layers are depicted in filled dots at the top and bottom, respectively. Applications of the activation
function � are shown as circles. From the input values z and w, three or two linear combinations are
computed. Then the building block from Fig. 3 is inserted to approximate z 
→ z2, z 
→ z2, or z 
→ zz.
The results are again combined linearly

Precisely, the construction is as follows: If ζ 
→ ζ ζ = |ζ |2 can be approximated
according to the first case of Proposition 3.2, use the identity

(
1

4
+ i

4

)
|z + w|2 +

(
−1

4
+ i

4

)
|z − w|2 − i

2
|z − iw|2 = zw.

Thus, in order to approximate (z, w) 
→ zw, one needs 4 hidden neurons to approx-
imate ζ 
→ |ζ |2 for each of the 3 linear combinations of z and w, resulting in a total
amount of 12 hidden neurons.

If we have the second case of Proposition 3.2, we can approximate ζ 
→ ζ 2 using
4 hidden neurons. In this case, consider

1

4

[
(z + w)2 − (z − w)2

]
= zw,

so that in total one needs 8 neurons in order to approximate (z, w) 
→ zw. In the

last case of Proposition 3.2 we can approximate ζ 
→ ζ
2
using 4 hidden neurons.

Considering
1

4

[
(z + w)

2 − (z − w)
2
]

= zw,

we infer that (z, w) 
→ zw can be approximated using 8 hidden neurons. ��

It remains open whether the number 12 in Proposition 3.3 can be reduced. However,
it should be noted that the exact number is not crucial for the final result Theorem 4.9,
since in its proof the shallow networks obtained in Proposition 3.3 are transformed to
deep narrow networks according to Propositions 3.6 and 3.8 and the width of these
networks is in fact independent of the number of hidden neurons in the original shallow
networks.
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3.2 Register model

In this section, we introduce the fundamental concept of the register model. This
construction has been heavily used in [17] to prove the real-valued counterpart of the
theorem established in the present paper.

Definition 3.4 Let n,m,W , L ∈ N and � : C → C. Denote by I�

n,m,W ,L the set of
register models

TL ◦ �̃ ◦ . . . ◦ �̃ ◦ T0,

where T0 ∈ Aff(Cn; C
W ), TL ∈ Aff(CW ; C

m), T� ∈ Aff(CW ; C
W ) and

�̃ : C
W → C

W , (�̃(z1, . . . , zW )) j =
{

�(zW ), j = W ,

z j , j �= W .

In view of cases where the depth L does not matter, we set

I�

n,m,W :=
⋃
L∈N

I�

n,m,W ,L .

Remark 3.5 The setI�

n,m,W ,L maybe viewed as the set ofCVNNswith n input neurons,
m output neurons, a width of W and a depth of L , where in every hidden layer the
first W − 1 neurons use the identity as activation function and in the last neuron, � is
used as activation function. In fact, since we can apply permutations to the entries of
a vector before and after each layer, it is irrelevant in which neuron the application of
� takes place. We choose the last neuron for convenience.

One can transform a shallow network into a deep narrow register model by “flipping”
the shallownetwork and only performing one computation per layer. This is formalized
in Proposition 3.6 and illustrated in Fig. 5.

Proposition 3.6 Let n,m, L ∈ N. Let f ∈ SN �

n,m,L and let f̃ : C
n → C

n ×
C
m, f̃ (z) := (z, f (z)). Then we have f̃ ∈ I�

n,n+m,n+m+1,L . In particular, we have

SN �

n,m,L ⊆ I�

n,m,n+m+1,L .

Proof Let f ∈ SN �
n,m . Then there exist V1 ∈ Aff(Cn; C

L), and V2 ∈ Aff(CL ; C
m)

such that f = V2 ◦ �×L ◦ V1. For j ∈ {1, . . . ,m}, the j th component function f j of
f can be written as

f j (z) =
(

L∑
k=1

ck, j�(a�
k z + bk)

)
+ d j

with suitably chosen ak ∈ C
n and ck, j , bk, d j ∈ C. We define

T0 : C
n → C

n × C × C
m, T1(z) = (z, a�

1 z + b1, 0).
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For � ∈ {1, . . . , L − 1}, we define

T� : C
n × C × C

m → C
n × C × C

m, T�(z, u, (w1, . . . , wm)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z
a�
�+1z + b�+1

w1 + c�,1u
w2 + c�,2u

...

wm + c�,mu

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Last, we set

TL : C
n ×C×C

m → C
n ×C

m, TL(z, u, (w1, . . . , wm)) =

⎛
⎜⎜⎜⎜⎜⎝

z
w1 + cL,1u + d1
w2 + cL,2u + d2

...

wm + cL,mu + dm

⎞
⎟⎟⎟⎟⎟⎠

.

Then we have
f̃ = TL ◦ �̃ ◦ . . . ◦ �̃ ◦ T0 (3.8)

with

�̃ : C
n+m+1 → C

n+m+1, (�̃(z1, . . . , zn+m+1)) j =
{

�(zn+1) if j = n + 1,

z j if j �= n + 1,

which clearly yields f̃ ∈ I�

n,n+m,n+m+1,L (see Remark 3.5). The second part of the
statement follows by applying a projection onto the last m coordinates after the last
layer. ��
We illustrate the proof of Proposition 3.6 in the following. To this end, let us adopt
some terminology from [17, Proof of Proposition 4.6]. The neurons that use � as the
activation function (the one with index n + 1 in each layer) shall be referred to as
computation neurons. We call the neurons with indices < n + 1 in each layer the in-
register neurons. Here the inputs are just passed through the different layers unaltered.
In other words, the restriction of �̃ ◦ . . . ◦ �̃ ◦ T0 in (3.8) to the components with
indices < n + 1 is just the identity on C

n . The remaining neurons (the ones with
indices > n + 1 in each layer) are called out-register neurons. Here the outputs of the
computation neurons are assembled to form the final outputs.

The followingproposition enables us to approximateCVNNs that use� as activation
function locally uniformly by CVNNs that use � as activation function, if there exists
a point z0 ∈ C with ∂wirt�(z0) = 0 �= ∂wirt�(z0).

Proposition 3.7 Let � ∈ C(C; C) and n,m,W , L ∈ N. Assume that there exists
z0 ∈ C such that � is real differentiable at z0 with

∂wirt�(z0) = 0 and ∂wirt�(z0) �= 0.
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Fig. 5 Illustration of the register
model from Proposition 3.6.
Neurons where the complex
identity is used as activation
function are visualized as
squares, whereas neurons using
� as activation function are
visualized using circles. The
in-register neurons (squares on
the left) store the input values
and pass them to the
computation neurons (middle
circles). The result of the
computations are added up and
stored in the out-register neurons
(squares on the right). The
dashed box highlights one of the
blocks that are later replaced
using approximations of the
complex identity

Then
NN �

n,m,W ,L ⊆ NN �

n,m,W ,2L ,

where the closure is taken with respect to the compact-open topology.

Proof Let f ∈ NN �

n,m,W be arbitrary and consider the decomposition

f = VL ◦ �×W ◦ VL−1 ◦ . . . ◦ �×W ◦ V0

with V0 ∈ Aff(Cn; C
W ), V� ∈ Aff(CW ; C

W ), and VL ∈ Aff(CW ; C
m) for every � ∈

{1, . . . , L − 1}. From Proposition 3.1(ii) and Proposition A.2 we infer the existence of
sequences (	 j ) j∈N and (� j ) j∈N of affine maps 	 j , � j ∈ Aff(CW ; C

W ) for j ∈ N

such that

� j ◦ �×W ◦ 	 j
j→∞−−−→ idC

×W

locally uniformly. But then we see

VL ◦
(
� j ◦ �×W ◦ 	 j

)
◦ �×W ◦ VL−1 ◦ . . . ◦

(
� j ◦ �×W ◦ 	 j

)
◦ �×W ◦ V0 j→∞−−−→ f

locally uniformly, where the left-hand side is an element of NN �

n,m,W ,2L for every
j ∈ N. Here we applied Proposition A.7. The claim then follows from Proposition
A.4. ��
Using the previous proposition, we can now show that every register model of width
W can be approximated by CVNNs, where in every hidden neuron the function �

is used as activation function. To do so, it is necessary to approximate the identity
connections that appear in the register model. By assumption, the activation function
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� is real differentiable at some point z0 ∈ C with non-zero derivative. We consider
three different cases. First, if � is even complex differentiable at z0, Proposition 3.1
yields an approximation of idC using shallow CVNNs with activation function � and
a width of 1. In that case, replacing the identity connections in the register model
by these approximations results in a sufficient width of W . Second, if � is complex
differentiable at z0, we use Proposition 3.7 to get the desired result. Last, if neither
of the two former cases happens, we show that a width of 2W − 1 is sufficient for
CVNNs with activation function � in order to be universal, by using the third building
block described in Proposition 3.1. Note that in each layer, there are W − 1 identity
connections to be replaced (resulting in a width of 2(W −1) = 2W −2 for the identity
connections) and one additional application of the activation function �, which in total
gives us a width of 2W − 1.

Proposition 3.8 Let � ∈ C(C; C). Assume that there exists a point z0 ∈ C such that
� is real differentiable at z0 with non-zero derivative. Let n,m,W , L ∈ N.

(i) If ∂wirt�(z0) �= 0 and ∂wirt�(z0) = 0, then I�

n,m,W ,L ⊆ NN �

n,m,W ,L .

(ii) If ∂wirt�(z0) = 0 and ∂wirt�(z0) �= 0, then I�

n,m,W ,L ⊆ NN �

n,m,W ,2L .

(iii) If ∂wirt�(z0) �= 0 and ∂wirt�(z0) �= 0, then I�

n,m,W ,L ⊆ NN �

n,m,2W−1,L .

Here, the closure is taken with respect to the compact-open topology.

Proof Let g ∈ I�

n,m,W ,L . This means that there exist maps T0 ∈ Aff(Cn; C
W ), TL ∈

Aff(CW ; C
m), and T� ∈ Aff(CW ; C

W ) for � ∈ {1, . . . , L − 1} such that

g = TL ◦ �̃ ◦ TL−1 ◦ . . . ◦ �̃ ◦ T0,

where �̃ : C
W → C

W is given by

(�̃(z1, . . . , zW )) j =
{
z j if j ∈ {1, . . . ,W − 1} ,

�(zW ) if j = W .

We first prove (i). Combining Proposition 3.1(i) and Proposition A.2, we deduce the
existence of sequences (� j ) j∈N and (	 j ) j∈Nwith� j ,	 j ∈ Aff(CW ; C

W ) for j ∈ N,
satisfying

� j ◦ �×W ◦ 	 j
j→∞−−−→ �̃

locally uniformly. Proposition A.7 now implies that the sequence (g j ) j∈N given by

g j = TL ◦
(
� j ◦ �×W ◦ 	 j

)
◦ TL−1 ◦ . . . ◦

(
� j ◦ �×W ◦ 	 j

)
◦ T0

converges locally uniformly to g as j → ∞. Moreover, since the composition of affine
maps is affine, we have g j ∈ NN �

n,m,W ,L for all j ∈ N. Claim (i) now follows from
Proposition A.4.
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We now deal with (ii). By the fundamental properties of Wirtinger derivatives (see
for instance [16, E. 1a]) we compute

∂wirt�(z0) = ∂wirt�(z0) �= 0 and ∂wirt�(z0) = ∂wirt�(z0) = 0.

From (i) we infer I�

n,m,W ,L ⊆ NN �

n,m,W ,L . A direct application of Proposition 3.7
yields (ii).

The proof of (iii) is analogous to the proof of (i). Gluing together one copy of the
complex identity idC and W − 1 copies of the function φ or (the projection onto the
first component of) ψ of Proposition 3.1(iii), respectively, we construct sequences
(� j ) j∈N, (	 j ) j∈N satisfying � j ∈ Aff(C2W−1; C

W ) and 	 j ∈ Aff(CW ; C
2W−1)

for j ∈ N such that

� j ◦ �×(2W−1) ◦ 	 j
j→∞−−−→ �̃

locally uniformly. Because each of the building blocks consists of 2 neurons in this
case, the resulting approximating neural network has width 2W − 1 instead of W . ��

4 Proof of themain result

In this section, we prove Theorem 1.1. The analysis is split into the case of non-
polyharmonic activation functions (see Section 4.1) and polyharmonic activation
functions (see Section 4.2).

4.1 The non-polyharmonic case

When the activation function � is not polyharmonic, the universal approximation
theorem for shallow CVNNs from [37, Theorem 1.3] is applicable. For convenience,
we state the following special case relevant for our investigations.

Theorem 4.1 Let n ∈ N and � ∈ C(C; C). Then SN �
n,1 is universal if and only if � is

not polyharmonic.

Since local uniform convergence onC
m is equivalent to componentwise local uniform

convergence, we conclude that, if � is non-polyharmonic, the set SN �
n,m is universal

for every m ∈ N.
Since the set of shallow networks with non-polyharmonic activation function is

universal and each shallow network can be represented by a suitable register model
(see Proposition 3.6), which in turn can be locally uniformly approximated by deep
narrow CVNNs (see Proposition 3.8), we get the following result.

Theorem 4.2 Let n,m ∈ N. Assume that � ∈ C(C; C) is not polyharmonic and that
there exists z0 ∈ C such that � is real differentiable at z0 with non-zero derivative.

(i) If ∂wirt�(z0) �= 0 and ∂wirt�(z0) = 0, then the set NN �

n,m,n+m+1 is universal.

(ii) If ∂wirt�(z0) = 0 and ∂wirt�(z0) �= 0, then the set NN �

n,m,n+m+1 is universal.

(iii) If ∂wirt�(z0) �= 0 and ∂wirt�(z0) �= 0, then the setNN �

n,m,2n+2m+1 is universal.
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Proof Note that
SN �

n,m ⊆ I�

n,m,n+m+1

according to the second part of Proposition 3.6. Since � is non-polyharmonic, SN �
n,m

is universal according to Theorem 4.1 and we hence have

C(Cn; C
m) = SN �

n,m ⊆ I�
n,m,n+m+1.

The claim then follows from Propositions 3.8 and A.6. ��
Next we provide two examples of activation functions which are used in practice

and to which Theorem 4.2 applies.

Example 4.3 The modReLU function has for example been proposed in [2] as a gen-
eralization of the classical ReLU to the complex plane. For a parameter b < 0 it is
defined as

modReLUb : C → C, modReLUb(z) :=
{

(|z| + b) z
|z| if |z| + b ≥ 0,

0 otherwise.

An application of Theorem 4.2(iii) shows that for n,m ∈ N, and b < 0, the set
NNmodReLUb

n,m,2n+2m+1 is universal.
To this end, let us verify the assumptions of Theorem 4.2 in detail. Since the

continuity ofmodReLUb is immediate for z ∈ Cwith |z| �= −b, it remains to check the
case |z| = −b. Take any sequence (z j ) j∈N with z j → z as j → ∞, where we assume
without loss of generality

∣∣z j
∣∣ ≥ −b for every j ∈ N. Then

∣∣modReLUb(z j )
∣∣ =∣∣z j

∣∣+ b → |z| + b = 0 as j → ∞. This shows the continuity of modReLUb.
In [13, Corollary 5.4] it is shown that for all z ∈ C with |z| > −b and all k, � ∈ N0

one has
∂kwirt∂

�

wirt modReLUb(z) �= 0.

This implies that modReLUb is non-polyharmonic and ∂wirt modReLUb(z) �= 0 �=
∂wirt modReLUb(z) for all z ∈ C with |z| > −b.

Further note that the result fromTheorem 4.2 cannot be used to reduce the sufficient
width to n + m + 1 since it holds ∂wirt modReLUb(z) �= 0 �= ∂wirt modReLUb(z) for
all z ∈ C with |z| > −b, ∂wirt modReLUb(z) = ∂wirt modReLUb(z) = 0 for every
z ∈ C with |z| < −b and modReLUb is not real differentiable at any z ∈ C with
|z| = −b.

Example 4.4 The complex cardioid function has been used in [36] in the context
of MRI fingerprinting, where complex-valued neural networks significantly outper-
formed their real-valued counterparts. It is defined as

card : C → C, card(z) :=
{

1
2

(
1 + Re(z)

|z|
)
z if z ∈ C \ {0} ,

0 if z = 0.
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An application of Theorem 4.2(i) shows that for n,m ∈ N the set NN card
n,m,n+m+1 is

universal.
To this end, let us verify the assumptions of Theorem 4.2 in detail. The continuity

of card on C \ {0} is immediate. Further note that

|card(z)| =
∣∣∣∣
1

2

(
1 + Re(z)

|z|
)
z

∣∣∣∣ ≤ |z| → 0

as z → 0, showing the continuity of card on the entire complex plane C. Now [13,
Corollaries 5.6 and 5.7] show that card is non-polyharmonic and

∂wirt card(z) = 1

2
+ 1

8
· z

|z| + 3

8
· z

|z| , ∂wirt card(z) = −1

8
· z3

|z|3 + 1

8
· z

|z|

for every z ∈ C \ {0}. Hence, we see ∂wirt card(1) = 1 and ∂wirt card(1) = 0.

4.2 The polyharmonic case

In this section, we deal with activation functions � : C → C that are polyhar-
monic. However, it turns out that this property can be relaxed to only requiring that
� ∈ C2(C; C) in order for the proofs to work. Note that we still assume that the activa-
tion function � is neither holomorphic, nor antiholomorphic, nor R-affine. That these
assumptions cannot be neglected is shown in Theorem 6.3. The main assumptions of
this subsection can therefore be stated as follows.

Assumption 4.5 Let � : C → C be a function satisfying the following conditions:

(i) � ∈ C2(C; C),
(ii) � is not holomorphic,
(iii) � is not antiholomorphic,
(iv) � is not R-affine.

Using Proposition 3.1, we derive the following Proposition 4.6. It states that the func-
tion z 
→ (z, z) can be uniformly approximated on compact sets by a shallow network
of width 2.

Proposition 4.6 Let � satisfy Assumption 4.5, let K ⊆ C be compact, and ε > 0. Then
there exist maps φ ∈ Aff(C; C

2) and ψ ∈ Aff(C2; C
2) such that

sup
z∈K

∥∥∥(ψ ◦ �×2 ◦ φ)(z) − (z, z)
∥∥∥
C2

< ε.

Proof If there exists a point z0 ∈ C with ∂wirt�(z0) �= 0 �= ∂wirt�(z0), we can directly
apply Proposition 3.1(iii). If there does not exist such a point z0, we can still find
z1 ∈ C with ∂wirt�(z1) �= 0 and z2 ∈ C with ∂wirt�(z2) �= 0, since � is neither
holomorphic nor antiholomorphic. By assumption of the nonexistence of z0 ∈ C with
∂wirt�(z0) �= 0 �= ∂wirt�(z0), it follows that ∂wirt�(z1) = 0 and ∂wirt�(z2) = 0, and
we can thus apply Proposition 3.1(i) and (ii). ��
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Proposition 4.6 is a central finding, since it implies that we can build from the activa-
tion function � constructions that are similar to the register model construction from
Proposition 3.6.

The Stone–Weierstrass theorem states that any continuous function can be arbi-
trarily well approximated by complex polynomials in z1, . . . , zn and z1, . . . , zn in the
uniform norm on compact subsets of C

n . In order to show universality of CVNNs, it
therefore suffices to show that such polynomials can be approximated by deep narrow
CVNNs to arbitrary precision in the uniform norm on compact sets. Motivated by this
observation, for N , n ∈ N, we define

Pn
N :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p : C

n → C, p(z) =
∑
m∈Nn

0
m≤N

∑
�∈Nn

0
�≤N

am,�z
mz� : am,� ∈ C ∀ m, �

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

as the set of complex polynomials on C
n of degree less than N in each variable. Here,

the notation m ≤ N means m j ≤ N for every j ∈ {1, . . . , n} and

zmz� :=
n∏
j=1

z
m j
j z j

� j

form = (m1, . . . ,mn), � = (�1, . . . , �n) ∈ N
n
0. We follow an approach similar to that

of the register model by preserving the inputs and outputs from layer to layer while
gradually performing multiplications to approximate the individual monomials. This
is described in the following lemma. In its statement and proof, we use

∏n
k=1 f βk

k as
an abbreviation for the composition

( fn ◦ . . . ◦ fn)︸ ︷︷ ︸
βn many

◦ . . . ◦ ( f2 ◦ . . . ◦ f2)︸ ︷︷ ︸
β2 many

◦ ( f1 ◦ . . . ◦ f1)︸ ︷︷ ︸
β1 many

.

Lemma 4.7 Let p : C
n → C

m, p(z) = (p1(z), . . . , pm(z)) such that p j ∈ Pn
N for

every j ∈ {1, . . . , n} for a suitable choice of N ∈ N. Letmul be one of the three maps

mul1 : C × C → C, mul1(z, w) = zw,

mul2 : C × C → C, mul2(z, w) = zw,

mul3 : C × C → C, mul3(z, w) = zw,

as in Proposition 3.3. Further, let

f mul
k = fk : C

n × C × C
m → C

n × C × C
m, fk(z, w, u) = (z,mul(w, zk), u)

for k ∈ {1, . . . , n}, and

hk : C
n+1+m → C

n+1+m, hk = idCk−1 ×idC × idCn+m−k ,
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for k ∈ {1, . . . , n + 1}. Then there exist L ∈ N, maps g j : C
n+m+1 →

C
n+m+1 for j ∈ {1, . . . , L} each of which is a finite composition of the maps

f1, . . . , fn, h1, . . . , hn+1 defined above, and affinemappings T0 ∈ Aff(Cn; C
n+m+1),

T� ∈ Aff(Cn+m+1; C
n+m+1) for � ∈ {1, . . . , L − 1} and further TL ∈

Aff(Cn+m+1; C
m) such that

p = TL ◦ gL ◦ . . . T1 ◦ g1 ◦ T0.

Proof By definition of Pn
N , there exist a j,m,� ∈ C for m, � ∈ N

n
0 with m, � ≤ N and

j ∈ {1, . . . ,m} such that

p j (z) =
∑

m,�∈Nn
0

m,�≤N

a j,m,�z
mz� for every j ∈ {1, . . . ,m} .

By enumerating all the occurring monomials from 1 to L , we can rewrite

p j (z) =
L∑

�=1

c j,�

n∏
k=1

z
α�,k
k zk

β�,k

with α�,k, β�,k ∈ {0, . . . , N } and c j,� ∈ C for every � ∈ {1, . . . , L}, k ∈ {1, . . . , n},
and j ∈ {1, . . . ,m}.

We then set

T0 : C
n → C

n × C × C
m, T0(z) = (z, 1, 0),

T� : C
n × C × C

m → C
n × C × C

m, T�(z, w, u) =
⎛
⎝z, 1, w

m∑
j=1

c j,�e j + u

⎞
⎠ ,

and

TL : C
n × C × C

m → C
m, TL(z, w, u) = w

m∑
j=1

c j,Le j + u,

where � ∈ {1, . . . , L − 1}. Here, e j denotes the j th standard basis vector in C
m .

Clearly, the maps T0, . . . , TL are C-affine. Moreover, for � ∈ {1, . . . , L}, let

g� =

⎧⎪⎨
⎪⎩

∏n
k=1 f

α�,k
k ◦ hn+1 ◦∏n

k=1 f
β�,k
k if mul = mul1,∏n

k=1 f
β�,k
k ◦ hn+1 ◦∏n

k=1 f
α�,k
k if mul = mul2,∏n

k=1(hn+1 ◦ fk)α�,k ◦∏n
k=1(hn+1 ◦ hk ◦ fk ◦ hk)β�,k if mul = mul3.

Then

g�(z, 1, u) =
(
z,

n∏
k=1

z
α�,k
k zk

β�,k , u

)
(4.2)
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for all � ∈ {1, . . . , L}, z ∈ C
n , and u ∈ C, i.e., the (n + 1)-entry of g�(z, 1, u) is the

�th monomial. The application of T� adds this monomial with the correct coefficients
to the cumulative sums in the entries indexed n + 2, . . . , n + 1 + m, and resets the
(n + 1)-entry to 1 for the assembly of the next monomial. This proves

p = TL ◦ gL ◦ . . . ◦ T1 ◦ g1 ◦ T0.

To see (4.2), note that for example

(hn+1 ◦ hk ◦ fk ◦ hk)(z1, . . . , zk, . . . , zn, w, u)

= (hn+1 ◦ hk ◦ fk)(z1, . . . , zk, . . . , zn, w, u)

= (hn+1 ◦ hk)(z1, . . . , zk, . . . , zn, zkw, u)

= hn+1(z1, . . . , zk, . . . , zn, zkw, u)

= (z1, . . . , zk, . . . , zn, zkw, u)

when mul = mul3. ��
Lemma 4.7 states that every function from C

n to C
m whose components are polyno-

mials can be written as the composition of affine maps and the maps fk and hk that are
defined in Lemma 4.7. We thus aim to show that each of the fk and hk can be locally
uniformly approximated by narrow CVNNs. For hk , this is a direct consequence of
Proposition 4.6. For fk , since each function mul can be approximated by a shallow
CVNN of width 12 (see Proposition 3.3), together with Proposition 4.6 it is easy to

see that fk ∈ SN �
n+m+1,n+m+1,2n+2m+12. However, a careful analysis shows that

fk ∈ NN �

n+m+1,n+m+1,2n+2m+5; see the proof of Theorem 4.9. The next proposition
is a crucial ingredient for this and shows that each fk can be approximated by register
models with a width of n + m + 3.

Proposition 4.8 Let � ∈ C2(C; C) be not R-affine, n,m ∈ N, and k ∈ {1, . . . , n}.
Let further mul be chosen according to Proposition 3.3 and f mul

k = fk : C
n+m+1 →

C
n+m+1 be defined as in Lemma 4.7. Then we have

fk ∈ I�

n+m+1,n+m+1,n+m+3,

where the closure is taken with respect to the compact-open topology.

Proof According to Proposition 3.3 and Proposition A.2, we may pick a sequence
(ϕ j ) j∈N with ϕ j ∈ SN �

2,1 for j ∈ N that satisfies

ϕ j → mul locally uniformly.

We define

η j : C
n × C × C

m → C
n × C × C

m, η j (z, w, u) := (z, ϕ j (w, zk), u)
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and note that
η j → fk locally uniformly.

Hence, if we can show that η j ∈ I�

n+m+1,n+m+1,n+m+3 for every j ∈ N, the proof is
completed according to Proposition A.4.

To this end, we take j ∈ {1, . . . , n} and define

γ j : C
2 → C

3, γ j (w, z) = (w, z, ϕ j (w, z)) and

θ j : C
2 → C

2, θ j (w, z) = (z, ϕ j (w, z)).

The first part of Proposition 3.6 then shows γ j ∈ I�

2,3,4, and an application of a
projection onto the last two coordinates after the last layer shows θ j ∈ I�

2,2,4. Let
ẑk ∈ C

n−1 denote the vector that arises from z ∈ C
n by omitting the kth entry. Then,

we can write
η j (z, w, u) = πk(ẑk, θ j (w, zk), u),

where πk : C
n+m+1 → C

n+m+1 is the permutation of the entries of a vector that
satisfies

πk(ẑk, zk, w, u) = (z, w, u)

for every z ∈ C
n , w ∈ C and u ∈ C

m . From this representation, we clearly see

η j ∈ I�

n+m+1,n+m+1,n+m+3,

as desired. ��
We can now prove the final bound.

Theorem 4.9 Let n,m ∈ N. Assume that � ∈ C(C; C) satisfies Assumption 4.5. Then
the set NN �

n,m,2n+2m+5 is universal. Moreover, if there exists a point z0 ∈ C with
either

∂wirt�(z0) �= 0 = ∂wirt�(z0) or ∂wirt�(z0) = 0 �= ∂wirt�(z0),

then NN �
n,m,n+m+3 is universal.

Proof From the Stone–Weierstrass theorem [12, Theorem 4.51], we know that the
set of complex polynomials in z1, . . . , zn and z1, . . . , zn is dense in C(K ; C) with
respect to the uniform norm on any compact set K ⊂ C

n . Hence, it suffices to show
that each function p : C

n → C
m , whose components are polynomials in z1, . . . , zn

and z1, . . . , zn can be uniformly approximated on K by CVNNs of appropriate width.

Equivalently, it suffices to show that p ∈ NN �

n,m,W , where W is the desired width
and the closure is taken with respect to the compact-open topology (see Propositions
A.2, A.4, and A.5).

Let mul : C
2 → C be chosen according to Proposition 3.3 (depending on �). From

Lemma 4.7, we infer that there exists a natural number L ∈ N such that

p = TL ◦ gL ◦ . . . ◦ T1 ◦ g1 ◦ T0,
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where T0 ∈ Aff(Cn; C
n+m+1), TL ∈ Aff(Cn+m+1; C

m) and T� ∈ Aff(Cn+m+1;
C
n+m+1) for every � ∈ {1, . . . , L − 1}. Moreover, each function g� : C

n+m+1 →
C
n+m+1 is a finite composition of the fk = f mul

k and hk as defined in Lemma 4.7. In
view of Proposition A.7, it hence suffices to show that for every k ∈ {1, . . . , n}, we
have

fk, hk ∈ NN �

n+m+1,n+m+1,2n+2m+5,

where the closure is taken with respect to the compact-open topology.
To this end, let k ∈ {1, . . . , n}. Since � ∈ C2(C; C) and � is by assumption clearly

not constant, there exists a point z1 ∈ C at which � is real differentiable with non-zero
derivative. Propositions 3.8 and 4.8 then show

fk ∈ I�
n+m+1,n+m+1,n+m+3 ⊆ NN �

n+m+1,n+m+1,2n+2m+5.

Moreover, since both the identity and the conjugation can be locally uniformly approx-
imated on C by shallow networks of width 2 according to Proposition 4.6, we get

hk ∈ SN �

n+m+1,n+m+1,2n+2m+2 ⊆ NN �

n+m+1,n+m+1,2n+2m+5.

This proves that NN �

n+m+1,n+m+1,2n+2m+5 is universal (see Proposition A.6).
Let us now assume that there exists a point z0 ∈ C with

∂wirt�(z0) �= 0 = ∂wirt�(z0).

In that case, Propositions 3.8 and 4.8 yield

fk ∈ I�

n+m+1,n+m+1,n+m+3 ⊆ NN �

n+m+1,n+m+1,n+m+3.

Moreover, since identities can be locally uniformly approximated by shallow CVNNs
of width 1 according to Proposition 3.1, we get

hk ∈ SN �
n+m+1,n+m+1,n+m+2 ⊆ NN �

n+m+1,n+m+1,n+m+3,

where we again used Proposition 4.6 to approximate the conjugation (which might
possibly require a width of 2).

It remains to deal with the case

∂wirt�(z0) = 0 �= ∂wirt�(z0).

Note that � satisfies Assumption 4.5 and by the fundamental properties of Wirtinger
derivatives (see for instance [16, E. 1a]) we compute

∂wirt�(z0) = ∂wirt�(z0) �= 0 and ∂wirt�(z0) = ∂wirt�(z0) = 0.

Hence, by what we have previously shown, we infer thatNN �
n,m,n+m+3 is universal.

Proposition 3.7 then yields that NN �

n,m,n+m+3 is universal. ��
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5 A quantitative bound in terms of the depth

In this section, we provide a quantitative approximation bound in terms of the depth
of the considered networks. For n ∈ N, we let

�n := [−1, 1]n + i · [−1, 1]n

denote the 2n-dimensional unit cube embedded into C
n . Let f ∈ C(�n; C

m) be
a given continuous function defined on that cube and let ε > 0 be a prescribed
approximation accuracy. According to the results established in Section 4.2 and 4.1,
we can approximate the function f up to arbitrary precision on �n with deep narrow
networks. However, these statements are of a qualitative nature and do not address the
question of how deep the networks have to be in order to guarantee an approximation
accuracy less then ε. In this section, we prove such a quantitative statement for the
case of activation functions that are smooth and non-polyharmonic on some non-empty
open subset of C. Our bound heavily relies on the modulus of continuity of the given
function f : For a compact set K ⊆ C

n , a function f ∈ C(K ; C
m) and h > 0, we let

ω( f , h) := sup
{‖ f (z1) − f (z2)‖Cm : z1, z2 ∈ K , ‖z1 − z2‖Cn < h

}
.

We get the following result, which is a generalization of [18, Proposition 48] to the
complex-valued setting.

Proposition 5.1 Let f ∈ C(�n; C). Then for every k ∈ N there exists p ∈ Pn
2k with

‖ f − p‖C(�n;C) ≤
(√

2 + n√
2

)
ω

(
f ,

2√
k

)
.

Here, Pn
2k is as defined in (4.1).

Proof We define

f̃ : [0, 1]n + i · [0, 1]n → C, f̃ (z) = f (2z − 1),

where 1 ∈ C
n is the vector with every entry equal to 1 + i. According to [18, Propo-

sition 48], we then observe the existence of a function p̃1 : C
n → R with

∥∥Re( f̃ ) − p̃1
∥∥
C([0,1]n+i·[0,1]n;R)

≤
(
1 + 2n

4

)
ω

(
Re( f̃ ),

1√
k

)

=
(
1 + n

2

)
ω

(
Re( f̃ ),

1√
k

)

and p̃1 is of the form

p̃1(z) =
∑

k∈N2n
0

k≤k

ak

n∏
j=1

Re(z j )
k j Im(z j )

kn+ j ,
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with ak ∈ R for every k ∈ N
2n
0 with k ≤ k. Similarly, we obtain a function p̃2 : C

n →
R of the form

p̃2(z) =
∑

k∈N2n
0

k≤k

bk

n∏
j=1

Re(z j )
k j Im(z j )

kn+ j

with bk ∈ R satisfying

∥∥Im( f̃ ) − p̃2
∥∥
C([0,1]n+i·[0,1]n;R)

≤
(
1 + n

2

)
ω

(
Im( f̃ ),

1√
k

)
.

We set p̃ := p̃1 + i · p̃2 and get

∥∥ f̃ − p̃
∥∥
C([0,1]n+i·[0,1]n;C)

= sup
z∈[0,1]n+i·[0,1]n

√
(Re( f̃ (z)) − Re( p̃(z)))2 + (Im( f̃ (z)) − Im( p̃(z)))2

≤
√∥∥Re( f̃ ) − p̃1

∥∥2
C([0,1]n+i·[0,1]n;R)

+ ∥∥Im( f̃ ) − p̃2
∥∥2
C([0,1]n+i·[0,1]n;R)

≤
(√

2 + n√
2

)
ω

(
f̃ ,

1√
k

)
.

Using the substitutions Re(z) = 1
2 (z + z) and Im(z) = 1

2i (z − z), we obtain p̃ ∈ Pn
2k .

In the end, we set p(z) := p̃( 12 z + 1
21) and note p ∈ Pn

2k . Moreover, we have

‖ f − p‖C(�n;C) ≤
(√

2 + n√
2

)
ω

(
f̃ ,

1√
k

)
.

It remains to show that ω( f̃ , 1√
k
) = ω( f , 2√

k
). To this end, we observe

ω

(
f̃ ,

1√
k

)

= sup

{∣∣ f̃ (z̃1) − f̃ (z̃2)
∣∣ : z̃1, z̃2 ∈ [0, 1]n + i · [0, 1]n, ‖z̃1 − z̃2‖Cn ≤ 1√

k

}

= sup{| f (2z̃1 − 1) − f (2z̃2 − 1)| : z̃1, z̃2 ∈ [0, 1]n + i · [0, 1]n,
‖z̃1 − z̃2‖Cn ≤ 1√

k
}

= sup

{
| f (z1) − f (z1)| : z1, z2 ∈ �n,

∥∥∥∥
1

2
z1 + 1

2
−
(
1

2
z2 + 1

2

)∥∥∥∥
Cn

≤ 1√
k

}

= ω

(
f ,

2√
k

)
.

��

123



390 Constructive Approximation (2025) 62:361–402

The following result shows howpolynomials can be approximated by shallowCVNNs.
Remarkably, the size of the networks needed does only depend on the degree of the
polynomial and not on the approximation accuracy. Moreover, if one aims to approx-
imate polynomials from a bounded subset of Pn

k (with respect to any norm on Pn
k ),

one can choose the weights connecting the input and the hidden layer of the shallow
network independent of the particular polynomial pwhich is to be approximated; only
the weights connecting hidden and output layer have to be adjusted to p.

Proposition 5.2 (cf. [13, Theorem 3.1]) Let k, n ∈ N, ε > 0 and � : C → C be smooth
and non-polyharmonic on a non-empty open set U ⊆ C. Let P ′ ⊆ Pn

k be bounded
(with respect to some norm on Pn

k ) and set N := (4k + 1)2n. Then there exists a map
ϕ ∈ Aff(Cn; C

N ) with the following property: For every p ∈ P ′ there exists a map
ψ ∈ Aff(CN ; C) with

∥∥∥p −
(
ψ ◦ �×N ◦ ϕ

)∥∥∥
C(�n;C)

≤ ε.

We can now prove the desired quantitative approximation statement. It is based on
Propositions 5.1 and 5.2 and uses the fact that each shallow network can be approxi-
mated up to arbitrary precision by deep narrow CVNNs according to Propositions 3.8
and 3.6. The depth of this CVNN is determined by the number of hidden neurons in
the shallow network, which we can quantify according to Propositions 5.1 and 5.2. To
formulate the final result, we further introduce the notation

ω−1( f , ε) := sup {δ > 0 : ω( f , δ) ≤ ε} (5.1)

for ε > 0 and f ∈ C(�n; C
m).

Theorem 5.3 Let � ∈ C(C; C) be smooth and non-polyharmonic on some non-empty
open set ∅ �= U ⊆ C. Moreover, let f = ( f1, . . . , fm) ∈ C(�n; C

m) and ε > 0 be
given. Then there exists a number N ∈ N with

N ≤
⎛
⎝32 ·
[
ω−1

(
f ,

ε

3 · √
2m ·(1 + n

2

)
)]−2

+ 9

⎞
⎠

2n

(5.2)

and a network 	 ∈ NN �

n,m,2n+2m+1,N with ‖ f − 	‖C(�n;Cm ) ≤ ε.
Moreover, if there exists a point z0 ∈ C where � is real differentiable with

∂wirt�(z0) �= 0 = ∂wirt�(z0),

we may pick 	 ∈ NN �

n,m,n+m+1,N . If, on the other hand, we have

∂wirt�(z0) = 0 �= ∂wirt�(z0),

for some z0 ∈ C
n, we may pick 	 ∈ NN �

n,m,n+m+1,2N .
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Proof We set

k :=
⎡
⎢⎢⎢

(
ω−1

(
f ,

ε

3 · √
2m
(
1 + n

2

)
))−2

· 4
⎤
⎥⎥⎥

.

Note that we have

k ≥
(

ω−1

(
f ,

ε

3 · √
2m
(
1 + n

2

)
))−2

· 4,

which implies
2√
k

≤ ω−1

(
f ,

ε

3 · √
2m
(
1 + n

2

)
)

.

By (5.1), we get

ω

(
f ,

2√
k

)
≤ ε

3 · √
2m · (1 + n

2

) .

According to Theorem 5.1, there exist polynomials p1, . . . , pm ∈ Pn
2k with

∥∥ f j − p j
∥∥
C(�n;C)

≤
(√

2 + n√
2

)
ω

(
f j ,

2√
k

)

for every j ∈ {1, . . . ,m}. Letting p := (p1, . . . , pm), we then have

‖ f − p‖C(�n;Cm ) ≤
⎛
⎝

m∑
j=1

∥∥ f j − p j
∥∥2
C(�n;C)

⎞
⎠

1/2

≤
(√

2 + n√
2

)
·
⎛
⎝

m∑
j=1

[
ω

(
f j ,

2√
k

)]2⎞
⎠

1/2

≤
(√

2 + n√
2

)
·
⎛
⎝

m∑
j=1

[
ω

(
f ,

2√
k

)]2⎞
⎠

1/2

=
(√

2 + n√
2

)
· √

m · ω

(
f ,

2√
k

)
≤ ε

3
.

We set N := (8k+1)2n . Applying Proposition 5.2 to the finite (and therefore bounded)
set given by P ′ := {p1, . . . , pm} yields the existence of functions ϕ ∈ Aff(Cn; C

N )

and ψ ∈ Aff(CN ; C
m) with

∥∥∥p −
(
ψ ◦ �×N ◦ ϕ

)∥∥∥
C(�n;Cm )

≤ ε

3
.

Note that N is independent ofm since the weights connecting the input and the hidden
layer can be chosen independent of the polynomial p j (see Proposition 5.2). Since �
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is smooth and non-polyharmonic on a non-empty open set (in particular not constant)
there exists z0 ∈ C such that � is real differentiable at z0 with non-zero derivative.
According to Proposition 3.6 and Proposition 3.8(iii) we have

ψ ◦ �×N ◦ ϕ ∈ I�

n,m,n+m+1,N ⊆ NN �

n,m,2n+2m+1,N . (5.3)

Hence, there exists 	 ∈ NN �

n,m,2n+2m+1,N with

∥∥∥	 −
(
ψ ◦ �×N ◦ ϕ

)∥∥∥
C(�n;Cm )

≤ ε

3
.

By the triangle inequality, we get

‖ f − 	‖C(�n;Cm ) ≤ ‖ f − p‖C(�n;Cm ) +
∥∥∥p −
(
ψ ◦ �×N ◦ ϕ

)∥∥∥
C(�n;Cm )

+
∥∥∥	 −
(
ψ ◦ �×N ◦ ϕ

)∥∥∥
C(�n;Cm )

≤ ε

3
+ ε

3
+ ε

3
≤ ε,

as desired.
It remains to estimate the depth N of 	. Note that we have

k ≤
(

ω−1

(
f ,

ε

3 · √
2m
(
1 + n

2

)
))−2

· 4 + 1

by definition of k. Combining this with N = (8k + 1)2n , we obtain the upper bound
(5.2) for N .

The case that there exists z0 ∈ C such that � is differentiable at z0 with

(∂wirt�(z0), ∂wirt�(z0)) �= (0, 0)

follows analogously, by using Proposition 3.8(i) and (ii) in (5.3). ��

6 Necessity of our assumptions

The proof of Theorem 1.1 is not yet complete. So far, we have proven that activation
functions � ∈ C(C; C) which are neither holomorphic, nor antiholomorphic, nor R-
affine yield universality of CVNNs ofwidth 2n+2m+5, with indicated improvements
under additional assumptions. The necessity part is done in this section: If � is holo-
morphic, antiholomorphic, or R-affine, then even the set of CVNNs using activation
function � with arbitrary widths and depths is not universal, cf. Theorem 6.3. Fur-
thermore, Theorem 1.1 states that under the mentioned constraints on the activation
function, a width of 2n + 2m + 5 is sufficient for universality of CVNNs with input
dimension n and output dimensionm. But could we have done better? In Theorem 6.4
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below, we show that for a family of real-valued activation functions, the setNN �

n,m,W
is not universal when W < max {2n, 2m}. In our final result Theorem 6.5, we show
that real differentiability of the activation function at one point with non-vanishing
derivative is not necessary for the universal approximation property of deep narrow
CVNNs.

We prepare the proof of Theorem 6.3 by two lemmas, the first of which is about
uniform convergence of R-affine functions.

Lemma 6.1 Let n,m ∈ N, ( fk)k∈N be a sequence of R-affine functions from R
n to R

m

and f : R
n → R

m. Let ( fk)k∈N converge locally uniformly to f . Then f is R-affine
too.

Proof Let Ak ∈ R
m×n and bk ∈ R

m such that fk(x) = Akx + bk . Let b := f (0).
Then we have bk = fk(0) → f (0) = b.

Furthermore we see for every j ∈ {1, . . . , n} that
∥∥Ake j − A�e j

∥∥
Rm ≤ ∥∥Ake j + bk − A�e j − b�

∥∥
Rm + ‖bk − b�‖Rm → 0

as k, � → ∞, uniformly over j , meaning max j∈{1,...,n}
∥∥Ake j − A�e j

∥∥
Rm → 0 as

k, � → ∞. Here e j denotes the element of R
m whose entries are 0 except for the j th

which is 1.
Consequently, (Ak)k∈N is a Cauchy sequence and thus converges to some A ∈

R
m×n . We claim f (x) = Ax + b for every x ∈ R

n . Indeed, this follows from

‖Akx + bk − Ax + b‖Rm ≤ ‖Akx − Ax‖Rm + ‖bk − b‖Rm

≤ ‖Ak − A‖Rm×n ‖x‖Rm + ‖bk − b‖Rm → 0

as k → ∞. ��
Our second lemma in preparation of the proof of Theorem6.3 concerns locally uniform
limits of sequences of functions that are either holomorphic or antiholomorphic.

Lemma 6.2 Let F := {F : C → C : F holomorphic or antiholomorphic} and
( fk)k∈N be a sequence of functions with fk ∈ F for every k ∈ N. Let f : C → C be
such that fk → f locally uniformly. Then it holds f ∈ F .

Proof We distinguish two cases:

(i) If there exists a subsequence of ( fk)k∈N consisting of holomorphic functions, the
limit f of this subsequence also has to be holomorphic (see for instance [35,
Theorem 10.28]).

(ii) If there exists a subsequence of ( fk)k∈N consisting of antiholomorphic functions,
the limit f of this subsequence also has to be antiholomorphic, where we again
apply [35, Theorem 10.28] to the complex conjugates of the functions in this
subsequence.

��
The necessity part of Theorem 1.1 is covered by the following theorem.
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Theorem 6.3 Let n,m ∈ N and � : C → C be holomorphic or antiholomorphic or
R-affine. Then NN �

n,m := ⋃
W∈N

NN �

n,m,W is not universal.

Proof It suffices to show the claim for m = 1, since local uniform approximation in
C
m means componentwise local uniform approximation.
We start with the case n = 1. If � is holomorphic or antiholomorphic it follows

that all the elements of NN �

1,1 are holomorphic or antiholomorphic (see, e.g., [37,
Proof of Eq. (4.15), p. 28]. But then it follows from Lemma 6.2 and Proposition A.2
that NN �

1,1 is not universal. If � is R-affine, each element of NN �

1,1 is R-affine (as
the composition of R-affine functions). By Lemma 6.1 and Proposition A.2 it follows
that NN �

1,1 is not universal.
The case n > 1 can be reduced to the case n = 1 in the following way: Assume that

NN �

n,1 is universal and pick any arbitrary function f ∈ C(C; C). Let π : C
n → C,

π(z1, . . . , zn) = z1 and π̃ : C → C
n , π̃(z) = (z, 0, . . . , 0). Note that it holds

π ◦ π̃ = idC. By assumption, there exists a sequence (gk)k∈N with gk ∈ NN �
n,1 for

k ∈ N and gk → f ◦π locally uniformly. From Proposition A.7 it follows gk ◦ π̃ → f
locally uniformly. Since gk ◦ π̃ ∈ NN �

1,1 for every k ∈ N it follows that NN �

1,1 is
universal, in contradiction to what has just been shown. ��

In the previous sections, we showed that for a large class of activation functions a
width of 2n + 2m + 5 is sufficient for universality of CVNNs with input dimension n
and output dimension m. Following the lines of [7, Lemma 1], we show next that for
some activation functions, a width of at least max {2n, 2m} is necessary to guarantee
universality.

Theorem 6.4 Let n,m ∈ N.

(i) Let φ ∈ C(R; C), and � : C → C be given by �(z) := φ(Re(z)). Then
NN �

n,m,2n−1 is not universal.

(ii) Let � : C → R. Then NN �
n,m,2m−1 is not universal.

Proof We start with (i). Let K := [−2, 2]n + i[−2, 2]n ⊆ C
n and f (z) :=

(‖z‖Cn , 0, . . . , 0) for z ∈ C
n . Let g ∈ NN �

n,m,2n−1 be arbitrary. From the defini-
tion of �, it follows that we may write g as

g(z) = ψ(Re(V z) + b),

where ψ : C
2n−1 → C

m is some function, V ∈ C
(2n−1)×n , b ∈ R

2n−1, and the real
part Re is taken componentwise. Interpreting Re ◦V as an R-linear function from R

2n

to R
2n−1, we conclude from 2n − 1 < 2n that there exists v ∈ C

n with ‖v‖Cn = 1
satisfying Re(V v) = 0 and hence

g(z + v) = g(z) for any z ∈ C
n . (6.1)

We set

A :=
{
z ∈ C

n : ‖z‖Cn <
1

10

}
and B :=

{
z ∈ C

n : ‖z − v‖Cn <
1

10

}
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and compute

∫
K

‖ f (z) − g(z)‖Cm dz ≥
∫
A

‖ f (z) − g(z)‖Cm dz +
∫
B

‖ f (z) − g(z)‖Cm dz

B=A+v=
∫
A

(‖ f (z) − g(z)‖Cm + ‖ f (z + v)−g(z + v)‖Cm
)
dz

(6.1)≥
∫
A

‖ f (z) − f (z + v)‖Cm dz ≥ 0.8 · λ2n(A)

with λ2n denoting the 2n-dimensional Lebesgue measure. In the last inequality we
used

|‖z‖Cn − ‖z + v‖Cn | ≥ ‖z + v‖Cn − ‖z‖Cn ≥ ‖v‖Cn − 2 ‖z‖Cn ≥ 0.8.

Hence it follows that NN �

n,m,2n−1 is not dense in C(K ; C
m) with respect to the L1-

norm and thus, using Hölder’s inequality, it follows that NN �

n,m,2n−1 is not dense
in C(K ; C

m) with respect to the L p-norm for any p ∈ [1,∞], so in particular for
p = ∞ which shows that NN �

n,m,2n−1 is not universal.
Next, we prove (ii). To this end, we construct a function f ∈ C(Cn; C

m), a compact
set K ⊂ C

n , and a number ε > 0 such that

sup
z∈K

‖ f (z) − g(z)‖Cm ≥ ε

for all g ∈ NN �

n,m,2m−1. For a moment, fix g ∈ NN �

n,m,2m−1. Since the activation
function � is real-valued, the output of the last but one layer of g is a function ψ :
C
n → R

2m−1. Also, there exist a matrix V ∈ C
m×(2m−1) and a vector b ∈ C

m such
that g(z) = Vψ(z)+b.WithC

m ∼= R
2m , wemay view the restriction of V toR

2m−1 as
an R-linear map R

2m−1 → R
2m , and the range {g(z) : z ∈ C} of g is thus contained

in a (2m − 1)-dimensional affine subspace U = U (g) of R
2m . As

sup
z∈K

‖ f (z) − g(z)‖R2m ≥ sup
z∈K

inf
u∈U (g)

‖ f (z) − u‖
R2m ,

it is sufficient for our purposes to find a function f ∈ C(Cn; C
m), a compact set

K ⊂ C
n , and a number ε > 0 such that

inf
U

sup
z∈K

inf
u∈U ‖ f (z) − u‖

R2m ≥ ε

where the outermost infimum traverses the (2m − 1)-dimensional affine subspaces U
ofR2m . This is achieved by a function f whose range { f (z) : z ∈ C

n} is not contained
in any (2m − 1)-dimensional affine subspace U of R

2m . A semi-explicit construction
is like this:

Let K := {(λ, 0, . . . , 0) : λ ∈ R, 0 ≤ λ ≤ 1} ⊆ C
n and

f1 : C
n → [0, 1], f1(z1, . . . , zn) = max{0,min{1,Re(z1)}}.
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Further let f2 : [0, 1] → C
m be a parameterization of a curve that along the edges

of the cube Q := [0, 1]m + i[0, 1]m ⊆ C
m ∼= R

2m passes through all of its vertices
{0, 1}m + i {0, 1}m ⊆ C

m ∼= R
2m , and f = f2 ◦ f1. From [5, Table 1], we deduce

inf
U

sup
z∈K

inf
u∈U ‖ f (z) − u‖R2m ≥ 1

2

and this finishes the proof. ��
Note that there are non-polyharmonic functions like �(z) = eRe(z) but also polyhar-
monic functions that are neither holomorphic, nor anti-holomorphic, nor R-affine like
�(z) = Re(z)2 that meet the assumptions made in Theorem 6.4.

Following the ideas from [17, Proposition 4.15] we also want to add a short note
on the necessity of the differentiability of the activation function. It turns out that the
differentiability of the activation function is not a necessary condition for the fact that
narrow networks with width n+m+1 using this activation function have the universal
approximation property. The proof is in fact identical to the proof presented in [17].
However, we include a detailed proof to clarify that the reasoning also works in the
case of activation functions C → C.

Theorem 6.5 Take any function w ∈ C(C; C) which is bounded and nowhere real
differentiable. Then �(z) := sin(z)+w(z) exp(−z) is also nowhere differentiable and
NN �

n,m,n+m+1 is universal.

Proof Since � is non-polyharmonic (since it is nowhere differentiable) it suffices to
show that the identity function can be uniformly approximated on compact sets using
compositions that have the formψ ◦� ◦φ with φ,ψ ∈ Aff(C; C). Then the statement
can be derived similarly to the proof of Theorem 4.2(i).

Therefore, take any compact set K ⊆ C and ε > 0. Choose M1 > 0 with |z| ≤ M1
for every z ∈ K . Take h > 0 arbitrary and consider

sup
z∈K\{0}

∣∣∣∣
sin(hz) − hz

h

∣∣∣∣ ≤ sup
z∈K\{0}

M1

∣∣∣∣
sin(hz)

hz
− 1

∣∣∣∣→ 0

as h → 0. Therefore, we may take h > 0 with

∣∣∣∣
sin(hz) − hz

h

∣∣∣∣ <
ε

2

for every z ∈ K . Furthermore, choose M2 > 0 with |w(z)| ≤ M2 for every z ∈ C and
pick k ∈ N large enough such that

|exp(−hz)| |exp(−2πk)|
h

<
ε

2M2

for all z ∈ K . Hence we derive
∣∣∣∣
sin(hz + 2πk) + w(hz + 2πk) exp(−hz − 2πk)

h
− z

∣∣∣∣
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=
∣∣∣∣
sin(hz) + w(hz + 2πk) exp(−hz − 2πk)

h
− z

∣∣∣∣

≤
∣∣∣∣
sin(hz) − hz

h

∣∣∣∣+ M2
|exp(−hz)| |exp(−2πk)|

h
< ε.

Thus, we get the claim by defining φ(z) := hz + 2πk and ψ(z) := 1
h z. ��

A Topological notes on locally uniform convergence

In this appendix, we discuss the relationship between locally uniform convergence,
the compact open topology, and the universal approximation property introduced in
Definition 2.2. Note that [28, Appendix B] is another account on the same topic.

Although locally uniform convergence can be studied more generally for functions
defined on a topological space and taking values in ametric space, we restrict ourselves
to functions C

n → C
m .

Definition A.1 Let ( fk)k∈N be a sequence of functions fk : C
n → C

m and f : C
n →

C
m . The sequence ( fk)k∈N converges locally uniformly to f , if for every compact set

K ⊆ C
n we have

sup
z∈K

‖ fk(z) − f (z)‖Cm
k→∞−−−→ 0.

There is a certain equivalence between locally uniform convergence and the uni-
versal approximation property introduced in Definition 2.2.

Proposition A.2 Let F ⊆ C(Cn; C
m) and f ∈ C(Cn; C

m). Then the following are
equivalent:

(i) For every compact set K ⊆ C
n and ε > 0, there exists a function g ∈ F satisfying

‖ f − g‖C(K ;Cm ) < ε.

(ii) There exists a sequence ( fk)k∈Nwith fk ∈ F for k ∈ N such that ( fk)k∈N converges
locally uniformly to f .

Proof We start with the implication (i)⇒(ii). Let f ∈ C(Cn; C
m). For every k ∈ N,

choose fk ∈ F with

‖ fk − f ‖C(Bk (0);Cm) ≤ 1

k
.

Then ( fk)k∈N converges locally uniformly to f , since every compact set K ⊆ C
n is

contained in the closed ball Bk(0) with radius k and center 0 for all k ≥ J for some
J ∈ N.

Now we show the implication (ii)⇒(i). For any compact set K ⊆ C
n and ε > 0 we

know by definition of locally uniform convergence that there exists k ∈ N satisfying

‖ fk − f ‖C(K ;Cm ) < ε.

Since fk ∈ F , this shows (i). ��
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Next, we show that locally uniform convergence of sequences ( fk)k∈N of elements
fk ∈ C(Cn; C

m) coincides with convergence with respect to the compact-open topol-
ogy, cf. [11, Definition XII.1.1]. Hence, the compact-open topology is the topology in
charge when we speak about universality of a set of continuous functions.

Definition A.3 For each pair of sets A ⊆ C
n, B ⊆ C

m , we denote

(A, B) := { f ∈ C(Cn; C
m) : f (A) ⊆ B

}
.

The compact-open topology on C(Cn; C
m) is then the smallest topology containing

the sets (K , V ), where K ⊆ C
n is compact and V ⊆ C

m is open.

That this topology indeed induces locally uniform convergence is a direct conse-
quence of [11, Theorem XII.7.2] and C

m being a metric space.

Proposition A.4 Let ( fk)k∈N be a sequence of functions with fk ∈ C(Cn; C
m) and

f ∈ C(Cn; C
m). Then the following statements are equivalent.

(i) The sequence ( fk)k∈N converges to f in the compact-open topology.
(ii) The sequence ( fk)k∈N converges to f locally uniformly.

The next result says that in C(Cn; C
m) with the compact-open topology, closures

of subsets can be characterized by limits of sequences.

Proposition A.5 Let f ∈ C(Cn; C
m) and F ⊆ C(Cn; C

m). Denote by F the closure
ofF with respect to the compact-open topology. Then f ∈ F if and only if there exists
a sequence ( fk)k∈N with fk ∈ F for k ∈ N that converges to f in the compact-open
topology.

Proof Since both C
n and C

m are second countable, we infer by [11, Theorem XII.5.2]
that C(Cn; C

m) equipped with the compact-open topology is second countable, too.
For second countable topological spaces it is well-known that closures of subsets can
be characterized by limits of sequences; see [11, Ex. 3 on p. 186 and Theorem X.6.2].

��
In particular, Propositions A.2, A.4, and A.5 yield the following equivalence, which

we state in the following proposition.

Proposition A.6 Let F ⊆ C(Cn; C
m). Then the following are equivalent:

(i) The set F has the universal approximation property.
(ii) For every f ∈ C(Cn; C

m), there exists a sequence ( fk)k∈N of elements fk ∈ F
such that ( fk)k∈N converges locally uniformly to f .

(iii) The set F is dense in C(Cn; C
m) with respect to the compact-open topology.

In the present paper, it is of particular importance that the composition of functions
is compatible with locally uniform convergence.

Proposition A.7 Let ( fk)k∈N and (gk)k∈N be two sequences of functions with fk ∈
C(Cn1; C

n2) and gk ∈ C(Cn2; C
n3) for k ∈ N. Let f ∈ C(Cn1; C

n2) and g ∈
C(Cn2; C

n3) such that fk → f and gk → g locally uniformly. Then we have

gk ◦ fk
k→∞−−−→ g ◦ f

123



Constructive Approximation (2025) 62:361–402 399

locally uniformly.

Proof Using [11, Theorem XII.2.2], we know that the map

C(Cn1; C
n2) × C(Cn2; C

n3) → C(Cn1; C
n3), (h1, h2) 
→ h2 ◦ h1

is continuous, where each space C(Cn j ; C
nk ) is equipped with the compact-open

topology and Cartesian products of spaces are equipped with the product topology.
Note here that we use the fact thatCn1 andC

n3 are Hausdorff spaces andC
n2 is locally

compact. Then the claim follows from Proposition A.4. ��
Note that the statement of Proposition A.7 can inductively be extended to the compo-
sition of L functions, where L is any natural number.

B Taylor expansion usingWirtinger derivatives

In this appendixwe give some details about the Taylor expansion introduced in Lemma
2.1. Furthermore we show that an activation function which is notR-affine necessarily
admits a point where one of the second-order Wirtinger derivatives does not vanish.
We begin by restating and proving Lemma 2.1.

Lemma B.1 Let � ∈ C(C; C) and z, z0 ∈ C. If � is real differentiable at z0, then

�(z + z0) = �(z0) + ∂wirt�(z0)z + ∂wirt�(z0)z + �1(z) (B.1)

for a function �1 : C → C with limC\{0}	z→0
�1(z)

z = 0. If � ∈ C2(C; C), then

�(z + z0) = �(z0) + ∂wirt�(z0)z + ∂wirt�(z0)z + 1

2
∂2wirt�(z0)z

2 + ∂wirt∂wirt�(z0)zz

+ 1

2
∂
2
wirt�(z0)z

2 + �2(z) (B.2)

for a function �2 : C → C with limC\{0}	z→0
�2(z)
z2

= 0.

Proof Eq. (B.1) follows from the definition of real differentiability (2.1) by using

∂�

∂x
(z0)Re(z) + ∂�

∂ y
(z0) Im(z) = ∂�

∂x
(z0) · 1

2
(z + z) + ∂�

∂ y
· 1

2i
(z − z)

= ∂wirt�(z0)z + ∂wirt�(z0)z.

In order to prove (B.2) we use the second-order Taylor expansion of � around z0 which
can be found for instance in [1, Theorem VII.5.11] and obtain

�(z + z0) = �(z0) + ∂�

∂x
(z0)x + ∂�

∂ y
(z0)y + 1

2

∂2�

∂x2
(z0)x

2 + ∂2�

∂x∂ y
(z0)xy
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+ 1

2

∂2�

∂ y2
(z0)y

2 + �2(z)

where �2 : C → C satisfies limC\{0}	z→0
�2(z)
z2

= 0. Furthermore, we use the

notation x = Re(z) and y = Im(z). Letting x = 1
2 (z + z), y = 1

2i (z − z) and using

1

4

⎛
⎝
1 −2i −1
1 0 1
1 2i −1

⎞
⎠

⎛
⎜⎜⎜⎝

∂2

∂x2

∂2

∂x∂ y

∂2

∂ y2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

∂2wirt

∂wirt∂wirt

∂
2
wirt

⎞
⎟⎟⎠ (B.3)

yields the claim. ��
The following Proposition is required in the proof of Proposition 3.2.

Proposition B.2 Let � ∈ C2(C; C) be not R-affine. Then there exists a point z0 ∈ C

such that either ∂2wirt�(z0) �= 0, ∂wirt∂wirt�(z0) �= 0 or ∂
2
wirt�(z0) �= 0.

Proof Assume ∂2wirt� ≡ ∂wirt∂wirt� ≡ ∂
2
wirt� ≡ 0. From the fact that the matrix on

the left-hand side in (B.3) is invertible it follows ∂2�

∂x2
≡ ∂2�

∂x∂ y ≡ ∂2�

∂ y2
≡ 0. Since �

is R-affine if and only Re(�) and Im(�) are both R-affine, we may assume that �

is real-valued. It is a well-known fact that a C1-function with vanishing gradient is
necessarily constant. Applying this fact to ∂�

∂x and ∂�
∂ y separately shows

∇� ≡ a

for a constant a ∈ R
2. Let f (z) := z�a where z ∈ C is treated as an element of R

2.
Then the gradient of � − f vanishes identically and hence it holds � − f ≡ b for a
constant b ∈ R. This yields

�(z) = z�a + b for all z ∈ C.

But then � is R-affine. ��
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