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Abstract

We study the universality of complex-valued neural networks with bounded widths
and arbitrary depths. Under mild assumptions, we give a full description of those
activation functions ¢ : C — C that have the property that their associated networks
are universal, i.e., are capable of approximating continuous functions to arbitrary
accuracy on compact domains. Precisely, we show that deep narrow complex-valued
networks are universal if and only if their activation function is neither holomorphic,
nor antiholomorphic, nor R-affine. This is a much larger class of functions than in the
dual setting of arbitrary width and fixed depth. Unlike in the real case, the sufficient
width differs significantly depending on the considered activation function. We show
that a width of 2n 4+ 2m + 5 is always sufficient and that in general a width of
max {2n, 2m} is necessary. We prove, however, that a width of n + m + 3 suffices for
arich subclass of the admissible activation functions. Here, n and m denote the input
and output dimensions of the considered networks. Moreover, for the case of smooth
and non-polyharmonic activation functions, we provide a quantitative approximation
bound in terms of the depth of the considered networks.
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1 Introduction

This paper addresses the universality of deep narrow complex-valued neural networks
(CVNN:E), i.e., the density of neural networks with arbitrarily large depths but bounded
widths, in spaces of continuous functions over compact domains with respect to the
uniform norm. Our main theorem is as follows.

Theorem 1.1 Letn,m € N, and ¢ : C — C be a continuous function which at some
point is real differentiable with non-vanishing derivative. Then NN 5 m.2n4omas bS
universal if and only if o is neither holomorphic, nor antiholomorphic, nor R-affine.

Here NN 5 . w denotes the set of complex-valued neural networks with input dimen-
sion n, output dimension m, activation function o, and W neurons per hidden layer.
These neural networks are alternating compositions

VLOQXWO...OQXWOV(): cr—-cnm

of affine maps Vj : C* — Cvi,.... Vi1 :CV >V, v, : Y — €™, and
componentwise applications of the activation function g, see Section 2 for a detailed
definition.

Studying the expressivity of neural networks is an important part of the mathemati-
cal analysis of deep learning. Theorem 1.1 is a qualitative result in that direction. Such
qualitative results naturally precede the investigation of approximation rates, i.e., the
decay of approximation errors as the class of approximants increases. Our focus is on
qualitative results, but to show how our methods can also be used to derive quantitative
bounds, we prove such a result for the case of smooth and non-polyharmonic activa-
tion functions, i.e., we derive an upper bound on the depth necessary to achieve an
approximation accuracy less than ¢, for a prescribed approximation accuracy € > 0;
see Theorem 5.3.

1.1 Complex-valued neural networks

Although mostly real-valued neural networks (RVNNs) are used in the field of Deep
Learning, recent years have shown a growing interest in the use of complex-valued
neural networks in various application areas [2, 20, 21, 32, 40], for instance Magnetic
Resonance Imaging (MRI) [9, 19, 36] and Polarimetric Synthetic Aperture Radar
(PolSAR) Imaging [3, 33, 41]. These application areas are usually characterized by
the fact that complex numbers naturally occur as inputs for machine learning models.
In such areas, CVNNSs are, in contrast to real-valued neural networks, able to handle
the complex-valued nature of the inputs in a faithful way, for instance by using a
phase-preserving activation function. Note that this behavior cannot be achieved if
one applies a non-trivial real-valued activation function to real and imaginary part of
an input separately.
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The identification R> = C might suggest that most theoretical properties of CVNNs
can directly be derived by those of RVNNs. However, the two network classes differ
in the following two deciding aspects:

e The activation function in a CVNN is a function ¢ : C — C (i.e., R? — R?),
whereas the activation functionin an RVNN s afunction R — R. Hence, regarding
the activation function, CVNNs are more versatile than RVNNSs.

e The affine maps in a CVNN are required to be C-affine, whereas the affine maps in
an RVNN only need to be R-affine. Therefore, regarding the affine maps, CVNNs
are more restrictive than RVNNs.

The observation that CVNNSs are on the one hand more versatile and on the other
hand more restrictive than RVNNs shows that it is not possible to obtain theoretical
properties of CVNNSs as a special case of those of RVNN s or vice versa. In fact, studying
the universality of neural networks of fixed depth [22, 37] has already uncovered
significant differences between RVNNs and CVNNSs; see also Section 1.3.

1.2 Related work

In the neural network context, universal approximation theorems date back to the 1980s
and 1990s [10, 22], where it was shown that real-valued shallow neural networks with
output dimension 1 and a fixed continuous activation function are universal if and only
if the activation function is not a polynomial. Modifications of the setting in which
universal approximation is studied appear in the neural network literature over the
past decades. These variants of the problem refer to, e.g., the input and the output
dimension, the target space (typically L, for 1 < p < oo, continuous functions, also
modulo the action of a group), the choice of activation functions (only ReLU vs. any
continuous non-polynomial function), constraints on either the width or depth of the
neural network (narrow vs. wide, shallow vs. deep networks), or constraints on the
norm or the sparsity of the weights, see for instance [7, 15, 17, 24, 27, 29, 39] and
the references therein. Furthermore, changes in the network architecture [31, 42], the
incorporation of randomness [25], and changes in the nature of the inputs [6, 23] are
also subjects of investigation in the literature on universal approximation.

Moreover, the literature contains numerous quantitative statements about the
approximation properties of neural networks (see for instance [4, 26, 30, 38] and the
references therein). We explicitly mention the paper [ 18], which provides quantitative
approximation bounds for deep narrow RVNNs in terms of the depth of the considered
networks (see [18, Proposition 53]). In the present work, we prove a statement similar
to [18, Proposition 53(i)] for CVNNs with a smooth and non-polyharmonic activation
function (see Theorem 5.3).

Remarkably, the theory mostly covers real-valued neural networks. Yet, the fact
that CVNNSs are applied successfully in various application areas (see Section 1.1)
motivates the theoretical study of their approximative capabilities. To the best of our
knowledge, the only qualitative and quantitative results in that direction are [28, 37],
and [8, 13], respectively. The article [37] provides a characterization of activation
functions, for which shallow CVNNSs are universal. This characterization is crucial for
the purposes of the paper at hand and is therefore given in Theorem 4.1 below. For both
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the shallow and the deep narrow (real-valued and complex-valued) neural networks
with analytic activation functions, it is shown in [28] that the closures of these classes
in C(K) coincides with the closure of polynomials, where K is a compact subset of
R or C". An application of the Stone—Weierstrass theorem or Mergelyan’s theorem
then yields universality of neural networks in the set of continuous functions in the
real-valued case or holomorphic functions in the complex-valued case. The authors
of [8] prove quantitative bounds for the approximation of C*-functions on C" using
complex-valued neural networks with the modReL U activation function. Those results
have recently been generalized in [13], where the same approximation bounds have
been proven for the rich class of complex-valued activation functions that are smooth
and non-polyharmonic on some non-empty open set. This class in particular includes
the modReLU.

1.3 Contribution

In the real-valued case, under mild assumptions on their regularity, activation functions
that yield universal neural networks have been characterized in the literature. In the
complex-valued case, however, such a characterization is only known in the case of
neural networks with fixed depths and arbitrary widths. To complete the picture, we
give in Theorem 1.1 a characterization of activation functions for which CVNNs with
bounded widths and arbitrary depths are universal.

Recall that polynomial activation functions are precisely the ones for which real-
valued neural networks with arbitrary widths and fixed depth are not universal, as
shown by Kidger and Lyons in [17, Section 1]. Yet, in the dual situation, where
depth is arbitrary and widths are bounded, polynomial activation functions (of mini-
mum degree 2) do give rise to universal real-valued neural networks, see again [17,
Theorem 3.2]. The situation is different in the complex-valued case. For continuous
activation functions, Voigtlaender shows in [37, Theorem 1.3] that shallow CVNNs
are universal if and only if the activation function is non-polyharmonic. CVNNs of
arbitrary widths and fixed depth > 1 are universal if and only if the activation function
does not coincide with a polynomial in z and z, and is neither holomorphic nor anti-
holomorphic, cf. [37, Theorem 1.4]. In the deep narrow regime studied in Theorem
1.1, the requirements on the activation function for universality are again weaker in
the sense that not being a polynomial in z and 7 is replaced by not being R-affine.

In this work, we consider continuous complex-valued activation functions which
have non-vanishing derivative (in the sense of real variables) at some point. Our anal-
ysis roughly splits into two parts: polyharmonic and non-polyharmonic activation
functions. While this distinction mainly impacts the proof techniques, the bounds on
the widths of the CVNNs are actually governed by the properties of the Wirtinger
derivatives of the activation function at the point of differentiability. Fig. 1 is a graph-
ical guide through our results.

For non-polyharmonic activation functions, we show universality of CVNNs with
input dimension n and output dimension m, where the number of neurons per hidden
layer is 2n 4+ 2m + 1 or even n + m + 1, see Theorem 4.2. The proofs in that case
are based on the fact that for non-polyharmonic activation functions shallow CVNNs
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Is o € C(C; C) neither holomorphic, nor antiholomorphic, nor R-affine?

yes \

Is there zo € C with (Owirt0(20), Owirto(z0)) # (0,0)?

yes \

no universality
(Theorem 6.3)

Is Owirt0(20) = 0 or dwirco(z0) = 07 (gllf;)(iil;bgz)
yes no
Is o polyharmonic? Is p polyharmonic?
A A
n+m-+3 n+m-+1 2n 4 2m + 5 2n 4+ 2m 41
(Theorem 4.9) || (Theorem 4.2) (Theorem 4.9) || (Theorem 4.2)

Fig.1 Our results in a nutshell

are universal, as shown by Voigtlaender in [37, Theorem 1.3]. We combine this with
an adaptation of the register model technique developed by Kidger and Lyons [17,
Theorem 3.2]. There, they used this technique to deduce universality of deep narrow
real-valued neural networks from the classical result on universality of shallow real-
valued neural networks [10, 22]. For polyharmonic activation functions, we show
that CVNNs with input dimension n, output dimension m, and 2n + 2m + 5 or even
n 4+ m + 3 neurons per hidden layer are universal, see Theorem 4.9. This is done by
approximating polynomials in z and z uniformly on compact sets and invoking the
Stone—Weierstrass theorem.

Moreover, based on the ideas from [18, Proposition 59], we provide a quantitative
approximation bound in terms of the depth of the considered networks for the case
of a smooth and non-polyharmonic activation function o € C(C; C). Precisely, given
a function f € C([—1,1]" +1i-[—1,1]";C™) and ¢ > 0, we show that one can
approximate f up to precision ¢ with deep narrow networks using activation function
o and a depth of at most

2n

2
Ao W F & :
32 |w (f’S-m-(l—i-%)) +9 ;

see Theorem 5.3. Here, a)_l( f, ) denotes the inverse modulus of continuity of the
function f, see (5.1). We believe that our techniques combined with those from [18,
Appendix B.2] can also be used to derive depth estimates for deep narrow CVNNs
for the case of more general activation functions ¢ € C(C; C). However, since the
present paper focuses on the aspect of universality, this is left as future work.
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1.4 Organization of our paper

In Section 2 we fix our notation and recall some basics from complex and functional
analysis and the theory of neural networks. Section 3 introduces the register model and
shows how the identity map on C and complex conjugation can be approximated using
CVNN:Gs. For non-polyharmonic functions, the proof of Theorem 1.1 can be found in
Section4.1. In Section 4.2, we present the proof of universality claimed in Theorem 1.1
in the case of polyharmonic activation functions which are neither holomorphic, nor
antiholomorphic, nor R-affine. In Section 5, we prove the quantitative approximation
bound in terms of the depth of the considered networks. In Section 6, we show that
CVNNs whose activation function is holomorphic or antiholomorphic or R-affine are
never universal, regardless of the number of neurons per hidden layer. Moreover, we
show that there exist activation functions satisfying the assumptions from Theorem
1.1 for which a width of max {2n, 2m} is necessary in order to provide universal
CVNN:S. In the appendix, we provide basics on the relationship between local uniform
convergence and universal approximation, and on Taylor approximations in terms of
Wirtinger derivatives.

2 Preliminaries

In this section, we recall facts from complex analysis, functional analysis, and the
theory of neural networks behind the phrases in Theorem 1.1. The presentation is
loosely based on [34, Chapter 7], [35, Chapter 11], and [14, Section 1].

2.1 Complex and functional analysis

We use the symbols N, R, and C to denote the natural, real, and complex numbers,
respectively. By Re(z),Im(z), and z, we denote the componentwise real part, imaginary
part, and complex conjugate of a vector z € C", respectively. We call the function
o : C — C partially differentiable at zy, if the partial derivatives

do _ . 0(zo + h) — o(z0)

—(z9) ;= lim

ax R\{0}3h—0 h

do . o0(zo + ih) — 0(z0)
and —(zo) :=

ay R\{0}3h—0 h

exist. Higher-order partial derivatives are defined in the standard manner. We write
0 € CK(C; C) if ¢ admits partial derivatives up to order k at each point of C and
the kth-order partial derivatives are continuous functions C — C. Likewise, we write
0 € C®(C;C) if o € CKC;C) for all k € N. If g—i(z()) and g—i(z()) exist and the
identity

0o +h) —0(0) — 52(z0) Re(h) — 52 (z0) Im(h)
C\(0}5h—0 h N

0 @D
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holds true, then o is called real differentiable at zo with derivative (2_5(10)’ g—‘;(xo)).
Similarly, o is called complex differentiable at z if

i 0(zo +h) —o(z0) — ch
1m =

0
C\{0}5h—0 h

for some number ¢ € C, which in that case is given by

1/0 0
Owirt0(20) = E(ﬁ(zo) - iﬁ(zo)) .

Complex differentiability of o at zg can be equivalently stated as

D ( — l 8_Q 8_@ =0
wirt@(20) ‘= 5 (ax (zo) + lay (ZO)) =U.
The differential operators dy;;x and Owirt are called Wirtinger derivatives. If 5wiﬂg(z) =
0 for all z € C, then g is a holomorphic function. The function o is called antiholo-
morphic if the function p : C — C, 9(z) := Re(o(z)) — iIm(o(2)) is holomorphic
or, equivalently, dyirro(z) = 0 for all z € C. As the linear operator that maps
the partial derivatives onto the Wirtinger derivatives is invertible, it follows that
(22 (20). g—fv’(zo)) = (0,0) if and only if (dwirn0(20). dwine(z0)) = (0,0). Further-
more, the symmetry of mixed partial derivatives implies for o € C%(C; C) that

_ _ 82 82
A40wirt Owirt@ = 40wirt Owirt@ = (m + a_y2> o =:Aop. (2.2

If o € C°°(C; C) and A™p = 0 for some m € N, then g is called polyharmonic of
order m. Because of (2.2), holomorphic and antiholomorphic functions are harmonic,
i.e., polyharmonic of order 1.

The following well-known lemma generalizes the classical real-valued Taylor
expansion to the complex-valued setting; see Lemma B.1 for a proof.

Lemma 2.1 Let o € C(C; C) and z, zo € C. If o is real differentiable at z(, then

0(z +20) = 0(20) + dwir0(20)z + Iwir0(20)Z + O1(2) (2.3)

for a function ®; : C — C with lime\ (0}5:-0 916 — (. If o € C(C; C), then

Z

_ 1 _ B
0(z+z0) = 0(20) + dwin0(20)z + dwirt0(20)Z + Eavzvmg(zo)z2 + dwirt dwirt0(20)22
) 2
+ anirtg(zo)z + ©2(2) 24
for a function ©, : C — C with limg (0)57-0 ®§§Z) =0.
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On C™, we consider the topology induced by the Euclidean norm

1

m 2
2
It zmllon = D J2i] 7] -
=

For K C C", we denote the vector space of continuous functions K — C™ by
C(K; C™). When K € C" is compact, the expression

I fllck:.cmy == sup [l f(@)llcm
zeK

defines a norm on C(K; C™), called the uniform norm, which renders C(K; C") a
Banach space. The convergence of a sequence (f;)jen of elements f; € C(K; C™)
toalimit f € C(K; C™) withrespect to [|-||¢(k.cm) is written as f; — fas j — oo,
uniformly on K. Similarly, a sequence (f;)jen of functions f; € C(C"; C™) is said
to converge locally uniformly to a function f € C(C"; C™) if it converges uniformly
to f on every compact subset K € C”". Since compositions of continuous functions
are continuous, we have NNi,m,W C C(C";C™) when ¢ € C(C; C). The main
objective of the paper at hand is to show that under certain additional assumptions on
o and W, the elements of NN 5,m. w are arbitrarily close to the elements of C(C"; C™)
in the following sense.

Definition 2.2 We say that a function class F € C(C"; C™) has the universal approx-
imation property (or is universal) if for every function g € C(C"; C™), every compact
subset K € C" and every ¢ > 0 there exists a function f € F such that

Sup ”f(z) - g(Z)”Cm < €.
zek

The universal approximation property of F is equivalent to saying that for every given
function g € C(C"; C™) there exists a sequence (f;);en With f; € F for every
Jj € N that converges locally uniformly to g. Likewise, this is equivalent to saying
that the class F is dense in C(C"; C™) with respect to the compact-open topology.
We elaborate this equivalence in Appendix A. By F we denote the closure of F with
respect to the compact-open topology. Notice that we also use the notation 7 to denote
the complex conjugate of z € C. The precise meaning will be clear from the context.

2.2 Neural networks

A (fully connected feed-forward) complex-valued neural network (CVNN) is a func-
tion

VLOQXNL...OQXNIOV(): (CNO—)(CNLH
where

e L € Nis called the depth of the CVNN,
e N; € Nis the width of the jth layer,
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e max {Ny, ..., Np4+1} is the width of the CVNN,

e V;: CNi — CNi+1 is a C-affine map, abbreviated as V; € Aff(CNi; CNi+1), ie.,
there exist A; € CNi+1>*Ni and b; € CNi+! such that V;(z) = Az + b; for all
7eCNj,

o 0Ni(zy, ..., zn;) = (0(z1), .. ., 0(zn;)) is the componentwise application of a
(potentially non-affine) map o : C — C called the activation function.

We refer to the numbers Ny and Ny 41 as the input dimension and output dimension,
respectively. The numbers Ny, ..., Ny are the widths of the hidden layers of the
CVNN. Since it is always possible to pad matrices and vectors by additional zero rows
and columns, we may and will assume without loss of generality that Ny = Ny =
...=Nr.

We introduce a short-hand notation for the CVNNSs that arise this way.

Definition 2.3 Letn,m, W, L € Nand ¢ : C — C. We denote by NNﬁ,mvaL the
set of CVNNs with depth L, input dimension n, output dimension m, and N; = W
for j € {1, ..., L}. In view of cases where the depth is not relevant, we let

NNﬁ,m,W = U NNi,m,W,L'

LeN

The elements of NN 5 . w are thus alternating compositions
ViooWo...00WoVy: C"— C™ 2.5)

of C-affine maps V; and the componentwise applications of the activation function o.
In the subsequent Sections 4.2 and 4.1, we have W > max {n, m}, such that W turns
out to be the width of the neural networks under consideration.

A typical way of thinking about neural networks is viewing the component functions
of o*Ni+l o V; as building blocks called neurons. Each neuron performs a computation
of the form

7 Q(wT z+b)

where z is the output of the previous layer, w a vector of weights, and b a number
called bias.

Since the composition of affine maps is affine, it is also possible to think about
neural networks as maps

(\I’L o0 Wo CIDL) ) (\IIL_l 0o”Wo CIJL_l) 0...0 (\Ifl o0Wo @1),

where each of the maps @y, Wy is affine. This allows to perceive shallow networks,
see Definition 2.4, as building blocks for neural networks. This point of view is similar
to the notion of enhanced neurons in [17].

For a fixed activation function g, different choices of the C-affine functions V; may
lead to the same composite function (2.5). In view of this, both depth and width of a
CVNN are not properties of the function (2.5) but of the tuple (Vy, ..., V1 ). For this
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reason, a different terminology is sometimes used in the literature where (Vq, ..., V1)
is called the neural network and (2.5) is its realization, cf. [14, Section 1].

Apart from the choice of the activation function g, restrictions on the depth or the
width are common ingredients in the analysis of (fully connected feed-forward) neural
networks. A CVNN is called shallow if its depth equals 1, and deep otherwise. Since
shallow networks play a special role in our analysis, we introduce an own notation for
them.

Definition 2.4 Letn,m, W € Nand ¢ : C — C. We denote by
0 . 0
SNn,m,W = NNn,m,W,]
the set of shallow CVNNs with W hidden neurons. We write

SNim=J SNZ,,. w-

WeN

In contrast to shallowness, narrowness is not an individual property of CVNNSs but a
class property. A set 7 of CVNNs is said to be narrow if it does not contain CVNNs
of arbitrarily large widths, i.e., if 7 € NN i‘m’w for suitable n,m, W e N and
0:C— C.

3 Building blocks and register model

In this section, we prove several preliminary statements that are crucial for the results
derived in Section 5 and 4. Specifically, in Section 3.1, we construct building blocks to
approximate elementary functions locally uniformly by shallow CVNNSs. In Section
3.2, we consider the fundamental concept of the register model to transform shallow
networks into deep narrow networks.

3.1 Building blocks

In this section we introduce various building blocks for complex-valued networks, i.e.,
small neural network blocks that are able to represent elementary functions (e.g., the
complex identity idc or complex conjugation idc) up to an arbitrarily small approx-
imation error. These building blocks are used in Sections 4.2 and 4.1 to construct
the deep narrow networks that we use to approximate a given continuous function.
Throughout the chapter, we assume that the used activation function ¢ : C — C
is differentiable (in the real sense) at one point with non-vanishing derivative at that
point. In fact, the strategy for constructing these building blocks is always going to
be similar: By using the first- and second-order Taylor expansion of the activation
function o as introduced in Lemma 2.1 one can localize the activation function around
its point of differentiability where it behaves like a complex polynomial in z and Z of
degree 1 and 2, respectively. This enables us to extract elementary functions from that
Taylor expansion.
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Proposition 3.1 is fundamental for the universality results introduced in Sections
4.2 and 4.1. It shows that it is possible to uniformly approximate the complex identity
or complex conjugation on compact sets using neural networks with a single hidden
layer and width at most 2. If the activation function (or its complex conjugate) is not
just real but even complex differentiable, the width can be reduced to 1. See Fig. 2 for
an illustration of the building blocks.

Proposition 3.1 Let ¢ € C(C; C). Assume that there exists zo € C such that o is real
differentiable at zo with (wirt0(20), Owirte(20)) # (0, 0). Furthermore, let K C C be
compact and ¢ > 0.

(i) If dwirt0(z0) # 0 and dwino(z0) = 0, there exist ¢, ¥ € Aff(C; C) such that

sup [(Y oo o) (z) —z| <e.

zek
(ii) If dwino(z0) = 0 and dwino(20) # O, there exist ¢, Y € Aff(C; C) such that

sup [(Y o0 o)(z) — 7| <e.
zeK

(iii) If dwirt0(20) # 0 # Owire0(20), there exist ¢ € Aff(C; C?) and € Aff(C?; C?)
such that

sup | (¥ 0072 0 9)(@) - (2D

zeK

<é&
c2

Proof Recall that Lemma 2.1 yields the existence of a function ® : C — C satisfying

lim 2& — 0 and
=0 <

0(z + 20) = 0(20) + dwirt0(20)z + Jwir0(20)Z + O(2)

forevery z € C.
If Owirto(z0) = 0 and dwirr0(z0) # 0 we see forall & > 0 and z € K that

0(zo + hz) — 0(20) _. O (hz)
Owirt0 (zo)h dwirto(z0)h

@3.1)

Similarly, if dwiro(z0) # 0 and dyio(z0) = 0, we get forall i > 0 and z € K that

Q(Z0_+ hz) —o(z0) _ T4 © (hz) _ (3.2)
Owirt0 (zo)h dwirt0(z0)h

If dwiro(z0) # 0 # dwiro(20), consider

i0(z0 + hz) + 0(z0 +1hz) — (1 +1)o(z0) . i®(hz) + O@Ghz)
21hdwir0(z0) 2ihdwir0(z0)

(3.3)
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Fig.2 Tllustration of the neural z

network building blocks from ®

Proposition 3.1. Neurons in the l

input and output layers are O

depicted in filled dots at the top

and bottom, respectively. l
[ ]

o—( e

Applications of the activation _ o _
function o are shown as circles ~ Z ~ z ~ (Z 5 )
(a) (b) (©)
as well as
—10(z0 + hz) + 0(z0 + 1hz) — (1 —1)o(z0) - —i®(hz) + O (ihz) (3.4)
~2ihBwin(20) ~2ihBwin0(z0)

It remains to show that the second summands on the right-hand sides of (3.1), (3.2),
(3.3),and (3.4) tend to O as i |, 0. Since K is compact there exists L > 0 satisfying
|z] < Lforall z € K.Lete' > 0 be arbitrary and take § > 0 such that

‘@(w) 8’

for every w € C \ {0} with |[w| < §.Leth € (0,8/L) and z € K. Since |hz| < § we
see for every z € K \ {0} that

O(hz) ®(hz) ,
— < L.|— &
h hz
and since ¢’ has been taken arbitrarily
CI(/}
lim sup (h2) =0.
h0,cx h
Here, we concluded ®(0) = 0 from (2.3) to also cover the case z = 0. O

Proposition 3.2 is important for the case of polyharmonic activation functions which

is considered in Section 4.2. It essentially states that, given an activation function which
is not R-affine, one can approximate one of the functions z — zz, z > 22orz > 72
by using a shallow neural network of width 4, see Fig. 3 for an illustration.

Proposition 3.2 Let

fii C>C, fik)=2zZ fr: C—>C, fle)=7", and
it C>C fi=7"
Moreover, let 0 € C*(C;C) be not R-affine. Then there exists a function f €

{f1, f2, f3} with the following property: For every compact subset K C C and every
& > 0 there exist affine maps ¢ € Aff(C; C*) and ¥ € Aff(C*; C) such that
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sup |(Y 00 * 0 ) (2) — f(2)] < ¢

zeK
holds true.

Proof Since o is not R-affine, there exists zg € C such that Béirtg(z()) # 0,

awmgwing(z()) # 0, or 5‘2”1“@(@) # 0, see, e.g., Proposition B.2. Using the second-

order Taylor expansion stated in Lemma 2.1, there exists a function ® : C — C

satisfying lim %’é)) =0 and
w—0 W

_ 1
0(z0 + ) = 0(20) + i@ (@0)w + Duin@(@O)T + im0 0w

= _ 1= —
+ Odwirt dwirt0 (zo)ww + anmQ(Zo)wz + O(w)
for every w € C. Applying this identity to —w in place of w and adding up, we infer
for any w € C that
0(zo + w) + 0(z0 — w) = 20(20) + i @(z0)W” + 20wirt Iwit0 (20)WW
=2 —
+ Iyin0(20)W” + O(w) + O (—w).

Leth >0andz € K.If Bwingwing(z()) # 0, we see with w = hz and w = ihz that

0(zo + hz) + 0(zo — hz) + 0(z0 + ihz) + 0(z0 — ihz) — 40(20)

4h? awirtgwirtQ (z0)
— a4 O (hz) + ©(=hz) + O(ihz) + O(—ihz)

B 4h? awirtgwirtQ (z0)

(3.5)

If Bwirt Owirt0(z0) = 0 and 8v2virtg(zo) # 0, consider w = hz and w = Vihz, where /i
is a fixed square root of i:

0(z0 + hz) + 0(zo — hz) —io(z0 + V/ihz) —io(zo — V/ihz) + 2(—1 +1)o(z0)

21293;,0(20)
_ 2, Ot +6(h) - i0(vihz) — 10 (—+/ihz) (3.6)
21283;,0(20)
Last, if 83@@(10) = dwirtOwirt0(z0) = 0, consider w = hz:
0(zo +h2) +0(z0 — hz) = 20(z0) _ 2 ©(hz) + ®(—hZ)‘ 3.7

=) =)
h28wirtQ(Z0) hzawirtQ(ZO)

It remains to show that the second summands on the right-hand sides of (3.5), (3.6),
and (3.7)tend to 0 as 2 | 0. Since K is bounded, there exists L. > 0 with |z| < L for
every z € K. For given ¢’ > 0 there exists § > 0 such that
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~ z
Fig. 3 Illustration of the neural network building block from Proposition 3.2. Neurons in the input and
output layers are depicted in filled dots at the top and bottom, respectively. Applications of the activation

function o are shown as circles

8/

v

w?

‘@(w)

for every w € C \ {0} with |w| < §. Hence, we see for every & € (0,8/L) and all
z € K \ {0} that

<12.

‘ ®(hz) O (hz)
h? (hz)?

where we used that |hz| < 8. Therefore, we conclude

. ®(hz)
lim sup — =0,
hi0cx  h
using ®(0) = 0 from (2.4) to also cover the case z = 0. O
In order to approximate arbitrary polynomials in the variables zi, ..., z, and
Z1, - - -, 2n, we will compute iterative products of two complex numbers in Theorem

4.9. The following result enables the approximation of such products. An illustration
of the CVNN blocks appearing in the proof are given in Fig. 4.

Proposition 3.3 Let

mul; :CxC— C, muli(z,w)=zw,
mul :CxC— C, mul(z,w)=zw,
mul : Cx C— C, mul3(z,w)=7zw.

Moreover, let o € C 2((C; C) be not R-affine. Then there exists mul € {mul;, muly,
muls} with the following property: For every compact subset K € C? and ¢ > 0 there
exist ¢ € Aff(C2; C'2) and ¢ € Aff(C'%; C) such that

sup  |(¥ 00?0 ¢)(z, w) —mul(z, w)| < &
(z,w)eK

holds true.

Proof The main steps of the proof are to use a variant of the polarization identity to
reconstruct the three multiplication operators from their values on the diagonal, and
then to apply Proposition 3.2 to approximate the latter.
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A AN AN AN N AN

QR QP agpr Qo agpr
\ i / \ .
(a) (b)

Fig. 4 Illustration of the neural network building block from Proposition 3.3. Neurons in the input and
output layers are depicted in filled dots at the top and bottom, respectively. Applications of the activation
function ¢ are shown as circles. From the input values z and w, three or two linear combinations are
computed. Then the building block from Fig. 3 is inserted to approximate z +—> 22,2 22, 01z > ZZ.
The results are again combined linearly

Precisely, the construction is as follows: If ¢ +— ¢ = ¢ | can be approximated
according to the first case of Proposition 3.2, use the identity

ORI G S G R R J
-+ - w e —w|” — = |z —iw|” = zw.
4 q)" 4T q)" 2 ‘

Thus, in order to approximate (z, w) + zw, one needs 4 hidden neurons to approx-
imate ¢ — |¢|* for each of the 3 linear combinations of z and w, resulting in a total
amount of 12 hidden neurons.

If we have the second case of Proposition 3.2, we can approximate ¢ > ¢2 using
4 hidden neurons. In this case, consider

[(z +w)?—(z— w)z] =zw,

ENII

so that in total one needs 8 neurons in order to approximate (z, w) +— zw. In the

last case of Proposition 3.2 we can approximate ¢ + ¢ using 4 hidden neurons.
Considering

1 2 2 —
Z[(z—i—w) —(z—w) ]:zw,
we infer that (z, w) — zZw can be approximated using 8 hidden neurons. O

It remains open whether the number 12 in Proposition 3.3 can be reduced. However,
it should be noted that the exact number is not crucial for the final result Theorem 4.9,
since in its proof the shallow networks obtained in Proposition 3.3 are transformed to
deep narrow networks according to Propositions 3.6 and 3.8 and the width of these
networks is in fact independent of the number of hidden neurons in the original shallow
networks.
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3.2 Register model

In this section, we introduce the fundamental concept of the register model. This
construction has been heavily used in [17] to prove the real-valued counterpart of the
theorem established in the present paper.

Definition3.4 Let n,m, W, L € N and ¢ : C — C. Denote by Is’m’W’L the set of
register models
Tpropo...0p0o0 Ty,

where Ty € Aff(C"; CY), Tp, € Aff(CV; C™), T; € Aff(CY; CY) and

_ . ozw), j=W,
6:C" -V, @G, w); = .
/ Zj, J#EW.

In view of cases where the depth L does not matter, we set

0 o 0
In,m,W T U Z-n,m,W,L'
LeN

Remark 3.5 The set I’f’m’ w1, may be viewed as the set of CVNNs with 2 input neurons,
m output neurons, a width of W and a depth of L, where in every hidden layer the
first W — 1 neurons use the identity as activation function and in the last neuron, o is
used as activation function. In fact, since we can apply permutations to the entries of
a vector before and after each layer, it is irrelevant in which neuron the application of
o takes place. We choose the last neuron for convenience.

One can transform a shallow network into a deep narrow register model by “flipping”
the shallow network and only performing one computation per layer. This is formalized
in Proposition 3.6 and illustrated in Fig. 5.

Proposition3.6 Let n,m,L € N. Let f € SN®

n,m,

Landletf :C" - C" x
cm, f(z) := (2, f(2)). Then we have f € Ifin+m’n+m+1’l‘. In particular, we have

0 0
SNn,m,L < In,m,n+m+l,L’

Proof Let f € SN . Then there exist V| € Aff(C"; CL), and V> € Aff(CE; C™)
such that f = V5 0 0*L o Vj. For j € {1, ..., m}, the jth component function fjof
f can be written as

L
fi@ = (Z ck,jg(a,;rz —l—bk)) +d;

k=1

with suitably chosen ay € C" and ¢y j, bx, d; € C. We define
To:C" - C" xCxC", Ti(z) = (z,a] z+ b1, 0).
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For¢ e {1,..., L — 1}, we define

z
a;+1z+be+1
n m n m w1 +C£’1u
T :C"xCxC" > C'"xCxC", Tyz,u,(wi,...,wy)) = wa + ool
Wy + Co ol
Last, we set
z
w1 +CL’1u+d1
T : C"xCxC" = C"xC", Tr(z,u,(wi,...,wp)) = wy +cpou+da

Wy +cpmit +dpy

Then we have

f:TLOéO...OéOTO (38)
with

0(zpy1) ifj=n+1,

é . Cn+m+l N Cn+m+1
Zj if j An+1,

’ (é(Zla-"szn+m+l))1=

which clearly yields f € Zf; nim.niama1,r (see Remark 3.5). The second part of the
statement follows by applying a projection onto the last m coordinates after the last
layer. O

We illustrate the proof of Proposition 3.6 in the following. To this end, let us adopt
some terminology from [17, Proof of Proposition 4.6]. The neurons that use o as the
activation function (the one with index n + 1 in each layer) shall be referred to as
computation neurons. We call the neurons with indices < n 4 1 in each layer the in-
register neurons. Here the inputs are just passed through the different layers unaltered.
In other words, the restriction of g o ... 0 ¢ o Ty in (3.8) to the components with
indices < n 4 1 is just the identity on C". The remaining neurons (the ones with
indices > n + 1 in each layer) are called out-register neurons. Here the outputs of the
computation neurons are assembled to form the final outputs.

The following proposition enables us to approximate CVNNs that use ¢ as activation
function locally uniformly by CVNNs that use o as activation function, if there exists
a point zg € C with dyir0(20) = 0 # Iwire0(z0)-

Proposition3.7 Let o € C(C; C) and n,m, W, L € N. Assume that there exists
z0 € C such that g is real differentiable at zy with

dwirt0(z0) =0 and dyiro(z0) # 0.
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Fig.5 Illustration of the register n jnputs
model from Proposition 3.6. T .
Neurons where the complex
identity is used as activation

! das o - ® °
function are visualized as iN l
squares, whereas neurons using (1] - [J O ] ---
o as activation function are i i \x\’
visualized using circles. The Rkl Al Akl L Al
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1
1
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the left) store the input values
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circles). The result of the

computations are added up and

stored in the out-register neurons I SO ¢ I T I
(squares on the right). The N
] O [] []

-

dashed box highlights one of the L] e
blocks that are later replaced i i Xl
. . R [y ® ® - e
using approximations of the i i l l
complex identity b4 b4 . - o
-
n outputs m outputs

Then

0 0
NNn,m,W,L < NNn,m,W,2L’

where the closure is taken with respect to the compact-open topology.

Proof Let f € NN g,m,W be arbitrary and consider the decomposition
f=VvL OEXWO Vi—1 O...OEXWO Vo

with Vo € Aff(C"; CY), V; € AfF(CY; CY), and V; e Aff(CY; C™) for every £ €
{1,..., L — 1}. From Proposition 3.1(ii) and Proposition A.2 we infer the existence of
sequences () jen and (W) jen of affine maps ®@;, ¥; € Aff(C"; CY) for j € N
such that

j—>00 ——
W00V od; 2% dc”

locally uniformly. But then we see
VL O(\I’j OQXW o (Dj> OQXWOVL—I O...o(\llj OQXW o <Dj> OQXWOV() j—oo f

locally uniformly, where the left-hand side is an element of AN ﬁ,m,W,Z ; for every
Jj € N. Here we applied Proposition A.7. The claim then follows from Proposition
A4 O

Using the previous proposition, we can now show that every register model of width
W can be approximated by CVNNs, where in every hidden neuron the function o
is used as activation function. To do so, it is necessary to approximate the identity
connections that appear in the register model. By assumption, the activation function
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o is real differentiable at some point zo € C with non-zero derivative. We consider
three different cases. First, if o is even complex differentiable at z(, Proposition 3.1
yields an approximation of id¢ using shallow CVNNs with activation function ¢ and
a width of 1. In that case, replacing the identity connections in the register model
by these approximations results in a sufficient width of W. Second, if ¢ is complex
differentiable at zp, we use Proposition 3.7 to get the desired result. Last, if neither
of the two former cases happens, we show that a width of 2W — 1 is sufficient for
CVNN s with activation function o in order to be universal, by using the third building
block described in Proposition 3.1. Note that in each layer, there are W — 1 identity
connections to be replaced (resulting in a width of 2(W — 1) = 2W — 2 for the identity
connections) and one additional application of the activation function o, which in total
gives us a width of 2W — 1.

Proposition 3.8 Let o € C(C; C). Assume that there exists a point zg € C such that
o is real differentiable at zo with non-zero derivative. Let n,m, W, L € N.

(i) If dwin(z0) # 0 and dwino(20) = O, then I, , v S NN, 4 1.

(ii) If dwirn0(z0) = 0 and Owir0(20) # O, then T, | S NNy o).
(iii) If dwino(20) # 0 and dwin0(z0) # 0, then T, , o S NN, oy ;-

Here, the closure is taken with respect to the compact-open topology.

Proof Let g € Is’m’W’L. This means that there exist maps Ty € Aff(C"; C%Y), T, e
Aff(CY; C™), and T, € Aff(CY; CY) for ¢ € {1, ..., L — 1} such that

g=TropoTr_10...000 T,
where  : C — CV is given by

Zj ifjell,...,W—1},

(é(zl?'-'vZW))'z oo
7 eGw) ifj=W.

We first prove (i). Combining Proposition 3.1(i) and Proposition A.2, we deduce the

existence of sequences (W) jen and (@) jen with W, @; € Aff(CY; CY)forj € N,

satisfying

W ogxwod>j Eidia’ 0

locally uniformly. Proposition A.7 now implies that the sequence (g;) jen given by

gi =Tt o<\IJj ogxwod)j)oTL_lo...o<\Ilj OQXWO(I)j>OT0

converges locally uniformly to g as j — co. Moreover, since the composition of affine
maps is affine, we have g; € /\/'./\/'ﬁ’m’W’L for all j € N. Claim (i) now follows from
Proposition A.4.
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We now deal with (ii). By the fundamental properties of Wirtinger derivatives (see
for instance [16, E. 1a]) we compute

dwirt0(z0) = dwir0(z0) # 0 and  wirn0(20) = dwiro(z0) = 0.

From (i) we infer Z ., € NN}, . A direct application of Proposition 3.7
yields (ii).

The proof of (iii) is analogous to the proof of (i). Gluing together one copy of the
complex identity idc and W — 1 copies of the function ¢ or (the projection onto the
first component of) i of Proposition 3.1(iii), respectively, we construct sequences
(F))jen, (@) jen satisfying ¥; e Aff(C*"~1;CY) and ®; e Aff(CY; C2W-1)
for j € N such that

x(2W—1) o ®; Jj—> 8

Vo0

locally uniformly. Because each of the building blocks consists of 2 neurons in this
case, the resulting approximating neural network has width 2W — 1 instead of W. O

4 Proof of the main result

In this section, we prove Theorem 1.1. The analysis is split into the case of non-
polyharmonic activation functions (see Section 4.1) and polyharmonic activation
functions (see Section 4.2).

4.1 The non-polyharmonic case

When the activation function ¢ is not polyharmonic, the universal approximation
theorem for shallow CVNNs from [37, Theorem 1.3] is applicable. For convenience,
we state the following special case relevant for our investigations.

Theorem 4.1 Letn € Nand ¢ € C(C; C). Then S./\/'i1 is universal if and only if o is
not polyharmonic.

Since local uniform convergence on C™ is equivalent to componentwise local uniform
convergence, we conclude that, if ¢ is non-polyharmonic, the set SN ﬁ, m 18 universal
for every m € N.

Since the set of shallow networks with non-polyharmonic activation function is
universal and each shallow network can be represented by a suitable register model
(see Proposition 3.6), which in turn can be locally uniformly approximated by deep
narrow CVNNSs (see Proposition 3.8), we get the following result.

Theorem 4.2 Let n,m € N. Assume that o € C(C; C) is not polyharmonic and that

there exists zo € C such that o is real differentiable at zo with non-zero derivative.
(i) If dwirt0(z0) # 0 and dwiro(z0) = 0, then the set N/\/i’m’n+m+l is universal.
(ii) If dwiro(z0) = 0 and dywiro(z0) # O, then the set NN©

n,m,n+m-+

(iii) If dwirn0(z0) # 0 and dwirro(z0) # 0, then the set NNﬁ,m,2n+2m+l is universal.

| s universal.
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Proof Note that
o 0
SN"J” < In,m,n+m+1
according to the second part of Proposition 3.6. Since g is non-polyharmonic, SN 5, m
is universal according to Theorem 4.1 and we hence have

C(C:C") =SNum ST, o pimsr-

The claim then follows from Propositions 3.8 and A.6. O

Next we provide two examples of activation functions which are used in practice
and to which Theorem 4.2 applies.

Example 4.3 The modReLU function has for example been proposed in [2] as a gen-
eralization of the classical ReLU to the complex plane. For a parameter b < 0 it is
defined as

b))% if b>0,
modReLUj, : C — C, modReLU(z) := (()|Z| gy izl +b=

otherwise.

An application of Theorem 4.2(iii) shows that for n,m € N, and b < 0, the set

modReLU, . .
./\//\/Wn’szer+1 is universal.

To this end, let us verify the assumptions of Theorem 4.2 in detail. Since the
continuity of modReL.Uy, is immediate for 7 € C with |z| 7 —b, it remains to check the
case |z| = —b. Take any sequence (z;) jeny With z; — zas j — oo, where we assume
without loss of generality |z;| > —b for every j € N. Then |[modReLU,(z;)| =
|Zj} +b — |z] + b =0as j — oo. This shows the continuity of modReLUy,.

In [13, Corollary 5.4] it is shown that for all z € C with |z] > —b and all k, £ € Ny
one has

3k 9yie modReLUjp (2) # 0.

wi

This implies that modReLLU; is non-polyharmonic and oy modReLUy(z) # 0 #
Awirt modReL U, (z) for all z € C with |z| > —b.

Further note that the result from Theorem 4.2 cannot be used to reduce the sufficient
width to n 4+ m + 1 since it holds dywirx modReLUj(z) # 0 # wirt modReL U, (z) for
all z € C with |z] > —b, dyirx modReLUy(z) = dyix modReLU,(z) = O for every
z € C with |z] < —b and modReLUy, is not real differentiable at any z € C with
|z| = —b.

Example 4.4 The complex cardioid function has been used in [36] in the context

of MRI fingerprinting, where complex-valued neural networks significantly outper-
formed their real-valued counterparts. It is defined as

1 Re(z) :

1+ =)z ifz € C\ {0},
card : C —» C, card(z) := 2( + ‘Z|)Z ifz e CA{O)

0 ifz=0.
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An application of Theorem 4.2(i) shows that for n,m € N the set NI s
universal.

To this end, let us verify the assumptions of Theorem 4.2 in detail. The continuity
of card on C \ {0} is immediate. Further note that

|card(z)| = '1(1 + Re(z)) z
2 |z]

=lzl—>0

as z — 0, showing the continuity of card on the entire complex plane C. Now [13,
Corollaries 5.6 and 5.7] show that card is non-polyharmonic and

7z 3 z = 1 22 1 z
=4z Buin card(z) = —2 - 5+ o

Owirt card(z) = —,
wirt () |Z| ] |Z| S |Z|3 |Z|

+

| =
0| =—

for every z € C \ {0}. Hence, we see dyiy card(1) = 1 and Awir card(1) = 0.

4.2 The polyharmonic case

In this section, we deal with activation functions ¢ : C — C that are polyhar-
monic. However, it turns out that this property can be relaxed to only requiring that
0 € C?(C; C) in order for the proofs to work. Note that we still assume that the activa-
tion function p is neither holomorphic, nor antiholomorphic, nor R-affine. That these
assumptions cannot be neglected is shown in Theorem 6.3. The main assumptions of
this subsection can therefore be stated as follows.

Assumption 4.5 Let o : C — C be a function satisfying the following conditions:

i) 0 € C*(C; O),

(ii) o is not holomorphic,
(iii) o is not antiholomorphic,
(iv) o is not R-affine.

Using Proposition 3.1, we derive the following Proposition 4.6. It states that the func-
tion z > (z, 7) can be uniformly approximated on compact sets by a shallow network
of width 2.

Proposition 4.6 Let o satisfy Assumption 4.5, let K € C be compact, and ¢ > 0. Then
there exist maps ¢ € Aff(C; C2) and ¥ € Aff(C?; C?) such that

sup [ (¥ 00?0 9)(2) - (2. 7)|

<e.
zek c?

Proof If there exists a point zg € C with dyir0(z0) # 0 # dwiro(z0), we can directly
apply Proposition 3.1(iii). If there does not exist such a point zo, we can still find
z1 € C with dwir0(z1) # 0 and z € C with dwiro(z2) # 0, since o is neither
holomorphic nor antiholomorphic. By assumption of the nonexistence of zg € C with
Awirt0(20) # 0 # dwiri0(20), it follows that dwiro(z1) = 0 and dwiro(z2) = 0, and
we can thus apply Proposition 3.1(i) and (ii). O
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Proposition 4.6 is a central finding, since it implies that we can build from the activa-
tion function o constructions that are similar to the register model construction from
Proposition 3.6.

The Stone—Weierstrass theorem states that any continuous function can be arbi-
trarily well approximated by complex polynomialsin zy, ..., z, and 71, . . ., Z, in the
uniform norm on compact subsets of C". In order to show universality of CVNNg, it
therefore suffices to show that such polynomials can be approximated by deep narrow
CVNNSs to arbitrary precision in the uniform norm on compact sets. Motivated by this
observation, for N, n € N, we define

Py =1p:C"—>C, pr) = Z Zam,zsze S ame € CVYm, 4L 4.1
meNGLeNj
m=<N {<N

as the set of complex polynomials on C" of degree less than N in each variable. Here,
the notation m < N means m; < N forevery j € {1,...,n} and

n
m_4{ P m./—,l'
2z .—sz z;
j=1

form=(m,... my),L£=(_{E1,...,4,) € Ng. We follow an approach similar to that
of the register model by preserving the inputs and outputs from layer to layer while
gradually performing multiplications to approximate the individual monomials. This
is described in the following lemma. In its statement and proof, we use [ ];_, f,f k as

an abbreviation for the composition

(fno...ofy)o...o(fao...0 fr)o(fio...o0 f1).
—_—

B, many B2 many A1 many

Lemma4.7 Let p : C" — C", p(z) = (p1(2), ..., pm(2)) such that p; € Py, for
every j € {1, ..., n} for a suitable choice of N € N. Let mul be one of the three maps

mul; :CxC— C, muli(z,w)=zw,
mul :Cx C— C, mulb(z,w)=zw,
mul3 :Cx C— C, muls(z,w)=7zw,

as in Proposition 3.3. Further, let
M= f:C"xCxC" > C"xCxC",  filz,w,u) = (z, mul(w, 2, u)
fork e {l,...,n}, and

hy Qb entm g = id et xide X idgnen—k o
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for k € {l,...,n+1}. Then there exist L € N, maps g; : crtm+l
crmtl for joe {1,..., L} each of which is a finite composition of the maps
flooovs fur b, ..., hyy1 defined above, and affine mappings Ty € Aff(C"; CHm+ly,

T, e Aff(Crm+l,crtmtly for ¢ e (1,...,L—1} and further T; €
Aff (€L ©™Y such that

p=Tprogro...TiogyoTp.

Proof By definition of Py, there exist a; m,¢ € C form, £ € Nj withm, £ < N and
j e {l,...,m}such that

pj(z) = Z aj,m,eszl forevery j € {1,...,m}.
m,EeNg
m,{<N

By enumerating all the occurring monomials from 1 to L, we can rewrite

L n
C([.k_
pj@) = Z cje l_[ zzePek
=1 k=l

with agx, Bex €1{0,...,N}andc;j, € Cforevery £ € {1,..., L}, k € {1,...,n},
and j € {1,...,m}.
We then set

To: C" - C" x C x C™, To(z) = (z, 1, 0),

m
T C"xCxC" - C"xCx(C", Ti(z, w,u) = z,l,chj,gej—i—u ,

Jj=1
and
m
T, :C"xCxC"— C", TL(z,w,u)szcj,Lej—i—u,
j=1
where £ € {1,..., L — 1}. Here, e; denotes the jth standard basis vector in C".

Clearly, the maps Ty, ..., Ty are C-affine. Moreover, for £ € {1, ..., L}, let

[Ties £ 0 hugr o [Ty fkﬁ['k if mul = mul;,
ge= 11Tz f/f“ o hpy1o]lioy f,?k'k if mul = muly,
[Tie; Bug1 0 fi)*ek o [Ti—; (hns1 0 hg o fi o hg)Pex  if mul = muls.

Then
n
ge(z, 1, u) = (Z, l_[ zze‘kiﬁ“, u) 4.2)
k=1
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forall2 e {1,...,L},z € C",and u € C, i.e., the (n + 1)-entry of g¢(z, 1, u) is the
£th monomial. The application of 7; adds this monomial with the correct coefficients
to the cumulative sums in the entries indexed n + 2, ..., n + 1 + m, and resets the
(n + 1)-entry to 1 for the assembly of the next monomial. This proves

p=Tprogro...oTjogioTp.

To see (4.2), note that for example

(hpgr10hio frohi)(z1, ... 2y oo vy Zn, W, 1)
= (hpt10hro fi)(@1s .oy Ths vy Zns W, 1)
= (hpp10h)(@1, - Ty ooy Zny W, 1)
=Nhpp 121, oo Ty oo Tns AW, U)
= (Z0s e es Zhr v s Zns TRW, 1)
when mul = muls. ]

Lemma 4.7 states that every function from C” to C" whose components are polyno-
mials can be written as the composition of affine maps and the maps f; and /i that are
defined in Lemma 4.7. We thus aim to show that each of the f; and A can be locally
uniformly approximated by narrow CVNNSs. For 7y, this is a direct consequence of
Proposition 4.6. For f, since each function mul can be approximated by a shallow
CVNN of width 12 (see Proposition 3.3), together with Proposition 4.6 it is easy to

see that f € SN 5 Sl mt 1. 20+ 2m 4 12- However, a careful analysis shows that

Jx € NN§+m+l ntm1.2n42mss see the proof of Theorem 4.9. The next proposition
is a crucial ingredient for this and shows that each f; can be approximated by register
models with a width of n +m + 3.

Proposition4.8 Ler o € C2((C; C) be not R-affine, n,m € N, and k € {1,...,n}.
Let further mul be chosen according to Proposition 3.3 and fkm“1 = fj . Crimtl
C ™+ pe defined as in Lemma 4.7. Then we have

0
S € L it nm 1 nm 3

where the closure is taken with respect to the compact-open topology.

Proof According to Proposition 3.3 and Proposition A.2, we may pick a sequence
(¢j)jen With g; € S./\fgl for j € N that satisfies

@; — mul locally uniformly.
We define
nj: C"xCxC" - C"xCxC", nj w,u) =z ¢jWw,zx),un)
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and note that
nj — fi locally uniformly.
Hence, if we can show that n; € I:f+m+1 nbm AL ma3
completed according to Proposition A.4.
To this end, we take j € {1, ..., n} and define

for every j € N, the proof is

yj: C* = C, yij(w,2) = (w,z,¢j(w,z) and
0;: C* > C% 0;(w,2) = (z.9;(w,2)).

The first part of Proposition 3.6 then shows y; € I§’3’ 4» and an application of a
projection onto the last two coordinates after the last layer shows 6; € Ig 5 4- Let

Zx € C"~! denote the vector that arises from z € C" by omitting the kth entry. Then,
we can write

nj(z, w,u) = mp(Zk, 0 (w, zx), u),

where m; : Ctml . L g the permutation of the entries of a vector that
satisfies
7 (T 2k, W, u) = (2, w, u)

for every z € C*, w € C and u € C™. From this representation, we clearly see

. 0
nj € In+m+1 n+m+1,n+m—+3>

as desired. O

We can now prove the final bound.

Theorem 4.9 Let n, m € N. Assume that ¢ € C(C; C) satisfies Assumption 4.5. Then
the set NNi,m,2n+2m+5 is universal. Moreover, if there exists a point zog € C with
either

dwirt0(20) # 0 = dwirn0(z0) 0 Awirt0(z0) = 0 # dwirn0(20),

0 . .
then /\/’/\/n’m’nerJr3 is universal.

Proof From the Stone—Weierstrass theorem [12, Theorem 4.51], we know that the
set of complex polynomials in zj, ..., z, and Z7, ..., Z, is dense in C(K; C) with
respect to the uniform norm on any compact set K C C". Hence, it suffices to show
that each function p : C" — C™, whose components are polynomials in z, ..., z,
and 7y, . .., z, can be uniformly approximated on K by CVNNs of appropriate width.
Equivalently, it suffices to show that p € NN ﬁ,m,W’ where W is the desired width
and the closure is taken with respect to the compact-open topology (see Propositions
A2, A4, and A.5).

Let mul : C> — C be chosen according to Proposition 3.3 (depending on o). From
Lemma 4.7, we infer that there exists a natural number L € N such that

p=Trogro...oTj0goT,
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where Ty € AfF(C"; C""+1), Ty € Aff(C™H" 1, C") and Ty € Aff(C™7+1,
Ccrtm+ly for every € € {1, ..., L — 1}. Moreover, each function gy : C**"+! —
Crtm+1 s a finite composition of the f; = f{™! and & as defined in Lemma 4.7. In
view of Proposition A.7, it hence suffices to show that for every k € {1, ..., n}, we
have

0
Jis b € NNn+m+1,n+m+1,2n+ZM+5’

where the closure is taken with respect to the compact-open topology.

To this end, letk € {1, ..., n}. Since o € C*(C; C) and g is by assumption clearly
not constant, there exists a point z; € C at which o is real differentiable with non-zero
derivative. Propositions 3.8 and 4.8 then show

Q Q
fk € Zn+m+l,n+m+l,n+m+3 c NNn+m+l,n+m+1,2n+2m+5'

Moreover, since both the identity and the conjugation can be locally uniformly approx-
imated on C by shallow networks of width 2 according to Proposition 4.6, we get

0 Q
hk € SNn+m+1,n+m+1,2n+2m+2 < NNn+m+l,n+m+l,2n+2m+5'

. Q . . o .
This proves that NNn+m+1,fz+m+1:2n+2m+:5 is universal (see Proposition A.6).

Let us now assume that there exists a point zg € C with

Owirte(z0) #0 = 5wirtQ(ZO)-

In that case, Propositions 3.8 and 4.8 yield

Q Q
fk € In+m+l,n+m+1,n+m+3 < NNn+m+l,n+m+l,n+m+3‘

Moreover, since identities can be locally uniformly approximated by shallow CVNNs
of width 1 according to Proposition 3.1, we get

0 0
hk € SNn+m+1,n+m+1,n+m+2 < NNn+m+1,n+n1+l,n+m+3’

where we again used Proposition 4.6 to approximate the conjugation (which might
possibly require a width of 2).
It remains to deal with the case

Owirto(z0) = 0 # 5wir‘[Q(ZO)-

Note that p satisfies Assumption 4.5 and by the fundamental properties of Wirtinger
derivatives (see for instance [16, E. 1a]) we compute

Owirt0(20) = gwirtQ(ZO) #0 and gwirtE(ZO) = dwirte(z0) = 0.

Hence, by what we have previously shown, we infer that A/ g m.ntm3 18 universal.
Proposition 3.7 then yields that AN 5 m.ntm43 18 universal. O
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5 A quantitative bound in terms of the depth

In this section, we provide a quantitative approximation bound in terms of the depth
of the considered networks. For n € N, we let

Q, =[-LI11"+i-[-1,1]"

denote the 2n-dimensional unit cube embedded into C". Let f € C(2,; C™) be
a given continuous function defined on that cube and let ¢ > 0 be a prescribed
approximation accuracy. According to the results established in Section 4.2 and 4.1,
we can approximate the function f up to arbitrary precision on €2, with deep narrow
networks. However, these statements are of a qualitative nature and do not address the
question of how deep the networks have to be in order to guarantee an approximation
accuracy less then ¢. In this section, we prove such a quantitative statement for the
case of activation functions that are smooth and non-polyharmonic on some non-empty
open subset of C. Our bound heavily relies on the modulus of continuity of the given
function f: For a compact set K € C”, a function f € C(K; C™) and h > 0, we let

o(f.h):=sup{llfz1) — f@)len : z1.22 € K, |21 — 22llen < B}

We get the following result, which is a generalization of [18, Proposition 48] to the
complex-valued setting.

Proposition 5.1 Let f € C(2,; C). Then for every k € N there exists p € Py, with

I/ = Plle,c) < (fz+ %) w(f, %) .

Here, Py, is as defined in (4.1).
Proof We define

F00, 11 +1-10,11" > C, f(z2) = f(2z — 1),

where 1 € C" is the vector with every entry equal to 1 + i. According to [18, Propo-
sition 48], we then observe the existence of a function p; : C" — R with

N5 2n ~ 1

”Re(f) — D1 HC([OJ]"-FL[O,I]”;]R) < (1 + T) C()(Re(f)7 ﬁ)

- (1 + E) w(Re(f) L)

2 ’ \/E
and p] is of the form
n
P1(z) = Z ag 1_[ Re(zj)k.i Im(Zj)kn+j7
keN3"  J=1

k<k
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with ax € Rforeveryk e N(z)" withk < k. Similarly, we obtain a function p; : C"* —
R of the form

n
Pr(z) = Z bi l—[ Re(z,;)% Im(z;)*r+i
keNZ'  j=1
K<k

with bk € R satisfying
o~ n ~ 1
[P = 52l cqop-iiopm < (1+3) w(lm(f), ﬁ) .
We set p := pj +1i- po and get
”J?_ 5||C([0,1]"+i-[0,1]";<C)

= sup \/(Re(f(z))—Re(ﬁ(z)))2+(lm(f(z))—Im(ﬁ(z)))2

z€[0,1]"+i-[0,1]"

~ 2 ~ 2
= \/HRe(f) - D1 ”C([O,l]”+i‘[0,l]";R) + ||Im(f) - P2 ”C([O,l]”+i~[0‘l]";R)
n ~ 1
2+ — ,— .
= <f+ ﬁ) w(f ﬁ)

Using the substitutions Re(z) = %(z +7) and Im(z) = %(z —7), we obtain p € P,
In the end, we set p(z) := ﬁ(%z + %]1) and note p € P3,. Moreover, we have

I = pllewe < (ﬁ+ %) w<f, %) .

It remains to show that w(f, \/LE) =w(f, %). To this end, we observe

~ 1
{7 %)

=sup{\f(z~1)—f(z~z)\ D21, 2 € 0,11 +i-[0, 117, 121 — Zller < %}
=sup{|f2z1— 1) = fQz—Dl|: 21,22 €10, 11" +i-[0, 11",

-~ 1
lzi — z22llen < ﬁ
1 1 1 1 1
=SUP{|f(Zl)—f(Zl)| 121,22 € 2y, ‘5214'5—(5224—5) o = ﬁ}
_ 2
=o(r )
O
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The following result shows how polynomials can be approximated by shallow CVNNs.
Remarkably, the size of the networks needed does only depend on the degree of the
polynomial and not on the approximation accuracy. Moreover, if one aims to approx-
imate polynomials from a bounded subset of 7P (with respect to any norm on P}'),
one can choose the weights connecting the input and the hidden layer of the shallow
network independent of the particular polynomial p which is to be approximated; only
the weights connecting hidden and output layer have to be adjusted to p.

Proposition 5.2 (cf. [13, Theorem 3.1]) Letk,n € N, & > 0and o : C — C be smooth
and non-polyharmonic on a non-empty open set U C C. Let P' C P} be bounded
(with respect to some norm on P} ) and set N := (4k + 1)2". Then there exists a map

@ € Aff(C"; CN) with the following property: For every p € P’ there exists a map
Y € Aff(CN; C) with

p—(vooNogp
|»—( )

|eaic =
C(Q2,;C)

We can now prove the desired quantitative approximation statement. It is based on
Propositions 5.1 and 5.2 and uses the fact that each shallow network can be approxi-
mated up to arbitrary precision by deep narrow CVNNs according to Propositions 3.8
and 3.6. The depth of this CVNN is determined by the number of hidden neurons in
the shallow network, which we can quantify according to Propositions 5.1 and 5.2. To
formulate the final result, we further introduce the notation

a)_l(f,s) =supf{d >0 : w(f,§) <e} 5.1

fore > 0and f € C(L2,; C™).

Theorem 5.3 Let 0 € C(C; C) be smooth and non-polyharmonic on some non-empty
open set @ # U C C. Moreover, let f = (f1,..., fm) € C(2y; C™") and ¢ > 0 be
given. Then there exists a number N € N with

) 2n
N<|32|o'lf —& 9 52
: [‘” <f3~¢_2m-(1+%>>} ! 2

and a network ® € NNﬁ’m’anmHW with || f — ®@ll¢c(q,.cm) < €.
Moreover, if there exists a point zo € C where g is real differentiable with

Owirt0(z0) # 0 = 5wirtQ(ZO),

we may pick ® € NN?

n.m.ntm+1.N- I, on the other hand, we have

Owirt0(z0) = 0 # 5wirtQ(ZO),

Q

for some zg € C", we may pick ® e NN/ . oy
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Note that we have

Proof We set

which implies

By (5.1), we get

”(f’%)fs-mé(ug)'

According to Theorem 5.1, there exist polynomials p1, ..., py, € ng with
n 2
|fi = P, ||C(§2n;<C) = (‘/5‘*' ﬁ) “’(fjv ﬁ)
forevery j € {1, ..., m}. Letting p := (p1, ..., pm), we then have
1/2

m
If = pllc@,:cm < Z | fi = pj HZC(Q,,;(C)
=1

(a0 5) (Eb0-2]

(4 5) (B3]
:<ﬁ+%)-ﬂ-w(ﬁ%)s

We set N := (8k+1)>". Applying Proposition 5.2 to the finite (and therefore bounded)
set given by P’ := {p1, ..., pm} yields the existence of functions ¢ € Aff(C"; CV)
and ¥ € Aff(CN; C™) with

Hp—(wog“v ow)

&
. ¢
C(Q2,;Cm) 3

Note that N is independent of m since the weights connecting the input and the hidden
layer can be chosen independent of the polynomial p; (see Proposition 5.2). Since @
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is smooth and non-polyharmonic on a non-empty open set (in particular not constant)
there exists zop € C such that g is real differentiable at zg with non-zero derivative.
According to Proposition 3.6 and Proposition 3.8(iii) we have

c NN®

xN ©
w °cQ op e In,m,n+m+1,N n,m,2n+2m—+1,N" (53)

Hence, there exists ® € NN? nsami1y With

|#=(voeor)

| ;
< -.
C(Qu;Cmy — 3

By the triangle inequality, we get

If = ®llew,.cm = IIf — pleq,:cm + HP —<1// ooV o 90) H

wo—(voeos)
€
3

C(2,;Cm)

lecauien

<-+-+

587

W] ™
W[ ™

as desired.
It remains to estimate the depth N of ®. Note that we have

)
<! & .
(o (+5eg)

by definition of k. Combining this with N = (8k + 1)?", we obtain the upper bound
(5.2) for N.
The case that there exists zg € C such that g is differentiable at zg with

(dwirt0(20), dwir0(20)) # (0,0)

follows analogously, by using Proposition 3.8(i) and (ii) in (5.3). O

6 Necessity of our assumptions

The proof of Theorem 1.1 is not yet complete. So far, we have proven that activation
functions o € C(C; C) which are neither holomorphic, nor antiholomorphic, nor R-
affine yield universality of CVNNSs of width 2n+2m +5, with indicated improvements
under additional assumptions. The necessity part is done in this section: If o is holo-
morphic, antiholomorphic, or R-affine, then even the set of CVNNs using activation
function o with arbitrary widths and depths is not universal, cf. Theorem 6.3. Fur-
thermore, Theorem 1.1 states that under the mentioned constraints on the activation
function, a width of 2n + 2m + 5 is sufficient for universality of CVNNs with input
dimension n and output dimension m. But could we have done better? In Theorem 6.4
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below, we show that for a family of real-valued activation functions, the set A/ ﬁ,m’W
is not universal when W < max {2n, 2m}. In our final result Theorem 6.5, we show
that real differentiability of the activation function at one point with non-vanishing
derivative is not necessary for the universal approximation property of deep narrow
CVNNE.

We prepare the proof of Theorem 6.3 by two lemmas, the first of which is about
uniform convergence of R-affine functions.

Lemma 6.1 Letn,m € N, (fy)ren be a sequence of R-affine functions from R" to R
and f : R" — R™. Let (fx)ren converge locally uniformly to f. Then f is R-affine
too.

Proof Let Ay € R™ " and by € R™ such that fy(x) = Agx + b. Let b := f(0).
Then we have by = f;,(0) — f(0) = b.
Furthermore we see for every j € {1, ..., n} that

|Ake; — Acej||gn < [Arej +br — Acej — bel

Rm + ||bk - bZHRm -0

n — 0as
k, £ — oo. Here e; denotes the element of R" whose entries are 0 except]R for the jth
which is 1.

Consequently, (Ax)ken is a Cauchy sequence and thus converges to some A €
R™ " We claim f(x) = Ax 4 b for every x € R”. Indeed, this follows from

.....

||Akx + bk — Ax + b”Rm < ||Akx — A.x”Rm + ”bk — b”Rm
< 1Ak — Allgm<n [|xllgm + lbx — bllgm — 0

as k — oo. O

Our second lemma in preparation of the proof of Theorem 6.3 concerns locally uniform
limits of sequences of functions that are either holomorphic or antiholomorphic.

Lemma6.2 Let F = {F:C — C : F holomorphic or antiholomorphic} and
(fikeN be a sequence of functions with fi € F for everyk € N. Let f : C — C be
such that fi — f locally uniformly. Then it holds f € F.

Proof We distinguish two cases:

(i) If there exists a subsequence of ( fi)ren consisting of holomorphic functions, the
limit f of this subsequence also has to be holomorphic (see for instance [35,
Theorem 10.28]).

(ii) If there exists a subsequence of (fi)ren consisting of antiholomorphic functions,
the limit f of this subsequence also has to be antiholomorphic, where we again
apply [35, Theorem 10.28] to the complex conjugates of the functions in this
subsequence.

The necessity part of Theorem 1.1 is covered by the following theorem.
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Theorem 6.3 Letn,m € Nand o : (C — C be holomorphic or antiholomorphic or

R-affine. Then NNy, := |J NN?  is not universal.
WeN

n,m,

Proof 1t suffices to show the claim for m = 1, since local uniform approximation in
C™ means componentwise local uniform approximation.

We start with the case n = 1. If ¢ is holomorphic or antiholomorphic it follows
that all the elements of M. J\/ 1,1 are holomorphic or antiholomorphic (see, e.g., [37,
Proof of Eq. (4.15), p. 28]. But then it follows from Lemma 6.2 and Proposition A.2
that N7 1.1 is not universal. If ¢ is R-affine, each element of . N 1.1 is R-affine (as
the composmon of R-affine functions). By Lemma 6.1 and Proposmon A.2 it follows
that V. N 1.1 18 not universal.

The case n > 1 can be reduced to the case n = 1 in the following way: Assume that
NN 5! | is universal and pick any arbitrary function f € C(C; C). Letw : C" — C,
7(z1,...,2p) = z1and 7 : C — C", 7(z) = (z,0,...,0). Note that it holds
7 o = idc. By assumption, there exists a sequence (gk)keN with g € NN? | for
k € Nand g — f o locally umformly From Proposition A.7 it follows g o7 —> f
locally uniformly. Since gz o 7 € NNY 1.1 forevery k € N it follows that NNY 1118
universal, in contradiction to what has just been shown. O

In the previous sections, we showed that for a large class of activation functions a
width of 2n + 2m 4 5 is sufficient for universality of CVNNs with input dimension n
and output dimension m. Following the lines of [7, Lemma 1], we show next that for
some activation functions, a width of at least max {2n, 2m} is necessary to guarantee
universality.

Theorem 6.4 Lern,m € N.

(i) Let $ € C(R;C), and o : C — C be given by 0(z) ‘= ¢(Re(z)). Then
NNi,m,Zn—l is not universal.
(ii) Let o : C — R. Then NNﬁ,m,Zm—] is not universal.

Proof We start with (i). Let K = [-2,2]" +i[—2,2]" € C" and f(2) :=
(Izllcn ,0,...,0) forz € C". Let g € NJ\/’n m.2n_1 be arbitrary. From the defini-
tion of p, it follows that we may write g as

g@) =y Re(Vz) +b),

where i : C2—1 5 ™ is some function, V € C@1—Dxn p ¢ R20—1 and the real
part Re is taken componentwise. Interpreting Re oV as an R-linear function from R>"
to R2"~! we conclude from 2n — 1 < 2n that there exists v € C”" with lvllcn =1
satisfying Re(Vv) = 0 and hence

g(z 4+ v) = g(z) for any z € C". 6.1)

We set

1 1
A= {ze(C" * zllen <E} and B := {ZE(C" sz — vllen <1—0}
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and compute

/Kllf(Z)—g(Z)llcmdzZ'/Allf(Z)—g(Z)llcc»n dZ+/B||f(Z)—g(Z)II<cm dz

Bty fA (172) — g@llen + 1 G +v) g+ v)llcn) dz
6.1
(z)/AIIf(z) FG A 0)llen dz 2 0.8 22(A)

with 12" denoting the 2n-dimensional Lebesgue measure. In the last inequality we
used

llzllen = llz +vllenl = iz + vllen = lizllen = lvller = 2 Mlzllen = 0.8.

Hence it follows that NN | is not dense in C(K; C™) with respect to the Ll

n,m,2n—
norm and thus, using Holder’s inequality, it follows that NN i,m,Zn—l is not dense
in C(K; C™) with respect to the LP-norm for any p € [1, co], so in particular for
p = oo which shows that NNﬁ,mln—l is not universal.

Next, we prove (ii). To this end, we construct a function f € C(C"; C™), acompact

set K C C", and a number ¢ > 0 such that

sup | f(z2) — g@llem > ¢
zeK

for all g € NNﬁ,m,Zm—l‘ For a moment, fix g € NNﬁ,m,2m—l' Since the activation
function p is real-valued, the output of the last but one layer of g is a function V¥ :
C" — R?m—1  Also, there exist a matrix V € C">*@m=1 and a vector b € C™ such
that g(z) = Vi (2)+b. WithC" = R?" we may view the restriction of V to R2m=1 a5
an R-linear map RZm=1 5 R2" and the range {g(z) : z € C} of g is thus contained

in a (2m — 1)-dimensional affine subspace U = U (g) of R¥". As

sup || f(2) — g(@)llgzm = sup inf || f(2) — ullgem ,
zeK zek uel(g)

it is sufficient for our purposes to find a function f € C(C"; C™), a compact set
K c C", and a number & > 0 such that

inf sup inf || f(z) — ullgem > €
zeK €

where the outermost infimum traverses the (2m — 1)-dimensional affine subspaces U
of R¥" . This is achieved by a function f whoserange { f (z) : z € C"}isnotcontained
in any (2m — 1)-dimensional affine subspace U of R?". A semi-explicit construction
is like this:

Let K :={(1,0,...,0) : L eR,0<A<1}CC"and

f1:C"—= 10,11, fi(z1,...,2,) = max{0, min{1, Re(z1)}}.
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Further let f> : [0, 1] — C™ be a parameterization of a curve that along the edges
of the cube Q := [0, 17" + 1[0, 17" € C™ = R>" passes through all of its vertices
{0, 1) +1{0, 1} C C" = R¥" and f = f» 0 f1. From [5, Table 1], we deduce

1
inf sup inf || f(z) — ullgem > =
zeK ue 2

and this finishes the proof. O

Note that there are non-polyharmonic functions like o(z) = eR@ but also polyhar-
monic functions that are neither holomorphic, nor anti-holomorphic, nor R-affine like
0(z) = Re(z)? that meet the assumptions made in Theorem 6.4.

Following the ideas from [17, Proposition 4.15] we also want to add a short note
on the necessity of the differentiability of the activation function. It turns out that the
differentiability of the activation function is not a necessary condition for the fact that
narrow networks with width n 4m 4 1 using this activation function have the universal
approximation property. The proof is in fact identical to the proof presented in [17].
However, we include a detailed proof to clarify that the reasoning also works in the
case of activation functions C — C.

Theorem 6.5 Take any function w € C(C; C) which is bounded and nowhere real
differentiable. Then o(z) := sin(z) + w(z) exp(—z) is also nowhere differentiable and

0 . .
/\/J\/,,J,LHMJrl is universal.

Proof Since p is non-polyharmonic (since it is nowhere differentiable) it suffices to
show that the identity function can be uniformly approximated on compact sets using
compositions that have the form v o p o ¢ with ¢, v € Aff(C; C). Then the statement
can be derived similarly to the proof of Theorem 4.2(i).

Therefore, take any compact set K € C and ¢ > 0. Choose M| > 0 with |z| < M,
for every z € K. Take h > 0 arbitrary and consider

in(hz) — h in(h
—sm( 2 < < sup M sin(hz) — 1‘ -0
2eK\{0) h 2€K\{0) hz
as h — 0. Therefore, we may take & > 0 with
sin(hz) — hz £
7
h 2

for every z € K. Furthermore, choose My > 0 with |w(z)| < M, forevery z € C and
pick k € N large enough such that

lexp(—hz)| lexp(—2mk)| < _f
h 2M»,

for all z € K. Hence we derive

sin(hz 4+ 2wk) + w(hz 4+ 2wk) exp(—hz — 27k)
-z
h

@ Springer



Constructive Approximation (2025) 62:361-402 397

sin(hz) + w(hz 4 2wk) exp(—hz — 2wk)
-z

h
- sin(hz) — hz M lexp(—hz)| lexp(—2mk)| .
h h
Thus, we get the claim by defining ¢ (z) := hz + 2wk and ¥ (2) := %z. O

A Topological notes on locally uniform convergence

In this appendix, we discuss the relationship between locally uniform convergence,
the compact open topology, and the universal approximation property introduced in
Definition 2.2. Note that [28, Appendix B] is another account on the same topic.

Although locally uniform convergence can be studied more generally for functions
defined on a topological space and taking values in a metric space, we restrict ourselves
to functions C" — C™.

Definition A.1 Let (f3)ken be a sequence of functions f; : C" — C" and f : C" —
C™. The sequence ( fx)ren converges locally uniformly to f, if for every compact set
K C C" we have

k—
sup ”fk(Z) - f(Z)”(Cm _OO) 0.
zeK

There is a certain equivalence between locally uniform convergence and the uni-
versal approximation property introduced in Definition 2.2.
PropositionA.2 Let F € C(C"; C™) and f € C(C* C™). Then the following are
equivalent:

(i) Forevery compact set K C C" and & > 0, there exists a function g € F satisfying

If = gllew:cm < e

(ii) There exists a sequence ( fy)keN With fy € F fork € Nsuchthat (fi)reN converges
locally uniformly to f.

Proof We start with the implication (i)=(ii). Let f € C(C"; C™). For every k € N,
choose f € F with
1
Then (fi)ken converges locally uniformly to f, since every compact set K € C" is
contained in the closed ball By (0) with radius k£ and center O for all k > J for some
JeN

Now we show the implication (ii)=>(i). For any compact set K € C" and ¢ > 0 we
know by definition of locally uniform convergence that there exists k € N satisfying

Il fx = fllek:cmy < €.

Since f; € F, this shows (i). ]
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Next, we show that locally uniform convergence of sequences ( f)xeN of elements
fr € C(C"; C™) coincides with convergence with respect to the compact-open topol-
ogy, cf. [11, Definition XII.1.1]. Hence, the compact-open topology is the topology in
charge when we speak about universality of a set of continuous functions.

Definition A.3 For each pair of sets A € C*, B € C™, we denote
(A, B):={f € C(CC™) : f(A) S B).

The compact-open topology on C(C"; C™) is then the smallest topology containing
the sets (K, V), where K € C" is compact and V € C™ is open.

That this topology indeed induces locally uniform convergence is a direct conse-
quence of [11, Theorem XII.7.2] and C™ being a metric space.

Proposition A.4 Let (fy)ren be a sequence of functions with f; € C(C"; C™) and
f € C(C"; C™). Then the following statements are equivalent.

(i) The sequence ( fi)ren converges to f in the compact-open topology.
(ii) The sequence ( fi)ren converges to f locally uniformly.

The next result says that in C(C"; C™) with the compact-open topology, closures
of subsets can be characterized by limits of sequences.

Proposition A.5 Ler f € C(C"; C™) and F C C(C"; C™). Denote by F the closure
of F with respect to the compact-open topology. Then f € F if and only if there exists
a sequence (fr)keN with fr € F for k € N that converges to f in the compact-open
topology.

Proof Since both C" and C™ are second countable, we infer by [11, Theorem XII.5.2]
that C(C"; C™) equipped with the compact-open topology is second countable, too.
For second countable topological spaces it is well-known that closures of subsets can
be characterized by limits of sequences; see [11, Ex. 3 on p. 186 and Theorem X.6.2].

O

In particular, Propositions A.2, A.4, and A.5 yield the following equivalence, which
we state in the following proposition.
Proposition A.6 Let 7 C C(C"; C™). Then the following are equivalent:

(i) The set F has the universal approximation property.
(ii) For every f € C(C"; C™), there exists a sequence ( fy)reN of elements fi € F
such that ( fx)xeN converges locally uniformly to f.
(iii) The set F is dense in C(C"; C™) with respect to the compact-open topology.

In the present paper, it is of particular importance that the composition of functions
is compatible with locally uniform convergence.

Proposition A.7 Let (fi)ken and (gr)keN be two sequences of functions with fi €
C(C"; C") and g € C(C";C™) for k € N. Let f € C(C";C") and g €
C(C"2; C") such that fy — f and gx — g locally uniformly. Then we have

k
grofi —>gof
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locally uniformly.

Proof Using [11, Theorem XII.2.2], we know that the map
C(C";C") x C(C";C) — C(C"5C™), (hi, ho) > ha oy

is continuous, where each space C(C"; C") is equipped with the compact-open
topology and Cartesian products of spaces are equipped with the product topology.
Note here that we use the fact that C"! and C"*? are Hausdorff spaces and C"*2 is locally
compact. Then the claim follows from Proposition A.4. O

Note that the statement of Proposition A.7 can inductively be extended to the compo-
sition of L functions, where L is any natural number.

B Taylor expansion using Wirtinger derivatives

In this appendix we give some details about the Taylor expansion introduced in Lemma
2.1. Furthermore we show that an activation function which is not R-affine necessarily
admits a point where one of the second-order Wirtinger derivatives does not vanish.
We begin by restating and proving Lemma 2.1.

LemmaB.1 Let o € C(C; C) and z, zg € C. If ¢ is real differentiable at z, then

0(z +20) = 0(20) + dwir0(20)z + Iwir0(20)Z + O1(2) (B.1)

Sfor a function ©1 : C — C with limc\ (0)57-0 91@ _ 0, If o € C*(C; C), then

Z

_ 1 _ B
0(z + z0) = 0(z0) + Owirt0(20)Z + Iwir@(20)Z + 53\%&1@(20)22 + OwirtOwirt0(20)22

12 _
+ anirtQ(ZO)Zz + ©2(2) (B.2)

for a function ®; : C — C with limg (0)57-0 ®§§Z) =0.

Proof Eq. (B.1) follows from the definition of real differentiability (2.1) by using

do R +8Q I 9o 1 +_+3Q 1 -
E(ZO) e(z) 5(10) m(Z)_E(ZO)'E(Z 2) 5-5(2 )

= Awir0(20)7 + wir0(20)7-

In order to prove (B.2) we use the second-order Taylor expansion of ¢ around zg which
can be found for instance in [1, Theorem VII.5.11] and obtain

30

dxdy

] 9o 192
0(z 4 20) = 0(20) + o (20)x + o (20)y + 5 2 (20)x> + ~—(20)x
ox dy 2 0x
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9%0 5
EW(ZO))) + ©2(z)
where @, : C — C satisfies limgy (0)570 (")§§Z) = 0. Furthermore, we use the

notation x = Re(z) and y = Im(z). Letting x = %(Z +2),y= %(Z — Z) and using

ﬁ 82
| 1 =2i —1 ax2 wirt
a2 —
211 0 1] | 5% | = | windwin (B.3)
1 2i-1 92 72
W wirt
yields the claim. O

The following Proposition is required in the proof of Proposition 3.2.
Proposition B.2 Let o € C?(C; C) be not R-affine. Then there exists a point zg € C
. = =2
such that either 32, 0(z0) # 0, dwirtdwirt@(20) # 0 or y;0(z0) # O.

wirt

Proof Assume aémg = OwirnOwin0 = §3Virtg = (. From the fact that the matrix on
2 a2 a2
the left-hand side in (B.3) is invertible it follows ng = ai_agy = 37@2’ = 0. Since o

is R-affine if and only Re(p) and Im(p) are both R-affine, we may assume that o
is real-valued. It is a well-known fact that a C'-function with vanishing gradient is
necessarily constant. Applying this fact to g—f; and g—§ separately shows

Vo=a

for a constant ¢ € RZ. Let f(z) = z"a where z € C is treated as an element of RZ.
Then the gradient of o — f vanishes identically and hence it holds o — f = b for a
constant b € R. This yields

o(2) = zla+b forallzeC.
But then o is R-affine. O

Acknowledgements The authors thank Felix Voigtlaender for his helpful comments and the anonymous
reviewers for their feedback which helped improving the presentation of the material. PG acknowledges
support by the German Science Foundation (DFG) in the context of the Emmy Noether junior research
group VO 2594/1-1.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer


http://creativecommons.org/licenses/by/4.0/

Constructive Approximation (2025) 62:361-402 401

References
1. Amann, H., Escher, J.: Analysis II. Birkhduser Verlag, Basel (2008)
2. Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks, pp. 1120-1128.

10.

11.
12.

13.

14.

15.

17.

18.

19.

20.

21.

PMLR, International conference on machine learning (2016)

Barrachina, J.A., Ren, C., Morisseau, C., Vieillard, G., Ovarlez, J.-P.: Comparison between equivalent
architectures of complex-valued and real-valued neural networks-application on polarimetric SAR
image segmentation. Journal of Signal Processing Systems 95(1), 57-66 (2023). https://doi.org/10.
1007/s11265-022-01793-0

Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans-
actions on Information theory 39(3), 930-945 (1993)

. Brandenberg, R.: Radii of regular polytopes. Discrete Comput. Geom. 33(1), 43-55 (2005). https://

doi.org/10.1007/s00454-004-1127-1

Bueno, C.: Universal approximation for neural nets on sets, PhD thesis, University of California, Santa
Barbara, (2021)

Cai, Y.: Achieve the minimum width of neural networks for universal approximation, arXiv preprint,
(2022), arXiv:2209.11395

Caragea, A., Lee, D.G., Maly, J., Pfander, G., Voigtlaender, F.: Quantitative approximation results for
complex-valued neural networks. SITAM J. Math. Data Sci. 4(2), 553-580 (2022). https://doi.org/10.
1137/21M1429540

Cole, E., Cheng, J., Pauly, J., Vasanawala, S.: Analysis of deep complex-valued convolutional neural
networks for mri reconstruction and phase-focused applications. Magnetic Resonance in Medicine
86(2), 1093-1109 (2021). https://doi.org/10.1002/mrm.28733

Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems
2(4), 303-314 (1989). https://doi.org/10.1007/BF02551274

Dugundji, J.: Topology. Allyn and Bacon Inc, Boston, MA (1966)

Folland, G.B.: Real analysis: Modern techniques and their applications, 2nd, ed Pure and applied
mathematics, Wiley, New York (1999)

Geuchen, P., Voigtlaender, F.: Optimal approximation using complex-valued neural networks,
Advances in Neural Information Processing Systems (A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, eds.), vol. 36, Curran Associates, Inc., 2023, pp. 1681-1737, https://
proceedings.neurips.cc/paper_files/paper/2023/file/05b69cc4c8ff6e24cSdelecd27223d37-Paper-
Conference.pdf

Gribonval, R., Kutyniok, G., Nielsen, M., Voigtlaender, F.: Approximation spaces of deep neural
networks. Constr. Approx. 55(1), 259-367 (2022). https://doi.org/10.1007/s00365-021-09543-4
Ismailov, V.E., Savas, E.: Measure theoretic results for approximation by neural networks with limited
weights. Numer. Funct. Anal. Optim. 38(7), 819-830 (2017). https://doi.org/10.1080/01630563.2016.
1254654

Kaup, L., Kaup, B.: Holomorphic functions of several variables: An introduction to the fundamental
theory, De Gruyter Studies in Mathematics, vol. 3, Walter de Gruyter & Co., Berlin, 1983, https://doi.
org/10.1515/9783110838350

Kidger, P., Lyons, T.: Universal approximation with deep narrow networks, Proceedings of Thirty Third
Conference on Learning Theory (J. Abernethy and S. Agarwal, eds.), vol. 125, 2020, pp. 2306-2327,
https://proceedings.mlr.press/v125/kidger20a.html

Kratsios, A., Papon, L.: Universal approximation theorems for differentiable geometric deep learning.
Journal of Machine Learning Research 23(196), 1-73 (2022)

Kiistner, T., Fuin, N., Hammernik, K., Bustin, A., Qi, H., Hajhosseiny, R., Masci, P. G., Neji, R., Rueck-
ert, D., Botnar, R. M., Prieto, C.: CINENet: deep learning-based 3d cardiac CINE MRI reconstruction
with multi-coil complex-valued 4D spatio-temporal convolutions, Scientific Reports 10 (2020), pp. arti-
cle no. 13710, 13 pp., https://doi.org/10.1038/s41598-020-70551-8

Lee, C.Y., Hasegawa, H., Gao, S.C.: Complex-valued neural networks: A comprehensive survey.
IEEE/CAA Journal of Automatica Sinica 9(8), 1406—1426 (2022). https://doi.org/10.1109/JAS.2022.
105743

Lei, Z., Gao, S., Hasegawa, H., Zhang, Z., Zhou, M., Sedraoui, K.: Fully complex-valued gated recurrent
neural network for ultrasound imaging. IEEE Transactions on Neural Networks and Learning Systems
35(10), 14918-14931 (2024). https://doi.org/10.1109/TNNLS.2023.3282231

@ Springer


https://doi.org/10.1007/s11265-022-01793-0
https://doi.org/10.1007/s11265-022-01793-0
https://doi.org/10.1007/s00454-004-1127-1
https://doi.org/10.1007/s00454-004-1127-1
http://arxiv.org/abs/2209.11395
https://doi.org/10.1137/21M1429540
https://doi.org/10.1137/21M1429540
https://doi.org/10.1002/mrm.28733
https://doi.org/10.1007/BF02551274
https://proceedings.neurips.cc/paper_files/paper/2023/file/05b69cc4c8ff6e24c5de1ecd27223d37-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/05b69cc4c8ff6e24c5de1ecd27223d37-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/05b69cc4c8ff6e24c5de1ecd27223d37-Paper-Conference.pdf
https://doi.org/10.1007/s00365-021-09543-4
https://doi.org/10.1080/01630563.2016.1254654
https://doi.org/10.1080/01630563.2016.1254654
https://doi.org/10.1515/9783110838350
https://doi.org/10.1515/9783110838350
https://proceedings.mlr.press/v125/kidger20a.html
https://doi.org/10.1038/s41598-020-70551-8
https://doi.org/10.1109/JAS.2022.105743
https://doi.org/10.1109/JAS.2022.105743
https://doi.org/10.1109/TNNLS.2023.3282231

402

Constructive Approximation (2025) 62:361-402

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Leshno, M., Lin, V.. Ya.., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpoly-
nomial activation function can approximate any function. Neural Netw. 6(6), 861-867 (1993). https://
doi.org/10.1016/S0893-6080(05)80131-5

Li, X., Wang, G.: Universal approximation of polygonal fuzzy neural networks in sense of K -integral
norms. Sci. China Inf. Sci. 54(11), 2307-2323 (2011). https://doi.org/10.1007/s11432-011-4364-y
Lu, Zh., Pu, H., Wang, E,, Hu, Zh., Wang, L.: The expressive power of neural networks: A view from
the width, Advances in Neural Information Processing Systems (I. Guyon, U. Von Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), Curran Associates, Inc., (2017),
pp. 1-9, https://proceedings.neurips.cc/paper/2017/file/32cbt687880eb1674a07bt717761dd3a-Paper.
pdfhttps://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
Merkh, T., Montifar, G.: Stochastic feedforward neural networks: universal approximation, Mathe-
matical aspects of deep learning, pp. 267-314. Cambridge Univ. Press, Cambridge (2023)

Mhaskar, H.N.: Neural networks for optimal approximation of smooth and analytic functions. Neural
computation 8(1), 164—177 (1996)

Murata, N., Sonoda, S.: Neural network with unbounded activation functions is universal approximator.
Appl. Comput. Harmon. Anal. 43(2), 233-268 (2017). https://doi.org/10.1016/j.acha.2015.12.005
Park, J., Wojtowytsch, S.: Qualitative neural network approximation over R and C: Elementary
proofs for analytic and polynomial activation, Explorations in the Mathematics of Data Science: The
Inaugural Volume of the Center for Approximation and Mathematical Data Analytics, Springer, (2024),
pp. 31-64

Park, S., Yun, C., Lee, J., Shin, J.: Minimum width for universal approximation, arXiv preprint, (2020),
arXiv:2006.08859

Petersen, P., Voigtlaender, F.: Optimal approximation of piecewise smooth functions using deep ReLU
neural networks. Neural Networks 108, 296-330 (2018)

Petersen, P., Voigtlaender, F.: Equivalence of approximation by convolutional neural networks and
fully-connected networks. Proc. Amer. Math. Soc. 148(4), 1567-1581 (2020). https://doi.org/10.1090/
proc/14789

Qu, Y.-D., Zhang, R.-Q., Shen, S.-Q., Yu, J., Li, M.: Entanglement detection with complex-valued
neural networks, International Journal of Theoretical Physics 62 (2023), no. 9, pp. article no. 206, 15
pp., https://doi.org/10.1007/s10773-023-05460-3

. Ren, Y., Jiang, W., Liu, Y.: A new architecture of a complex-valued convolutional neural network for

PolSAR image classification, Remote Sensing 15 (2023), no. 19, pp. article no. 4801, 27 pp., https://
doi.org/10.3390/rs15194801

Rudin, W.: Principles of mathematical analysis, third ed., International Series in Pure and Applied
Mathematics, McGraw-Hill Book Co., New York-Auckland-Diisseldorf, (1976)

Virtue, P., Yu, S.X., Lustig, M.: Real and complex analysis, 3rd edn. McGraw-Hill Book Co., New
York (1987)

Virtue, P., Yu, S. X., Lustig, M.: Better than real: Complex-valued neural nets for MRI fingerprinting,
2017 IEEE International Conference on Image Processing (ICIP), IEEE, (2017), pp. 3953-3957
Voigtlaender, F.: The universal approximation theorem for complex-valued neural networks. Appl.
Comput. Harmon. Anal. 64, 33-61 (2023). https://doi.org/10.1016/j.acha.2022.12.002

Yarotsky, D.: Optimal approximation of continuous functions by very deep ReLU networks, Conference
on learning theory, PMLR, (2018), pp. 639-649

Yarotsky, D.: Universal approximations of invariant maps by neural networks. Constr. Approx. 55(1),
407474 (2022). https://doi.org/10.1007/s00365-021-09546- 1

Zhang, H., Gu, M., Jiang, X. D., Thompson, J., Cai, H., Paesani, S., Santagati, R., Laing, A., Zhang,
Y., Yung, M. H., Shi, Y. Z., Muhammad, F. K., Lo, G. Q., Luo, X. S., Dong, B., Kwong, D. L., Kwek,
L. C, Liu, A. Q.: An optical neural chip for implementing complex-valued neural network, Nature
Communications 12 (2021), pp. article no. 457, 11 pp., https://doi.org/10.1038/s41467-020-20719-7
Zhang, Z., Wang, H., Xu, F., Jin, Y.-Q.: Complex-valued convolutional neural network and its applica-
tion in polarimetric SAR image classification. IEEE Transactions on Geoscience and Remote Sensing
55(12), 7177-7188 (2017). https://doi.org/10.1109/TGRS.2017.2743222

Zhou, D.-X.: Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal. 48(2),
787-794 (2020). https://doi.org/10.1016/j.acha.2019.06.004

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1007/s11432-011-4364-y
https://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
https://doi.org/10.1016/j.acha.2015.12.005
http://arxiv.org/abs/2006.08859
https://doi.org/10.1090/proc/14789
https://doi.org/10.1090/proc/14789
https://doi.org/10.1007/s10773-023-05460-3
https://doi.org/10.3390/rs15194801
https://doi.org/10.3390/rs15194801
https://doi.org/10.1016/j.acha.2022.12.002
https://doi.org/10.1007/s00365-021-09546-1
https://doi.org/10.1038/s41467-020-20719-7
https://doi.org/10.1109/TGRS.2017.2743222
https://doi.org/10.1016/j.acha.2019.06.004

	Universal approximation with complex-valued deep narrow neural networks
	Abstract
	1 Introduction
	1.1 Complex-valued neural networks
	1.2 Related work
	1.3 Contribution
	1.4 Organization of our paper

	2 Preliminaries
	2.1 Complex and functional analysis
	2.2 Neural networks

	3 Building blocks and register model
	3.1 Building blocks
	3.2 Register model

	4 Proof of the main result
	4.1 The non-polyharmonic case
	4.2 The polyharmonic case

	5 A quantitative bound in terms of the depth
	6 Necessity of our assumptions
	A Topological notes on locally uniform convergence
	B Taylor expansion using Wirtinger derivatives
	Acknowledgements
	References




