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Abstract

Self-organizing complex systems can be modeled using cellular automaton models.
However, the parametrization of these models is crucial and significantly determines
the resulting structural pattern. In this research, we introduce and successfully apply
a sound statistical method to estimate these parameters. The decisive difference to
earlier applications of such approaches is that, in our case, both the CA rules and
the resulting patterns are discrete. The method is based on constructing Gaussian
likelihoods using characteristics of the structures, such as the mean particle size. We
show that our approach is robust for the method parameters, domain size of patterns,
or CA iterations.
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1 Introduction

Cellular automaton (CA) models are widely used to describe self-organizing, complex
systems such as tumor growth (Moreira & Deutsch, 2002), protein bioinformatics
(Xiao et al., 2011), chemical reactions (Menshutina et al., 2020), formation and
turnover of soil microaggregates (Ray et al., 2017; Zech et al., 2022), geospatial
environmental modeling (Ghosh et al., 2017), urban planning (Santé et al., 2010),
crowd evacuation (Yang et al., 2011), traffic flow (Tian et al., 2021), and microstruc-
ture evolution in metal forming (Yang et al., 2011). Within the framework of a CA,
distinct states are assigned to so-called cells. These states may change according to
prescribed transition rules depending on the states of the neighboring cells (e.g., within
the neighborhood of a specific size).

Typically, several parameters influence a CA’s rules, significantly determining the
patterns the CA produces. Thus, it is crucial to determine these parameters since CAs
produce significantly flawed simulations if they are set incorrectly. Exemplary, if we
try to model the growth of microaggregates in soil, wrong parameters can lead to
very large aggregates in computer simulations. Still, these large aggregates cannot be
reproduced in in vitro experiments. If we model cancer development with CAs (Cooper
et al., 2020), wrong parameters can produce inaccurate growth and decay rates.

However, reasonable parameter choices are often hard to identify. An apparent
reason is the inherent randomness of CAs that leads to stochastic cost functions in
the parameter identification scheme. While the literature on cellular automaton appli-
cations is huge, the literature on parameter calibration of CA models is much more
sparse. To calibrate a model in urban dynamics, i.e., the spread of cities, parameter
estimation is conducted via a genetic algorithm in Li et al. (2007). In this case, the tran-
sition rules depend on geographical variables, physical constraints, and uncertainty.
Knowledge about the parameters can be used to improve urban planning towards
compact cities, e.g., concerning energy and sustainable land usage. Likewise, neural
networks were used to predict parameters in urban planning (Yeh & Xia, 2004) based
on satellite remote sensing data and GIS (Geographic Information System). Finally,
parameter estimation for CAs for predicting wildfire in Africa is found in Couce and
Knorr (2010). The fire propagation was assumed to depend on environmental (veg-
etation, fuel/litter load, wind) and climatic factors. Here, parameter estimation was
implemented by minimizing the KL (Kulback-Leibler) distance between modeled
and observed fire extension histograms.

A common issue in the CA model’s parameter estimation approaches is the lack
of statistics. A more or less ad-hoc cost function is formulated and optimized, but no
uncertainty quantification is presented. In this research, we develop a sound statistical
approach to the CA parameter estimation problem. The starting point is an analogy
of CA patterns with Turing models. These continuous models were proposed by Alan
Turing in the seminal work (Turing, 1952) as a hypothetical mechanism describing
the symmetry-breaking phenomenon at the early stage of morphogenesis. They later
found applications in different areas, including modeling chemical reactions (Lengyel
& Epstein, 1991, 1992), describing population dynamics (Zhu et al., 2024), social
interactions (Ke et al., 2022; Yuan et al., 2023; Zhu & Yuan, 2023; Li & Zhu, 2024),
and even morphochemical processes (Bozzini etal., 2015; Lawless et al., 2019; Frittelli
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et al., 2024). For both Turing models and cellular automata, randomized initial values
lead to random patterns. Our proposed statistical approach was earlier used to identify
parameters of Turing models in continuous and network domains (Kazarnikov et al.,
2020a; Zhu & He, 2022a,b), and initially introduced to calibrate chaotic dynamical
systems (Haario et al., 2015; Springer et al., 2019). It is designed for systems with
stochastic outcomes that may be due to unknown, randomized initial conditions or
stochasticity of the model itself. The approach is based on creating statistics for scalar-
valued characteristics computed directly from the patterns. The decisive difference
to the earlier applications in Kazarnikov et al. (2020a, 2023) is that in this work,
both the CA rules and the resulting CA patterns are discrete, while the algorithm of
Kazarnikov et al. (2020a) has been developed for and applied to partial differential
equation (PDE) based models, which yield continuous functions as solutions, that
depend continuously on the model parameters. Thus, the previous algorithm took
advantage of these facts, e.g., by using different Lebesgue and Sobolev norms to
characterize properties of the patterns produced by the forward model. As opposed to
this, CA models yield completely discrete and discontinuous results. If these results
are interpreted as functions, these functions only take values in discrete subsets, such
as in {0, 1}, prohibiting the evaluation of spatial gradients.

Consequently, their discrete analogs must replace the norms/metrics on continuous
function spaces. On the other hand, various measures such as the Minkowski charac-
teristics (Armstrong et al., 2019) or the mean particle size/particle size distribution are
widely used to characterize structures. Our statistical approach can directly employ
those measures. Indeed, considering such measures leads to sharper estimates than
those adopted from the continuous model norms.

The main novelties of our algorithm comprise the ability to use arbitrary quantities in
the parameter estimation process. Thus, we can build our parameter estimation process
on relevant quantities in the respective scientific field. In soil science, such quantities
are, e.g., the total surface, number of particles, average particle size, compactness
ratio, and particle size distribution (which is not a scalar); see (Rupp et al., 2019) for a
detailed overview. We illustrate this feature using the average particle size and particle
size distribution.

As the CA simulation is inherently stochastic, standard likelihood constructs are
not available, and we here indeed deal with a situation often discussed under the
title ’intractable likelihood.” The statistical analysis for such cases is typically carried
out with ’likelihood-free inference’ methods, among which the ABC (Approximate
Bayesian Computation) approach is the most common. Our approach’s main difference
and novelty is that we create a likelihood, even an empirically Gaussian one, by
considering eCDF vectors derived from data. For scalar-valued data discussed above,
the eCDF vectors can be directly computed. Still, we need to map to scalars for the 2D
patterns created by CA simulations before eCDF vectors can be computed. Here, we
use the L' distance between pairs of patterns. The particle size distribution is a nice
feature, directly providing an eCDF vector. The concatenations of Gaussian vectors
are again Gaussian, and the joint mean and covariance can be readily numerically
estimated.

The paper is structured as follows: In Sect.2, we introduce our cellular automaton
method, which is used as “forward model” to produce patterns for our parameter
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estimation method. The parameter estimation method is outlined in detail in Sect. 3.
In Sect. 4, we discuss the results of our parameter estimation method. This includes a
sensitivity analysis concerning the parameters of the CA and the parameter estimation
method. We conclude the paper with an outlook to future research.

Notably, all used software for this paper is made publicly available in two software
projects:

e The implementation of the CA model can be found in Rupp et al. (2022c¢). It is
performed in C++ with a MATLAB interface using the mex compiler and a Python
interface using the just-in-time compilation provided by HyperHDG Rupp et al.
(2022a); Rupp and Kanschat (2021), which builds on Cython.!

e The package for parameter estimation can be found in Rupp et al. (2022b). It con-
tains a Python implementation of the presented empirical cumulative distribution
function (eCDF) based approach. This package can also be obtained from PyPI.>

2 Cellular automaton method

We now describe the cellular automaton method and illustrate it in two spatial
dimensions, although it is implemented to work accordingly in any positive-integer
dimensional setting. The complete, C++-based implementation can be found in Rupp
et al. (2022c¢).

2.1 Setting of CA model

The CA model consists of a discretized domain, typically a d-dimensional cube,
comprising N¢ non-overlapping small cubes (so-called cells) ¢y, m = 1,..., N,
each having identical volumes. Within this domain, the spatiotemporal distribution
of two phases (0) (e.g., void, white in Fig.1) and (D (e.g., solid, black in Fig. 1) is
considered. We write ¢,,, = 0 if cell ¢, attains state (0) and ¢,, = 1 if ¢, attains ().
At the initial time, to all cells, either of the values (0) or () is assigned, e.g., randomly.
After that, the cells are redistributed within the domain in every time step according
to specific parameter-dependent jumping rules, see Sect.2.2. This results in the two-
phase system’s temporal evolution (self-organization) and a final arrangement of the
cells (pattern).
In this study, we prescribe the porosity

N4 .
Zm:l (1 —cw) _ number of cells with state (0)
Nd - number of cells

6 = € (0.1

of the system and derive the number of cells of type (1. These are then randomly
distributed in the cubic domain N¢ at initial time 7y = 0. The remaining cells are
associated with phase (0), i.e., the initial state s¢ is an element of the pattern space

1 https://cython.org/
2 https://pypi.org/project/ecdf-estimator/
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Fig.1 The application of CA jumping rules within one time-step for the case o = 2: First, all agglomerates
move in random order to the positions with the highest number of neighbors: (B) changes its position, but
(© remains in its place because every possible movement decreases the number of neighbors (left picture).
Then, all single cells (part of agglomerates or not) move to maximize the number of their neighbors. Arrows
indicate the latter movement (center picture). The right picture shows the resulting structure (colour figure
online)

P = {0, 1}V ‘In fact, so is generated by randomly selecting N6 cells out of the N¢
cells (simple random sampling without replacement), i.e., so ~ U?{0, 1}. Moreover,
we assume the domain to be periodic, i.e., we identify the left and the right boundary
and the top and the bottom boundary with each other and likewise in higher dimensions.

2.2 Jumping rules for the CA model and related parameters

The jumping rules of our CA are designed such that phase (1) is compacted; see Fig. 1
for an illustration. The jumping rules depend on the choice of the neighborhood (see
Fig.2), which in turn depends on the jump parameter o in some parameter set [T C N,
and the evaluation of the attractivity of new spots. Thereby, the parameter choice
highly influences the self-organization of the system and the pattern obtained; see also
illustration in Figs.3 and 4.

2.2.1 Von-Neumann neighborhoods

First, the parameter o € I1 determines the size of the neighborhood, which is con-
sidered to decide about possible jumps of single cells with state (1) to more attractive
spots. It describes the range of the von Neumann neighborhood (VNN), which is the
most commonly used distance in CA applications, given by

range VNN(cell) = max{l, o}.

As illustrated in Fig.2, for a single cell (&), the VNN of size 1 (c = 1) consists
of (A) and its face-wise neighbors, i.e., four neighbors in the two-dimensional space
(illustrated in black in Fig.2). A VNN of size 2 (0 = 2) consists of the VNN of
size 1 and all face-wise neighbors of all cells contained in the VNN of size 1, i.e.,
12 neighbors in the two-dimensional space (illustrated in black and red in Fig. 2), etc.
Depending on the choice of the parameter o, the single cells of type (1) can move
within a smaller or larger region to find more attractive spots; see Sect.2.2.2 below.
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More formally, the VNN of range r around cell ¢ consists of all cells that can be
reached by ¢ when it performs at most r consecutive moves into one of its face-wise
neighbors. Analogously, the VNN of range r of a set of cells C comprises all cells that
can be reached by any cell in C when it conducts at most r consecutive moves into its
face-wise neighbors.

Second, the parameter o is used to determine the size of the VNN, in which agglom-
erates (ag), i.e., composites of face-wise connected cells of type (D, are allowed to
move. The following definition realizes this:

o

Vi(ag)

where |-] indicates the floor function, i.e., rounding down to the next integer, d is
the spatial dimension (e.g., two), and p(ag) > 1 is the size of ag. It is defined as the
number of cells of which ag consists. In the case of (B) or (C) in Fig. 1, for instance
n(®) = n((©) = 4 holds.

From the above equations, it is obvious that ¢ is the decisive parameter when it
comes to the question of how far a cell or aggregate can move and what the patterns
that the CA produces look like, see Fig.3. The equations themselves stem from the
reasoning that soil aggregates diffusion is proportional to the inverse of their diameter,
which is ~ 1 for single cells, and ~ & (ag) for a ball-like aggregate.

range VNN(ag) = max { 1,

2.2.2 Movement of agglomerates and single cells

Algorithm 1 Cellular automaton, the definition of non-linear forward operator

Fca(o): P — P, where P = {0, 1}V “ denotes the pattern space. This operator
implements a single time-step of the CA model. In this work, we define as a pattern
the state vector s € P obtained by applying operator Fca (o) n* times to the initial
random state sg € P, i.e.s = [Fca(o)]" so.

1: Input: s € P, the current state of the CA model

2: Input: o € II, the jumping rate parameter

3: Construct set of agglomerates Ag in state s.

4: for each agglomerate ag € A (in random order) do

5:  Calculate VNN(ag) depending on jump parameter o
6

7

8

Evaluate the attractivity of all possible positions in VNN(ag)
Choose a new position for ag, maximizing the attractivity
: Move ag to the new position
9: end for
10: Construct the set of all cells with state (1) Cy.
11: for each cell ¢ € C; (in random order) do
12:  Calculate VNN(c) depending on jump parameter o
13:  Evaluate the attractivity of the members of the VNN(c)
14:  Choose a new position for ¢, maximizing the attractivity
15:  Move cell ¢ to the new position
16: end for
17: Output: Updated state vector s, i.e., Fca(0)s
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Fig.2 Tllustration of VNN
around (&) of range 1 (black), 2
(red), and 3 (yellow) in two
spatial dimensions (colour figure
online)

Starting from an initial state s¢ in the pattern space P, a new pattern s in the pattern
space P is eventually created - first due to the movement of single cells and then
due to the subsequent movement of single cells and agglomerates to new positions
for a prescribed amount of time steps, see Algorithm 1. The attractivity of potential
new spots within the VNN is evaluated in each time step for the actual movement of
the agglomerates and single cells. Maximizing attractivity involves trying all possible
moves and selecting the one with the highest attractivity values.

First, all agglomerates within the domain N¢ are identified. These are (B) and (C) in
the two-dimensional example as illustrated in Fig. 1. The agglomerates are randomly
ordered, and their potential movement within VNN(ag) is evaluated successively.
Since the CA should compactify phase (1), each agglomerate’s jumping is chosen to
maximize the number of its direct neighbors. If several equally attractive new spots
exist for an agglomerate, one of them is randomly selected.

Let us assume that is the first agglomerate to move in the two-dimensional
example of Fig. 1, and that it may move in a VNN of 1 for the parameter choice
o = 2. This means the agglomerate can remain in its actual position, moving to the
left, right, upwards, or downwards. The most attractive new spot can here be achieved
by moving downwards. After (B) has moved, (C) may move, but the number of neighbors
will decrease if (C) changes its position. Thus, it does not move to a new spot.

After all the agglomerates have moved, all single cells (part of agglomerates or
not) may move within their VNN to find new and more attractive spots. Again, the
order of the movement of the single cells is random, and the single cells move such
that they end up with a maximum amount of direct neighbors. If there are two equally
beneficial moves, one of those is randomly selected. In the two-dimensional example
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illustrated in Fig. 1, these movements are indicated in the middle picture by arrows for
the parameter choice o = 2.

Moving agglomerates and single cells is repeated several times (CA steps). In this
sense, the forward model maps an initially disordered state vector sy ~ U?{0, 1} into
a pattern s = Fg;(a)so. This process naturally depends on the jumping parameter
o € Il and porosity parameter 8. We will assume that 6 is fixed and use the parameter
estimation method to recover parameter o € I from patterns. This is outlined below
in Sect. 3. Note that due to the random origin of s, distinct patterns are emerging even
for a given maximal size of the VNN (prescribed by the value of o), and the inverse
problem becomes a non-trivial task.

2.3 Application of cellular automaton method for different parameter sets

We apply the cellular automaton as introduced in Sect. 2.2 to illustrate the correspond-
ing pattern formation for different choices of parameters. Starting from dispersed,
randomly created structures, according to the CA jumping rules, single cells and
agglomerates attract each other and finally form larger clusters and potentially con-
nected structures. This process is illustrated in Fig. 3 for different choices of the jump
parameter

o (1,5, 10, 15},

and different porosities 6 € {0.3,0.5,0.7, 0.9}. The dynamic structure development
concerning time is shown in Fig. 4 for two different porosities 6 € {0.5, 0.9} and jump
parameters o € {1, 5}. Distinct patterns emerge depending on the specific parameter
choice. Larger porosities lead to dispersed structures, while larger jump parameters
lead to blocky patterns. On the other hand, smaller porosities and smaller jump param-
eters induce card-house-type structures.

Besides the illustrations of the cellular automaton model for two spatial dimensions
in Figs.3 and 4, the method can also be applied to model self-organization in three
spatial dimensions as shown in Fig. 5. Likewise, it can also be applied in higher spatial
dimensions using the implementation of Rupp et al. (2022c).

The resulting patterns are input for further analysis using parameter estimation
methods outlined below in Sect. 3.

3 Parameter estimation method

We now introduce the parameter estimation method we apply to the results generated
by the CA as outlined in Sect. 2. Our method for parameter identification allows us to
map a training set of patterns to a Gaussian distribution. This will enable us to define
a statistical likelihood and use it as a cost function during the parameter identification.
Our approach relies on emerged pattern data only, without using the information about
the initial data.
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Porosity 6

0.7

" 4_:1}? 2
By

Jump parameter o
5

15

Fig.3 Illustration of the domain consisting of 100 x 100 cells after five steps of the CA for varying porosity
6 and jump parameter o (colour figure online)

3.1 Background

According to the central limit theorem, the average of random variables with finite
expected value and variance converges to the normal distribution. This allows for using
a Gaussian likelihood for parameter estimation if enough repeated measurements are
available. However, the mean may be rather uninformative, as quite different distri-
butions can have the same mean (and higher moments). The cumulative distribution
function (CDF) can create more accurate statistics. In probability theory, Donsker’s
theorem is a functional extension of the central limit theorem. In this work, we build on
generalizations of the Donsker theorem (Donsker, 1952), which states that the cumu-
lative distribution function of independent and identically distributed (i.i.d) scalar
samples converges towards a Gaussian vector.

Theorem 3.1 (Donsker, Skorokhod, Kolmogorov) Let F,, be the empirical distribution
function of the sequence of i.i.d. random variables X1, Xa, ..., X,, with distribution
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Time step

100 10

1000

Fig.4 Illustration of the time evolution of the domain consisting of 100 x 100 cells after steps 0, 1, 5, 10, 100
and 1000 of the CA for porosity 6 € {0.5, 0.9} and jump parameter o € {1, 5} (colour figure online)
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Timestep: 0 Timestep: 1 Timestep: 2 Timestep: 3

i € & &

Fig. 5 Illustration of the time evolution of the domain consisting of 10 x 10 x 10 cells after steps 0, 1, 2
and 3 of the CA for porosity & = 0.7 and jump parameter o = 5 (colour figure online)

function F. Define the centered and scaled version of F, by
Gn(x) = V/n(Fy(x) = F(x)).

The sequence of G, (x) converges in distribution to a Gaussian process G with zero
mean and the covariance is given by

cov[G(s), G(t)] = E[G(s)G(t)] = min{F(s), F ()} — F(s)F(¢).

We use the theorem in an approximative form for finite data. For i.i.d. scalar data with
sample size N, the empirical distribution function (e¢CDF) computed at selected bin
values x;,i = 1,2,..., M, becomes a M-dimensional Gaussian vector, with mean
Fo € RM and covariance given by

(X0)ij = (min((Fo)i, (Fo);) — (Fo)i(Fo);)/N, i,j=1,....,M.

The basic form of the Donsker theorem applies to i.i.d scalar situations. In our
application, the data is not i.i.d. The covariance formula cannot be used then, but data
or simulated eCDF vectors can estimate the covariance matrix. The Gaussianity still
holds, assuming that conditions on weakly dependent data hold (Borovkova et al.,
2001; Neumeyer, 2004).

Also, our data is inherently high dimensional, so a scalar-valued mapping must
first be used to construct eCDF vectors; see (Kazarnikov et al., 2020a; Springer et al.,
2019; Haario et al., 2015) for earlier examples. We discuss the construction of such
scalar-valued mappings below.

Note the approximative character of the approach in a finite setting. As eCDF
vectors are strictly limited in the interval (0, 1), the normality cannot hold close to the
tails. In numerical applications, standard scalar normality tests can be used to verify
the normality at the bin values used, and the M-dimensional X2 test can be used for
the Gaussianity of the eCDF vectors.

3.2 Construction of the approach
Let us represent the CA model as an abstract pattern formation model depending on

a p-dimensional vector of model parameters ¢ € IT C RP”. In our specific case,
o = o € N, thus p = 1, but the construction of the approach remains the same
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Fig.6 Construction and evaluation of the cost function for parameter identification by pattern data (colour

figure online)
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for a larger number of parameters. The output of each “forward model” run is a
pattern s(o0) € P, which corresponds to the final state after a prescribed number
n* of applications of the cellular automaton forward operator Fca (o) as introduced
in Sect.2: s(o) = [Fca(o)]" so, 5o ~ U?{0, 1}. Applying the forward model for
various choices of initial random state so and fixed parameter(s) o, a set of patterns
s(o) is obtained. These patterns naturally change due to the variation of the model
parameter(s) but additionally change even for the fixed model parameter(s) due to the
random distribution of the two phases at an initial time and the randomness included
in the CA steps. We aim to distinguish this internal variability from the systematic
changes due to varying model parameters.

More precisely, we want to find all the model parameters that fit a given training
data, i.e., a set of patterns sqaa C §(0), within the accuracy allowed by the data. To
do so, we define a minimization problem in terms of a stochastic cost function

Ssiaa (0) — min — o = argming fs,,.(0), (3.1)

and consider any argument ¢ that solves (3.1) as a model parameter vector that cor-
responds to the training data set sga. The remainder of this section is devoted to
constructing f... step-by-step.

First, we specify what we mean by a solution to problem (3.1). Due to the stochas-
ticity of the model, a given model parameter corresponds to a distribution of solutions.
We thus distinguish different model parameters by the respective distributions they
produce. As the pattern data is high-dimensional, we define some measures to quantify
the “distance” between two samples. For this purpose, we employ the training data to
construct a statistical likelihood function that quantifies the variability within the data,
i.e., gives a distribution of acceptable solutions. The basic idea is to define a “distance”
mapping p, e.g., a scalar mapping, which compares two patterns s, s~ € P (possible
choices of p will be discussed below). The full statistics of p are then used to produce
a Gaussian likelihood based on/from the training data.

We next show how to construct the function fs,,. for a given distance and all
the training data pairs. To employ the training data statistically, we divide the set of
patterns into n subsets. We define a function that accepts two arguments: the sets of
patterns s and s~ containing N and N~ patterns, respectively. Apart from the two
arguments, it depends on two parameters: a radius R > 0 and the “distance” p:

Nt N™

_ 1 _
CG6T 73R, p) = 1 X;Z;#(p(sj,sj) <R, 3.2)
i=1 j=

where # denotes the discrete indicator function.
The radius R > 0 is used to create a vector y that encodes the similarity of two sets
of patterns. Hence, we define a vector of bin values (R,-);”:1 , and set

Yyt s =yt s @RI p) = (CT.sT R0, -
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This vector represents the eCDF of the set of values p(s;r, sJT) evaluated at the bin
values (R;)i™ ;.

We quantify the statistics (mean and variance) of y(s*, s~) among subsets s, s~
of the whole training set sqata: For each subset pair, we receive N 2 gcalar distance
values, from which a single eCDF vector is computed. Repeating this for all distinct
n(n — 1)/2 pairs

Yol = y(sh s €R™ 0<k <I<n,

we can evaluate the mean gy € R™ and the covariance X € R™ ™ of all the pairs of
distinct eCDF vectors.

As for most applications, the normality is numerically verified here as follows: We
test for Gaussianity of the ensemble of vectors using the x2-test (or scalar normality
tests for the vector components at the bin values). For this purpose, we evaluate all the
values of the negative log-likelihood function

O = ) 2O = o).

and compare the resulting histogram against the density function of the distribution
Xl%/l with m degrees of freedom.

To evaluate the cost function at a new parameter value o, we simulate the CA model
N times using o and denote the collection of patterns by s(o). The eCDF vector

¥(©) = y(s(0). Sy (3.3)
can then be computed for one randomly selected k € {1, 2, ..., n}, and the likelihood
value is evaluated as

Ssaa (@) = (¥(0) — Mo)TESI(y(G) = Io). 3.4

To summarize, the forward model’ is given by the CA algorithm that produces
the collection of patterns by s(o") for a given value of o. The observation operator is
defined by applying formula (3.3) that maps the set of model-generated patterns s (o)
to an eCDF vector y(o). The ’inverse problem’ of parameter estimation is solved by
evaluating the stochastic cost function f;,,, for a given value of o by using expression
(3.4) and finding the minimum of it concerning o.

Note that in the examples of the present work, we only work with one parameter,
the integer-valued o, so the parameter estimation can be performed simply with a
direct search.

3.3 Numerical implementation
3.3.1 Choice of bins

The bin values for the eCDF vectors can be selected in various ways. Here, we use the
following approach: We first use the first two subsets of the training data and determine
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the minimum and maximum of the function C as defined in (3.2) (concerning R). Next,
we uniformly split the respective interval into 50 possible bin values. This allows us
to represent the shape of the eCDF curve. However, in the numerical application,
such dense coverage might result in an unwanted correlation between neighboring
bin values. Therefore, from these preliminary bins, we choose a smaller subset of
npin values, which we select by an inverse CDF method: to get the bin values on the
x-axis, a set of np;, linearly spaced values on the y-axis are mapped to the x-axis by
the inverse CDF (quantile) function, using the mean of the preliminary CDF vectors.
Additionally, a cut-off parameter of 0.1 is used to step away from the CDF function’s
range [0, 1] boundaries. This allows us to exclude bins with possibly prohibitively
small variabilities, which might result in singularities in the covariance matrix of the
underlying Gaussian distribution. After that, the Gaussianity of both bin configurations
(the preliminary and the selected sparse one) can be evaluated.

3.3.2 Choice of characteristics

The algorithm of Kazarnikov et al. (2023) employs several norms to characterize the
distance between two patterns in continuous-valued images. As the present setting is
discrete, with binary-valued patterns, we use the L'-norm, i.e., we define the distance
function p(s*,s7) = |lsT — s7|| .1 between two patterns s*, 5.

However, various other candidates for characteristics are reasonable for the discrete
CA patterns. Here, we use the particle size distribution (PSD) and the average particle
size (APS), which are frequently considered in soil science (Rupp et al., 2019). For the
former case, let us consider a vector containing the sizes of all agglomerates u(ag).

Let us consider the first two patterns in the example of Fig. 1. The PSD for the
left figure (pattern s*) reads (1, 1, 1,4, 4) as three single cells and two aggregates
of size four are present. In the middle figure (pattern s ), two single cells and one
agglomerate of size 9 are present, i.e., the PSD reads (1, 1,9). The average particle
size is the mean of the particle size distribution, i.e., it is defined as the arithmetic
average of the sizes of all particles, i.e., single cells and agglomerates. In our example
this leads to APS(s™) = 2.2 and APS(s ™) = 3.67, respectively. The distance function
is given by

p(sT,s7) = |APS(sT) — APS(s 7).

As our approach is based on the statistical distribution of the CDF functions of scalar
data, we can also employ the particle size distribution directly by forming its empir-
ical CDF. Although the particle size distribution could be computed for each pattern
separately, we compute the particle size distributions of all pairwise combinations of
patterns. In this case, the “distance” is the concatenated vector,

p(st,s7) = (PSD(sT), PSD(s "))
and the indicator function in (3.2) must be replaced by a counting function. The

concatenation of the pattern from our example leads to (1, 1, 1,4, 4, 1, 1,9). For the
choice of R = 2, the evaluation of p, for instance, leads to 5 counts. This has the

@ Springer



Japanese Journal of Statistics and Data Science

10 1500
ceeesesee? [} ]
0.8 '..-"
o0t 1000
0.6 '.l'
o
04 Joott 500 [ ]
02 0ee?
eeee []
0ol _sessee ° [ ° [) [] . . [
950 1000 1050 1100 1150 0 2 4 6 8 10
10 O 0
°
08
06
04
02 .
°
(LR . . o o . R ) . .

40 o 2 4 6 8 10

Fig.7 Construction of the statistical likelihood for basic experimental setup and its evaluation for different
values of jump parameter o. On the top left is the distribution of the eCDF curves for dense bin values
(purple) and selected bins only (light blue). Bottom left: Gaussianity test by x2 criterion for selected bin
values. Top right: repetitive evaluation of the negative log-likelihood (cost function) for integer values of
jump parameter o on the interval [0, 10]. Here, cost function values are plotted in red, while blue dots denote
the average overall evaluations. Bottom right: normalized likelihood values (red) and averaged values over
evaluations (blue) (colour figure online)

advantage of producing more eCDF vectors, stabilizing the numerical estimation of
the mean and covariance of the likelihood.

3.3.3 Application of the eCDF method to the base setup

We perform numerical experiments to demonstrate how our parameter estimation
method can be applied to identify parameters of the CA model from synthetic (model-
generated) data. We first consider a basic experimental setup, which is defined as
follows:

e The CA is run on a two-dimensional domain of size 50 x 50 with porosity 8 = 0.7
and jump parameter o = 5.

e The training set of patterns is obtained by running five iterations of the CA model
with random initial data (4000 = 40x 100 realizations).

For this basic experimental setup, we create the L! likelihood and estimate the
model parameters using the L! norm.

Following the procedure outlined in Sect.3 and illustrated in Fig. 6, we create a
statistical likelihood from the training data. We split the training set into 40 subsets
with 100 samples in each. Next, for every pair, we compute distances between the
respective patterns in terms of L!-norm and compute the eCDF of the individual
scalar data. Here, we successively select bins for the eCDF vectors using the algorithm
described in Sect. 3.3.1. The selection is illustrated in Fig. 7 (top left).

Next, we check the Gaussianity of the selected bins as outlined in Sect. 3, which is
illustrated in the bottom left part of Fig. 7. We evaluate the negative log-likelihood for
integer values of the jump parameter o on the interval [0, 10], as is shown in Fig.7
(top right). Here, the red dots represent the evaluation of this value 100 times, and
the blue dots highlight the average values of the red dots. The minimum negative log-
likelihood values are achieved at ¢ = 5. Finally, the proper probabilistic interpretation
is obtained by the normalized likelihood values in Fig.7 (bottom right)—with the
same understanding of red and blue dots. Thus, our approach can properly distinguish
patterns corresponding to different values of o for this setup.
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4 Results

Next, we investigate the robustness of the parameter estimation method as introduced
in Sect.3 concerning the number of bins, the domain size, and the number of time
steps (iterations) in the CA model. Here, we change only one quantity at a time, while
the other ones are fixed to the default values as prescribed by the basic experimental
setup in the previous Section. Finally, we analyze the impact of including additional
CA-specific characteristics to the scheme of the parameter estimation method, which
is discussed in Sect.4.4.

4.1 Varying number of bins

We first study the robustness of our parameter estimation method for the number of
selected bins (dimension of eCDF vectors). We repeat the experiments described in
Sect. 3.3.3 for varying bins between 6 and 26 while keeping the other parameters fixed.
The results were statistically identical to the ones shown in Fig.7 for all considered
cases. From this result, we conclude that the approach allows for relatively large
flexibility concerning the number of bins once the numerical stability considerations
discussed in Sect.3.3.1 are considered.

4.2 Varying domain sizes

We now consider different two-dimensional domain sizes, i.e., we perform the pro-
cedure of Sect. 3.3.3 for domains of size N2 = 10 x 10, 25 x 25, and 100 x 100. A
simulation conducted on a small domain provides less information than a large one but
keeps the porosity fixed. This is underpinned by the numerical experiments illustrated
in Fig.8.

Considering first the 10 x 10 domain, our algorithm can correctly identify the true
parameter ¢ = 5. However, the minimum is not very pronounced, so the accuracy is
relatively low. For domain sizes of 25 x 25, 50 x 50 (basic experimental setup, see
Fig.7), and 100 x 100, we observe smooth eCDF shapes again. Thus, the parameter
estimation method works accurately and successfully. The increase in domain size
leads to a more pronounced minimum at o = 5. Therefore, the algorithm is more
confident in identifying the correct jump parameter if the domain size and available
information increase.

4.3 Varying number of CA iterations

The patterns generated by our CA model are not stationary since initially fragmented
particles eventually attract each other and self-organize into larger, connected struc-
tures. Thus, depending on how many model iterations were used to create a pattern, it
can be more or less clustered; see also illustration in Fig.4. Here, we study how this
factor affects our ability to perform parameter identification. The results are illustrated
in Fig.9. We start by considering the trivial case of zero iterations. In this case, the
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Fig. 8 Construction of the statistical likelihood for various domain sizes and its evaluation for different
values of jump parameter o. The layout of sub-figures is identical to Fig.7 (colour figure online)

dispersed initial state is independent of o’; thus, we can construct the likelihood with-
out any problems. Still, we naturally cannot detect any difference between different
values of . However, the parameter identification works without issues for all other
considered cases: 1, 5 (base experimental setup, see Fig.7), 10, 25, or 50 iterations.
This indicates that the number of iterations does not significantly influence the quality
of our parameter estimation method.

4.4 Multiple features in parameter estimation method

In this section, we again consider the basic experimental setup and discuss how the
parameter identification procedure can be improved by considering additional features
typical for characterizing structures of CA models as outlined in Sect. 3. Computing
the distance between pattern data using L!-norm allowed us to correctly identify
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Fig. 9 Construction of the statistical likelihood for various CA iterations, and its evaluation for different
values of jump parameter o. The layout of sub-figures is identical to Fig.7 (colour figure online)
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the correct value of jump parameter o (see Fig.10a). However, the minimum cost
is not always well pronounced. This may result in higher uncertainty in parameter
identification and can be seen from the wide spread of the red dots. We can, however,
significantly reduce the uncertainty by additionally using the characteristics introduced
in Sect. 3.

The first feature we use here is the average particle size. This means that instead
of computing the L!-distance between two patterns, we use the absolute difference
of the respective average particle sizes. We observe that if we replace the L'-distance
with this new mapping, the variability of the cost function is nicely reduced, and the
minimum becomes more pronounced (see Fig. 10b). An even better effect, however,
can be achieved by combining these characteristics with the previously used L'-
distance (see Fig.10c). Since the concatenation of the respective eCDF vectors is
again Gaussian, the same approach can be applied directly.

Next, we consider a different mapping from a pair of subsets of pattern data to one
eCDF vector. That is, we do not use a distance that produces a scalar from a pair of
patterns but directly create a distribution that holds the information of several scalars.
Here, we employ the fact that an eCDF vector is directly available in the form of the
particle size distribution of each CA pattern. Thus, we pool the particle sizes from each
pair of pattern subsets (each containing N patterns) and construct one eCDF vector of
all the emerging scalar values. This gives us a large amount of scalar data, which results
in a smooth eCDF curve. Again, all the pairs yield n(n — 1) /2 eCDF curves. This gives
us another separate feature for the parameter estimation (see Fig. 10d). Naturally, the
best results are obtained when all those features are combined. This case is shown in
Fig. 10e. We mainly observe the minimal variability of the cost function.

4.5 Theimpactof o

Finally, we discuss the impact of the parameter that we want to identify itself. To this
end, we consider o € {3, 7, 11} for our base setup of Sect.3.3.3 in Fig. 11a—c. Our
method always identifies o correctly but becomes less confident as o increases as the
value for the correct o decreases in the bottom right panels of (a) to (c). This effect
stems from our CA’s property: patterns obtained for larger o become increasingly
similar (cf. Fig. 3). This can be compensated to some extent by increasing the sample
size, illustrated in Fig. 11d. However, as o increases, it cannot be identified at some
point since its precise value no longer influences the simulation. This stems from
the spatial domain’s periodicity; in this case, any particle can jump to any location
independent of the precise value of o. Thus, our method works for different o, but
the sample sizes needed to obtain confident parameter estimates vary depending on
the actual values of 0. However, the limitation of identifying too large o as compared
to the domain size remains and cannot be cured by using more data since changes
in o do have no effect if o is chosen such that all particles can jump anywhere in
the domain. This effect is illuminated in Fig. 11’s panel (e), demonstrating that our
method correctly excludes the possibility of ¢ < 12 and correctly shows that large
enough sigma values (here o = 15) can not be identified (by any method) since other
(large enough) o produce the same patterns.
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5 Conclusions

In this work, we introduced a parameter identification that works well for discrete
problems, as in the context of CA models. Our parameter estimation method allowed
us to identify model parameters using pattern data only, without knowing about initial
states. We demonstrated the method’s applicability by successfully identifying the
value of jump parameter o from a set of 4000 patterns. Moreover, we proved the
robustness of our approach for different configurations of the model for the number
of selected bins, the domain size, and the number of CA steps. Finally, we showed
that the accuracy could be drastically improved if commonly used CA pattern data
features were incorporated into our method’s scheme.

Possible limitations of our approach stem from two main sources: CAs as base
models and the statistical origin of the method. The main drawback of CAs is the
loose physical motivation of their rules, making the validation of model predictions
against experimental data more challenging. Especially when the complexity of the
physical process being modeled by CA grows, the problem of ruling out the wrong
model mechanisms becomes more challenging.

The second potential limitation of our approach stems from its statistical formu-
lation. Indeed, a single evaluation of the statistical cost function f,, . (o) requires
computing repeated simulations of the underlying model. The numerical code we use
in this work can very efficiently compute a single simulation of the CA. This means
that the computational time needed for evaluating the N model grows linearly con-
cerning the number of simulations. While it is not a problem for the situation where
the cost of a single model run is low, it might become prohibitive for more complex
CA models, which require more time to run. One possible solution to this problem
could be the development of solvers optimized for batched simulations, as was done
in Kazarnikov et al. (2020a, 2023b).

Future work may include applying the parameter estimation method to more than
one parameter as already outlined in Haario et al. (2015) and combined with vari-
ous characteristics/norms. Additionally, more sophisticated cellular automaton models
may be used. This approach could address realistic problems, improve understanding
of the underlying process, and draw conclusions relevant to real-life problems.
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