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Abstract

We investigate reactive flow and transport in evolving porous media. Solute species that are transported within the fluid
phase are taking part in mineral precipitation and dissolution reactions for two competing mineral phases. The evolution
of the three phases is not known a-priori but depends on the concentration of the dissolved solute species. To model the
coupled behavior, phase-field and level-set models are formulated. These formulations are compared in three increasingly
challenging setups including significant mineral overgrowth. Simulation outcomes are examined with respect to mineral
volumes and surface areas as well as derived effective quantities such as diffusion and permeability tensors. In doing so,
we extend the results of current benchmarks for mineral dissolution/precipitation at the pore-scale to the multiphasic solid
case. Both approaches are found to be able to simulate the evolution of the three-phase system, but the phase-field model is

influenced by curvature-driven motion.

Keywords Pore-scale - Moving boundary - Reactive transport - Phase-field method - Level-set method - Multiphase solid

1 Introduction

Porous media research is conducted from different spatial
perspectives such as the pore-scale or the macro-scale. At
the pore-scale different fluid and solid phases can be distin-
guished and their respective interfaces are directly accessi-
ble. Macro-scale models, on the contrary, contain parame-
ters such as permeability, effective diffusivity, and reactive
surface area. These are obtained by fitting experimental
data, applying heuristic laws, or conducting supplementary
pore-scale simulations. In the latter case, an accurate knowl-
edge and correct representation of the spatial distribution
of the fluid and solid phases and their interfaces are again
essential, in particular if they evolve with time. This can
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typically be caused by minerals dissolving or precipitating,
in case the alteration of the mineral layer is non-negligible.
When the evolution of the fluid-solid interface depends on
a solute concentration transported in the fluid, the evolution
is not known a-priori and we have a free-boundary prob-
lem. To capture such evolving pore-scale geometries, most
commonly level-set or phase-field methods are applied. The
level-set method captures interfaces separating different
phases as lower dimensional submanifolds within the com-
putational domain, while the phase-field approach utilizes
smoothed indicator functions for phase separation.

A comparison of level-set and phase-field methods in
the context of precipitation/dissolution of a solute is found
in [34]. Likewise, various approaches including level-
set and phase-field methods were recently investigated in
benchmark scenarios for mineral dissolution in [20]. Fur-
thermore, both geometry evolution methods were compared
regarding their respective strengths and weaknesses for the
simulation of multi-phase flow problems on fixed domains
in [2]. In contrast to these considerations, we apply the two
approaches and compare them in the situation of a three-
phase system. Extending a phase-field model to the ternary
case is feasible through generalizing the usual double-
well potential to a triple-well. Applications to three-phase
flow [4, 5] and two-phase flow together with one evolving
solid phase [25, 26] have earlier been derived and analyzed,
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and we here extend these approaches to the case of one fluid
phase and two competing minerals. In this setting, we com-
pare the level-set and phase-field approaches by means of si-
mulation scenarios, but also in terms of sharp-interface limits.
For modeling issues related to the case of one fluid phase and
two mineral phases we refer to [13] in the context of level-
set and to [15] in the context of phase-field approaches.

Contrary to the two-phase system, in which only one
fluid phase and one mineral phase are present, interfaces are
likely to develop high local curvature in three-phase sys-
tems even for regular initial conditions. Thus, their numer-
ical treatment poses additional challenges in particular in
the proximity of possible triple points. For the level-set
approach, we apply the Voronoi Implicit Interface Method
(VIIM) as presented in [10, 13, 29]. This method has been
successfully applied to several physical problems such as
curvature flow, multi-phase fluid flow and foam dynam-
ics [29]. The phase-field equations do not need any partic-
ular tracking of interfaces and triple points, but the Allen-
Cahn phase fields, which are considered here, include implic-
itly curvature-driven motion of the diffuse interfaces [3],
which can lead to unwanted effects [30].

Inspired by [9, 20], three scenarios with increasing com-
plexity are studied. First, the ordinary differential equations
(ODEy) related to a dissolution-precipitation reaction sys-
tem are examined together with the corresponding evolving
pore-scale geometry. Thereafter, the model is extended to
additionally cover diffusive transport processes. Finally,
single-phase fluid flow and advective transport are included
into the model.

For all three scenarios, characteristic quantities such as
the volume occupied by the individual mineral phases, the
mass of the mobile species and the mineral’s surface area are
investigated and compared. Moreover, the time-dependence
of the corresponding effective diffusion and permeability
tensors is additionally evaluated.

The paper is outlined as follows: In Section 2, we intro-
duce the chemical reaction system under investigation as
well as the transport and flow model in their level-set and
phase-field formulation. Additionally, the sharp-interface
limits are discussed briefly. This is followed by a descrip-
tion of the numerical methods used for both approaches in
Section 3. In Section 4, we compare and discuss the simu-
lation results of all three scenarios including characteristic
quantities and the evaluation of the effective diffusion and
permeability tensors. Finally, in Section 5, we point out
directions for further research.

2 Mathematical modeling

For an overview of quantities used in this paper, see Table 1.
We consider a three-phase system in the two-dimensional,
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Table1 Overview of quantities used. Units are abbreviated as follows:
L - length, M - mass, N - number (of particles), T - time

Symbol Quantity Unit
A,B,C solute species -

X indicator function -

c concentration NL-3
D,p mineral species -

Dy, (molecular) diffusion coefficient L2r-!

€ level-set parameter -

/o, fr reaction rates LT!

g velocity interpolation ML—3T!
Vij interface indicator L

Lnep, linep fluid-mineral interfaces -

Finem mineral-mineral interface -

kp, kp reaction constants LT!

Kp, Kp equilibrium constants -, LON—2
K interface curvature L-!

“w fluid viscosity ML~IT-!
2 total domain -

2y fluid domain -

2 solid domain -

w phase-field diffusivity LT !

D Stokes pressure ML-IT-2
bi phase-field function -

[ level-set function -

q advective velocity LT-!

oD, PP mineral densities NL3

o specific surface area L!

|4 volume L3

Uy normal interface velocity LT-!

w well potential -

& diffuse-interface width L

rectangular domain £2 = (0, 1) x (0, 1) with exterior bound-
ary 0£2. More precisely, the domain £2 is time-dependently
decomposed into the fluid domain £2 ¢ (¢) and the solid part
£25(¢) for all times ¢ in the time interval (0, 7). At initial
time ¢t = 0, the solid £2,(0) comprises two different min-
eral phases denoted D and P, cf. Figure 1. The fluid-solid
interface (interior boundary of £27(¢)) is disjointed into
TInep(¢) and Iipep(¢) accordingly. Furthermore, we denote
the interface separating the two minerals by Iinm(?).

The fluid-solid interfaces and mineral phases individu-
ally evolve with time according to heterogeneous reactions
which are specific to the two minerals, cf. Section 2.1 below.
The mobile reaction partners may potentially be transported
within the fluid domain £ (¢) by molecular diffusion and
advection.

In this paper, we investigate the following three situations
of increasing complexity:
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Fig. 1 Geometrical set up: The unit square £2 is time-dependently
decomposed into the fluid domain £2/(¢) and the solid part £2,(t)
consisting of two different minerals P (gray) and D (black). Different
parts of the phase-separating interior interfaces are denoted as [ip,..
The figure reflects the geometrical initial conditions used in our
simulations, see Section 4

First, the reaction system for precipitation and disso-
lution of the mineral phases is investigated. Disregarding
diffusive and advective transport, the temporal evolution of
the mobile species’ concentrations within the fluid domain
is described using ordinary differential equations (ODEs).
Accordingly, the interface parts Iinp and Iinp each move
with spatially uniform but time-dependent velocity. Since
this approach does not resolve the potential spatial dis-
tribution of the concentration fields, it is only a valid
approximation for regimes featuring strong diffusion and
slow reactions. In the single-mineral case, such a simple
setting with uniform interface velocity would not require a
level-set nor a phase-field formulation, as an ODE for the
mineral radius would be sufficient to describe the evolv-
ing geometry. Such a simplified approach was for instance
first investigated in [21]. However, due to the interactions
between the two competing minerals, level sets or phase
fields are needed to resolve the geometry in the more
complex two-mineral setting.

Secondly, we additionally resolve the spatial distribution
of the concentrations. To this end, we consider a transport
equation for the mobile chemical species including molecu-
lar diffusion and describe the chemical reactions as surface
reactions on the two distinct fluid-solid interfaces (level-set
approach) or highly localized volume reactions neighboring
phase boundaries (phase-field approach). As the resulting
chemical reactions are no longer uniform with respect to
space, the geometry evolution becomes more challenging

and results in the formation of complex mineral shapes.
This again requires the usage of sophisticated methods in
terms of modeling and numerics, also for the single-mineral
case, as provided by means of a level-set or phase-field
approach [21, 22].

In our final simulation scenario, we additionally include
the transport of the mobile species by advection. The related
division of the interfaces into upwind and downwind parts
with respect to the flow direction further increases the
complexity of the solid-solute interaction and the evolution
of the mineral shapes. Along these lines, we underline the
capability of the level-set and phase-field methods.

Finally, the time dependence of the effective diffusion
and permeability tensors is evaluated for all three scenarios.
Based on upscaling theory, auxiliary cell problems are
solved and their (flux) solutions are averaged as described
in Section 4.2.2 for the level-set and phase-field approach.

In all settings, the chemical reactions drive the evolu-
tion of the pore-space geometry into an equilibrium state. In
order to capture this evolution, level-set and phase-field
methods are applied and compared. For a detailed descrip-
tion of the modeling and implementation details see Sec-
tions 2.2 and 3.1 for the level-set approach and Sections 2.3
and 3.2 for the phase-field approach, respectively.

2.1 Chemical reactions

In this section, we present the chemical setup of concern.
We consider a reaction system describing dissolution/precipi-
tation, e.g. the carbonation of silicates, as introduced in [9].
This involves the dissolving mineral D and the precipitating
mineral P as well as mobile species A, B, C with reaction
paths

Aqg) T D(s) = Bag), (1a)
Bag) + Cag) = Prs)- (1b)

The reaction kinetics are chosen according to the classical
law of mass action for a one-sided chemical reaction by
including the back reaction via an equilibrium condition,
cf. (2), [9]. Since the chemical system in our simulations
will be deflected in such a manner that both reaction paths
in (1) effectively proceed in one direction from left to right,
it is meaningful to refer to D as the dissolving mineral which
will either dissolve or reach an equilibrium state when the
net reaction rate is zero, while P denotes the precipitating
mineral which will either precipitate or encounter zero
net reaction rate. As this paper is mainly focused on
the geometry evolution, we refrain from incorporating
textbook data for a specific chemical system and formulate
the equations without units. Nevertheless, dimensions are
provided in order to clarify the physical meaning of the
presented quantities, such as length L, mass M, number of
particles N and time 7. We use the following volumetric
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reaction rates [LT~!] for the concentrations of the mobile
species ¢ = (ca, CB, co)T, [NL73] as introduced in [9]

h@=@@—@9> (2a)
ca
fole) = kp (1 — Kpepee) . (2b)

with reaction constants kp, kp [LT~!] and equilibrium
constants Kp [-], Kp [L°N—2]. Throughout this paper,
precipitation of a mineral is assumed to occur on the surface
of that mineral only. Hence, we do not consider nucleation.
Within the following sections, we introduce the three
different modelling scenarios of increasing complexity each
presented using a level-set and phase-field formulation.

2.2 Level-set formulation

In the level-set framework, we represent the geometry
contained within the domain 2 using a real-valued function
@ : R? > R, the level-set function [23, 29, 32]. For further
details we refer to Section 3.

Accordingly, the time evolution induced by a space and
time dependent normal velocity v, is implemented by solv-
ing the following advection equation for the level-set func-
tion @

0P
—— twulVe| =0,

Py in 2 x (0, 7), 3)

where the parameter v, : R? — R, [LT prescribes the
normal velocity with which level sets are transported. For
our application, we define:

vp,D(t, x) = —fple(, x)),
vn,P(tsx) z_fP(c(tvx))s

X € Fint,D(t),
x € Ipep(2).

“

v, (t, x)=

Note that the normal velocities are defined only at the inter-
faces themselves and require to be suitably extended to the
whole domain £2, see Section 3.1 for details. Level-set mod-
els as derived here are well suited for formal upscaling into
a two-scale model using periodic homogenization [13, 21].

2.2.1 ODE model

In the ODE case, the chemical reactions presented in
Section 2.1 are modeled by a system of three coupled ODE:s,
one for each solute concentration. This approximation is
suitable if negligible spatial variation in the concentrations
is expected.

In order to obtain molar reaction rates from the vol-
umetric quantities fp, fp [L3(L?>T)~"!], we multiply by
the molar density pp, pp [NL™3] of the reacting miner-
als. Assuming a closed system, concentrations additionally
evolve driven by displacement as a secondary effect. That
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is, precipitation leads to a shrinking fluid domain §2; and
therefore an increasing concentration of all solute species
while dissolution decreases concentrations. Summarizing,
the total change of the species’ concentrations is then given
by the two volumetric reaction rates on the different mineral
interfaces multiplied by the difference in particle density
between solid and fluid, each scaled by the respective
specific reactive surface area
0i (1) = | T (01/12 (O] [L7']

for i € {D,P}. Note that this quantity is ‘specific’ with
respect to the time-dependent fluid volume. These consider-
ations lead to the following ODE system for the concentra-
tions of the mobile species A,B,C:

dc —pPD — CA(t)
a—(t) = op(?) fp(e(?)) pp — cB(?) (5)
t
—cc(1).
—ca(?)
+op(t) fe(e(t)) | pp —c(?)
pp — cc (1)

The prescription of normal velocities according to (4) ensures
the conservation of mass within our model. Furthermore, the
level-set framework allows to conveniently obtain a piecewise-
linear approximation of the phase-separating interfaces. As
such, characteristic geometrical quantities such as phase
volumes or interface lengths o; (¢) are simple to derive from
the level-set function @ at any time ¢, cf. Section 3.1.

2.2.2 Diffusion model

In contrast to the ODE case, we now include diffusive trans-
port into our model, i.e. the vector of concentrations ¢ com-
prising the three mobile species A, B, C solves the following
diffusion equation within the fluid domain £2 ¢ (z):

ac

— =V.(D,Ve), 6)
ot

using a scalar and uniform molecular diffusion D,, > O,
[L>T~"]. For convenience only, we suppose that the same
diffusion coefficient applies for all mobile species.

In order to model the insertion or extraction of solute
particles to or from the fluid domain due to the hetero-
geneous chemical reactions described in Section 2.1, we
impose the following flux conditions at the two distinct
parts Iinep(?), Iinep(¢) of the interior boundary:

e —pp — ca(t, x)
Dm_(tvx) = _vn,D(tsx) ,OD_CB(t, x) ) (7)
ov
—cc(t, x).

X € Fint,D(t)7
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Jc —CA(t,x)
Dy —(,x) = —vap(t,x) | pp—cB(f,X) |, 3
av
pop — cc(t, x)
X € Fint,P(l),
using the normal interface velocities v, ;, i € {D,P}

from (4). As such, the solute species concentrations are
coupled to the geometry via time-dependent interior bound-
aries. The back coupling from the concentrations to the
geometry is again realized by equations (4).

2.2.3 Flow model

In order to additionally account for an advective flux, we
consider

%:V'(Dch)—V-(q(XJc) ©
in £24(¢) with advective velocity field q [LT~!] in our
final example. For a matrix in column representation
A = (aV,...,a™) we define V- A = (V-a(i))l.
as the column-wise divergence. The boundary conditions
supplementing (9) are again (7)—(8) as no advective flux is
considered traversing the interior boundary, cf. (11). The
velocity field is given by the solution of the stationary,
incompressible Stokes problem

— uAq+Vp =0in 24(1), (10)
V.q =0inQ/@),

with viscosity u > 0, [ML~!T~!] and the related pressure
field p, [ML_IT_Z]. In this example, boundary conditions
are chosen as follows:

q(l»-x) = 07 X € Ent(t) (11)

using Iin(t) = Dlinep() U Iinep(f). Note that using
the above no-slip condition at the solid-fluid interface,
potential non-zero fluid velocity in the normal direction
at the boundary is disregarded. Depending on the density
differences between solute and minerals, some small non-
zero velocity could appear in the normal direction [21].
Neglecting this non-zero normal component is justified in
most applications since the solid-fluid interface velocity is
small compared to the fluid flow as discussed in [18].

2.3 Phase-field formulation

The phase-field formulation does not consider sharp inter-
faces between the different physical phases but instead mod-
els them using regularised characteristic functions. These
so-called phase-field variables ¢; [-] (for i = 1,2, 3) are
evolved such that they always sum to 1. With these phase

fields, we aim to approximate the equations of the level-set
formulation in order to describe the same physical system as
presented in Section 2.2. In our setup, ¢; corresponds to the
fluid phase, ¢, to the mineral phase D, and ¢3 to the mineral
phase P. Within each bulk phase the corresponding phase
field is equal to (or close to) 1, with all other phase-field
functions being equal to (or close to) 0.

Near the interface of two phases the respective phase
fields transition smoothly between 0 and 1. The width of
this diffuse-interface regions is regulated by the phase-field
parameter & > 0 [L] and a limit process for & — 0 in
Section 2.3.4 is able to recover a sharp-interface formulation
corresponding to the one used in the level-set model above
but with an additional term corresponding to curvature-
driven interface evolution. The position of the interface
can be approximated by the contour line of ¢; = 0.5 or
be recovered using a Voronoi method as for the level-set
formulation. However, the simulation itself does not require
such a reconstruction. Instead, the diffuse-interface region is
captured by indicator functions y;; and in these regions the
chemical reactions impact the evolution of the phase-field
variables. The variables for the dissolved concentrations
are defined on the entire domain 2 and the boundary
flux conditions (7), (8) are integrated into the conservation
equations.

Thus the interfaces need not be tracked and no special
consideration is necessary for the description of contact
lines and triple points. The phase-field model is well
suited for upscaling into a two-scale model using periodic
homogenization [6, 25].

We here use a phase-field model that is an extended
version of the two models presented in [6, 25]. In [25]
a ternary phase-field model (two fluids and one mineral)
is considered, and our phase-field evolution equations
resemble the model there. The model in [6] considers only
two phases (one fluid and one mineral), but also allows
flow in the fluid phase. Hence, our extension to flow in
Section 2.3.3 builds on this model.

The phase-field variables are evolved using the Allen-
Cahn formulation [3]. In addition to a diffusive term this
includes derivatives of a fourth order polynomial called the
triple-well potential:

3
W(p) =2 ¢7(1—¢i). (12)
i=1
Derivatives of this potential enforce the phase fields towards
the values O and 1, while the diffusive term ensures a
smooth, but steep transition between these values. The
interface locations are captured using the indicator functions

Yij(t, x) = 45¢; (1, x)¢; (1, x), 13)
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which attain their maximum for ¢; = ¢; = 0.5. These
introduce a dependence of the phase fields on the chemical
reactions by adding source terms

h.x) =-fr— f

fa(t, x) = yia(t, x) fo(e(t, x)),

13, x) = n3(t, x) fe(e(t, x)). (14)
Here, fp and fp are the respective reaction rates (2).
With diffuse interface width & and diffusivity parameter
w [L2T_1] the evolution equations are (i = 1, 2, 3)

52%

8 N
o OV = —cw ) (B — )W @)+ fi (15)

J#i
2.3.1 ODE model

As for the sharp-interface description with the level-set
framework, the dissolved concentrations and thus the vol-
umetric reaction rates and their contributions to the evolu-
tion of the geometry are first assumed to be independent
of the spatial variable x. These concentrations could be
evolved using the same system of ODEs (5), altering only
the method of determining the specific surface area. In the
phase-field model the interfaces are not tracked directly so
the interfacial areas and the fluid volume would be com-
puted as

Vi = / ¢1 dx,
7]
%) =/¢2dX, VP=/ ¢3 dx,
7, 9]
Sp = /94§¢1¢2dx, SP=/Q4$¢1¢3dx,
op = Sp/Vy, op = Sp/Vy. (16)

However, in the phase-field model the shift of the interfaces
is not solely driven by the chemical reaction, but also by
curvature of the interface. This would only impact the above
system of ODEs by changing the fluid volume, altering
the change to dissolved concentrations slightly. The loss of
mineral volume and the corresponding change in dissolved
species would not be directly captured in this case.

Instead of additionally approximating the geometric
changes due to this curvature effect, we prescribe conser-
vation of species in the entire domain rather than only
within the fluid volume. Hence, our system of ODEs for the
evolution of the solute concentrations is

0

E(Vfc + Vpbp + Vpbp) =0, (17
where

bp =pp(=1,1,00",  bp=pp©0,1,1)" (18)

capture the stoichiometric coefficients of the chemical reac-
tions and molar densities pp, pp of the respective minerals.

@ Springer

When %VD = opVy fp and %Vp = opVy fp, this setup
is equivalent to the system of ODEs used in the level-set
formulation.

2.3.2 Diffusion model

With spatially resolved concentrations transported by
diffusion, we adapt (6) to account for the phase distribution.
Since the phase-field model is defined in the entire domain,
we add terms accounting for the species bound in the
minerals instead of using a boundary flux condition for the
fluid-solid interfaces. The equations are given as

a(gp1c) | I o3
8 + WbD + EbP =V . (¢1Dn Vo). (19)

2.3.3 Flow model

To include fluid flow and advection of dissolved species in
the phase-field model the (Navier-)Stokes (10) are modified
to account for the distribution of phases, similar as done
in [6]. The existing terms receive factors of the phase-
field ¢; while two new terms are added to account for
moving interfaces and ensure vanishing velocity q inside the
mineral phases:

19¢1

— up1A(p1q) +$1Vp TS —g(¢1,8)q, (20)

V- (¢1q) = 0. 2D

The function g(¢1, &) enforces q = 0 in the sharp-interface
limit and is chosen as

8(¢1,8) = Em
£ ¢1+n
The main properties of this function are g(1,&) = 0 and
g(0,&) = KE_I > 0, such that for ¢y = 1 the station-
ary Stokes (10) is obtained, while for ¢; = O only q = 0
remains. As the term g(¢1, £)q serves to enforce a dis-
appearing velocity inside the solid phases, the parameter
K controls how strongly this is enforced in the phase-
field simulation, since ¢ can be slightly positive inside the
minerals.

In addition to diffusive transport the dissolved species
c(t, x) are now advected by the velocity q:
d(p1c) | 9¢ 993

i -2 =V. D,,Vc — . (2
Py + o bp + ” bp [¢1 D Ve—q®c]. (23)

(22)

2.3.4 Sharp-interface limit

For the limit of & — 0 a sharp-interface model can be
recovered from the phase-field formulation. The steps recov-
ering the sharp-interface limit build upon the ideas in [8]
and are analogous to the limits derived for the corresponding
models in [6, 25], and are therefore only shown briefly.
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The Allen-Cahn model used in this comparison intro-
duces an additional curvature effect to the interface veloc-
ities, but aside from that the corresponding sharp-interface
model is obtained. To show this, the main idea is using
matched asymptotic expansions; outer expansions are used
to recover the bulk phases, and inner expansions for behav-
ior near the diffuse interface. These are then matched
through matching conditions [8].

Assuming outer asymptotic expansions

¢ = £ P, (24)
k=0

inserting them into the phase-field evolution (15) and
gathering coefficients of powers of £, one obtains the
leading order equation

> By — 8 )W (@) = 0. (25)
J#i

The stable minimizers of the potential W(¢) are the unit
vectors e;, e, €3 € R3, corresponding to the three bulk
phases.

Inside the fluid domain the constant value ¢; = 1 is
obtained. Considering this value for the phase field and
inserting expansions for ¢°%", ¢ ® and q °* into the flow
and transport equations (20), (19) and (23), the limit process
of letting £ — 0 recovers the sharp-interface versions (10),
(6) and (9), respectively. Inside the solid phases ¢ = 0
and the equations simplify to 0 = g(0, £)q, recovering the
desired no-flow condition.

The boundary conditions are recovered from the same
equations using so-called inner expansions. Between the
bulk phases designated by the stable solutions ¢ €
{e1, ez, e3} there are transition zones where two or all
three phase-field functions are positive. At such transitions
between two phases we can define an interface I'¢ as
the 1/2-level-set of the involved phase fields. Along this
interface we define our unknowns in curvilinear coordinates
(r,s), where s describes the position along the interface,
and r indicates the signed distance from the interface in the
direction of the outer normal v, x = ye(t,s) + rve(t, s).
Introducing the scaled variable z = r/&, we consider the
asymptotic expansions in &:

¢t z.5) = ) E .z 9), (26)
k=0

with corresponding expansions for ¢ and q. These are com-
bined with rewritten derivatives and matching conditions.
For outer expansions such as ¢8”t and fixed ¢, s, z the limit
for ¢ — 0 for z > O respectively z < 0 are written

as ¢8“‘(t, ¥1,2+). The matching conditions relate limits of

inner expansions for z — =00 to the outer expansions at
the interface, e.g.

: in __ out
z—I}I:Eoo ¢y (t,z,8) = ¢g" (t, y1/24)- @7

Together this allows recovery of the interface conditions [8].

The leading order terms of the phase-field equations at
the transition zone between ¢; and ¢,, which corresponds
to the interface Iin; p(?), are

9% . .
8—Z2¢irfo 8P (#1) (28)
9 . . . , .
vn,oa—z¢>lffo + w¢" 8P"(#1) + 4,/ P(97")) fo(cp™)
82 in 0 in
w8_z2¢1’1 + wKoa_qul’o’ (29)

where v, o is the local normal velocity of the interface, «p
the curvature of the interface, and

P@1) = @)1 - ¢, (30)
From (28) one arrives at an equation describing the shape of

in

o> While (29) yields the boundary condition

Un,0 = —wko — fpleg™), x € Linep(2). (31)

Analogously, one obtains the boundary conditions for the
other two interior interfaces

X € El’lt,P (t) )

X € Fint,M (t) )

t
Un,0 = —wko — fr(ey’™),
Un,0 = —WKQ,

where Iy m(f) denotes the interface separating both
mineral phases, cf. Figure 1. These boundary conditions
differ from the sharp-interface velocities given in (4) and
introduce a curvature-driven movement. The strength of this
effect is limited by the diffusivity parameter w but it cannot
be chosen arbitrarily small. This parameter controls how
quickly a reasonably sharp interface is enforced, hence a
small value of @ allows the reactions to cause an overly
diffusive transition zone.

Remark 1 Note that in the recent publication [1], a different
scaling of the Allen-Cahn equation is suggested to avoid
curvature-driven motion in the sharp-interface limit. Instead
of (15), a form corresponding to
52% — g’V = —gws > @By, — 0p)W (@) + fi

J#
is analyzed. As shown in [1], the curvature-driven motion
of the interface disappears at the dominating order of .
However, the analysis in [1] is performed for a case without
chemical reactions. When the reaction rates fl are included,
the outer expansions can no longer recover stable solutions
corresponding to the three phases. Hence, such an approach
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would either require no chemical reactions, or a further
reformulation of the reaction rates such that the sharp-
interface limit can be recovered.

Remark 2 For a system with two phases, [35] presents a
modified Allen-Cahn equation, where an extra term is added
so that the curvature contribution in the limit £ — 0 is
cancelled. A naive application to this three-phase problem
has the desired effect at the interfaces between two phases,
but also affects the evolution of the triple point. Without
an analytical consideration such as done for the unmodified
equations in [7], the precise effect on the limit behavior is
unclear. However, for the phase-field equations with & > 0,
the introduced term violates the conservation of ¢ + ¢ +
¢3 = 1 near triple points.

Inserting the inner expansions into the remaining model
equations yields the desired boundary conditions (11) for
flow as well as (7) and (8) for transport. The leading order
term of the continuity equation,

= _(¢>1 "0d0™) - Vo, (32)

is integrated over R with respect to z and applying the
matching condition (27) yields, at the fluid-solid interfaces,

0 =g " (7, y1/2-) - vo. (33)

where y1 /2 corresponds to a point x on the interface (¢ (x)
= 0.5). Here vg denotes the first order term of the interface
normal. From the leading order term of the momentum
equation,

92
0= M¢1II}08_22(¢111}0q01n ) 34

one can then obtain the desired boundary condition q,"" =
0. Evaluating the transport equations near the interface

yields the following equations. The leading term is

<¢1 055 ) : (35)

After integration with respect to z and using
well as the matching condition (27) one arrives at

0>Oas

0= —c,", (36)

namely that cOin does not depend on z. Considering the
next order terms O (§ 1), along the interface I3y p(f) where
¢> = 0 and applying (32) and (36) yields the equation

d . 0
Oz_vn,Oa_Z((bir,lo(c _bP))__<¢1o 'm ZC] > (37)
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Finally, integration with respect to z and application of the
matching conditions yields the boundary condition on the
interface Iin,p(f)

Vn0(e™ = bp) = D,, Ve ™ - vy, (38)

Analogously, the corresponding condition with bp instead
of bp is derived at the interface Iy, p. While this recovers
the sharp-interface conditions (7) and (8), the interface veloc-
ity v, differs between the two models in accordance to (31).

2.4 Discussion of level-set and phase-field
formulation

In contrast to the phase-field model, in which the chemical
reactions occur as right hand sides, cf. Section 2.3, the
chemical reaction enter the level-set model as boundary
conditions. This is due to the fact that the boundary region
of phase fields has a positive volume while the level-set
interfaces are of codimension one. As a remark, note that
using the level-set method, the specific surface areas o; (¢)
must be constructed from the level-set function at each
time-step (for more details see Section 3.1), whereas in
the phase-field model this quantity is given by a simple
integral of phase-field functions, cf. (16). Furthermore, the
level-set approach requires a complex numerical scheme
(see Section 3) due to the need of reconstructing the actual
interfaces at every time-step. The phase-field equations,
however, can be solved using standard schemes, and the
phase-field variables can be directly incorporated into the
equations describing chemistry and transport.

We note that both modeling approaches require the choice
of artificial parameters influencing the solution quality. For
the level-set approach, only two adjustable parameters are
present. € > 0 is used in order to control the size of the area
where a Vonoroi reconstruction of the interfaces is applied
while the frequency of reinitialization poses the other degree
of freedom. Details on the effect and practical choice of
these parameters are given in Section 3.1. The phase-field
model introduces several parameters to deal with the diffuse-
interface behavior. As seen in Section 2.3.4, the expected
sharp-interface model is captured as & — 0, except for an
additional curvature-driven motion. The role of the param-
eters £, w and K, which the phase-field model relies on,
and the used numerical values are discussed in Section 3.2.
For the level-set as well as the phase-field approach, param-
eters will be chosen specifically to minimize approximation
errors in interface position and the influence of curvature
terms on a given mesh.

3 Numerical methods

In this section we provide detailed information on the numer-
ical methods used for geometry evolution, fluid flow and
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solute transport. A list of spatial discretizations and time-
integration schemes used for the three different simulation
cases is provided in Table 2 summarizing the different
numerical approaches for level-set and phase-field models.
In order to ensure comparability of the simulation results
between both geometry-capturing methods, solution algo-
rithms are chosen carefully in conjunction with robust and
well-established low-order discretizations.

3.1 Level-set implementation

In order to capture the geometry using sharp interfaces, we
make use of generalized level-set methods. More precisely,
the Voronoi Implicit Interface Method [29] (VIIM) is
applied as three interacting phases need to be treated. As
such, the interfaces are encoded in the level sets of a real
valued function @. In conjunction with an indicator function
X - R2 — {0, 1,2} the total of three phases (0: fluid, 1:
mineral D, 2: mineral P) are distinguished in our setting [29,
32]. While the indicators serve the purpose of identifying
the bulk of the different phases, the interfaces separating
them are captured within level sets of @.

The Voronoi Implicit Interface Method constitutes a
generalization of classical level-set methods in the sense
that it does not rely on the neighboring phases to be
distinguishable by the sign of the level-set function. Clearly,
this restriction would not allow for the formation of triple
points.

Instead, VIIM uses an e-shifted version of an unsigned
distance function " with respect to the interfaces to encode
their position. Accordingly, at the initial time we set @ =
€ — d" for a small positive parameter € < 1. As proposed
in [29], we use the doubled mesh size ¢ = 2h. This
choice corresponds to the smallest possible € to ensure
finite-difference stencils at points neighboring the 0-level
sets of @ to completely stay within a single phase and
not cross interfaces. Therefore, a stable evolution via the

level-set equation (3) including a correct assignment of
each computational node to its phase is ensured. Also note
that the 0-level set of @ corresponds to the e-level set of
dV. As @ has the signed distance function property in a
neighbourhood of its O-level set, application of equation (3)
transports the O-level set in a numerically stable manner.
In order to recover the position of the actual interfaces
(corresponding to {d V= O}), a Voronoi reconstruction step
is performed. By having chosen the minimal reasonable e,
approximation errors within the reconstruction procedure
are minimized.

We note that VIIM, like many other level-set methods,
is unable to precisely conserve the mass of each single
phase as we will discuss in more detail in Section 4. In the
recent literature, several approaches are available to coun-
teract this phenomenon beyond application of higher-order
discretizations or mesh-refinement. In [28], a volume-reini-
tialization scheme is introduced actively correcting the mass
error introduced by the level-set evolution. Alternatively,
adjusted level-set equations are available using normal inter-
face velocity corrections to improve mass conservation,
cf. [33]. However, such approaches are typically developed
to simulate incompressible multi-phase fluid flow where
additional regularizing curvature-terms are present. These
terms are not only nonphysical in our specific application
but also require at least second-order spatial discretizations
to evaluate properly. Since errors in mass are found to be
reasonable low throughout our simulations in Section 4, we
use plain VIIM as presented in [29] as a robust first-order
accurate scheme. Despite the large number of available
discretization options such as finite element or finite vol-
ume approaches, we further adhere to finite differences
schemes as employed in [29] due to their straight-forward
implementation on regular grids.

In our application, a movement of the interfaces in
normal direction is induced by dissolution and precipitation
reactions at the two different mineral-fluid boundaries,

Table 2 Spatial discretizations

Phase-field

explicit Euler, first-order finite differ-
ences (FD) + full upwinding

explicit Euler, first-order FD + full

implicit Euler, RTy/Py
explicit Euler, first-order FD + full

implicit Euler, RT¢/Pg + exponential

implicit Euler, finite volumes (FV) +
two point flux approximation (tpfa)

implicit Euler

implicit Euler, FV + tpfa

implicit Euler, FV + tpfa
implicit Euler, FV + tpfa

implicit Euler, FV + tpfa

and time-integration schemes Case Problem Level-set

used in the sub-problems of the

three different cases ODE, ODE geometry

diffusive PDE (diff) and

diffusive-advective PDE (ﬂOW) solute 1mphc1t Euler

for both level-set and Diff geometry

ghas.e—fleld approach, cf. upwinding
ection 2. Note that in the

phase-field simulation, flow solute

equations are assembled Flow geometry

together with the solute and upwinding

geometry equations into a solute

common non-linear system upwinding

Stokes P,/P;

implicit Euler, staggered FV + tpfa +
full upwinding
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cf. (4). For this research, the numerical algorithm presented
in [10] is therefore supplemented with the derivation of
normal velocity field from the chemical concentrations
according to (4).

Denoting the connected components of the O-level set of
& by I'!, i = 1,2,3 our geometry evolution algorithm
consists of the following steps, cf. [10].

1. Initialize geometry via @, x

2. Calculate signed distance functions d' = d'(x) to the
interfaces F; by solving the Eikonal equation using the
Fast Marching Method [31].

Vdi(x)|=1, xe 2, dy)=0, yell.

3. Voronoi reconstruction step: Retrieve approximation
I'V of original interface I”

I''={(xeR:0<d’(x)=d(x) <d (x)}

for p,q,r € {1, 2, 3} distinct and update the indicator
x accordingly.
4. Calculate signed distance function d" wrt. I'V via

IVd¥(x)|=1, xeD, d'()=0, yer’.

5. [Initialize velocity values v,‘l/ (y) in a neighborhood
of the interfaces, calculated from concentration fields
according to (4).

6. Calculate velocity extension v, by solving

vdV (x) - Vv,(x) =0, x € 2,
uw()=v (), yerV.

7. Evolve @ for a small time-increment using the level-
set equation (3) applying a suitable upwind scheme,
e.g. [31].

Steps 2 through 7 are iterated until the final simulation time
is reached. In order to improve stability and accuracy of the
algorithm, periodic reinitializations of the level-set function
by setting @ = ¢ — d" are applied [29]. In particular,
the implementation of step 5 poses several difficulties. For
the initialization of the normal velocity field, nodes on
both sides of the interface must be labelled according to
the local concentrations. Furthermore, a change in sign
is needed when crossing the interface as gradients of d"
switch orientation. In order to meet these requirements the
following strategy is applied:

First, information from the level-set function and the
indicators is used to identify all nodes neighboring a node
which belongs to a different phase. This constitutes the set
of all nodes that require an initialization value. Each node is
then given a label from 1, ..., 6 according to the following
scheme: Initially, we assign each element to one of the three
phase separating interfaces Iincm, [intD, Iintp- Then, we
further discriminate with respect to the side of interfaces the
points are located.
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Second, we identify all finite elements belonging to
the fluid phase which at least feature one solid edge. We
will further call them boundary elements. These contain
the concentration values from which normal interface
velocities are calculated. Matching initialization nodes and
boundary elements by distance minimization, velocity data
are prescribed according to the labels given before.

The implementation is performed within the MATLAB
[19] compatible framework of RTSPHEM [11]. Besides
finite differences Eikonal- and level-set solvers using the
well-known first-order upwinding scheme by Rouy and
Tourin [27], it includes mixed finite element solvers for
transport equation (6) on irregular triangular meshes using
a mass-conserving lowest-order Raviart-Thomas RTy/ Py
discretization. An exponential upwinding scheme is imple-
mented to stabilize advection dominated transport. Addi-
tionally, our code allows for adaptive alignment of boundary
elements’ edges to a piecewise linear approximation of the
interior boundary. More precisely, we track intersections of
the interfaces with the edges of a fixed underlying mesh.
Adding the intersection points to the set of nodes, an aligned
mesh is generated by applying a Delaunay triangulation
algorithm. Rewriting the inhomogeneous flux conditions (7)
equivalently as source terms on the boundary triangles, the
nonlinearities are resolved using Newton’s method, cf. [12].
As the arising source term is highly localized, we iterate
until the residual is decreased by at least six orders of mag-
nitude. Moreover, time-stepping for the reaction PDEs is
adaptively coupled to the CFL condition of the level set
evolution.

In the advective PDE case, Stokes equations (10) are
solved on the well-established and stable lowest-order Taylor-
Hood elements P>/ P;. In order to cope with the inherent
saddle-point structure of the problem, we employ the iter-
ative Uzawa algorithm [17]. Choosing a low relative toler-
ance of 1077 as the stopping criterion, high solution accu-
racy is ensured. Within each time-step of the overall solution
algorithm, the Stokes flow field q is computed on the cur-
rent geometry and subsequently passed to the transport
equation (9) as a coefficient.

3.2 Phase-field implementation

The phase-field model is implemented in DuMu* [16] using
a cell-centered finite volume discretization with two-point
flux approximation for both the phase-field equations as
well as the transport equations for the dissolved chemical
species. In the flow scenario also the continuity equation
is discretized using these control volumes and the pressure
degrees of freedom are placed at their centers. Without
fluid flow, the model equations are not very complex, with
simple storage, flux and source terms. The system is solved
using an implicit Newton solver with adaptive time-stepping
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according to the number of needed Newton iterations as
indicator. The Jacobians are assembled using numerical
differentiation.

To include tightly coupled fluid flow and advection,
additional care should be taken. We solve for the velocity
components on staggered grids with control volumes and
degrees of freedom shifted by half a cell in the respective
spatial coordinates. The degrees of freedom are placed at the
centers of these new control volumes, which corresponds
to the normal velocities at the centers of the faces of the
original cells. In DuMu* this is implemented using multiple
domains which are linked via a coupling manager [16].
The coupling manager shares the data between the so-
called momentum and mass sub-problems and approximates
values where there is no adequate degree of freedom
available. The two sub-problems are not solved individually
but assembled into a single matrix. With the fluid flow
depending on the phase-field variables and their derivatives,
the existing manager is extended to expose and approximate
values at the desired points of the mesh.

As mentioned in Section 2.4, the phase-field model relies
on several parameters that affect its numerical behavior.
The parameter K controls how strongly a zero-velocity
is enforced inside the solid phases and how the velocity
develops within the transition zone. Investigating the flow
inside the minerals and the velocity profiles near ¢; = 1/2
for expected velocities can give a reasonable choice for this
parameter. For the presented simulations in Section 4.5, K
was chosen K = 10000, and n = 10. While a high value of
K 1is required to prevent significant nonphysical velocities
inside the solid phases, this term also suppresses flow in
the diffuse interface, which can lead to an underestimation
of permeability [6]. The choice of K should scale with the
fluid velocities expected near the minerals. In Section 4.5
relatively high inlet velocities are used, which leads to quite
high velocities along the mineral grain. When calculating
the permeability in the cell problems in Section 4.2.2, much
lower velocities are used and thus a value of K = 200 is
applied here.

The phase-field parameters £ and w control the profile
of the phase-field functions and the shape of the bulk
phases. The diffuse-interface width & affects the steepness
of ¢; in the transition zones. Meanwhile w balances the
diffusive and potential-driven effects on the phase-fields
against reaction and storage terms in (15), and also controls
the impact of the curvature effect. A small value of £ enables
a better approximation of the interfaces but the choice of &
is limited by the spatial resolution. This means, & should
be large enough for the transition zone to be spread over
multiple degrees of freedom and we use a value of five times
the mesh size to resolve the interface. As such, £ plays a
similar role as € in VIIM, cf. Section 3.1, and its choice is

likewise constrained from below in terms of multiples of the
discretization lengths.

A smaller value of w allows for a temporarily diffuse
transition zone and reduces the impact of interface cur-
vature, which can lead to more overgrowth of solids by
small mineral tendrils. This makes it a central parameter
affecting the simulation quality. However, if the changes
caused by the chemical reaction dominate the contribution
of the triple-well potential in the phase-field evolution (15),
the resulting variables ¢ are prone to attaining values in
between 0 and 1 in a larger transition zone and no longer
exhibit an interface character. These transition zones, how-
ever, stray significantly from a sharp-interface description
and can cause additional challenges for the numerical sim-
ulation. In the presented simulations the diffusivity param-
eter w is chosen as 2.5 - 1073, Varying this value allows for
finding a sufficiently small choice, which reduces curvature
effects without losing cohesion of the diffuse interface. A
small value of w furthermore requires a sufficiently small
value of £ and thus a fine spatial resolution and increased
computational effort.

In the equations for the conservation of dissolved spe-
cies (19) and (23) as well as the modified incompressible
Stokes (20) ¢ enters as a multiplicative factor. To avoid
degeneration of these equations, we instead use ¢s = ¢1 49,
adding a small regularization parameter [25]. The exception
being the function g(¢1, £) which is unmodified. This regular-
ization slightly disrupts the conservation equations and the
momentum (20) no longer collapses fully to 0 = ¢q. In the
presented simulations this value was chosen as 10~1° for the
ODE and PDE formulations and as 10~ for the flow model.

4 Simulations

In this section, we specify all physical parameters, initial
and boundary conditions used in the simulation scenarios.
We moreover define characteristic quantities such as the
volume of the individual mineral phases, the mass of the
mobile species and the mineral’s surface area and recall
how they are specified using the level-set and phase-
field approach, cf. Section 4.1. Based on the characteristic
quantities, the three simulation scenarios as presented in
Section 2 are investigated. Moreover, based on upscaling
theory, time-dependent effective diffusion and permeability
tensors are additionally evaluated. We emphasize the
similarities, but also outline the differences resulting from
the two problem formulations by means of level-set and
phase-field description. Note that the following simulations
are performed in two spatial dimensions. In order to stress
the physical meaning of all appearing quantities, we still
refer to a mineral volume and a surface area.
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4.1 Simulation setup

All calculations are performed using a regular 200x200
mesh. This corresponds to the finest resolution used in sim-
ilar studies [20, 34] and is therefore considered practically
feasible in applications. Furthermore, grid convergence stud-
ies presented in the Appendix indicate a sufficient resolution
and discretization order for our setup. Due to the differ-
ent kinds of underlying discretizations used in this paper,
the mesh resolution specified above only refers to the num-
ber of nodes which is the same in both our simulation
approaches. The only exception is made in the discretiza-
tion of the transport equation using the level-set approach
and the framework provided by the RTSPHEM [11] tool-
box, where nodes are adaptively added to the triangular
mesh in order to align edges with the fluid-solid interface,
cf. Section 3.1. To provide insights into the complexity
of the different sub-problems arising in both level-set and
phase-field approaches, we compare the number of degrees
of freedom (DoFs) and computation steps in Table 3. Note
that the solutions to all sub-problems obtained by iterative
methods are computed to high accuracy (relative residuum
smaller than 10~ or two subsequent residua with difference
smaller than 10~%) not to compromise the simulation results
by numerical artefacts.

As it is apparent from Table 3, the level-set approach
requires less DoFs for geometry description than the phase-
field method due to the ability of encoding the whole
information within a single function. However, flow and
transport equations involve a larger number of Dofs in the
level-set framework. This is essentially due to underlying
triangular mesh (instead of quadrilaterals) to simplify mesh
adaptivity, cf. Section 3.1. Moreover, we note that in the
diffusive and flow scenarios the number of time-steps is
lower in the phase-field simulations due to a fully implicit
scheme simultaneously solving all sub-problems, allow-
ing for larger time-steps. However, since the solute con-
centrations in the discretization of the ODE scenario are
updated after each time-step, sufficiently small time-steps
are required for both approaches. Finally, we note that the
number of Newton-steps is significantly larger in the level-
set approach in exchange for higher solution tolerances of
the linear solver (less Krylov steps). However, accuracy is
solely determined by the non-linear residuum.

At initial time ¢ = 0, a circular solid inclusion is placed
in the unit square §2 with midpoint (0.5, 0.5) and radius
r = 0.2 for all three scenarios, see Fig. 1 for a to-scale
visualization. For simplicity, we assume the minerals D, P to
be arranged in two hemicycles of the circle. For the phase-
field model this corresponds to initializing ¢ such that
without contributions from reactions or curvature effects the

@ Springer

Table 3 Simulation statistics: Comparison of number of degrees of
freedom for the discretizations of the different sub-problems for
level-set (LS) and phase-field approach (PF) on a 200 x 200 mesh

Case Quantity Level-set Phase-field
# DoFs geometry 40,000 80,000
# DoFs Stokes 313,358 120,400
# DoFs solute 522,276 120,000
ODE # time-steps 190 201
# Newton-steps - 648
Diff # time-steps 175 85
# Newton-steps 1,278 351
Flow # time-steps 81 38
# Newton-steps 554 251

Numbers are itemized by geometry solver (level-set or phase-field
equation), Stokes-flow solver and transport equation for solute species.
Note that, since the computational domain changes in LS over time, the
numbers are presented with respect to the first time-step and deviate
by less than 3% from these values over simulation time. Furthermore,
number of time-steps and Newton-iterations are displayed for the
different scenarios ODE, diffusive PDE (diff) and diffusive-advective
PDE (flow). The numerical results of the given scenarios are compared
and discussed in Sections 4.3.2, 4.4 and 4.5 respectively

initial conditions are close to stationarity. This is achieved
by using the base kernel of

1

Y = ep(os/E)

(39)
with
$1(0, x) = (10 - (|x — (0.5,0.5) 7|13 — 0.2%)),

$2(0,x) = (1 —p)e3.8 - (x1 —0.5)),
$3(0,x) = 1 —¢1(0,x) — ¢2(0, x). (40)

For our simulations, we use the molar densities pp = 20
[NL_3], pp =4 [NL_3], cf. (5). Therefore, changes in min-
eral volume are expected to be larger for the precipitating
phase facilitating mineral overgrowth. In addition, reaction
constants kp = kp = 1.0 [LT~!] and equilibrium constants
Kp = 1.0 [-], Kp = 1.0 [LON~2] are set, cf. (2). For both
simulations involving diffusion driven transport, we set the
molecular diffusivity to D,,, = 0.2 [L2T~!]. In the advection
case, we consider the Stokes equation with unit viscosity
w = 1 [ML™I'T™1], cf. (10), (20). Finally, we choose the
following initial conditions for the PDE cases

a0, x) = 2, x € 27(0)
cg(0,x) =1, x € 27(0) (41)
cc(0,x) =1, x € 27(0)

as well as for the ODE model Section 2.2.1 disregarding the
spatial variable x. Note that for the phase-field model, these
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initial conditions are chosen for the entire domain 2, but
correspond (in the sharp-interface limit) to (41) as ¢ c is the
relevant quantity.

According to (41), solute species B and C are in chemical
equilibrium at the initial time. Due to the oversaturation
with respect to solute A, mineral D will immediately start
to dissolve according to reaction (1) and release B. The
resulting oversaturation with respect to species B will then
trigger the precipitation of mineral P. The final simulation
times T for each individual simulation are chosen in such a
way that the steady state is approximated to a good extent,
i.e. no further qualitative change of the system is expected
to occur beyond that time.

Finally, we specify details on the boundary conditions on
the exterior boundary 92 for the different scenarios. For the
diffusive PDE system, we choose homogeneous Neumann
boundary conditions at the exterior boundary 92 which
correspond to no-flux conditions:

8 .
Dma—c’a, X)=0, (t,x)e0,T)x 382, (42)
v
i € {AB,C}

For the advective flow case, we implement the following
conditions at the outer boundary 92 = IjnietUT outlet U 1opU
Thottom With Fner = {0} x (0, 1), Touger = {1} x (0, 1),
Tiop = (0, 1) x {1} and Thottom = (0, 1) x {0} in the Stokes
equation (10)

q(t, x) =0,
5 T

qt.0) = (1-462-05%0) . x € Mues

p,x) =0, x € Toutlet, (43)

X e Ftop U Thottom

for t € (0, T) corresponding to an inflow boundary on the
left, no-slip at top/bottom and an outflow boundary at the
right hand side of the domain. Note that the flow at the left
boundary shows a parabolic profile as expected for a Stokes
flow within a long pipe. This results in a total volume flux of
2 [L3T~] and a maximal fluid velocity of gmax = 1 [LT~]
at the inlet.

In order to attain an equilibrium state over time, we adapt
the boundary conditions of the transport equations at the
inlet (42) in the following way:

oc;
Dma—v’(r, x) — q(t, x)ci(t, x) = —q(t, X)ci eq, (44)

x € Inler, i € {AB,C}

using the equilibrium concentrations calculated in Section 4.3.1.
Thus, the inflow will flush the over-saturated fluid domain
and push the system towards the equilibrium state. We note
that the resulting equilibrium volumes differ significantly
from the characteristics of the previous cases as the flux
boundary conditions dynamically change the total mass of
solute species contained in £2.

4.2 Measures

In the following, we define the five characteristic measures
to quantitatively evaluate and compare the quality of the
performed simulations for the different approaches.

4.2.1 Direct measures

The first measure is the mineral volumes and their evolution
of over time as regarded in [20]. In the level-set approach,
this quantity is easily inferred from a linear interpolation of
the unsigned distance function d¥ on the underlying grid,
see Section 3.1. Using the phase-field method, the mineral
volume is given as the integral of the respective phase-field
function ¢;, see Section 2.3. Given the setup presented in
Section 4.1, the initial volumes of both minerals amount
t0 0.22% ~ 0.0628.

As a second measure, we compare the surface area of
both minerals, cf. [20]. That is, we compute the length [L]
of the interior interfaces Iinp, Iintp. cf. Figure 1, sepa-
rating the fluid domain and the respective mineral. In the
given context, the resulting quantity therefore equals the
reactive surface area. In the level-set framework, a linear
reconstruction of the interface is used to approximate its
length. Suitable interface indicators are used to obtain the
related quantity using phase fields, cf. (16). Given the setup
presented in Section 4.1, the initial surface areas of both
minerals amount to 0.27 ~ 0.628.

The third measure is the conservation of mass with
respect to each chemical species. Although the formulation
of the reactive problem presented in Section 2 is analytically
mass conservative, the numerical schemes may not be
capable of preserving this property precisely. Furthermore,
as indicated in Section 4.3.1, orbits in the system’s phase
space regarding different total masses M have a positive
distance. Hence, the relative loss or gain in total mass is a
useful indicator to assess the simulators’ predictive power
as already used in [13].

Taking the fluxes j; = D,,Vc; — qc; related to solute 7,
i € {A,B,C}, at the inlet and outlet (Iinet, outlet) for the
advective example into account, the total mass Mg (t), Mc
() of species B,C in the PDE cases is given by (cf. (51))

Mg () = /Q ()CB(I, x) dx + (Vp(t)pp + Vp(1)pp)
G

t
—i—f / B, x)-vdo ds, (45)
0 TintetUT outlet

Mc(r) = / cc(t, x) dx + Vp(t) pp
270

t
+/ / jc(t, x)-vdo ds.
0 TintetY  outlet

In this expression, the first term accounts for the amount of
species i being dissolved in the fluid whereas the second
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describes the amount ligated within the minerals. Last, the
third term is related to mass exchange across the domain’s
boundaries. In the context of the phase-field model the first
term is adjusted slightly, integrating instead over the entire
domain and including a factor of ¢; to account for the fluid
phase.

My () = fQ 61(, x)cn (b, ¥) dx + Vo (t)pp + Ve(t)op

t
+ / / js(t.x) - v do ds. 46)
0 Finlcturoutlcl

Mc(@) = /an(t,X)Cc(t,X) dx + Vp(t) pp

t
+/ / jct,x)-vdo ds.
0 TintetUT outlet

Note that the related quantity Ma (¢) is not considered in this
paper as the solid shares would need to be weighted with a
negative sign compromising physical interpretability. As the
fluxes are explicitly discretized in both numerical schemes
(Section 3), total in- and outflow are simple to determine by
integration in the level-set as well as phase-field framework.
Volumes and integrated concentrations in (45) and (46) are
derived similarly.

4.2.2 Effective measures

Finally, we consider two effective quantities derived from
the geometrical setup. Assuming the domain of interest 2
to be a representative elementary volume of a larger scale
porous medium, we can ask for the effective diffusion and
permeability tensors of that respective medium. These quan-
tities are of high importance concerning flow and transport
properties on a macroscopic scale. Both tensors are derived
solving different auxiliary PDEs (cell problems) using peri-
odic boundary conditions on the exterior boundary. In the
context of periodic homogenization, the following sharp-
interface representation is derived, cf. [14] for the static case
and [21] for time-evolving domains:
The diffusion tensor is given as

D; (1) =/ (0x8j + 8ij) dx
2,0

for i, j € {1, 2} and Kronecker delta §;;, where ¢; are the
solutions of the elliptic problems

—V- (V) =0

Vii-v=—ej-v

in 27(1),
on line(?), 47

¢ periodic in x, / gjdx =0,
24(1)

for j € {1, 2} and outer unit normal v, denoting again the
total interior boundary by Iini(t) = Inep () U Iinep (7).
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The permeability tensor is given as

Ki’j(t) = / a)l] dx
25(@)

fori, j € {1, 2}, where (w;, ;) are the solutions to

—Awj +Vrmj = ¢j in 27(1),
V.w;j =0 in 27(1), 48)
w; =0 on [ne(?)

wj, m; periodic in x, / wjdx =0.
Q¢

In case of the phase-field framework, the above equations
change their form. To calculate effective diffusion and
permeability tensors we also solve auxiliary cell problems
incorporating the phase-field parameter, with periodic
boundary conditions on the exterior boundary. However, in
the phase-field formulation the domain is not split along an
interior interface, hence the cell problems are solved not
only in the fluid domain £2 ¢ but in £2. Boundary conditions
on the interior solid boundary are hence not needed, as they
are already incorporated in the phase-field formulation. The
effective tensors are then calculated with the regularization
factor ¢5 [6] and are defined as, for i, j € {1, 2}

D (1) = /Q% (3x,2j + 8ij) dx
and
K j(t) = / Psw; dx,

Q
with {; and (w;, ;) solutions to [6]
— V- (¢sD(V¢j+¢j)) =0 in £2, (49)

¢; periodic in x, / gjdx =0,
Q

and
— $sA(swy) + $s(Vr; —e)) = —g("Z’ 9o i,
V. (psw;) =0  ing2, (50)

wj, mj periodic in x, / widx =0,
o

for j € {1, 2}.

As the off-diagonal components of the effective tensors
remained small and generally several orders of magnitude
smaller than the diagonal components, we will restrict to
reporting and discussing the evolution of the diagonal ele-
ments.

4.3 Comparison for ODE system

For the ODE case it is possible to theoretically deduce
the system’s long term behavior for several characteristic
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quantities. As such, we start by providing important analyt-
ical properties of the ODE system.

4.3.1 Theoretical considerations

In this section, we briefly discuss existence of solution to
the ODE problem (5) introduced in Section 2.2.1 as well as
stability and positivity of equilibrium points.

Assuming continuous dependence of fluid volume and
interface lengths on time, system (5) admits a unique
solution local in time by the Picard-Lindelof theorem. In
case those quantities and the concentrations are bound-
ed from above and away from zero, the solution can be
extended globally.

Next, we are concerned with the stability of equilibria.
In the following, we approach stability by investigating the
equilibrium points as a function of the system’s invariants.
Let us denote the volume of minerals D and P being present
at time t by Vp(r) and Vp(?), respectively. Due to the
conservation of mass, the following quantities are conserved
over time, cf. (45), (46) in Section 4.2.1:

Ma(t) = ca(®)|2¢(t)| — Vp(t)pD,
Mg (t) = cg(t)|25 ()| + Vp(t)pp + Ve (?)0p, (51)
Mc(t) = cc()|2¢ @) + Vp()pp,

using the apparent relation |27(t)] = 1 — Vp(¢) — Vp(2).
Accordingly, we have the following function mapping G
from the system’s state space to a set of invariants and
characteristics for an equilibrium state with M = (M (0),
Mg (0), Mc(0)):

G(c, Vp, Vp) = M, fp, fp). (52)

More precisely, G maps the current solute concentrations
and mineral volumes to the total masses and interface reac-
tion rates. Clearly, all equilibrium points for a given M are
characterized by the preimage G! (M, 0, 0) assuming o; (¢)
being bounded from below by a positive constant. As such,
a possibly continuous G~! would lead to a curve of equi-
libria points in the phase space, rendering linearized theory
inconclusive due to a zero eigenvalue. Furthermore, all equi-
libria reachable from positive initial conditions are located
within the positive octant as easily seen by application
of the quasi-positivity theorem [24]. Evaluating the expres-
sion for the initial conditions given in (41) we find

CAeq = CB,eq = 1.4056,

CCeq = 0.7114, (53)
Vpeq = 0.1333,
Vbeq = 0.0339,

as an equilibrium state. Investigating the Jacobian VG at
that point shows local bijectivity of G. Accordingly, the
system is not asymptotically stable. This is expected as

disturbances changing M cannot be compensated by the
system due to conservation of mass. As such, discretization
errors with respect to the geometry evolution will add up.
This inherent property underlines the necessity for well-
designed numerical algorithms.

4.3.2 Comparison simulations

The simulation results for the ODE case as outlined in Sec-
tions 2.2.1, and 2.3.1 are depicted in Fig. 2 for different
time-steps and in Fig. 3 the evolution of quantitative mea-
sures is shown until the final simulated time of T = 2.
At final time of the level-set simulation, the concentrations
of all solute species deviated by less than one per mille
from their calculated equilibrium values (53). As such,
the system reaches equilibrium to high precision. In the
case of the phase-field model the solved system of equa-
tions corresponds to a modified sharp-interface formulation,
with additional curvature-driven interface motion. The sim-
ulation approaches an equilibrium with constant curvature
along each interface and dissolved concentrations slightly
perturbed relative to the calculated equilibrium such that the
curvature-driven motion and reactive effects cancel out. At
final time of the phase-field simulation the concentration cc
matches up to three per mille but ca is two percent lower
and cg two percent higher.

Figure 2 displays and compares the resulting geometrical
configuration of the three-phase system for different simula-
tions times and both approaches. More precisely, the miner-
als as obtained using the level-set method are shown in grey
(P) and black (D). In the surrounding fluid domain, the (spa-
tially independent, but time-dependent) concentration of
solute species A is displayed. Finally, the phase-separating
interfaces as obtained using the phase-field model are over-
laid in white.

Overall, we observe a good match between level-set
and phase-field simulation results. However, it is evident
that the level-set shows overgrowth of the minerals, while
the phase-field does not, see Fig. 2. Due to curvature
effects, the phase-field model cannot resolve the corners of
the dissolving mineral very well, and the initially straight
interface between the two minerals becomes curved.

Although the shapes evolve slightly differently, a good
match in characteristic measures as depicted for both level-
set and phase-field solution in Fig. 3 is observed. In par-
ticular, the volumes of the two minerals almost perfectly
coincide as seen in Fig. 3. Both predicted volumes of min-
eral P at final simulation time differ less than 0.3% from
the analytical equilibrium volume, for mineral D the rela-
tive deviation is less than 2.5%. These disagreements are
considered fairly small given that, starting from an ini-
tial volume of 0.0628, equilibrium volumes of 0.1333 and
0.0339, respectively, are targeted. As such, initial volumes

@ Springer



560

Computational Geosciences (2022) 26:545-570

Fig.2 ODE case: Geometry of
both mineral phases surrounded 1.30 1.40
by concentration field of species
A at time

t=025 1r=05,¢t=1and

t = 2. Black and gray shapes
refer to the level-set simulation,
white contours to the phase-field
approach

are approximately doubled (mineral P) or halved (mineral
D) in the course of the simulation. The evolution of the
surface area is, except from the initial period, also com-
parable. Due to the large increase of mineral volume, the
surface area of mineral P almost doubles within our sim-
ulation from 0.628 to 1.215 in the level-set simulation,
see Fig. 3. Simultaneously, originating from the same ini-
tial value, the surface area corresponding to mineral D
decreased by more than 35%. Approaching the equilibrium
state, both modelling methods concur well with relative
differences of 5% and 11% for minerals D and P, respec-
tively.

The initially peaking surface areas for the phase-field
simulation seen in Fig. 3 are caused by how they are
determined from the phase-field variables ¢. Without
reactive contributions the phase-field variables develop a
specific profile and the surface area is calculated as the
integral of g—‘q)i ¢;. During the early evolution in the ODE
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case, the reaction rates are high and the shape of the phase-
field variables fail to keep the expected shape. The transition
zones get drawn out and the changed profile across the
interfaces causes the above integral to overestimate the
interface length. As the phase-field ODE formulation does
not depend on this explicit evaluation of the surface area,
this does not have a strong effect on the further evolution of
geometry and concentrations.

We further note that the formulation used for the phase-
field approach is perfectly mass conservative (up to 10
significant digits), while small deviations within 0.5% are
seen for the level-set approach. As indicated by the grid
convergence studies performed in Fig. 8, mass errors in
the level-set framework decrease consistently with higher
spatial resolution.

Finally, Fig. 3 shows an almost perfect match of the
effective diffusion and permeability tensors for small times
t < 0.3. Across both directions and tensors, relative
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Fig-3 ODE case: Evolution of [= = LS:D rreeeees PFD = = LS:P seeeees PF: P EQ:P EQ: D
mineral volume over time,
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deviations are below 2% at + = 0.3. This agreement is  to that time according to the phase-field simulation. As

remarkable since the permeability in x direction has already
undergone a decrease of 33% (from 0.0329 to 0.0222) up

the chemical reactions come to a standstill, the level-set
data plateau whereas the phase field data further evolve
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due to curvature effects. For both effective quantities, the
phase-field simulation reduces the distance between the
measurements in x and y direction. Apparently, curvature
effects diminish anisotropy over time.

4.4 Comparison for diffusion model

The simulation results of the diffusive PDE case as outlined
in Sections 2.2.2, and 2.3.2 are depicted in Figs. 4 and 5 for
both approaches. The concentration of solute species A is
displayed according to the level-set simulation. Intermediate
and a close to equilibrium state of both mineral phases are
illustrated for the level-set method including also the phase-
field solution as an overlay, cf. Figure 4. As both simulation
agree on generating mineral overgrowth (in contrast to the
ODE case), the modeling approaches recover important
qualitative physical behavior of the underlying problem.
This is a direct consequence of the increased and contrast
rich interface velocities at the triple points. These again
result from focusing reactive activity to the neighborhood
of the triple points made possible by taking the spatial
distribution of the solute species into account. Therefore,
the difference in interface velocity between both fluid-solid

Fig.4 Diffusion case:
Geometry of both mineral 1.30
phases surrounded by
concentration field of species A
attimer =1, t =2, t =3 and
t = 4. Black and gray shapes
refer to the level-set simulation,
white contours to the phase-field
approach
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interfaces is significantly higher, facilitating overgrowth
behavior. As such, the system is naturally forced to develop
and maintain higher interface curvatures than in the ODE
case. However this increased curvature causes a stronger
deviation between the two models.

As earlier, the phase-field formulation cannot properly
resolve corners due to the curvature-driven movement of the
interfaces. Therefore, mineral D is increasingly displaced
by mineral P within the solid close to the interface. This
behavior is also visible in Fig. 5, wherein the concentration
fields of the mobile species as well as the area/volume
of the mineral species are investigated with respect to
time. Due to the no-flux exterior boundary conditions, the
system approaches an equilibrium state for large times
similar to the ODE case discussed in Section 4.3. In fact,
both systems’ equilibrium states are identical in terms
of mineral volumes and solute concentrations due to the
same total masses of species A, B and C. Yet, the rate of
convergence is much slower due to the time consuming
transport of solute species between the two different
mineral interfaces, see Fig. 4. As the transport speed is
governed by the concentration gradients, convergence to
equilibrium is additionally decelerated. At the final time

1.40 1.50 1.60 1.70 1.80 1.90

2.00
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Fig.5 Diffusion case: Evolution
of mineral volume over time,
reactive surface area and relative
total mass calculated with
level-set method (LS, dashed
lines) and phase-field approach
(PF, dotted lines). The last two
pictures illustrate the evolution
of diffusion and permeability
tensors along the main axes over
time
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T = 4, the volume average concentration of solute A
is 1.56. Accordingly, the transition from initial chemical
disturbances to the equilibrium state is already completed

by 74%. Yet, within the final simulation time unit3 <7 <4
(cf. Figure 4) an insignificant amount of geometry evolution
is identified.
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The overall mineral volumes in the two models evolve
qualitatively similarly, yet slightly differently. More pre-
cisely, the volume of mineral P is predicted progressively
higher by the phase-field than by the level-set method
(19% at final time) and vice versa for mineral D (22% at
final time). Given a total volume growth of mineral P of
72% (from 0.0628 to 0.1081) as predicted by the level-set
simulation, these deviations are not negligible yet reason-
ably small. A similar conclusion is drawn for mineral D,
which shrinks by 32% from 0.0628 to 0.0424 over sim-
ulation time. This effect is assumed to essentially result
from the artificial displacement at the mineral-separating
interface in the phase-field simulation. In conclusion, we
observe significantly higher deviations between the two
simulation approaches compared to the ODE case pre-
sented in Section 4.3.2, due to the more pronounced mineral
overgrowth and the resulting higher interface curvatures.

The surface area evolutions predicted by both approaches
are also quite similar. At final time, we observe a relative
deviation in mineral P’s surface area of 9%. This is compa-
rable to the deviation of 11% measured in the ODE case.
According to the level-set prediction, the mineral under-
went a growth of surface area by 111% from 0.628 to 1.325,

Fig.6 Equilibrium flow case:
Geometry of both mineral 1 .30
phases surrounded by
concentration field of species A
attimet =025, r =05, t =1
and r = 1.5. Black and gray
shapes refer to the level-set
simulation, white contours to the
phase-field approach

which is about 17 percent points more than in the ODE case.
Due to the significantly decreased surface of mineral D by
69% (from 0.628 to 0.197), relative differences appear to be
high. Yet, in absolute measure, they are comparable to the
deviations measured for the precipitating mineral.

Again, the phase-field model conserves mass up to 10
significant digits, while the level-set model experiences an
error of about 2%. As illustrated in Fig. 8, the error in mass
conservation consistently reduces with increased resolution
in the level-set simulations.

Since the precipitation of P is concentrated at the poles of
the initially circular geometry, both modelling approaches
agree that only a slight change of effective permeability and
diffusivity in y-direction takes place over time, cf. Figures 5
and 4. The associate values at final time differ by 12%
and 3% among both modeling approaches, respectively. Due
to the resulting increase in vertical extend, both quantities
decrease significantly with respect to the x direction by 44%
(from 0.0329 to 0.0185) and 13% (from 0.778 to 0.677),
respectively, according to the phase-field computations. At
final time, the results obtained by level-set and phase field
approach differ by less than 2% for both effective tensors in
y-direction.

A
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‘ ‘ D —

@ Springer



Computational Geosciences (2022) 26:545-570

565

Fig.7 Equilibrium flow case:
Evolution of mineral volume

over time, reactive surface area 0.1
and relative tOtal mass Ca]CUIated -------------------------------------------------------------
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4.5 Comparison for flow model

For this final example, transport of solute species is sub-
jected to an additional advective flow field according to

models ontroduced in Sections 2.2.3, and 2.3.3.

Figure 6 displays and compares the resulting geometrical
configuration of the three-phase system for different
simulations times and both approaches. As in the previous
cases (Figs. 2 and 4), the minerals as obtained using the
level-set method are shown in grey (P) and black (D).
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In the surrounding fluid domain, the (spatially and time-
dependent) concentration of solute species A is displayed.
Interfaces as obtained using the phase-field model are
overlaid in white. Apparently, both the level-set and phase-
field approach nicely agree on geometry evolution. The
system has reached an equilibrium state at the final time
T = 1.5 to a reasonable extent. Throughout the domain
£2¢(1.5), a maximal deviation of 6.4% from the equilibrium
values is measured across all solute species. Similar to
our previous scenarios curvature effects are visible in the
phase-field simulation close to the triple points. Due to
the reduced amount of mineral overgrowth compared to
Section 4.4, the implications are less severe. Figure 7 proves
good agreement in mineral volume (relative deviations of
8% and 2% for minerals P and D) as well as surface
area prediction (relative deviations of 11% and 10% for
minerals P and D) among both simulation approaches. Still
this variance is reasonably small compared to the loss of
22% and 27% in volume and surface area for mineral D
and gain of 18% and 41% in volume and surface area for
mineral P over simulation time according to the level-set
approach. The phase-field method again achieved almost
perfect mass conservation, while the level-set method’s
error is below 1.5%.

Due to the reduced difference between initial and final
geometry in comparison to the diffusive PDE and ODE
case, also the evolution of the effective tensors is less pro-
nounced. As such, both permeability and diffusivity in y
direction remain nearly constant over time. Here, relative
deviations of 6% and 2% are observed at final time between
both modeling approaches for diffusion and permeability,
respectively. The evolution with respect to the x-direction
appeared again to be more significant. A decrease of 11%
(from 0.0329 to 0.0292) and 2% (from 0.778 to 0.759) are
measured according to the phase-field simulation, respec-
tively. At final time, both models agreed on the effective
quantities with a deviation less than 5% with respect to the
x direction.

5 Conclusion

As shown in Section 4, both the level-set model and phase-
field model are able to simulate geometrical changes in
a three-phase system involving two minerals and a fluid
including the solutes taking part in heterogeneous reactions.
Upscaled quantities like permeability and diffusivity pre-
dicted by the two approaches show a comparable evolution
as the mineral shapes evolve. However, each of the two
approaches inhibit strengths and weaknesses.

As it is apparent from the simulation results in Section 4,
the phase-field model is capable of conserving mass up to
10 significant digits. Using a finite volume discretization the
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presented phase-field model can conserve mass almost per-
fectly, with minor losses due to the regularization of the con-
servation equations. In contrast, the level-set method used
does not generally guarantee conservation of mass. Yet,
with a maximal deviation of 2% throughout our experimen-
tal lineup, the loss/gain in mass in the level-set simulations
is relatively low. Furthermore, grid convergence tests con-
ducted in the appendix (Fig. 8) show a diminishing effect on
higher resolution. This is due to the fact that the changes in
mineral volumes V; are determined by

Vi(t) = vyi (1) | Tingi ()]

for i € D,P using an explicit first-order time discretization.
In theory, the error in mass is controlled linearly by the time-
step size. Assuming piece-wise smooth interfaces, the error
could be reduced in higher-order by applying a higher-order
discretization scheme or additionally taking local curvature
into account.

On the other hand, the results of Section 4 certify the
level-set method to properly handle high curvature within
the interfaces. Although the reconstruction procedure applied
within VIIM (see Section 3.1) loses accuracy in these sit-
uations, the errors remain highly localized and do not
propagate along the whole interface over time. As such,
high interface curvatures along the static interface separat-
ing both solid minerals are recovered very well. In contrast,
the phase-field model performs increasingly unsatisfactory
close to the equilibrium as interface velocity becomes cur-
vature dominated. In general, the curvature-driven motion
of the phase-field model affects the simulation results. As
remarked in Section 2.3.4, existing approaches for dimin-
ishing curvature-driven motion are not applicable for the
current setup. Although one can choose the relevant param-
eters controlling the curvature-driven motions small, they
cannot be chosen zero and are limited by the choice of the
grid. As a fine grid is needed to resolve the diffuse inter-
faces, a natural extension would be using adaptive grid
refinement for the diffuse transition zones since one can
generally accept a much coarser grid away from the inter-
faces. Furthermore, the phase-field model requires well
chosen parameters, in particular the phase-field diffusiv-
ity . As described in Section 3.2 the phase-field parameters
strongly influence the simulation quality, but for w there is
no simple way to predict a good choice.

Overall, the two presented modeling approaches and
their implementations highlight the difficulty with capturing
evolving interfaces attaining high curvatures. As the numer-
ical experiments do not indicate any major difficulties for
the level-set approach except from some mass loss/gain, the
phase-field approach is influenced by the curvature-driven
motion. Further work is required to find a suitable strategy
to eliminate curvature-driven motion and determine suitable
parameters in the phase-field approach.
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Appendix

In order to justify the resolutions chosen in our simulations,
we provide a grid convergence analysis for the cases where

no analytical results are available for comparison. Note
that in both level-set and phase-field approach parameters
€ and & are used respectively to adjust the spatial extent
of the stripe in which the interfaces are treated. As

Fig.8 Level-Set: Simulation
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Fig.9 Phase-field: Simulation
results for different spatial
resolution and choice of the
phase-field parameter € in case
of the diffusive case (top),

equilibrium flow case (bottom).
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already mentioned, a smaller choice of parameters increases
precision of the geometry evolution. Yet, a lower bound is
given by some multiple of the discretization length. As such,
we investigate both the impact of mesh refinement as well as
parameter reduction €, £ on constant meshes. The results of
our convergence studies are presented in Fig. 8§ for the level-
set model and in Fig. 9 for the phase-field approach. For
clarity, the data at final simulation time 7 are additionally
listed in Tables 4 and 5.

Table 4 Level-Set: Comparison of values in Fig. 8 at final simulation
time T

Diffusive case Volume Miel Surface
h=0.01, €=0.02 0.1026 0.9673 1.1825
h=0.005, €=0.01 0.1086 0.9933 1.3025
h=0.0025, €=0.01 0.1100 1.0008 1.3438
h=0.0025, €=0.005 0.1088 1.0015 1.3742
Advective case Volume Miel Surface
h=0.01, €=0.02 0.0714 0.9647 0.7975
h=0.005, €=0.01 0.0737 0.9891 0.8855
h=0.0025, €=0.01 0.0751 0.9961 0.9205
h=0.0025, €=0.005 0.0757 0.9976 0.9441

Table 5 Phase-Field: Comparison of values in Fig. 9 at final
simulation time 7'

Diffusive case Volume Ml Surface
h=0.01, £=0.05 0.1336 1.0000 1.1150
h=0.005, £=0.025 0.1337 1.0000 1.1187
h=0.0025, £=0.025 0.1337 1.0000 1.1235
h=0.0025, £=0.0125 0.1337 1.0000 1.1195
Advective case Volume Ml Surface
h=0.01, £=0.05 0.0812 1.0000 0.7946
h=0.005, £=0.025 0.0800 1.0000 0.7895
h=0.0025, £=0.025 0.0801 1.0000 0.7940
h=0.0025, £=0.0125 0.0794 1.0000 0.7864
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