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A B S T R A C T   

When people navigate a space to perform tasks, their body and eye movements are closely linked. 
Within the classroom context, characteristics of teachers’ body movements may be related to the 
noticing of relevant classroom events, in particular, visual attention to student disruptions. In the 
current study, we investigated this relationship in an immersive virtual reality (IVR) classroom 
that offered a standardized environment for tracking teachers’ body and eye movements. Based 
on time series data collected during a short teaching task with 21 preservice teachers, we con
ducted K-means clustering with body movement features. We identified three distinctive patterns, 
which we labeled as immobile, anchored, and dynamic (body) movement patterns. Teachers with 
dynamic movement patterns venture away from the teacher’s desk to far corners of the room; 
they don’t dwell in one location for long but rather move continuously to various parts of the 
classroom, creating a dispersed movement. Dynamic movement patterns were associated with the 
best visual attention performance, defined as the number, speed, and duration of fixations on a 
classroom disruption. Our findings demonstrate the existence of unique and differentiable 
movement patterns among preservice teachers that have implications for teacher noticing, 
teacher–student interaction, and instructional quality.   

1. Introduction 

Preservice teachers often face significant challenges distributing and directing their visual attention in the classroom and noticing 
critical events. They have been found, for instance, to overlook incidents such as student disruptions and opportunities such as 
“teachable moments” (Gegenfurtner et al., 2019; König et al., 2022; Stockero et al., 2017). The challenge of noticing is important to 
address since instructional decisions rely first and foremost on accurate and prompt visual attention to classroom events. The ability to 
visually attend to specific objects in a selective and timely manner is referred to as visual attention performance in the vision research 
(Dye & Bavelier, 2010; Laasonen et al., 2012). Theoretical research in education has described teachers’ visual attention performance 
as a key component of their professional vision: “the ability to notice and interpret significant features” in a classroom (Sherin & van Es, 
2009, p. 20). Professional vision enables teachers to identify what is important or noteworthy about a classroom situation (Seidel & 
Stürmer, 2014). 
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As a first step toward improving teachers’ visual attention performance, recent research has sought to identify the associated factors 
(for a review, see König et al., 2022). Some studies have focused on internal factors, such as teaching experience (Gold & Holodynski, 
2017), teaching scripts (Wolff et al., 2020), and mental organization strategies (Geeraerts et al., 2018), while others have examined 
external factors, such as the teaching task (Stahnke & Blömeke, 2021) and the degree of classroom disruptions (Huang et al., 2021). 

The question of how teachers move around the classroom environment has long been overlooked in efforts to uncover factors 
related to teachers’ visual attention performance, despite the widely acknowledged interplay between human vision and motion 
(Goodale, 1998; Hayhoe, 2017). Moving around and performing tasks in the real world requires a coordinated system involving both 
the eyes and the body, known as visuo-motor control (Foulsham et al., 2011; Land & Tatler, 2009). Recent research on mobility 
behavior suggests that individuals’ body movement patterns exhibit distinctive features that are stable over time. In this context, 
features such as the distance traveled, the amount of time spent in one place, and the degree to which movement is evenly distributed 
have been shown to have a high degree of spatial and temporal regularity (González et al., 2008). Various studies have shown that the 
ways people look at their environment are entangled with how they move within it (e.g., Carrasco, 2018; Patla & Vickers, 2003). 

In the classroom context, teachers often move around for different tasks that require their attention: They stand at the front of the 
room to use the projector, walk around to students’ desks to check their work, or address misbehavior, and move back to the front to 
address the class as a whole. The ways teachers move, that is, their (body) movement patterns, may therefore offer rich insights into the 
ways they allocate their visual attention. Mobile eye tracking studies have revealed that preservice teachers often visually fixate on 
objects that are closer to them spatially (Huang et al., 2023; McIntyre & Foulsham, 2018). 

To investigate the potential associations between preservice teachers’ movement patterns and visual attention performance, their 
movement and eye movement metrics must be measured simultaneously as they are teaching, while at the same time controlling for 
environmental influences. This has not been possible so far due to a) a lack of concurrent tracking of motion and eye movements during 
teaching, and b) the wide variety of classroom environments in terms of physical settings, student characteristics, and classroom 
events. Immersive virtual reality (IVR) technology has proven instrumental in overcoming these practical challenges. IVR allows users 
to see, hear, and move freely in a realistic 3D environment (Huang et al., 2023; Bailey & Bailenson, 2017; Radianti et al., 2020). 
Recently developed IVR hardware is also capable of tracking users’ body and eye movements while they are interacting with the VR 
environment (Clay et al., 2019; Hasenbein et al., 2022). 

In the present study, we used IVR technology to present a VR classroom in which both the setting and events are standardized (see 
2.2 Material and Equipment: VR Classroom for details). We classified preservice teachers’ movement patterns based on time series 
movement tracking data collected while they were teaching in the IVR classroom. We then linked the identified movement patterns 
with teachers’ actual visual attention performance, defined as the number of times they focused their visual attention on each ongoing 
student disruption (see off-task events in Table 1), the speed and duration of fixations on such disruption. 

1.1. Teacher’s Visual Attention Performance 

Classrooms are dynamic and complex environments that impose heavy demands on teachers’ attention resources (Clarridge & 
Berliner, 1991; Doyle, 1977; Kounin, 1970). At any given time, teachers have to perform multiple tasks simultaneously, such as giving 
a lecture, distributing worksheets, and using instructional technologies, all while keeping an eye on the entire class (Doyle, 2006). 

Teachers’ ability to pay attention to incidents such as student disruptions1 in a situation of high environmental complexity is key to 
making sound instructional decisions in the face of these demands. This ability has been described in various research traditions as 
situation awareness (Endsley, 1988; Miller, 2010), situation-specific perception (Blömeke et al., 2015), vigilance (Parasuraman, 
1986), withitness (Kounin, 1970), noticing (Jacobs et al., 2010), and the most comprehensive construct of all, professional vision 
(Sherin et al., 2010; Sherin & van Es, 2009). 

Within the latter body of research, professional vision is considered a core aspect of teachers’ professional expertise, but there is a 
lack of agreement on its constitutive elements (for reviews, see König et al., 2022; Stahnke et al., 2016). The classic framework by van 
Es and Sherin (2002) describes professional vision as a construct with three aspects: paying selective attention to significant classroom 
events, making connections between events and pedagogical principles, and knowledge-based reasoning about the events. Jacobs et al. 
(2010) extended the confines of this framework by adding the planning and execution of actions by teachers after they have engaged in 
selective attention and knowledge-based interpretation. Similarly, Blömeke et al. (2015) additionally included the aspect of 
decision-making as part of professional vision in their perceive-interpret-decide (PID) model. Star and Strickland (2008), in contrast, 
narrowed the conceptualization of teachers’ professional vision to selective attention. 

Despite the differences in these frameworks, they all overlap in the initial step of teachers’ professional vision: the perception of the 
classroom event or feature. Naturally, the perception of critical events in the classroom is a prerequisite for all further interpretation or 
action. Improving teachers’ perceptual capacity to select and focus on important classroom events in a timely manner—that is, 
teachers’ visual attention performance—is therefore vital for improving instructional quality and educational outcomes (Blömeke 
et al., 2022; Keller et al., 2022). 

Distributing visual attention in the complex classroom environment is challenging for most teachers, but especially for preservice 
teachers. Compared to more experienced teachers, preservice teachers have been found to process information more slowly and to 
distribute visual attention less evenly when watching classroom videos (Keller et al., 2022; Wolff et al., 2016). This finding has been 

1 Student disruptions and misbehaviors were used interchangeably in the present study to describe student-initiated classroom events that distract 
teachers from their primary program of action. 
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Table 1 
Behavior Script of Student Agents  

Event ID Event start time (seconds) Agent location Behavior Category 

1 340 02L Play with a pen off-task 
2 355 02L Write on the notebook on-task 
3 340 10L Stare outside the window off-task 
4 355 10L Idle – 
5 350 11L&R Chat with the neighbor off-task 
6 365 11R Idle – 
7 365 11L Idle – 
8 360 14L Throw paper balls off-task 
9 375 14L Idle – 
10 360 15L Play with a pen off-task 
11 375 15L Idle – 
12 370 03L&R Chat with the neighbor off-task 
13 385 03L Idle – 
14 485 03R Write on the notebook on-task 
15 370 14R Stare outside the window off-task 
16 385 14R Idle – 
17 380 06L Throw paper balls off-task 
18 395 06L Idle – 
19 390 07L&R Hit the neighbor off-task 
20 405 07R Idle – 
21 405 07L Idle – 
22 395 11L Stare outside the window off-task 
23 395 11L Idle – 
24 410 10R Drink soda off-task 
25 425 10R Idle – 
26 420 01L&R Hit the neighbor off-task 
27 435 01R Idle – 
28 435 01L Idle – 
29 435 12L&R Chat with the neighbor off-task 
30 450 12L Idle – 
31 450 12R Write on the notebook on-task 
32 450 10R Raise arm on-task 
33 454 10R Ask a question on-task 
34 464 10R Idle – 
35 455 12R Throw paper balls off-task 
36 465 12R Idle – 
37 455 12L Eat an apple off-task 
38 470 12L Idle – 
39 470 11L&R Chat with the neighbor off-task 
40 485 11R Idle – 
41 485 11L Idle – 
42 480 06L&R Hit the neighbor – 
43 495 06L Idle – 
44 495 06R Idle – 
45 480 02L Play with a pen off-task 
46 495 02L Idle – 
47 495 13L&R Hit the neighbor off-task 
48 510 13L Idle – 
49 510 13R Idle – 
50 510 14L&R Hit the neighbor off-task 
51 525 14R Idle – 
52 525 14L Idle – 
53 530 03L&R Chat with the neighbor off-task 
54 545 03L Idle – 
55 545 03R Idle – 
56 550 04L Throw paper balls off-task 
57 565 04L Idle – 
58 550 10R Raise arm on-task 
59 552 10R Ask a question on-task 
60 562 10R Idle – 
61 565 01L&R Chat with the neighbor off-task 
62 580 01L Idle – 
63 580 01R Idle – 
64 570 07R Stare outside the window off-task 
65 585 07R Idle – 
66 570 06L Throw paper balls off-task 
67 585 06L Idle – 
68 570 02L Eat an apple off-task 

(continued on next page) 
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replicated with eye tracking studies, both in video viewing (Kosko et al., 2022; Seidel et al., 2011), staged scenarios (Stürmer et al., 
2017), and real-life instructional situations (Huang et al., 2023; McIntyre & Foulsham, 2018). After comparing the eye movements of 
25 pairs of teacher trainees and their trainers, Huang and colleagues (2023) found that preservice teachers were slower at switching 
visual focus, looked at irrelevant objects more often, and paid visual attention to a significantly smaller area. 

Considering the significance of visual attention performance and the challenges that preservice teachers face in developing it, it is 
critical to understand the associated factors. On the one hand, preservice teachers have been shown to have less efficient information 
organization and cognitive processing ability, which is reflected in how they distribute visual attention (Charness et al., 2001; 
Gegenfurtner et al., 2022). According to perceptual encoding theory (Reingold et al., 2001), their smaller visual fields may be 
explained by a less developed ability to encode information in large and coherent chunks. On the other hand, features of the 
instructional environment could also affect preservice teachers’ visual attention performance. For instance, the instructional format 
(partner work vs. whole-group work) can affect novice teachers’ visual attention allocation to students (Stahnke & Blömeke, 2021), 
and the amount and degree of student disruptions can affect their likelihood of accurately identifying and paying attention to the 
disruption (Huang et al., 2021). 

Another factor that is likely related to visual attention performance but that has rarely been investigated is the individualistic 
characteristics of teacher’s movement within the classroom, i.e., the movement pattern. When people navigate an environment to 
perform tasks, such as going from desk to desk to check students’ work, their bodily movements (motor system) and eye movements 
(visual system) are tightly intertwined to meet the demands of the task at hand (Foulsham et al., 2011; Hayhoe, 2017). This strong 
relationship between motion and vision indicates a potential association between movement patterns and visual attention performance 
among preservice teachers. 

1.2. Looking and Moving: Human Movement nd Visual Attention 

The term human motion2 refers to all human-generated movements at both the micro and macro level (Aggarwal & Cai, 1999). 
Micro-level locomotion is characterized by small muscle movements such as twitching and gesturing with the hands, whereas 
macro-level motion focuses on the movement trajectory of the entire body rather than its parts in three-dimensional (3D) spaces. 
Teachers’ movements within the classroom would therefore be considered macro-motion.3 

Patterns of human movement over a spatial range are considered to be stable over time: for instance, the distance a person travels, 
the amount of time they stay in one place, and the degree to which their movement is evenly distributed (González et al., 2008; 
McInerney et al., 2013). Such idiosyncratic and classifiable characteristics of human movement are called movement patterns (Aggarwal 
& Cai, 1999; Dodge et al., 2008). 

The advancement of concurrent motion and eye movement tracking technology (e.g., Han, 2021; Jogeshwar & Pelz, 2021) has 
prompted various perspectives to investigate the connections between movement patterns and visual attention performance. First, 
natural behaviors can be considered as a series of “sensory-motor decisions” that require both visual and motor systems (Hayhoe, 2017, 
p. 389). The primary function of vision in this decision-making chain is to gather relevant information to choose a course of action, 
such as how or where to move the body (Maloney & Zhang, 2010). Eye movement toward a relevant location, for instance, is often 
initiated “just-in-time” before the actual body movement (Ballard et al., 1995). Mobile eye tracking studies have shown that partic
ipants focus their gaze (fixate) on a target location approximately a second before placing their foot in that location (Patla & Vickers, 
2003). Similarly, athletes often look at the spot where they expect a ball in flight to be tens of milliseconds in advance of its arrival in 
that spot (Hayhoe & Ballard, 2005; McKinney et al., 2008). 

Second, not only does the visual system aid the motor system in goal-oriented actions; it also requires the support of the motor 
system to perform its functions. Due to the anatomical structure of human eyes, only in the small foveal area at the center of retina can 
we see clearly at high resolution: Visual acuity drops by a factor of 10 at 20 degrees of eccentricity from the fovea’s center (Land & 
Tatler, 2009). The restriction of foveal vision propels the movement of the entire body to position the most relevant information at the 
center of the fovea. Moving closer to the object of interest is one such movement (Hamm et al., 2019), since visual acuity increases 
dramatically as the distance between the eyes and the object reduces within a range of around 6 m (Tidbury & O’Connor, 2015). 

Table 1 (continued ) 

Event ID Event start time (seconds) Agent location Behavior Category 

69 585 02L Idle – 
70 580 13R Play with a pen off-task 
71 595 13R Idle – 

Note. Idle is the default behavior: agents would sit naturally in various neutral poses and move their eyes or body to follow the users around. After 
performing either on- or off-task behaviors (automatic termination after 15 s), agents would return to the idle state. Other than the off-task behaviors 
involving a neighbor (two agents misbehave together), different off-task behaviors did not overlap in time. There were 30 off-task events with 42 
individual student disruptions. 

2 Also referred to as human dynamic (Yuan, 2018), (loco)motor behavior (Adolph & Franchak, 2017), mobility behavior (Müller et al., 2020), and 
spatial behavior (Ai et al., 2019).  

3 Motion and movement are used interchangeably in this study to represent macro-level human motion. 
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Visual acuity is essential for judging whether someone is looking at you. This is especially relevant for teachers, who often look at 
students’ faces to assess whether they are paying attention. Accuracy in mutual gaze perception is highest within a distance of 2 m 
(Gamer & Hecht, 2007). Eye tracking studies have also reported “eccentricity effects” in the relationship between distance and visual 
attention performance (Koivisto et al., 2004): Changes occurring close to where the eye is fixated are detected more quickly and 
accurately than changes occurring further away (Hollingworth et al., 2001). 

A third perspective on the relationship between body movement and visual attention performance relates to the existence of 
peripersonal space, the space immediately surrounding the human body in which physiological and behavioral responses to stimuli are 
stronger (Rizzolatti et al., 1997). Neurophysiological responses to objects within this peripersonal space differ from responses to 
objects in extrapersonal space (Bufacchi & Iannetti, 2018; Holmes & Spence, 2004) and produce significantly more accurate and faster 
visuomotor responses. For instance, participants perform better at visual attention tasks including visual search when their hands are 
near rather than far from the stimulus (Abrams et al., 2008; Brozzoli et al., 2014). Such positive visual attention bias toward objects 
within the peripersonal space is also accompanied by faster tactile stimulus detection (Làdavas et al., 1998) and action execution 
(Costantini et al., 2010). 

As teachers move around the classroom, their visual acuity, the boundaries of their peripersonal space, and the students within this 
space also change. Their visual attention performances, i.e., how accurate and timely they could visually focus on important classroom 
events, is therefore likely to be related to how they move in the classroom. 

Eye tracking studies conducted in real classrooms have demonstrated that both expert and novice teachers tend to look more at 
locations in close spatial proximity to where they are standing (Huang et al., 2023) and that students sitting in the T-zone (first row and 
middle section) closer to the teacher receive more visual attention (Smidekova et al., 2020). This increased visual attention may in turn 
lead to better learning outcomes (Blume et al., 2019). Early studies on teachers’ movement behavior also indicated that effective 
teachers spent more time moving around and paying attention to students’ activities (Behets, 1997). 

Despite the evidence of idiosyncratic patterns in body movement, research to date has overlooked the unique patterns of teachers’ 
body movements and the potential associations between these patterns and teachers’ visual attention performance. The challenge in 
identifying such patterns lies above all in the great variability of the natural classroom environment and events that affect human body 
and eye movement. Complete standardization of classroom environments and events for the purpose of investigation is hardly 
achievable in real-life classrooms. An immersive virtual reality classroom in which teachers can move and look around freely and 
experience realistic but standardized situations therefore offers a useful setting for investigating the relationships between movement 
patterns and visual attention performance. 

1.3. The Immersive Virtual Reality Classroo 

Virtual reality (VR) is a collection of digital technologies that enable creation of realistic experiences in virtual environments 
(McGarr, 2021). Among the various VR systems, (fully) immersive VR (IVR) systems provide the highest level of sensory fidelity by 
offering nearly all of the visual and auditory information available in a physical environment (Bailey & Bailenson, 2017; Slater, 2018). 
This is often accomplished with 360◦ visuals through a head-mounted display (HMD), directional auditory input via headphones, and 
limb proprioception via controllers and tracking sensors (Radianti et al., 2020). 

Immersive VR classrooms allow users to act like teachers and students in a comparable way to real life. They can walk around with 
their own limbs; what they see and hear changes in line with their head and body movements; and most importantly, they feel present 
in this environment. Because of the high level of realism and controllability, IVR classrooms have gained great traction in recent 
research: Seufert et al. (2022) developed an IVR classroom in which preservice teachers practiced and developed classroom man
agement competencies; Chen (2022) used a similar IVR classroom to improve the speed and effectiveness of preservice teachers’ 
classroom management behavior; Blume (2019) investigated whether positioning students closer to a virtual teacher in the IVR 
classroom would improve their learning outcomes; and Richter and colleagues (2022) used IVR classroom videos to facilitate 
self-reflection efficacy among preservice teachers (for a review, see Huang et al., 2023). 

Besides recreating an authentic and configurable classroom environment, IVR also enables continuous, multi-modal data collection 
that captures the rich nature of classroom behaviors. Teaching in a classroom, even for a very short period, is characterized by a variety 
of concurring task demands such as spatial navigation, speech generation, human interaction, and technology operation. Teaching is a 
complex, highly dynamic process that should be investigated utilizing a wealth of data sources. To date, however, research has mainly 
used only subjective reports and observation. IVR can fill this gap by collecting diverse types of time-series data simultaneously, 
including data on spatial location, eye movement, speech, and teachers’ behavior. On the topic of the present study, human-subject 
research has used motion and eye tracking in IVR, for instance, in scene perception (Anderson et al., 2021), spatial navigation 
(Armougum et al., 2019), and instructional design (Baceviciute et al., 2022). Recently, Hasenbein et al. (2022) used eye tracking in an 
IVR classroom to investigate students’ visual attention and learning experiences in different social settings (also see Gao et al., 2021). 

To summarize, observing preservice teachers in an IVR classroom allows us to a) track their movement and eye movement un
obtrusively and accurately, and b) maintain a balance between realism and standardization of the classroom environment (physical 
setting, student characteristics, classroom events, etc.). This enables us to investigate relationships between preservice teachers’ 
movement patterns and visual attention performance. 

1.4. Present Study 

Given the close interconnections between the visual and motor system in natural behavior, patterns of teachers’ body movement 
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trajectories over time may be closely related to their visual attention performance. To investigate these relationships, however, we first 
need to control for known factors in visual attention performance: the level of teachers’ expertise, and features of the instructional 
scenario (instructional format, classroom setting and events, etc.). The present study used a standardized IVR classroom capable of 
motion and eye tracking to investigate preservice teachers’ visual attention performance while carrying out a teaching task. Specif
ically, our research questions were as follows: 

RQ1. Are there distinctive patterns of preservice teachers’ movement when teaching in an IVR classroom? 

RQ2. If so, do teachers differ in visual attention performance—number, speed, and duration of fixations on each student dis
ruption—in relation to these movement patterns? 

The design of this study and the analysis were preregistered at https://osf.io/23w68/. 

2. Methods 

2.1. Participants 

The current study focuses on preservice teachers who are enrolled in university-based teacher education programs and have 
minimal prior teaching experience. Twenty-one preservice teachers were recruited from a weekly seminar on classroom management 
held at a public German university (M = 22.2 years, 55% female, 96.9% bachelor program). The demographic characteristics are 
representative of this population (e.g., Huang et al., 2022, 2023; Seufert et al., 2022). This sample was chosen given that it was easy to 
access and representative of the population of interest. All participants were studying to become teachers and had no prior experience 
with the IVR classroom. The participation in IVR session was an integral part of this seminar but not demanded. 

2.2. Material and Equipment: IVR classroom 

Our IVR classroom had 30 virtual students (agents4) arranged in five rows and three columns. The virtual students possessed 
diverse physical features (see Fig. 1, top right), and their behaviors were programmed (see Table 1). Participants of similar back
grounds in earlier studies reported this IVR classroom to be authentic and believable. 

Participants were immersed in the IVR classroom through the HTC Vive Pro Eye system with Tobii XR (Tobii, 2021). The Pro Eye 
headset has a resolution of 1440 × 1600 pixels per eye with a 110◦ field of view. It is capable of recording eye movements at a sampling 
rate of 120Hz with 0.5◦–1.1◦ accuracy and has been widely used in eye tracking studies (e.g., Hasenbein et al., 2022; Shadiev & Li, 
2023; Stein et al., 2021). Besides the high visual and audio fidelity, this system also provides room-scale tracking, allowing participants 
to walk around in the physical reality while receiving corresponding sensory signal in the IVR classroom. The participants have the 
option to “teleport” to specific locations within the classroom in cases where it may be difficult to access by walking. The participant’s 
location, which is represented by (X, Y) coordinates sampled at every second, is tracked by this system. 

2.3. Procedure: Teaching Task 

Participants first listened to a 5-min audio instruction to familiarize themselves with the IVR classroom. They then gave a 4-min 
lecture in the IVR classroom about COVID-19 vaccinations, during which they had to respond to typical classroom disruptions. The 
lecture topic was predetermined, and participants had a week to prepare the lesson with the presentation slides and lesson plan that 
would be used in the IVR classroom. During the participant’s lecture, virtual students engaged in both on- and off-task behaviors (see 
Table 1) that are common in secondary classrooms (Borko, 2016; Wolff et al., 2016). Students’ behaviors were initiated independently 
of the teachers’ actions. 

2.4. Measures 

Participants’ eye and body movements were collected continuously during the IVR teaching task. Specifically, eye movement was 
recorded as a sequence of fixations with fixation onset time, fixation duration, and fixation location. Based on piloting and previous 
studies (e.g., Anderson et al., 2021; Gao et al., 2021), the fixation was defined with the thresholds of a minimum duration of 100 ms 
and a maximum dispersion of 3◦. Fixation locations were extrapolated by computing the intersection of gaze direction in the virtual 
space, taking head locations and orientations of participants into account (see details in Appendix B). 

Movement was recorded as time series data sampled at every second with the participant’s location in the two-dimensional pro
jection of the IVR classroom. Eye and body movements could be regarded as point patterns—datasets with observed spatial locations of 
things or events (Baddeley et al., 2016). The locations were therefore represented as X–Y coordinates within a two-dimensional co
ordination system, i.e., the IVR classroom room map (see Fig. 1 left for the room map). 

First, the raw movement data were used to calculate eight summary statistics that are commonly used in spatial point pattern 
analysis to capture the features of physical movement, such as the degree of dispersion and regularity (González et al., 2016; Illian 

4 Avatars and agents are two types of “virtual humans” in VR. An avatar is a computer-generated character whose actions are governed by a real 
human being, while an agent’s actions are programmed (Kyrlitsias & Michael-Grigoriou, 2018). 

Y. Huang et al.                                                                                                                                                                                                         

https://osf.io/23w68/


Computers & Education 206 (2023) 104912

7

et al., 2007). The most prominent of these statistics are the Clark-Evans index (CE) (Clark & Evans, 1954) and the pair correlation 
function g(r). CE is a classic scale-invariant measure of point aggregation based on nearest-neighbor distance. It is the average distance 
between a point and its nearest neighbor divided by the average distance between points generated by a Poisson process of the same 
intensity (Illian et al., 2007). Therefore, CE = 1 if the point distribution is completely random (identical with the Poisson process); CE 
> 1 if the point pattern shows a propensity towards regularity (even distribution); CE < 1 indicates aggregation of points associated 
with certain patterns; and a smaller CE means higher aggregation in this range. The pair correlation function g(r) is another important 
second-order functional summary statistic that represents the ratio between the number of pairs of points that are r units apart and the 
corresponding probability if the point process is random (Baddeley et al., 2016). g(r) reaches one when the observed point process is 
completely random. The boundary r value when g(r) = 1 can thus be interpreted as the size of a point cluster. We also included six other 
statistics that plainly capture the characteristics of teachers’ movements such as the mean and standard deviation of the distances 
between consecutive participant locations and the duration of each stay (see Table 2 for all summary statistics and brief explanations). 

Second, since visual attention performance in the classroom could be defined as the ability to select and focus on important 
classroom events in a timely manner (Dye & Bavelier, 2010), we operationalized participants’ visual attention performance in the 
current teaching task as the number of fixations on each ongoing student disruption (see off-task events in Table 1), the time to first 
fixate (or fixation speed), and the total duration of fixations on such disruption. Fixation speed and duration were measured in seconds. 
As shown in Table 1, there were 30 off-task events with 42 individual student disruptions during the teaching task. 

In addition to measurements of body movement and gaze behavior, we also assessed sociodemographic characteristics of the 
participants. Participants reported their age, A-level grade (Abitur), semester, classroom management experience, VR experience, and 
preparedness for the IVR teaching task in a questionnaire prior to the IVR teaching task. 

In the questionnaire, we also measured two covariates that could be related to participants’ behaviors and experiences in teaching 
an IVR classroom. First, classroom management self-efficacy is the belief about one’s ability to “organize and execute the courses of 
actions” (Bandura, 1997, p. 3) in classroom management (Aloe et al., 2014). A positive relationship between IVR experience and 
self-efficacy has been reported in previous studies (e.g., Huang et al., 2023; Gundel et al., 2019; Makransky et al., 2020). This construct 
was measured with five items adapted from the Teacher’s Sense of Efficacy scale (Pfitzner-Eden, 2016; Pfitzner-Eden et al., 2014) 
(sample item: “I can get students to follow rules in class.”; four-point Likert scale from 1 = “does not apply at all” to 4 = “fully applies”; 
α = 0.79). Second, cognitive load is a measure of the amount of mental effort required to complete a cognitive task (Plass et al., 2010; 
Salomon, 1984) and have frequently been identified to be associated to IVR experience (e.g., Albus et al., 2021; Andersen & Mak
ransky, 2021; Huang et al., 2023) as well as eye movement measures (e.g., Zargari Marandi et al., 2018; Zu et al., 2020). Perceived 

Fig. 1. View of the IVR Classroom. Note. Left: room map; top right: front view from the teacher’s desk; bottom right: view from the second row. 
Views on the right were displayed from the participant’s first-person perspective. 
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cognitive load was measured by the widely used mental effort rating scale by Paas (1992). Participants rated their “invested mental 
effort during the task” on a 9-point Likert scale (1 = very low mental effort to 9 = very high mental effort) (see Table A1 in Appendix A 
for all items). 

2.5. Statistical Aalyses5 

RQ1 inquired whether there are distinctive patterns of preservice teachers’ movement. This research question can be rephrased as a 
question of whether participants can be classified into subgroups according to their movement features during IVR teaching. This is a 
classic unsupervised learning problem: “finding groups in data without the help of a response variable” (Tibshirani et al., 2001, p. 411). 
Clustering is a collection of exploratory data analysis methods developed to solve this kind of problem. It is widely used to determine 
the naturally distinct groupings of individual observations based on their feature vector. Clustering methods have been used, for 
instance, to identify high-risk populations with gene expressions (Kerr et al., 2008), to partition customer interests with search queries 
(Mecca et al., 2007), and to group unique physical behavior patterns (Leech et al., 2014). K-means clustering is the most widely 
accepted clustering algorithm when all the features are quantitative variables (Hastie et al., 2001), which was the case in the present 
study. We therefore employed K-means clustering with preservice teachers’ spatial-temporal features of movement sequences. All 
analyses were conducted in R version 4.1.2 (R Core Team, 2021) with spatstat (Baddeley et al., 2016), FactoMineR (Lê et al., 2008), 
factoextra (Kassambara & Mundt, 2020), fpc (Hennig, 2020), and lme4 (Bates et al., 2015). 

The starting point of K-means clustering is to select and produce a feature vector that captures the characteristics of interest for a 
certain observation (see Fig. 2 for an overview of steps). As described in the Measures section, eight commonly used summary statistics 
that capture the characteristics of physical movement as a point pattern process were used in the feature vector (see Table 2). All 
summary statistics were then scaled to have a mean of zero and standard deviation of one (James et al., 2013). 

With these eight summary statistics, we needed to further reduce the dimensionality of the feature space using principal component 
analysis (PCA). Dimension reduction with PCA is essential to optimize the process of searching for solutions to the K-means algorithm 
when the original feature space is large (James et al., 2013; Xu et al., 2015). The number of PCA components to be included could be 
determined through a combination of the scree plot and rule of thumb approach (Hastie et al., 2001) (see Appendix B for more details). 

In the next step, we took a data-driven approach to initiate the K-means clustering with two methods: Both the scree plot of the total 
within sum of square (WSS) and the gap statistic were considered when estimating the optimal number of clusters to initiate K-means 
clustering. The number of clusters was determined by a) locating the turning point at which adding another cluster does not sub
stantially reduce the WSS (Hastie et al., 2001), and b) maximizing the differences, that is, the gap between the observed and expected 
values of log WSS (Tibshirani et al., 2001) (see Appendix B for details). 

As the last step to answer RQ1, the quality of the partitioning generated by K-means clustering was validated with commonly used 
internal validation measures. Internal measures assess the quality of the clustering result without referring to external information that 
is suitable for an unsupervised learning task such as ours (Liu et al., 2010). First, the silhouette index (S) was used to quantify the 
pairwise difference of intra- and inter-cluster distances. Observations with a large S that is closer to 1 are well clustered. Second, the 
S_Dbw index (S_Dbw) measures the inter-cluster separation (Halkidi & Vazirgiannis, 2001). A smaller S_Dbw therefore indicates a better 
clustering result. 

After distinctive subgroups based on preservice teachers’ movement features were identified and validated, we examined whether 
the subgroups differed in visual attention performance (RQ2). We used linear mixed (-effects) modeling (LMM) to evaluate the effect of 
cluster assignment as well as covariates on participants’ visual attention performance. 

Table 2 
Descriptions of Point Pattern Summary Statistics.   

Summary statistic (short code) Description 

1 Clark-Evans index (CE) Clark-Evans index of movement point pattern is a scale-invariant measure of point aggregation. Interpreted roughly as 
standardized nearest neighbor distance, thus smaller CE between 0 and 1 means higher aggregation. 

2 r of g(r) = 1 (r) r value of movement point pattern when pair correlation function g(r) = 1 represents size of the point cluster. 
3 Mean fixation-location distance 

(dist_em_m) 
Mean distance between fixation location and participant location. 

4 SD fixation-location distance 
(dist_em_sd) 

Standard deviation of the distances between fixation location and participant location. 

5 Mean location distance 
(dist_loc_m) 

Mean distance between consecutive participant locations. 

6 SD location distance (dist_loc_sd) Standard deviation of the distances between consecutive participant locations. 
7 Mean dwell duration (dwe_dur_m) Mean duration of stay in one location. 
8 SD dwell duration (dwe_dur_sd) Standard deviation of the durations of stay in one location.  

5 Data and primary analyses are available on the Open Science Framework: https://osf.io/23w68/. 
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3. Results 

3.1. RQ1: Identify Movement Patterns 

According to the steps outlined in Fig. 2, we first produced the movement feature vector based on eight summary statistics that 
described the teachers’ movements as point pattern processes (see Table 3 for descriptive statistics). We then reduced the dimen
sionality with PCA (see Table A2 in Appendix A). Based on the scree plot and rule of thumb, the first two principal component score 

Fig. 2. Flowchart of K-Means Clustering Steps. Note. For a similar representation, see Ivanová et al. (2022, p. 4).  
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Table 3 
Descriptive of Movement Summary Statistics.   

Cluster CE r dist_em_m dist_em_sd dist_loc_m dist_loc_sd dwe_dur_m dwe_dur_sd 

Mean 1 0.042  1.429 8.369  4.344 0.183  0.936  32.662  44.084  
2 0.081  1.784 8.404  4.480 0.352  1.227  16.368  19.824  
3 0.121  1.838 7.067  4.288 0.761  2.292  8.701  8.672  

Mean Diff. 1–2 − 0.038 ** − 0.355 − 0.034  − 0.137 − 0.169 ** − 0.292  16.294  24.259 * 
1–3 − 0.079 *** − 0.409 1.302  0.056 − 0.578 *** − 1.356 ** 23.961 * 35.412 ** 
2–3 − 0.041 * − 0.054 1.336 *** 0.193 − 0.409 ** − 1.064 ** 7.667 * 11.152 * 

Median 1 0.041  1.381 7.973  4.207 0.200  1.140  26.667  43.603  
2 0.086  1.724 8.461  4.430 0.375  1.357  15.059  21.288  
3 0.119  1.738 7.093  4.229 0.810  2.557  8.000  9.395  

SD 1 0.013  0.531 1.115  0.395 0.068  0.487  11.542  13.270  
2 0.021  0.482 0.575  0.305 0.075  0.452  5.825  8.698  
3 0.024  0.331 0.301  0.302 0.225  0.498  2.750  2.927  

Min. 1 0.028  0.820 7.553  3.871 0.070  0.149  23.273  27.625   
2 0.050  1.150 7.231  4.111 0.226  0.176  8.533  8.760   
3 0.082  1.451 6.538  3.942 0.466  1.510  4.655  3.571  

Max. 1 0.062  2.208 10.300  4.923 0.254  1.393  51.200  60.010   
2 0.117  2.839 9.168  5.063 0.442  1.588  26.600  34.063   
3 0.151  2.306 7.378  4.732 1.027  2.874  13.474  11.659  

Note. N = 21, n1 = 5, n2 = 9, n3 = 7. *p < .05. **p < .01, ***p < .001. Multiple comparisons were corrected with Games-Howell method. Cluster 1 = immobile, 2 = anchored, 3 = dynamic. 
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vectors that explain 71% of the variation were chosen for the next step (see Fig. 3). 
Based on the result of the WSS and gap statistic plot (see Fig. 4), we initiated K-means clustering with three clusters and 25 it

erations to generate a classification. The K-means algorithm successfully differentiated three distinctive movement patterns. The 
quality of the clustering result was validated with a large Silhouette index of 0.85 and a small S_Dbw of 0.09. Therefore, according to 
the steps illustrated in Fig. 2, we successfully identified distinctive subgroups of preservice teachers based on their movement features. 

We next inspected the characteristics of these clusters (numbered as clusters 1–3; C1–C3). First, we did not find any significant 
group differences by variables self-reported in the questionnaire including age, A-level grade, semester, self-rated classroom man
agement and VR experience, self-rated preparedness for the task, self-efficacy in classroom management and cognitive load (see de
scriptives in Table A1). When all recorded fixations were examined, the group differences in fundamental eye movement metrics were 
likewise not significant: overall number of fixations (nC1 = 1540, nC2 = 1677, nC3 = 1323), average fixation duration in seconds (MC1 =

0.87, SDC1 = 0.90, MC2 = 0.82, SDC2 = 0.91, MC3 = 0.84, SDC3 = 1.09), and average gaze direction in degrees (MC1 = 15.43, SDC1 =

1.45, MC2 = 16.04, SDC2 = 2.23, MC3 = 14.53, SDC3 = 1.82). 
Second, the overall movement characteristics of each cluster were examined. From initial visual examination (Fig. 5), C3 appeared 

to have more dispersed locations (points less aggregated) across the classroom compared to C1 and C2. C3 also moved to the back rows 
more often, while C1 and C2 stayed mostly in the front section. We then compared the eight summary statistics of movement features 
through multiple comparison (Table 3). The results were consistent with the initial visual inspection. To start, C3 had significantly 
larger CE than C1 (t(9.4) = − 7.36, p < .001) and C2 (t(12) = − 3.54, p = .011), which denoted less point aggregation and stronger 
dispersion of locations visited. This means the distribution of locations was less clumped and more separated, with longer distances in 
between. The size of point clusters did not differ significantly among the three groups, meaning that there was no evidence that 
teachers differed in the ranges of physical locations visited. On average, C3 had greater distances between fixation location and 
physical location in the classroom (dist_em_m) than C1 (t(4.4) = 2.55, p = .044) and C2 (t(12.56) = 6.00, p < .001), meaning that C3 
looked at events that were further away from where they were standing, i.e., their immediate peripersonal spaces. Next, C3 had greater 
distances between consecutive locations (dis_loc_m) than C1 (t(7.4) = − 6.40, p < .001) and C2 (t(7) = − 4.61, p = .006). C3 seemed to 
be “jumping around” to points further away in the room than the other two clusters. Finally, C3 spent significantly shorter periods of 
time in one place (dwe_dur_m) than C1 (t(4.3) = 4.55, p = .019) and C2 (t(11.9) = 3.48, p = .012). 

Based on these unique characteristics, we designated the movement patterns of the three clusters as immobile (C1), anchored (C2), 
and dynamic (C3). In summary, immobile teachers restricted their movement to the area behind the teacher’s desk and rarely ventured 
out to other locations in the classroom. Anchored teachers visited different locations but spent most of their time at the very front of the 
classroom. Dynamic teachers were found to have an overall more dispersed distribution of locations. They went to locations that were 
further away from the teacher’s desk, fixed their gaze on points that were further from where they were standing, and moved around 
the classroom to places that were further apart, spending much less time overall in any one location. 

3.2. RQ2: Movement Patterns and Visual Attention Performance 

After we identified three distinctive clusters of preservice teachers who had unique movement features, we then examined sub
groups’ visual attention performance of the subgroups. Again, visual attention performance was operationalized as three measures: the 
number of fixations on each student disruption as they unfold, the time to first fixate and the total duration of fixations on such 
disruption. 

First, none of the self-reported constructs (see Table A1 for descriptions) besides classroom management self-efficacy and perceived 

Fig. 3. Proportion of Variance Explained (PVE) Plot Against Each Principal Component. Note. The elbow appeared after the second principal 
component, which indicated a notable decrease in the variance explained by more than two principal components. 
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cognitive load were significantly correlated with the three visual attention performance measures. Self-efficacy in classroom man
agement was significantly correlated with number of fixations (r = 0.09, p = .006) and fixation speed (r = − 0.12, p < .001). Perceived 
cognitive load was also significantly correlated with number of fixations (r = − 0.08, p = .02) and fixation speed (r = 0.10, p = .005). 
These covariates were used to construct the LMM model for evaluating the effect of cluster assignment as well as covariates on visual 
attention performance. 

As shown in the model summary in Table 4, the dynamic pattern subgroup had significantly better visual attention performance 
than the immobile and anchored subgroups: The dynamic subgroup had a significantly higher number of fixations on each student 
disruption (MC1 = 0.61, SDC1 = 1.05, MC2 = 0.69, SDC2 = 1.10, MC3 = 1.01, SDC3 = 1.26); significantly faster fixation speed (time to 
first fixation in seconds) on each disruption (MC1 = 12.63, SDC1 = 4.08, MC2 = 12.18, SDC2 = 4.25, MC3 = 11.42, SDC3 = 4.17), as well 
as significantly longer total fixation durations (in seconds) on each disruption (MC1 = 0.55, SDC1 = 1.35, MC2 = 0.64, SDC2 = 1.28, MC3 
= 0.93, SDC3 = 1.73). These effects are illustrated in Figs. 6–8. A post hoc analysis showed no significant differences in visual attention 
performance between immobile and anchored patterns. 

In terms of the covariates, we found that only participant’s perceived cognitive load of the teaching task in IVR was significantly 

Fig. 4. Scree Plots f Total Within Sum of Square (WSS) and Gap Statistic.  

Fig. 5. Location Distribution Separated by Cluster Assignment. Note. N = 21, n1 = 5, n2 = 9, n3 = 7. Each dot represents a teacher’s location sampled 
at each second. The dots in each rectangle represent locations of all teachers in that cluster. The bottom of the rectangle is the front of the classroom. 
Cluster 1 = immobile, 2 = anchored, 3 = dynamic. For more details of the room map, see Fig. 1. 
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Table 4 
Summary of the Linear Mixed-Effects Model of Visual Attention Performance.   

Number of fixations Time to first fixation Fixation duration 

Terms β̂ SE (β̂) df t  β̂ SE (β̂) df t  β̂ SE (β̂) df t  
Cluster 1–2 0.030 0.103 836 0.293  0.061 0.38 836 0.160  0.042 0.132 836 0.316  
Cluster 1–3 − 0.380 0.100 836 − 3.797 *** 1.043 0.369 836 2.824 * − 0.402 0.128 836 − 3.127 ** 
Cluster 2–3 − 0.410 0.097 836 − 4.221 *** 0.982 0.359 836 2.739 * − 0.444 0.125 836 − 3.555 *** 
Self-efficacy 0.034 0.097 836 0.353  − 0.531 0.358 836 − 1.485  − 0.211 0.124 836 − 1.693  
Cognitive load − 0.066 0.025 836 − 2.602 ** 0.198 0.093 836 2.128 * − 0.080 0.032 836 − 2.478 ** 

Note. Cluster 1 = immobile, 2 = anchored, 3 = dynamic. *p < .05. **p < .01, ***p < .001. 
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and negatively associated visual attention performance measures: higher cognitive load was related to lower number of fixations (β̂ =
− 0.07, t(836) = − 2.60, p = .009), longer time to first fixation (β̂ = 0.20, t(836) = 2.13, p = .009), and shorter fixation duration (β̂ =
− 0.08, t(836) = − 2.48, p = .013) on disruptions (see Figs. 6–8). 

4. Discussion 

The results of the present study demonstrate that there are indeed unique and differentiable movement patterns among preservice 
teachers. Based on K-means clustering of spatial point process statistics, we were able to identify three movement patterns with 
increasing levels of dispersion, which we labeled immobile (C1), anchored (C2), and dynamic (C3) movement patterns. Immobile 
teachers rarely leave their desks to other areas of the classroom. Although anchored teachers do move left and right, they primarily 

Fig. 6. Estimated Marginal Means of Number of Fixations Predicted by Cluster. Note. Y-axis is the total number of fixations on a disruption. Cluster 
1 = immobile, 2 = anchored, 3 = dynamic. Error bars represent 95% confidence intervals. 

Fig. 7. Estimated Marginal Means of Time to First Fixation Predicted by Cluster. Note. Y-axis is the time to first fixate on a disruption. Cluster 1 =
immobile, 2 = anchored, 3 = dynamic. Error bars represent 95% confidence intervals. 

Fig. 8. Estimated Marginal Means of Fixation Duration Predicted by Cluster. Note. Y-axis is the total durations of all fixations on a disruption. 
Cluster 1 = immobile, 2 = anchored, 3 = dynamic. Error bars represent 95% confidence intervals. 
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remain at the front of the classroom. In contrast, dynamic teachers disperse their presence more evenly throughout the classroom, 
moving frequently to distant locations, looking at locations further away from their standing positions, and spending less time in any 
one place. Among the three movement patterns, dynamic teachers were found to perform best at visually fixating on disruptions 
selectively (number and duration of fixations) and at doing so in a timely fashion (fixation speed) after controlling for confounding 
variables including expertise level, classroom environment and events, and teacher’s demographic background. Furthermore, we 
observed that teachers who reported a high level of cognitive load had lower visual attention performances. 

Why was the dynamic movement pattern associated with better visual attention performance? One possible explanation comes 
from the research on spatial attention, which differentiates between overt attention—where one’s eyes move towards and remain 
fixated on a target—and covert attention—where attention is directed toward something on the periphery without actually fixating on 
it (Carrasco, 2011). Covert attention is a means of monitoring the environment and informing subsequent eye movements (overt 
attention) toward relevant events—for example, a student’s sudden misbehavior in the classroom. As covert attention can be directed 
to more than one spot in parallel (Lamy & Tsal, 2001), activation of covert attention often leads to faster detection of a visual stimulus 
(Koivisto et al., 2004). When navigating a space, people generally deploy covert attention to their surroundings: They scan their 
environment without fixating on particular objects (Franchak & Adolph, 2010). In the teaching context, a dynamic movement pattern 
means more attempts to navigate the classroom, which will likely necessitate more active, covert attention to monitor the environment 
and a higher likelihood of detecting the disruption. 

Another possible explanation stems from the research on visuomotor control, especially the investigation of peripersonal space. 
Visual processing is biased towards objects and events that occur near the body (McManus & Thomas, 2020), leading to better visual 
attention performance (Brozzoli et al., 2014). The reach of peripersonal space is subject to the influence of training (Thomas, 2017). 
For instance, the peripersonal space around a person’s hands could extend to the adjacent space of hand-held tools when the individual 
has undergone training and practice in the tools’ use (McManus & Thomas, 2020). Peripersonal space can also be extended through 
movements. Noel et al. (2015) compared participants’ peripersonal spaces when standing still versus walking on a treadmill and found 
that this space was extended from about 65 cm when standing still to about 165 cm while walking. Dynamic teachers who move about 
more actively may therefore have a larger peripersonal space, allowing them to be sensitive to changes in larger areas. 

The discovery that the dynamic movement pattern is associated with the best visual attention performance has significant im
plications for the understanding of teacher-student interactions and instructional quality. Researchers were aware as early as the 1970s 
that teachers engage more with students seated at the front and center of the classroom (Adams & Biddle, 1970). This action zone 
dominates the majority of teacher’s attention (Smidekova et al., 2020) and communications with students (Jones, 1990). Students in 
the action zone also exhibit higher achievement (Montello, 1988), better learning outcomes (Blume et al., 2019), and more positive 
attitudes toward the teacher (Stires, 1980). The classrooms sampled in these studies had the traditional grid layout that discouraged 
teachers’ free movement away from the front of the classroom, resulting in a consistently T-shaped action zone. The focus of the studies 
was primarily on this seating arrangement, rather than on the teacher’s movement. 

Our findings suggest that the action zone is not a static region within the classroom or a fixed group of students but a dynamically 
changing space around the teachers’ bodies, akin to the conceptualization of peripersonal space. More dynamic movement in the 
classroom may easily break down the T-shaped action zone and allow the teacher to better engage with and support more students. 

The current study also attempted to fill a gap in the research on teachers’ professional development. Movement has often been 
considered an auxiliary behavioral measure that provides little information on the instructional process. Yet we found that preservice 
teachers exhibit unique movement patterns that are closely related to their visual attention performance, indicating a need for 
differentiated support for teachers based on their movement patterns—especially those with an immobile movement pattern. Since 
teachers can be classified based on the features of their movement during a short instructional task, this result could be used in the 
future to train classifiers for the autoclassification of movement patterns. 

The additional finding that high cognitive load was negatively associated with all three metrics for visual attention performance 
corresponds with previous findings that cognitive load can be reliably measured through eye tracking (e.g., Duchowski et al., 2018; 
Wang et al., 2014; Zu et al., 2020). For instance, studies have shown that lower mental effort and cognitive processing is associated 
with shorter fixation durations on stimulus (Nuthmann & Henderson, 2012) Our finding demonstrated the potential for eye tracking in 
IVR to function as a sensitive, non-invasive measure of cognitive load in realistic teaching scenarios. This could inform the devel
opment of interventions aimed at managing cognitive load, thereby enabling teachers to maintain optimal visual attention focus 
during their everyday work. 

Finally, the present study showcases that the potential of IVR classroom extends beyond teacher training. As a configurable 
environment, the IVR classroom has established itself as a uniquely suited experimental testbed for both teacher and student behaviors 
(Blume et al., 2019; Huang et al., 2021, 2022). The present study builds on previous evidence, showing the usefulness of IVR in 
collecting process-based, low-inference measures that provide rich and unbiased insight into teachers’ experience. 

4.1. Limitations and Future Directions 

One limitation of this study is that it did not find any a priori variables linked to the movement patterns identified, including 
preservice teachers’ experience in classroom management. Individual traits such as personality have been shown to be related to 
movement patterns (e.g., Ai et al., 2019; Götz et al., 2020; Oishi & Choi, 2020). A valuable direction for future research would 
therefore be to examine whether extroverted teachers exhibit more dynamic movement patterns. An additional pertinent aspect to 
consider is the differentiated emphasis of preservice teachers on various aspects of instruction, such as prioritizing classroom man
agement versus delivering lectures. If a preservice teacher were to prioritize the presentation aspect of their work, they may position 
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themselves in closer proximity to the projection screen, resulting in reduced visual attention towards students’ behaviors. Future 
research that evaluates the teacher’s emphasis during instruction will be useful in gaining a deeper understanding of the individual 
differences in visual attention performance during instruction. 

As the sample included only preservice teachers who had not taught in real-life classrooms, the relationship between expertise level 
and movement pattern as well as their joint influence on visual attention performance is not yet known. Given that expert teachers 
usually perform better in visual attention than novice teachers, it would be intriguing to examine whether more experienced teachers 
move in a different way than novice ones. 

Given the correlational nature of this investigation, it is not yet possible to claim whether one movement pattern is superior to 
others. Therefore, our results do not directly lead to inferences about possible interventions. Further experiments would be needed to 
substantiate the potential casual relationships between movement patterns and visual attention performance to answer whether we 
should explicitly cultivate certain movement patterns. Furthermore, causal research will enable the investigation of whether the 
relationship between movement pattern and visual attention performance is moderated by high-level factors pertaining not only to 
perceiving disruptions, but also to reasoning and interpreting them to achieve “withitness”—the ability to maintain a continuous 
awareness of classroom events and communicate this awareness to students (Kounin, 1970). This proposed research direction holds 
significant promise as it will facilitate understanding and analyzing the complex cognitive processes involved in teachers’ professional 
vision. 

In the current study, teachers’ physical movement was depicted as a two-dimensional point process that captures their macro- 
motion. Due to the limitations of motion tracking in IVR, we did not measure the micro-motion, especially body rotation on a ver
tical axis, which might also be highly relevant for teacher’s visual attention. For the dynamic movement pattern to be advantageous for 
noticing classroom events, for instance, teachers should also demonstrate head movement or rotate their bodies along the vertical axis 
to avoid their students from being positioned behind them. External validation from physical reality is also needed to substantiate the 
current findings about preservice teachers’ movement patterns and visual attention performance. This is particularly crucial given that 
the users can move with teleportation inside the IVR environment which is not natural in physical reality. With more wearable motion 
trackers readily available, collecting process-based movement data from real-life classrooms is now attainable. 

Although the present study has made valuable strides in understanding the teacher’s in-situ visual attention performance, we also 
relied on a specific operationalization of visual attention performance which may not encapsulate the full range of visual behaviors 
that occur in a classroom setting. In future research, it would be beneficial to investigate different operationalization schemes, 
including diverse eye movement measures (e.g., refixations, pupil size, blink rate), to develop a more comprehensive understanding of 
teacher’s visual attention. 

4.2. Conclusions 

The present study is the first in the field to quantitively distinguish the unique characteristics and patterns of teachers’ body 
movement using IVR technology. We found that not only are there prominent individual differences in how preservice teachers move 
around the classroom; these movement patterns are also significantly associated with teachers’ actual visual attention performance 
after controlling for confounding variables such as expertise level, classroom environment and events, and teacher demographic 
background. The dynamic movement pattern that showed the best visual attention performance was signified by more evenly 
distributed locations, longer travel distance, and less time in one place. Overall, this study advances theoretical knowledge about 
teachers’ visual cognition and instructional behavior in realistic classroom situations based on its novel data collection method 
(standardized IVR classroom) and data sources (the combination of eye movement and movement data). 
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Appendix A  

Table A1 
Questionnaire Items and Descriptives  

Construct Item M/SD 
(missing) 

Range (scale range) 

Age How old are you? 22.20/3.85 
(1) 

18–33 

A-level grade Please indicate your A-level (high school) grade point average—for instance, 
2.3. 

2.07/0.63 
(2) 

1.0–3.1 (1.0–4.0) 

Semester of study What semester of your teaching degree program are you in? 4.29/3.24 1–12 
Classroom management 

experience 
How many classroom management courses have you taken so far (including 
courses covering classroom management alongside other topics)? 

1.05/0.92 0–3 

VR experience What experience do you have with virtual reality? 1.25/0.44 
(1) 

1–2 (1 = none; 3 = a lot) 

Preparedness How intensively did you prepare for the exercise? 3.24/1.18 1–5 (1 = not at all; 7 = very intense) 
Classroom management 

self-efficacy 
I know different routines or rituals to bring calm to the classroom. 2.57/0.47 1.20–3.00 (1 = does not apply at all; 

4 = fully applies) I am confident that I can control disruptive behavior in class. 
I can get students to follow rules in class. 
I can get a loud, disruptive student to be quiet. 
I am confident that I can manage not to let a few disruptive students ruin an 
entire lesson. 

Perceived cognitive load Please rate your invested mental effort during the teaching task. 5.14/1.91 1–9 (1 = very low mental effort; 9 
= very high mental effort) 

Note. N = 21.  

Table A2 
Summary of Principal Component Analysis   

Eigenvalue Percentage of variance Cumulative percentage of variance 

Component 1 4.319 53.982 53.982 
Component 2 1.383 17.283 71.265 
Component 3 1.183 14.783 86.048 
Component 4 0.553 6.913 92.961 
Component 5 0.370 4.621 97.582 
Component 6 0.127 1.592 99.174 
Component 7 0.039 0.491 99.665 
Component 8 0.027 0.335 100.000  

Appendix B 

Dimension Reduction with PCA 

The motivation of PCA-guided dimension reduction is to perform K-means clustering on only a few principal component score 
vectors instead of the entire feature space. Both scree plot and the rule of thumb were commonly used to decide the PCA components 
retained (Hastie et al., 2001). A scree plot that displays the percentage of variance explained (PVE) by each principal component 
against the number of principal components could be used to detect the turning point (the elbow) at which the marginal increase in 
explained variance begins to taper off. Therefore, this turning point could be the number of PCA components to retain in the feature 
space. On the other hand, the rule of thumb approach suggests retaining components that cumulatively explain a significant portion 
(70–90%) of the variance (Jolliffe & Cadima, 2016). The conjunction of these two methods decided the number of PCA components to 
retain for performing the K-means clustering. 

K-Means Clustering Initiation 

The scree plot of the total within sum of squares (WSS) and the gap statistic are two widely accepted methods of estimating an 
optimal K-means clustering initiation number. The WSS scree plot is similar to the scree plot of PVE: the potential number of clusters 
was plotted against the intra-cluster dissimilarity measure––the total within sum of squares (WSS). The number of clusters was 
determined by locating the elbow from which adding another cluster does not markedly reduce the WSS (Hastie et al., 2001). Another 
widely used data-driven method to optimize K-means initiation is gap statistic (Tibshirani et al., 2001). The gap refers to the difference 
between the observed and expected values of log WSS. The optimal number of clusters is estimated to maximize this gap. 
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Calculation of Fixation Location in IVR 

The typical way of determining fixation location in IVR is the ray-casting method (Chen & Hou, 2022; Mansouryar et al., 2016). To 
determine where in the virtual world a user is looking at, gaze ray-casting method utilizes the combined data of the user’s head 
position, head orientation, and gaze direction from each frame (Alghamdi & Alhalabi, 2019; Hasenbein et al., 2022). Specifically, a 
head direction vector linearly interpolated to 250 Hz and the associated gaze direction vector relative to the virtual world are used to 
locate the intersection point with the reconstructed virtual world, which represents the fixation location in relation to the virtual world 
(Anderson et al., 2021). 
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Gegenfurtner, A., Lehtinen, E., Helle, L., Nivala, M., Svedström, E., & Säljö, R. (2019). Learning to see like an expert: On the practices of professional vision and visual 
expertise. International Journal of Educational Research, 98, 280–291. https://doi.org/10.1016/j.ijer.2019.09.003 

Gold, B., & Holodynski, M. (2017). Using digital video to measure the professional vision of elementary classroom management: Test validation and methodological 
challenges. Computers & Education, 107, 13–30. https://doi.org/10.1016/j.compedu.2016.12.012 
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Laasonen, M., Salomaa, J., Cousineau, D., Leppämäki, S., Tani, P., Hokkanen, L., & Dye, M. (2012). Project DyAdd: Visual attention in adult dyslexia and ADHD. Brain 

and Cognition, 80(3), 311–327. https://doi.org/10.1016/j.bandc.2012.08.002 
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