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Abstract

An investigation is made of the generalized Cesaro operators C;, for ¢ € [0, 1], when they act
on the space H (D) of holomorphic functions on the open unit disc D, on the Banach space
H® of bounded analytic functions and on the weighted Banach spaces H° and HvO with
their sup-norms. Of particular interest are the continuity, compactness, spectrum and point
spectrum of C; as well as their linear dynamics and mean ergodicity.
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1 Introduction and preliminaries

The (discrete) generalized Cesaro operators C;, for t € [0, 1], were first investigated by
Rhaly [25, 26]. The action of C; from the sequence space w := CNo into itself, with Ng :=
{0, 1,2, ...}, is given by

(t”xo + x4+ 4xy,
Ctx =

, = € w. 1.1
ntl )neNO X (xn)neNo w (L.1)
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For t = 0 and with ¢ := (n]?)neN0 note that Cy is the diagonal operator

Xn
Dyx = , x=(x € w, 1.2
7 (l’l T 1)n€NO ( n)neNo ( )

and, for ¢+ = 1, that C| is the classical Cesaro averaging operator

Cix = <x0—|—x1+---

+ xn
) = € w. 1.3
P )neNO X (xn)nENo @ (L.3)

The behaviour of C; on various sequence spaces has been investigated by many authors. We
refer the reader to [25-27], to the recent papers [28, 30, 31] and to the introduction of the
papers [5, 13] and the references therein. The operator C; was thoroughly investigated on
weighted Banach spaces in [2]; see also [12]. Certain variants of the Cesaro operator C are
considered in [9, 16].

Our aim is to investigate the operators C;, for ¢ € [0, 1], when they are suitably interpreted
to act on the space H (D) of holomorphic functions on the open unit disc D := {z € C :
|z| < 1}, onthe Banach space H° of bounded analytic functions and on the weighted Banach
spaces H° and H? with their sup-norms. The space H (D) is equipped with the topology
7. of uniform convergence on the compact subsets of ID. According to [21, §27.3(3)] the
space H (D) is a Fréchet—Montel space. A family of norms generating 7. is given, for each
0<r<1,by

qr(f) == sup |[f(2|, f e HD). (1.4)
lzl=r
A weight v is a continuous, non-increasing function v: [0, 1) — (0, c0). We extend v to
D by setting v(z) := v(|z|), for z € D. Note that v(z) < v(0) for all z € D. Given a weight
v on [0, 1), we define the corresponding weighted Banach spaces of analytic functions on D
by

={f e HD) : | flloow = SUHP)If(Z)Iv(Z) < oo},

and
={feHD): | ‘lin}f |f(@)v(z) =0},
both endowed with the norm || - [|co,y- Since || flloo,v < v(0)]| flloc Whenever f € H™, it

is clear that H>° C H{*° with a continuous inclusion. If v(z) = 1 for all z € D, then H®
coincides with the space H° of all bounded analytic functions on I with the sup-norm || - || oo
and H;; 0 reduces to {0}. Moreover, H>° € H (D) continuously. Indeed, fix 0 < r < 1. Then
for |z] < r and so (1.4) implies that

1
ar(f) = sup L@ L aire) < —nfnoo v f€H®

lz|<r v(z) ( ) |z|<r

0 <70 < W

We refer the reader to [10] for a recent survey of such types of weighted Banach spaces and
operators between them.
Whenever necessary we will identify a function f € H (D) with its sequence of Tay-

lor coefficients f := (f(n)pen, (e, f(n) = % for n € Np), so that f(z) =
Yoo f(n)z", for z € D. The linear map ®: H (D) — w is defined by

@ (f =) f(n)z”) =f, feHMD).

n=0
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It is injective (clearly) and continuous. Indeed, for each m € Ny,

rm(x) ;= max |[xj|, x=(x;)jeN, € ®,
0<j<m

is a continuous seminorm in w. Fix 0 < r < 1, in which case

B f (@) Lf (@)

o (D = max = max — '
m(P(f)) = |f(])| 2700 Jyg)=r zJ/+1 ‘ T0sjsm = 2l

0<j<m

1
= max —q,(f) = —mqrm,

0<j<m rJ

for each f € H (D) because ’ij < r% forall 0 < j < m. Of course, the increasing sequence

of seminorms {r,, m € Ny} generates the topology of w.

We first provide an integral representation of the generalized Cesaro operators C; defined
on H(D), forz € [0, 1).So, fixt € [0, 1) and define C,: H(D) — H(D) by C; f(0) := f(0)
and

1 4
Cif(z):= 2/0 lf_(%dé, z e D\ {0}, (1.5)

for every f € H(D). It turns out that C; is continuous on H (D); see Proposition 2.1. More-
over, the discrete Cesaro operator C; : @ — w, when restricted to the subspace ®(H (D)) C w
is transferred to H (D) as follows. For a fixed f € H(ID) we have f(§) = Z;O:o a&", for
& € D, with f = (an)nen, its sequence of Taylor coefficients. Since ﬁ = Z;ﬁo t"EM for
& € D, we can form the Cauchy product of the two series, thereby obtaining

f@) Z(Zt” ka)E", & eD.

n=0 k=0

Then (1.5) yields

n n—1
72Ci f(2) = / Z(Zt” kak)E"dé‘—Z<t il nj_l;_ +a")z”+1, zeD.

n=0 k=0

The interchange of the infinite sum and the integral is permissible by uniform convergence
of the series. This shows that C; f € H (D) also has the series representation

00 ~1

tag +1""Cay + -+ ay

Cif(m= E < "
n=0 n+l

=Y (€, (16)

n=0

n n—1 7
_Z<t FO+ 1 f)+ - +f(n>)zn

n=0 n+l

where the coefficients of the series are precisely as in (1.1). For the sake of clarity we will
denote the discrete generalized Cesaro operator C;: w — w by C;” and reserve the notation
C; for the operator (1.5) acting in H (ID). Note that Cj' = Dy, (see (1.2)). Moreover, Cy is
given by Co f(z) = %foz f(&)dég for z # 0 and Cof(0) = f(0), which is the classical
Hardy operator in H (D).

The main results for C; when acting in the Fréchet space H (D) occur in Proposition 2.1
(continuity), Proposition 3.3 (non-compactness), Proposition 3.7 (spectra) and Proposition
3.8 (linear dynamics and mean ergodicity). For the analogous information concerning C;
when acting in the weighted Banach spaces H° and HS see Proposition 2.4 and Corollary
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2.5 (continuity), Proposition 2.7 (compactness), Proposition 2.8 (spectra) and Proposition
3.2 (linear dynamics and mean ergodicity).

We end this section by recalling a few definitions and some notation concerning locally
convex spaces and operators between them. For further details about functional analysis and
operator theory relevant to this paper see, for example, [15, 18, 20-22, 29].

Given locally convex Haudorff spaces X, Y (briefly, IcHs) we denote by £(X,Y) the
space of all continuous linear operators from X into Y. If X = Y, then we simply write £(X)
for £(X, X). Equipped with the topology of pointwise convergence on X (i.e., the strong
operator topology) the IcHs £(X) is denoted by £;(X). Equipped with the topology t; of
uniform convergence on the bounded subsets of X the IcHs £(X) is denoted by £ (X).

Let X be alcHs space. The identity operator on X is denoted by /. The transpose operator
of T € L(X)isdenoted by T"; it acts from the topological dual space X’ := L(X, C) of X into
itself. Denote by X, (resp., by X //3) the topological dual X’ equipped with the weak* topology
o (X', X) (resp., with the strong topology B(X’, X)); see [21, §21.2] for the definition. It is
known that 7" € £(X]) and T’ € E(X/’s), [22, p. 134]. The bi-transpose operator (T”)" of T
is simply denoted by 7" and belongs to E((X:g);g).

Alinearmap 7: X — Y, with X, Y IcHs’, is called compact if there exists a neighbour-
hood ¢/ of 0 in X such that 7 (i/) is a relatively compact set in Y. It is routine to show that
necessarily T € L£(X, Y). We recall the following well known result; see [20, Proposition
17.1.1], [22, §42.1(1)].

Lemma 1.1 Let X be a IcHs. The compact operators are a 2-sided ideal in L(X).

Given a IcHs X and T € L(X), the resolvent set p(T; X) of T consists of all A € C
such that R(A, T') := (Al — T)~! exists in L(X). The set o (T; X) := C\p(T; X) is called
the spectrum of T. The point spectrum o, (T; X) of T consists of all A € C (also called
an eigenvalue of T') such that (A/ — T') is not injective. Some authors (eg. [29]) prefer the
subset p*(T'; X) of p(T'; X) consisting of all . € C for which there exists § > 0 such that
the open disc B(A,8) :={z € C: |z—A| <8} C p(T; X)and {R(i,T) : u € B(A,8)}is
an equicontinuous subset of £(X). Define o*(T'; X) := C\p*(T'; X), which is a closed set
with o (T; X) C o*(T; X). For the spectral theory of compact operators in IcHs” we refer to
[15, 18], for linear dynamics to [6], [17] and for mean ergodic operators to [23], for example.

2 Continuity, compactness and spectrum of C;

In this section we establish, for ¢ € [0, 1), the continuity of C;: H(D) — H(D) as well
as the continuity of C; from H® (resp., H°) into H* (resp., H;°). The same is true for
C;: H? — H? whenever lim,_, ;- v(r) = 0. It is also shown that the bi-transpose C;’ of
C; e E(H,?) is the generalized Cesaro operator C; € L(H°), provided that lim, , ;- v(r) =
0. For such weights v it also turns out that both C; € [Z(HS) and C; € L(H,°) are compact
operators (cf. Proposition 2.7); their spectrum is identified in Proposition 2.8. Of particular
interest are the standard weights v, (z) := (1 — |z])”,fory > O and z € D.

Proposition 2.1 For every t € [0, 1) the operator C;: H(D) — H (D) is continuous. More-
over, the set {C; : t € [0, 1)} is equicontinuous in L(H (D)).

Proof Fix f € H(D). Taking into account that C; f (0) = f(0), for all # € [0, 1) and, for
each r € (0, 1), that sup; -, |C; f(2)| = sup;—, |C; f(2)], the formula (1.5) implies, for
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Generalized Cesaro operators in weighted Banach spaces... 401

each z € D\{0}, that

S LSO gl o L @)
crel= || 1_t$d%“§ el max L
= Ty B O = Ty e e

because |1 —t&| > 1 —¢|&]| > 1 —|&| > 1 —|z|, forall || < |z|. It follows from the previous
inequality, for each r € (0, 1), that

1 1
qr(Cr f) = sup |G, f(2)] < sup [f(E) = ——qr(f);.
T gl<r I—r

Iz <r 1 -

see (1.4). This implies the result. ]
The following example will prove to be useful in the sequel.

Example 2.2 Consider the constant function fi(z) := 1, for every z € D, in which case
C; f1(0) = f1(0) = 1 forevery ¢ € [0, 1]. For t = 0, it was noted in Sect. 1 that Cy is

the Hardy operator. In particular, Cy f1(z) = 1, for every z € D. For ¢t € (0, 1], note that
C; f1(0) = 1 and

1 (% dg 1
thl(Z)=;/(; —r =—Elog(1—tz), z € D\{0}.

For t = 1 this shows, in particular, that C;(H*) ¢ H®°, which is well known. For an
investigation of the operator Cy acting in H we refer to [14].
Concerning ¢ € (0, 1), recall the Taylor series expansion

o0 Z"
—log(l—z2) = _, e D,
og( 2) Z§n+l z

from which it follows that

log(1 —tz) > n
— = 2", z e D\{0},
1z nX:(:)n—i-l \O)

with the series having radius of convergence % > 1. The claim is that ||C; fillco =

supi -1 |C f1(2)] = —"20=D Indeed, C, f; is clearly holomorhic in B(0, 1) := (¢ €
C : & < %} hence, continuous in B(0, %), and satisfies C; fi(1) = —w with
lim,_, ;- C; fi(r) = C; fi1(1). On the other hand, for every z € D\{0} and ¢ € (0, 1) we
have that

log(1 —tz) t" t" log(1 — 1)
C = |- < E "< E =— .
| ,fl (Z)| ‘ 1z B n=0 n 1 <= n=0 n 1 !

This completes the proof of the claim. Observe that |C; f1||cc > 1. Indeed, define y(¢) =
—log(1 — 1) —t,fort € [0, 1). Then y(0) = 0, lim,_, |- y(t) = coand y'(t) = llft —1=
ﬁ, for t € [0, 1). Since y'(¢) > 0, for r € (0, 1), it follows that y is strictly increasing

and 50 y (1) > 0 forall # € (0, 1). This implies that | C; fi o = —' U= > 1 for every
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t € (0, 1). On the other hand, for ¢ € (0, 1), the inequality Y oo " /(n + 1) < Y o2, 1"

_ log(1—1)
t

implies that < ﬁ So, we have shown that ||Co f1|lcc = 1 and

1
I <G fillee < ﬁ’ te(0,1).

We now turn to the action of C; in various Banach spaces. For t = 1 it was noted above
that Cy fails to act in H®°.

Proposition 2.3 For t € [0, 1) the operator C;: H® — H® is continuous. Moreover,
ICollgoo—s oo = 1 and

log(1 — 1)
IColl oo oo = —gf, e ).

Proof Let f € H™ be fixed. Then
] z
[Cof ()| = ‘*/ f(é)dé‘ < max [f(E)] = | fllco-
<Jo [§1<lz|
This implies that ||Co|| g g < 1. On the other hand, Cyp fi = f1 and so we can conclude
that || Co|| oo oo = 1.

Now let # € (0, 1). Then, for the parametrization £ := sz, for s € (0, 1), it follows from
[1 —stz] > 1 —|stz| > 1 — st that

f(é) ‘ ' fs2) /
‘ - S < max
| tf( )l ‘ té S 0 1—stz E|<iz ‘|f@:)|
1
ds log(1 —
< _ |
- ”f”""/o I—st . D1l
S0.Cr € LIH®) with [ €l g e < =BG BUL||C, filloo = — 7= Accordingly,
ICel oo oo = _log(#. D

Proposition 2.4 Let v be a weight function on [0, 1). For each t € [0, 1) the operator
Ci: HJ® — H* is continuous. Moreover, ||Co || ggo— oo = 1 and

log(1 — 1)
1 < 1C: o sige < —gf, 1 e, 1)

Proof Recall that C, f(0) := f(0) for each f € H(D) and ¢ € [0, 1]. Fix t € (0, 1). Given
f € H* and z € D\{0}, observe that

1
vanc =2 [ L6 s’ vo | [ lf_(sft)zds’
<U(Z)/ el /' VIS 6D
l—stzl “Jo |1 —stz|
< ||f||m/ ds ||f||m/] s
= W leew | =gy = [~ sl
=—Mnf||oo,v,

t|z]

@ Springer



Generalized Cesaro operators in weighted Banach spaces... 403

where we used that v(sz) = v(s|z]) > v(|z]) = v(z), fors € (0, 1), as v is non-increasing on
(0, 1) and that |1 —stz| > 1 —st|z], for s € (0, 1). According to the calculations in Example
2.2 we can conclude that

log(1 — t|z]) log(1
1C: Flloos = $Up 1€ £()1(2) < || flloo.0 SUP [—gi g7||f||oo ..
zeD zeD tz|
This implies that C, € L(H®) and ||C || oo e < —220=0
For t = 0 observe that
1
[Cof(2)] < / [f(s2)lds < max |f(§)] = —— max |f(&)|v(E) < 7||f||oo v
0 &<zl ( ) \&| Izl

as v(§) = v(z) whenever [§| = |z| with & € ID. This shows that ||Co|| ggo— e < 1. Since
Co f1 = f1, it follows that actually ||Coll goo— e = 1.

It remains to show that [|C; || g e > 1 for ¢ € (0, 1). To this end, fix r € (0, 1) and
consider the function go(z) := 17—1” = ZZOZO t"z", for z € . Then || gollco = ﬁ and so
go € H*® C H°. Moreover, for every z € D\{0}, it is the case that

oo =1 [ =t = 1] e e mee
1801 _Z/Q A—162 zlrd—16)], rzll—rz | 1-sz 50

It follows that ||golloo,y = [ICr&0lloc.,v = NICillHgo—mellg0lloo,» Which implies that

I1Cell e mge = 1. o

Corollary 2.5 Let v be a weight function on [0, 1) satisfying lim,_, - v(r) = 0. Foreacht €
[0, 1) the operator C; : Hl? — H,? is continuous and satisfies ||C; ||HL9—>H$ = [ Cell mgo— Hge-

Proof By Proposition 2.4 and the fact that H? is a closed subspace of HZ°, to obtain the
result it suffices to establish that C,(Hg) C Hg . To this effect, observe that H*®° C HB and
that H®° is dense in Hl?, as the space of polynomials is dense in Hl? ; see Section 1 of [11]
and also [7]. Proposition 2.3 implies that C,(H*®) € H* C HS. Since C; acts continuously
on H*, it follows that

C/(H?) = C,(H®) C C,(H®) C H?.

Moreover, lim,_, - v(r) = 0 implies that H® is canonically isometric to the bidual of HS ,
[8, Example 2.1], and that the bi-transpose C/': H® — HX® of C,;: H? — H? coincides
with C;: H° — HJ° (see Lemma 2.6 below), from which the identity ||C;||go_, go =
IC1 | o proe follows. o

Lemma 2.6 Let v be a weight function on [0, 1) satisfying lim, - v(r) = 0. For each t €
[0, 1), the bi-transpose C;': HY° — H® of C;: Hl? — H,? coincides with C;: H® — HJ°.

Proof By Proposition 2.3 and Corollary 2.5, together with the fact that H_° is canonically
isometric to the bidual of H?, both of the operators C/’ and C, act continuously on H°.

To show that the bi-transpose C;': H® — H° of C;: H,? — HS coincides with
C;: H® — H° we proceed via several steps.

First step Given f € H(D), its Taylor polynomials p(z) = Y% f(j)2/, 2 € D, for
k € Ny, converge to f uniformly on compact subsets of D. That is, py — f in (H(D), t.)
as k — oo. Accordingly, the averages of (pi)ken,, that is, the Cesaro means f,(z) :=
ﬁ Z?:O pj(z),for z € D and n € Ny, also converge to f in (H(D), 7.) asn — oo.
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404 A. A. Albanese et al.

Second step Lemma 1.1 in [7] implies, for every f € H.° and n € Ny, that || f;;|loc,v <
I fllco,v» Where f;, is the n-th Cesaro mean of f, as defined in the First step. Denote by U,
the closed unit ball of (H.°, || - [leo,v)- Then, for any given f € U,, its sequence of Cesaro
means satisfies (f)nen, € Uy and f, — fin (H(D), t.) asn — oo.

Third step With the topology of uniform convergence on the compact subsets of U,
denoted by ., let X := {F € (HS®)' : F|y, ist. — continuous } be endowed with the
norm || F| := sup{|F(f)| : f € Uy,}. Then [8, Theorem 1.1(a)] ensures that (X, || - ||) is a
Banach space and that the evaluation map W : HS® — X' defined by (W (f))(F) := (f, F),
for F € X and f € HZ°, is an isometric isomorphism onto X’ (where X’ is the dual Banach
space of (X, || - ||)). Moreover, by [8, Theorem 1.1(b) and Example 2.1] the restriction map
R: X — (H,?)’ given by F +— F| HO» is also a surjective isometric isomorphism. Therefore,

the spaces H;° and (HS )" are isometrically isomorphic, thatis, X and (Hg )’ are isometrically
isomorphic and hence, also H;° and (Hl?)” are isometrically isomorphic.

It is easy to see, since the Banach space X above is the predual of HS°, that the evaluation
map §; € X, forevery z € D, where §;: f +— f(z), for f € HS®, satisfies |(f, 8;)| <
Il f lloo.v/v(2). In particular, the linear span L of the set {§, : z € D} separates the points of
H$® = X' and hence, L is dense in X. Therefore, the pointwise convergence topology 7, on
H?® is Hausdorff and coarser than the w*-topology o (H°, X).

Fourth step The closed unit ball U, of H;° is a t.-compact set by Montel’s theorem,
as it is t.-bounded and closed. On the other hand, U, is also o (H°, X)-compact by the
Alaoglu-Bourbaki theorem. Since 7, |y, is coarser than 7|y, and Hausdorff, we can conclude
that 7,|y, = T.|y,. In the same way, it follows that 7, |y, = o (H°, X)|y,. Accordingly,
Olu, = Telu, = o (HE, X,

We are now ready to prove that (C;)” = C;. To show this, it suffices to establish that
(C))'" f =C, f forevery f € U,.

So, fix f € U,. With (f,)nen, as in the First step it follows from there that f, — f
in (H(D), t.) as n — oo and, by the Second step, that (f,,)nen, € Uyp. This implies that
Cifu » Cif in (HD), t.) asn — oo. Since C; € L(H®) and f € U,, it is clear that
C; f € H°.On the other hand, by the Fourth step the sequence ( f;,),en, also converges to f
in (H°, 0 (H®, X)) = (H®, o (HZ®, (H)Y)). Since (C)": (HY)". o (HY)", (HO)") —
(HY)", o ((H?)", (H?)) is continuous, [20, §8.6], that is, (C;)": (H®, o (H®, X)) —
(HS®, 0 (HX®, X)) is continuous, it follows that (C;)” f, — (C;)” f in (HS®, o (H®, X)) as
n — 00. Now, (f)nen, C H® € HY, as each f, is a polynomial, and (C,)" f, = C; f,
for every n € Ny. Moreover, the sequence C; f, — (C,)” f in (H(D), t,) as n — oco. Thus,
(C))" f = C, f as desired. O

Proposition 2.7 Let v be a weight function satisfying lim,_, - v(r) = 0. Foreacht € [0, 1),
both of the operators C;: HY° — H° and C; — Hl? — Hl? are compact.

Proof Fixt € [0, 1). Since Hl? is a closed subspace of H° and C,(HS) - H,? (cf. Corollary
2.5), it suffices to show that C;: H° — HJ° is compact. First we establish the following
Claim:

(*) Let the sequence (fy)nen C Hy° satisty || fulloo,w < 1 foreveryn € Nand f, — 0in
(H(D), t¢) forn — oo. Then C; f, — 0in H°.

To prove the Claim, let (f,),en C HJ° be a sequence as in (*). Fix ¢ > 0 and select

8 € (0, B), where f = min{1, 202, S0} Since {¢ € C |¢] < (1 — )} is a compact

subset of D, there exists ng € N such that

8, n=no.
A 1/ @®l <8, n=no
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Generalized Cesaro operators in weighted Banach spaces... 405

Recall that C; f,,(0) = f,(0) for every n € N. For z € D\{0} we have seen previously that
/ fn(sz) - ()/1 ? 1fa(s2)] bAGDI

|d s+ v(2) s =t
Denote the first (resp., second) summand in the right-side of the previous inequality by (A,)
(resp., by (B,)). Using the facts that |1 — stz| > 1 — st|z| > max{l —s,1 —1¢,1— |z|}, for
all s, ¢ € [0, 1) and z € D, and that v is non-increasing on [0, 1) it follows, for every n > n,
that fol_a | fu(s2)ds < (1 =8) maxjg|<—s) | [ (§)| (as [sz] < (1 —=0) foralls € [0, 1 —38])
and hence, that

V(|G fu(2)] = v(z)

0)(1 -6
Ay < XOUZD @) < .

1—1t |s\<1 B
On the other hand, for every n > ng, we have (as || f; [|co,» = SUPge v(&)| fn(&)] < 1) that

! 1
(Bn):/ v(2) v(sz)|fn<sz)|dS§/ Walloo.o o 8 &
1-s v(sz) |1 —stz] s 1—1 1-7 "2

It follows that ||C; fy lloc,» < € for every n > ng. Thatis, C; f, — 0in H° forn — oo and
so (*) is proved.

The compactness of C; € L(H_®) can be deduced from (*) as follows. Let ( f;,)pen C H°
be any bounded sequence. There is no loss of generality in assuming that || f[lco,v < 1 for
all n € N. To establish the compactness of C; € L(HS°) we need to show that (C; f;,)nen
has a convergent subsequence in H°.

Since HS° € H (D) continuously, the sequence ( f;)nen is also bounded in the Fréchet—
Montel space H (D). Hence, there is a subsequence g; := fy;, for j € N, of (f)nen and
f € H(D) such that g; — f in H(ID) with respect to z.. In particular, g; — f pointwise
on D. Since v(2)Ig;(2)] = v(2)|fu;(2)] < 1forallz € Dand j € N, letting j — o0
it follows that v(z)| f(z)| < 1 for all z € D, thatis, f € HS® with || fllec,y < 1. Let
hj = %(gj — f),for j € N. Then [|Aj|loc,y < 1,for j € N, and h; — 0 in H(D)

with respect to 7.. Condition (*) implies that C;2; — 0 in H° from which it follows that
C,fn/. =Cgj=Ci(gj— )+ Cif =2Ch;+C; f — C,fin HS®, as desired. m]

Proposition 2.8 Ler v be a weight function on [0, 1) satisfying lim,_, ;- v(r) = 0. For each
t € [0, 1) the spectra of C; € L(H®) and of C; € [,(Hl(,)) are given by

1
UPT(CT;HI?O)=UPT(CT;HE)={TH :mENo}, (21)
and .
o(Cry H®) = 0(Cy; HY) = {m “m eNo} U {0}. 2.2)

Proof Let t € [0, 1) be fixed. By [13, Lemma 3.6] we know that the point spectrum of

the operator C;’ € L(w) is given by 0,;(C’; w) = {erl : m € Ny} and, for each m €

No, that the corresponding eigenspace Ker(m—HI — C{) is 1-dimensional and is generated

by an eigenvector xbml = (xn ])neNo € ¢'. Since H,? € H® < H(D) with continuous
inclusions and ®: H(D) — w (cf. Sect. 1) is a continuous embedding, this implies that
o (Cy; H ) € 0y (Cy; H®) C {mJrl : m € Np}. Indeed, let f € H(D)\{0} and A € C

satisfy C, f = Af. Then Af(z) = X%, A /)" = 3°%, Af ()" and, by (1.6), we
have that (C; f)(z) = Y v o(C® f)nz". It follows that C® f = A f in » with f # 0 and so
h €0y (CPw) = {77 m e Ng).
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To conclude the proof, it remains to show that {m%r] :m e No} € 0,(Cy; H,?). To

establish this recall, for each m € Ny, that the eigenvector x™ e ¢! and hence, the function
gm(2) == Zg’;o(x[’”])nz” belongs to HU0 because 0 < v(z)|gm ()| < v(z)|x] [l forz e D
and lim,_, ;- v(r) = 0. Moreover, according to (1.5) and (1.6) we have, for each z € D, that

1
m+1

00 00 00
1 1

C — ce® [m] no_ [m] no_ mly n _ )

18m(2) n§=0( t X InZ n§=0( x" Dz mrl n§=0(x InZ ot 1gm (2)

Thus g, is an eigenvector of C; € L(H) corresponding to the eigenvalue ﬁ

The validity of o/ (C;: HY) = 0(C;; H{®) = {527 : m € No} U {0} follows from the fact

that C; is a compact operator on both spaces. O

We now investigate the norm of C; on HJ° for the standard weights v, (z) := (1 — |z])?,
for y > 0 and z € D, which satisfy lim,_, ;- v, (r) = 0.

Proposition 2.9 Lett € (0, 1) and y > 0.
(i) The operator norm || C, ||H1§’§—>Hu°$ =1, foreveryy > 1.

(i) Foreachy € (0, 1), the inequality ||C¢ gz —mze < min{—20=0 1} is valid

Proof We adapt the arguments given for the Cesaro operator Cy in the proof of [2, Theorem
2.3].
Lety > 0andr € (0, 1) be fixed. For f € H,j’f with [| f{leo,», = 1 we have
1

1 1
Crol=—| [ 182 ds‘ 5/ 6l o
0

Izl |Jo 1— stz 1 — st|z]

</1 If(sz)lds</1 ds 1 1-(-k
Sho T=sd ™ T o a=sa T T A=y ki

as z € D implies that 1 — st|z] > 1 — 5|z, for s € (0, 1). Accordingly,

, 1= (1= [z
vy DIC f (D=1 = 1zD"IC f(2)] < g z#0,

and hence,

1 1—(—=1zD)?

ICr flloov, < —sup ————.

Y zeD |z]
Define ¢(s) = M for s € (0,1] and ¢(0) = y, in which case ¢ is con-
tinuous. So, the previous inequality yields ||C,f||oo,vy < %, for all ||f||oo,vy < 1,
that is, ||C,||H3$%H3;: < % where My, = sup[o.1)#(s). Proposition 2.4 yields that
U< Gl —mze < — 108020 for t € (0, 1). On page 101 of [2] it is shown that % <1
whenever y > 1 and that M,, < 1 for all y € (0, 1). The proof of both parts (i) and (ii)
follows immediately. O

Remark 2.10 For each y > 0 let v, (z) = (1 — |z|)Y, for z € ID. Proposition 2.9 implies that
supg<,<1 1Ct ||H§;»H1?C < 00. Moreover, if y > 1, then ||C,"||Hvooﬁﬂvo; = 1 foreveryn € N;
see case (1) in the proof of [2, Theorem 2.3] together with the fact that 1 € o, (C;, H,j’yo) by
Proposition 2.8.
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Let n € N be fixed. Consider the weight v(z) = (log I—L\zl)in’ for z € D, which satisfies
v(0) = 1 and lim;|_, ;- v(z) = 0.

The function f(z) := [log(l — z)]" € H(D) belongs to H.°. Indeed, for each z € D, we
have that

o0 Zn
llog(1 —2)| = | =3 —

n=1

o lzl”
<Y = =—log(l —Iz)
n=I

n
and hence, that | f(z)| = [log(1 — 2)|" < (—log(l — [z]))". Since v is given by v(z) =
(1 — log(1 — |z[))™" and lim._, |- % = 1, it follows that || f||c., < 00 and so
f € H°. On the other hand,
L [% (log(1—§)")
Cifo=-| —/ =" dg=———
1f (@) 2 o ¢ S TR

Accordingly, C1 f ¢ H.* since

(og(l —z)"*!, zeD.

1 1 1— n+l1
Jim v(©I(C) @] =~ lim s((l"f(log(f)i —

1 . log(1 —s) \" log(l —s)
= lim
n+1s->1-|\ 1 —1log(l —s) s

This implies that the Cesaro operator C; is not well-defined on H2°, thatis, Ci (H°) € H®.
But, by Proposition 2.4 the generalized Cesaro operator C; € L(H,°) foreveryt € [0, 1). At
this point, the following question arises: Is sup;¢o 1y [|C; | Hgo— Hzo < 00 for this particular
v? Our next two results show that the answer is negative for certain weights v, which includes

n
v(z) = <log ﬁ) for z € D.

Proposition 2.11 Let v be aweight functionon [0, 1) suchthat sup;¢po 1y 1Ct | Hpo— mge < 0.
Then Cy € L(H®).

Proof Proposition 2.1 implies that {C; : ¢t € [0, 1)} is equicontinuous in L(H (D)). The
claim is that lim,_, - C; f(z) = C1 f(z), forevery f € H(D) and z € D.
To prove this claim fix f € H(ID) and z € D\{0}. Recall, for ¢ € [0, 1), that

1P f® (Y f62)
C’f(Z)_E/O 1—zgd5_ 0 s
and
z 1
cr@=: [ Fae= [ [
Z Jo 1—%‘ 0 1—s2

Moreover, for each z € D\{0}, we have (as |1 — stz| > (1 — |z])) that

f(s2) |f(s2)]
< = < max , sel0,1],
L—stz| ™ 1—1z] = 1—z] I$\§Izllf(§)| (0,11
and that lim,_, |- [ji?z = {i—yfz) for every s € [0, 1]. So, we can apply the dominated

convergence theorem to conclude that lim,_, - C; f(z2) = C1 f(2) for z € D\{0}. Forz =0
we have C; f(0) = f(0) = C;f(0) for each f € H(D) and ¢t € [0, 1). So, for each
f € H(D), we can conclude that C; f — C; f pointwise on D for t+ — 17. The claim is
thereby established.
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We now show that C; f — Cifin H(D) ast — 17 forevery f € HS°. The assumption
sup;epo.1) 1Cr | Hpo— o < 00 implies that there exists M > 0 satisfying || C; | goo— oo < M
for every ¢ € [0, 1). Therefore,

sup [Cr f(D|v(z) < M| flloww, f € Hy", t €0, 1). (2.3)
zeD
Fix f € H;°. Then {C; f : t € [0, 1)} is a bounded set in H (D). Indeed, given r € (0, 1)
andt € [0, 1) we have (as v(r) < v(z) forall |z| < r) that

qr(Ci f) = sup |C; f(2)| = max |C, f(2)| < ﬂ”f”oo,lw
lzl<r lzl=r v(r)

So, the set {C; f : t € [0, 1)} is bounded in the Fréchet—-Montel space H (D) and hence, it is
relatively compact in H (D). Since C; f — C; f pointwise on D for t — 17, it follows that
C, f — C f withrespect to 7., that is, in the Fréchet space H (D), for# — 17 In particular,
Cif € HD).

Since H° € H(D) and C;h — Cih pointwise on D as t — 17, for every h € H(D),
letting t — 17 in (2.3) it follows that

[C1f(@DIv(z) < M| flloo,w, z €D,
thatis, [|C1 flloo,v < M| flloo,v- But, f € HS® is arbitrary and so C; € L(H.°). O

Proposition 212 For each n € N, let v(z) = (log(5;7)™" for z € D. Then
sup;efo,1) Ci ll o — Hge = 00

Proof Apply Proposition 2.11 and the discussion prior it. O

3 Linear dynamics and mean ergodicity of C;

The aim of this section is to investigate the mean ergodicity and the linear dynamics of the
operators C;, for t € [0, 1), acting on H (D), H;° and HS

An operator T € L(X), with X a IcHs, is called power bounded if {T" : n € Np} is an
equicontinuous subset of £(X). For a Banach space X, this means that sup, cy, 17" | x—>x <
oo. Given T € L(X), the averages

1 n
T[n] ::;ZT’", neN,
m=1

are usually called the Cesaro means of 7. The operator T is said to be mean ergodic (resp.,
uniformly mean ergodic) if (T[n])nenN 18 a convergent sequence in Lg(X) (resp., in £,(X)).
It is routine to check that T7" =T — ”;1 Tin-1), forn > 2, and hence, 7,-lim,_, o T7" =0
whenever T is mean ergodic. Every power bounded operator on a Fréchet—-Montel space X
is necessarily uniformly mean ergodic, [1, Proposition 2.8]. Concerning the linear dynamics
of T € L(X), with X a IcHs, the operator T is called supercyclic if, for some z € X, the
projective orbit {AT"z : 1 € C, n € Ny} is dense in X. Since the closure of the linear span
of a projective orbit is separable, if such a supercyclic operator 7 € L£(X) exists, then X is
necessarily separable.

Observe that the space H,° is never separable, [24, Theorem 1.1]. Therefore, every opera-
tor T € L(H?) is clearly not supercyclic. However, the spaces H (D), [21, Theorem 27.2.5],
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and H?, [24, Theorem 1.1], for every weight v are always separable. Hence, the problem of
supercyclicity for non-zero operators 7 € L(H (D)) and T € L‘(Hvo) arises.
The following result, [5, Theorem 6.4], is stated here for Banach spaces.

Theorem 3.1 Let X be a Banach space and let T € L(X) be a compact operator such that
1 € o(T; X) witho (T; X)\{1} € B(0, §) for some § € (0, 1) and satisfying Ker(I — T) N
Im(I — T) = {0}. Then T is power bounded and uniformly mean ergodic.

A consequence of the previous theorem is the following result.

Proposition 3.2 Let v be a weight function on [0, 1) satisfying lim,_, - v(r) = 0. For each
t € [0, 1) both of the operators C; € L(H®) and C; € [I(Hl(,)) are power bounded, uniformly
mean ergodic and fail to be supercyclic.

Proof Fix t € [0, 1). It was already noted that C; € L£(HS°) cannot be supercyclic. The
operator C; is a compact operator on both A ° and on H,? (cf. Proposition 2.7). Therefore,
the compact transpose operators C; € L((H°)") and C; € E((Hg )") have the same non-zero
eigenvalues as C; (see, e.g., [15, Theorem 9.10-2(2)]). In view of Proposition 2.8 it follows
that 0, (C}; (H®)) = 0 (C}; (HY)) = {m%rl : m € Ny}. We can apply [6, Proposition
1.26] to conclude that C; is not supercyclic on H,? .

By Proposition 2.8 and its proof(asxlo] = (t")yen,) we have that Ker(/ —C;) = span{go},
with go(2) = 220:0 t"z", for z € D. On the other hand, Im(I — Cy) is a closed subspace of
H* (resp., of HB), as C; is compact in H* (resp., in H,?)), andIm(/ — C;) C {g e H° :
g(0) = 0} (resp., C {g € Hv0 : g(0) = 0}), because C; f(0) = f(0) for each f € H°
(resp., each f € HS). Moreover, [15, Theorem 9.10.1] implies that codim Im(/ — C;) =
dim Ker(/ — C;) = 1. Accordingly, both Im(/ — C;) and {g € H.° : g(0) = 0} = Ker(p)
are hyperplanes, where 8y € (HS°)' is the linear evaluation functional f + f(0), for
f € H°. It follows that necessarily Im(/ — C;) = {g € H;° : g(0) = 0}.

Leth € Im(I—C;)NKer(I—Cy). Then 2 (0) = 0 and there exists A € Csuchthath = Ago.
This yields that 0 = h(0) = Ago(0) = A.Hence, h = 0. So, Im(/ —C;)NKer(I — C;) = {0}.

Proposition 2.8 implies that 1 € o(Cy;; HS®) = o(Cy; Hl?) = {m%rl; m € Np} U {0}.
Consequently, for § = % all the assumptions of Theorem 3.1 are satisfied. So, we can
conclude that C; is power bounded and uniformly mean ergodic on both H° and on H,?. O

In contrast to the compactness of C; acting in the Banach spaces H° and HS (cf. Propo-
sition 2.7) the situation for the Fréchet space H (D) is different.

Proposition 3.3 For each t € [0, 1) the operator C;: H(D) — H(D) is an isomorphism
and, hence, it is not compact.

Proof Fix t € [0, 1). Consider the operator 7;: H(D) — H (D), for f € H(D), given by
Tif(2) =1 —12)(f @) =1 —12)(f(2) +2f (2)), z€D.

Then T; is clearly well-defined. Moreover, its graph is closed. Indeed, for a given sequence
(fu)nen C H (D), suppose that f;, — fin H(D) and T; f,, — g in H(ID). Since multiplica-
tion operators (by elements from H (D)) and the differentiation operator are continuous on
H (D) and the evaluation functionals at points of D belong to H (D)’, it follows that f, — f’
in H(D) and hence, T; f, = (1 —tz2)(fu+2zf,) = (1—t2)(f+zf") = T, f in H(D). Accord-
ingly, g = T; f. Since H(DD) is a Fréchet space, the closed graph theorem, [20, Corollary
5.4.3], implies that 7} € L(H (D)).
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Finally, it is routine to verify that C; o T; = T; o C; = I. So, the inverse operator
C; = T; € L(H (D)) exists and hence, C; is a bi-continuous isomorphism of H (D) onto
itself. In particular, C; cannot be compact. O

Let A = {ﬁ :n € Ng}and Ag := A U {0}). We recall from [4, Lemma 2.7] the

following lemma, which is an extension of a result of Rhoades [27].

Lemma 3.4 Forevery u € C\Ag there exist § = 8, > 0 and constants ds, Ds > 0 such that
B(u,8) N Ay =@ and
ds ‘
na(u) = 1_[

k=1

1
11— —
kv

Ds

TR VneN, veB(u,d), 3.1

where a(v) := Re(%).

Remark 3.5 As a direct application of Lemma 3.4 we obtain, for every u € C\ Ao, that there
exist 6 > 0 and ds, Ds > 0 such that B(u, §) N Ag = @ and, for every v € B(u, §) and
n € Ny, we have that

n—nh a(v) n+l n—h a(v)
dsDy" < 1 — —| < Dsdy , 3.2
85<n+1> —,n _55<n+1> (32)
Jj=n—h+1
forallh € {1,...,n — 1}, where a(v) = Re(%).
For each k € N with k > 2 define r; := (1 — %). Define the norms || - ||x and ||| - [||x on
H (D) by
o0 o0
Il =Y 1f g, f=Y faz"
n=0 n=0
and
o0
Nk = sup | f()ry [ = Zf(n)zn-
neNy =0
Lemma3.6 Each of the sequences {|| - ||k}k>2 and {||| - |||k }k=2 is a fundamental system of

norms for (H(D), t.).

Proof Given r € (0, 1) choose any k > 2 such that 0 < r < (1 — %). Then, for every
f € H(D), we have

oo

ar(f) = sup |y f(m)z"
=0

|z|=r

o R 1 n
doIfml (17) =11/l

n=0

<Y Ifmir <
n n=0

1

On the other hand, given k > 2, let ry := (1 — %) < (1= oI

inequalities, for n € Np, we have

) := rk+1. By the Cauchy

A 1 1
lf()] = 57— max [f(D)]=5—4qn, (), feHD),
Tl 1= Tkt1

and hence,

1l = D IF I < gy (DY (%) = cqr (). f € HD),
=0 n=0
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with ¢ = - 1 =k2>0 as - 1 < 1, which is independent of f.
’k 1
So, the systems {g,},<(0,1) and {Il - llk}x>2 are equivalent on H (D).

Observe, for every k > 2, that

A1k = sup | f)lrf < Zlf(n)lrk =fllx. f e HD),

neNy =0

and that
Iflle = Z |fm)lry = 2_: |f ()] (”%) T

< sup|f<n>|rk+12( +1> =K1/ kst

neNy

n
for f € H(D), where Y0 (ﬁ) — k2. Therefore, the systems { |- || }x=2 and {1|- ||l }x=2
are equivalent. O

Proposition 3.7 For eacht € [0, 1) the spectra of the operator C; € L(H (D)) are given by
opt(Cr; HD)) =0 (C; HD)) = A (3.3)

and
o*(Cs; HD)) = Ay. 3.4

Proof Lett € [0, 1) be fixed. For any weight function v on [0, 1) satisfying lim,_, - v(r) =
0, we have H° € H(D) continuously and &: H(D) — w is a continuous imbedding.
Accordingly, 0,,(Cr; H®) € 0,/(C; H(D)) S A; see the proof of Proposition 2.8. Since
opi(Cy; Hy®) = A (cf. Proposition 2.8) and 0, (C;’; @) = A [5, Theorem 3.7], it follows that
0 (Cy; H(D)) = A. Moreover, in view of Proposition 2.8 above and Theorem 3.7 in [5], the
eigenspace corresponding to each eigenvalue +1 € A is 1-dimensional. By Proposition 3.3,
the operator C;: H(D) — H (D) is a bi-continuous isomorphism and so 0 ¢ o (C;; H(D)).

The claim is that C\Ag € p(C;; H(D)). To establish this claim, fix v € C\Ag. Given
g(z) = >0 cuz" € H(D), consider the identity

Ci—vh)f(2) =g(z), zeD, (3.5)
where f(z) = Z;’;O a,7" € H(D) is to be determined. It follows from (1.6) that

Cifx) = Z;:O:O(W)z" from which the identity (C; — vI)f(z) =

7 n—1
Y00 (bt g, )21 s clear. So, (3.5) is satisfied if and only if
o0 —1 e8]
t"ag+t""a1 +---+ay, n N
—va, |z = w7, zeD,
N SEEDI
n=0 n=0

that is, if and only if
"ag+ 1" lay 4+ +a,
n+1

In view of this we can argue, as in the proof of [5, Lemma 3.6], to show that if a function
f € H(D) exists which satisfies the identity (3.5), then the Taylor coefficients (a,),en, of

—va, =c¢,, neNo.

@ Springer



412 A. A. Albanese et al.

f must verify the following equalities

[40]
an =
0 1—v
h—1h
v t"cp—pn
n = + Z - i
(n+1 - h=1 (n+ 1>1T’in i 1 —V)
= A, +B,, n>1. (3.6)
Observe, foreachn > 1 and h € {1, ..., n}, that
n+1 1 n+l 1 n+l 1
ORI | N R O
Jj=n—h+1 J j=n—h+1 J j=n—h+1 Jv

n h—lth

Cn—h 1" Cp—p
B, =— .
,,Z e+ DT (=) Z T+ DI (= 5)
Accordingly, to verify the claim we need to prove that the power series Y .~ a,z" is
convergent in D, with (a,),en, defined according to (3.6). First, observe that the series
g = Z;’;O cnz" is convergent in D and satisfies

. . C .
lim sup +/|c,| = lim sup 7 1'*' = lim sup +/|Ap|.
n—o00 n—o00 |nJrl — V| n— 00

Therefore, the series Y - | A,z" has the same radius of convergence as the series Y - ¢, 2"
and hence, it converges in H (D). Accordingly, fi(z) := ZE’; 1 ApZ", for z € D, belongs to
H (D). On the other hand, the series

00 1 0o n l‘hc N
n_ _ n—
S =Y e
n=1 n=1h=1 =n—h+1 jv
0 0 n—h
Ch—hZ
=—— "z u , z€D.

2 +1 1
i v (DI S (- )

To establish the convergence of the series Y oo B,z" in H(D), fixz € D\{0}andr € (|z[, 1).
Recall, for every n € Ny, that the Taylor coefficients of g satisfy (as % > 1)

g™ (0)
n!

|C | = =
" 2mi r gl=

1 8@) C
A [glzr g""'l E‘ 7max |g($)| = I"n+l

where C := maxg =, |g(§)|. Therefore, setting o := a(v) = Re(%) and d := ds and
D := D;s for a suitable § > O (cf. Remark 3.5), we obtain via (3.1) and (3.2) that

len—pl Iz "
Zt j2l" Z

1
n m+ DTS e 11— 551

0 n—h+1 o4
Z 1
= CZlhlzlh_l (lild_l(h O <|%|) pd! (: fh) )

h=1 n=h+1
00 n—h+1 o
_ |z n—+1
_Cdlzthh et CDdlzt ’“2 =
h1(+) lzI" + |z] 2 G p—
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e e o Iz| n—h+1
<cd™! (Zth(mual|z|”+DZrh|z|’“‘max{l,(2+h>“} > (7> )

h=1 h=1 n=h+1

o —
which is finite after observing that if o« < 0, then <Z+/11) = (%) < 1foreveryh € N

and every n > h + 1, whereas if « > 0, then (”+1)°‘ =1+ h+1)°‘ < (2 4 h)“. This
implies that the series > o | B"z" converges in H (D). Accordingly, f2(z) := Y e BaZ",
for z € D, belongs to H(D).

Set f(z) := 1 =+ f1(z) + f2(z), for z € D. Then f € H(ID). Moreover, the arguments
above imply that f satisfies (3.5). The identities (3.6) imply that f is the unique solution of
(3.5). Accordingly, the inverse operator (C; — v/ Yy~ H(D) — H(D) exists. In particular,
(C; —vD)~! € £L(H(D)) as it is the inverse of a continuous linear operator on a Fréchet
space.

Since v € C\ Ay is arbitrary and O € p(C;; H (D)), we can conclude that o (C;; H(D)) =
A.

It remains to show that o *(Cy; H(ID)) = Ag. To establish this, fix © € C\ Ao and observe,
by Lemma 3.4, that there exist § > 0 and constants ds, Ds > 0 such that B(u, 8) N Ag =0
and the inequalities (3.1) and (3.2) are satisfied. We will show that B(u, §) C p(Cy; H(D))
and that the set {(C; — v~V ve B(u, 8)} is equicontinuous in L(H (D)). To see this,
first observe that the function v € B(u, 8) +— Re(%) € R is continuous and hence, g :=
maxvem{Re( %)} exists. For the sake of simplicity of notation set d := ds and D := Ds.

Letv € B(u,r), where r := %d(Ao, B(u, §)) > 0 has the property that |[v — %| > r for
all j € N. It was proved above, for any fixed g(z) = Y - c,z" € H(D), that

(=Dthe,_p Y
(€ —vD)g@) = +Z<—v Z(n+1)H”“ 1(1—1)>Z’
jv

n=1 n+1 Jj n—h+

for each z € D. So, for k > 2 fixed, consider the norm || - || in H (D). Then we have, via
(3.6), that

I(C, — vl)‘lgnk
n _l)h h

%z

l n
1_7>
— (n+ DIT5, hH(]_ij) ( k
n [e.¢] n h n
1" |cn—n| 1
( Z 'vl2;;<n+1>n”t,‘, T A

o "5 || AN
Z n+l 1 1_} :
=1 _h("+1)1_[_n h+1|1_f,,|

Moreover, (3.1) and (3.2) with a(v) = Re(;) < o imply, for each i € N, that

|
L
x
=~
+
M
/-\

3 len| N i 1!
Z n+’iﬂ 1 (1_E) —Z T ; <1_E>
n=h (”+1)Hj:n—h+1|1_j7| 0(l+h+1)]_[j ol Tvl
Icol +i el (1 - 1)’
(h+1>n”+‘|1— | 1(1+h+1)n’+_h,1}|1_%v| k
I+h+1)*" I
<d Veolth+ 1)1 447D el 1—-
< lcol(h + 1) + ;H—h-i-l . .
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oo

I+h+1\% 1/
<d Veolth+ D' 441D leal 1—-
< lcol(h + 1) + §l+h+1 ; ?

o] 1
1
<max{d~",d"'D}2+ )™ |l (1 — z) =KQ+n™lglk,
=0

with K := max{d~!, d~' D}, and hence, since |v| > r for all v € B(p, §), that

h .y "
\ 1_,)
|v|22 < )Zh<n+1>n”t,i h+1ll—j’vl( k
h
fnguka < 7) Q+m* = K'llgll,

with K" = £ 379 /" (1 - f) (2 + h)® < oo, by the ratio test, for instance.
‘We have establlshed for every v € B(u, 8), that

_ 1
I(C; —vD) gl < (- + Kliglk-

Since g € H(D) and k > 2 are arbitrary, this shows that the set {(C; — v~ v e Bu,d)}
is equicontinuous. Hence, o*(C;; H(D)) = Ag. ]

Proposition 3.8 For each t € [0, 1) the operator C,: H(D) — H(D) is power bounded,
uniformly mean ergodic but, it fails to be supercyclic. Moreover, (I — Cy)(H (D)) is the closed
subspace of H(D) given by

(I—-C)HD)={geHD) : g0 =0} (3.7)
and we have the decomposition
HD) =Ker(I — Cy) & (I — C;)(H(D)). (3.8)

Proof Fix ¢t € [0, 1). We first prove that C; is power bounded. Once this is established,
C; is necessarily uniform mean ergodic because H (D) is a Fréchet- Montel space (see [1,
Proposition 2.8]).

Given k > 2 we have, for every f € H(D) and with r; := (1 — —) that

| -
IIC f1ll = sup er”ﬂf(j) re < sup —Df(mrk
j=0

neNy neNg !

< sup ZIf(J)Irk < sup |F DI = 11111k

neNy n+ jeNg

because rk < rk forall j € {0, 1, ..., n}. It follows, for every n € N, that

MC fllle < 1A Mk, f € HD).

Since k > 2 is arbitrary, the operator C; € L(H (D)) is indeed power bounded.

To establish that C,: H(D) — H (D) is not supercyclic, note that the continuous embed-
ding ®: H(D) — w has dense range. The operator C{’ € L(w) satisfies ® o C; = C{’ o @
as an identity in L(H (D), w), which implies if C;: H(D) — H (D) is supercyclic, then also
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C®: @ — w must be supercyclic as ® o C' = ® o C, 0 Cl ' = CPodoCl ! =... =
(CY" o @, foralln € N, and ®(H (D)) is dense in w. A contradition with [5, Theorem 6.1].

To establish (3.7) note that (I — C;)(H(D)) <€ {g € H(D) : g(0) = 0} because
C, f(0) = f(0) for every f € H(D). To show the reverse inclusion, let g € H (D) satisfy
g(0) = 0. Then i(z) := zg'(z) + g(z), for z € D, is holomorphic and 4 (0) = 0. Accordingly,
also z —~ @, for z € D\{0}, and taking the value 4'(0) at z = 0 is holomorphic in . Define
f € H(D) by

- [fa_®
@ =g [a-e e zem.

and note that f(0) = 0. Direct calculation reveals that

lf—(zz)z —@f(@) =h@) = (g@), zeD,
from which it follows that
© f@) B
1—t d§ —z2f(z) =28(2), zeD.
Since f(0) = 0, we can conclude that
L[ feé 3
z Jo l_t%_dé—f(z)_g(& zeD,

thatis, (C; — I)f = gandso g € (I — C;)(H(D)). Hence, (3.7) is valid.
To show the validity of (3.8) it suffices to repeat the argument given in the proof of
Proposition 3.2. O
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