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Abstract
An investigation is made of the generalized Cesàro operatorsCt , for t ∈ [0, 1], when they act
on the space H(D) of holomorphic functions on the open unit disc D, on the Banach space
H∞ of bounded analytic functions and on the weighted Banach spaces H∞

v and H0
v with

their sup-norms. Of particular interest are the continuity, compactness, spectrum and point
spectrum of Ct as well as their linear dynamics and mean ergodicity.
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Compact operator · Spectrum · Supercyclic · Mean ergodic · Power bounded

Mathematics Subject Classification Primary 46E15, 47B38; Secondary 46E10, 47A10,
47A16, 47A35

1 Introduction and preliminaries

The (discrete) generalized Cesàro operators Ct , for t ∈ [0, 1], were first investigated by
Rhaly [25, 26]. The action of Ct from the sequence space ω := C

N0 into itself, with N0 :=
{0, 1, 2, . . .}, is given by

Ct x :=
(
tnx0 + tn−1x1 + · · · + xn

n + 1

)
n∈N0

, x = (xn)n∈N0 ∈ ω. (1.1)
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For t = 0 and with ϕ := ( 1
n+1 )n∈N0 note that C0 is the diagonal operator

Dϕx :=
(

xn
n + 1

)
n∈N0

, x = (xn)n∈N0 ∈ ω, (1.2)

and, for t = 1, that C1 is the classical Cesàro averaging operator

C1x :=
(
x0 + x1 + · · · + xn

n + 1

)
n∈N0

, x = (xn)n∈N0 ∈ ω. (1.3)

The behaviour of Ct on various sequence spaces has been investigated by many authors. We
refer the reader to [25–27], to the recent papers [28, 30, 31] and to the introduction of the
papers [5, 13] and the references therein. The operator C1 was thoroughly investigated on
weighted Banach spaces in [2]; see also [12]. Certain variants of the Cesàro operator C1 are
considered in [9, 16].

Our aim is to investigate the operatorsCt , for t ∈ [0, 1], when they are suitably interpreted
to act on the space H(D) of holomorphic functions on the open unit disc D := {z ∈ C :
|z| < 1}, on the Banach space H∞ of bounded analytic functions and on theweighted Banach
spaces H∞

v and H0
v with their sup-norms. The space H(D) is equipped with the topology

τc of uniform convergence on the compact subsets of D. According to [21, §27.3(3)] the
space H(D) is a Fréchet–Montel space. A family of norms generating τc is given, for each
0 < r < 1, by

qr ( f ) := sup
|z|≤r

| f (z)|, f ∈ H(D). (1.4)

A weight v is a continuous, non-increasing function v : [0, 1) → (0,∞). We extend v to
D by setting v(z) := v(|z|), for z ∈ D. Note that v(z) ≤ v(0) for all z ∈ D. Given a weight
v on [0, 1), we define the corresponding weighted Banach spaces of analytic functions on D

by

H∞
v := { f ∈ H(D) : ‖ f ‖∞,v := sup

z∈D
| f (z)|v(z) < ∞},

and

H0
v := { f ∈ H(D) : lim

|z|→1− | f (z)|v(z) = 0},

both endowed with the norm ‖ · ‖∞,v . Since ‖ f ‖∞,v ≤ v(0)‖ f ‖∞ whenever f ∈ H∞, it
is clear that H∞ ⊆ H∞

v with a continuous inclusion. If v(z) = 1 for all z ∈ D, then H∞
v

coincides with the space H∞ of all bounded analytic functions onDwith the sup-norm ‖·‖∞
and H0

v reduces to {0}. Moreover, H∞
v ⊆ H(D) continuously. Indeed, fix 0 < r < 1. Then

1
v(0) ≤ 1

v(z) ≤ 1
v(r) for |z| ≤ r and so (1.4) implies that

qr ( f ) = sup
|z|≤r

v(z)| f (z)|
v(z)

≤ 1

v(r)
sup
|z|≤r

v(z)| f (z)| ≤ 1

v(r)
‖ f ‖∞,v, f ∈ H∞

v .

We refer the reader to [10] for a recent survey of such types of weighted Banach spaces and
operators between them.

Whenever necessary we will identify a function f ∈ H(D) with its sequence of Tay-

lor coefficients f̂ := ( f̂ (n))n∈N0 (i.e., f̂ (n) := f (n)(0)
n! , for n ∈ N0), so that f (z) =∑∞

n=0 f̂ (n)zn , for z ∈ D. The linear map � : H(D) → ω is defined by

�

(
f =

∞∑
n=0

f̂ (n)zn
)

:= f̂ , f ∈ H(D).
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Generalized Cesàro operators in weighted Banach spaces… 399

It is injective (clearly) and continuous. Indeed, for each m ∈ N0,

rm(x) := max
0≤ j≤m

|x j |, x = (x j ) j∈N0 ∈ ω,

is a continuous seminorm in ω. Fix 0 < r < 1, in which case

rm(�( f )) = max
0≤ j≤m

| f̂ ( j)| = max
0≤ j≤m

∣∣∣∣ 1

2π i

∫
|z|=r

f (z)

z j+1 dz

∣∣∣∣ ≤ max
0≤ j≤m

sup
|z|=r

| f (z)|
|z| j

= max
0≤ j≤m

1

r j
qr ( f ) = 1

rm
qr ( f ),

for each f ∈ H(D) because 1
r j ≤ 1

rm for all 0 ≤ j ≤ m. Of course, the increasing sequence
of seminorms {rm m ∈ N0} generates the topology of ω.

We first provide an integral representation of the generalized Cesàro operators Ct defined
on H(D), for t ∈ [0, 1). So, fix t ∈ [0, 1) and defineCt : H(D) → H(D) byCt f (0) := f (0)
and

Ct f (z) := 1

z

∫ z

0

f (ξ)

1 − tξ
dξ, z ∈ D \ {0}, (1.5)

for every f ∈ H(D). It turns out that Ct is continuous on H(D); see Proposition 2.1. More-
over, the discreteCesàro operatorCt : ω → ω, when restricted to the subspace�(H(D)) ⊆ ω

is transferred to H(D) as follows. For a fixed f ∈ H(D) we have f (ξ) = ∑∞
n=0 anξ

n , for
ξ ∈ D, with f̂ = (an)n∈N0 its sequence of Taylor coefficients. Since

1
1−tξ = ∑∞

n=0 t
nξn , for

ξ ∈ D, we can form the Cauchy product of the two series, thereby obtaining

f (ξ)

1 − tξ
=

∞∑
n=0

(

n∑
k=0

tn−kak)ξ
n, ξ ∈ D.

Then (1.5) yields

zCt f (z) =
∫ z

0

∞∑
n=0

(

n∑
k=0

tn−kak)ξ
n dξ =

∞∑
n=0

(
tna0 + tn−1a1 + · · · + an

n + 1

)
zn+1, z ∈ D.

The interchange of the infinite sum and the integral is permissible by uniform convergence
of the series. This shows that Ct f ∈ H(D) also has the series representation

Ct f (z) =
∞∑
n=0

(
tna0 + tn−1a1 + · · · + an

n + 1

)
zn

=
∞∑
n=0

(
tn f̂ (0) + tn−1 f̂ (1) + · · · + f̂ (n)

n + 1

)
zn =

∞∑
n=0

(Cω
t ( f̂ ))nz

n, (1.6)

where the coefficients of the series are precisely as in (1.1). For the sake of clarity we will
denote the discrete generalized Cesàro operator Ct : ω → ω by Cω

t and reserve the notation
Ct for the operator (1.5) acting in H(D). Note that Cω

0 = Dϕ (see (1.2)). Moreover, C0 is
given by C0 f (z) = 1

z

∫ z
0 f (ξ) dξ for z �= 0 and C0 f (0) = f (0), which is the classical

Hardy operator in H(D).
The main results for Ct when acting in the Fréchet space H(D) occur in Proposition 2.1

(continuity), Proposition 3.3 (non-compactness), Proposition 3.7 (spectra) and Proposition
3.8 (linear dynamics and mean ergodicity). For the analogous information concerning Ct

when acting in the weighted Banach spaces H∞
v and H0

v see Proposition 2.4 and Corollary
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400 A. A. Albanese et al.

2.5 (continuity), Proposition 2.7 (compactness), Proposition 2.8 (spectra) and Proposition
3.2 (linear dynamics and mean ergodicity).

We end this section by recalling a few definitions and some notation concerning locally
convex spaces and operators between them. For further details about functional analysis and
operator theory relevant to this paper see, for example, [15, 18, 20–22, 29].

Given locally convex Haudorff spaces X , Y (briefly, lcHs) we denote by L(X , Y ) the
space of all continuous linear operators from X into Y . If X = Y , then we simply write L(X)

for L(X , X). Equipped with the topology of pointwise convergence on X (i.e., the strong
operator topology) the lcHs L(X) is denoted by Ls(X). Equipped with the topology τb of
uniform convergence on the bounded subsets of X the lcHs L(X) is denoted by Lb(X).

Let X be a lcHs space. The identity operator on X is denoted by I . The transpose operator
of T ∈ L(X) is denoted by T ′; it acts from the topological dual space X ′ := L(X , C) of X into
itself. Denote by X ′

σ (resp., by X ′
β ) the topological dual X

′ equippedwith the weak* topology
σ(X ′, X) (resp., with the strong topology β(X ′, X)); see [21, §21.2] for the definition. It is
known that T ′ ∈ L(X ′

σ ) and T ′ ∈ L(X ′
β), [22, p. 134]. The bi-transpose operator (T ′)′ of T

is simply denoted by T ′′ and belongs to L((X ′
β)′β).

A linear map T : X → Y , with X , Y lcHs’, is called compact if there exists a neighbour-
hood U of 0 in X such that T (U) is a relatively compact set in Y . It is routine to show that
necessarily T ∈ L(X , Y ). We recall the following well known result; see [20, Proposition
17.1.1], [22, §42.1(1)].

Lemma 1.1 Let X be a lcHs. The compact operators are a 2-sided ideal in L(X).

Given a lcHs X and T ∈ L(X), the resolvent set ρ(T ; X) of T consists of all λ ∈ C

such that R(λ, T ) := (λI − T )−1 exists in L(X). The set σ(T ; X) := C\ρ(T ; X) is called
the spectrum of T . The point spectrum σpt (T ; X) of T consists of all λ ∈ C (also called
an eigenvalue of T ) such that (λI − T ) is not injective. Some authors (eg. [29]) prefer the
subset ρ∗(T ; X) of ρ(T ; X) consisting of all λ ∈ C for which there exists δ > 0 such that
the open disc B(λ, δ) := {z ∈ C : |z − λ| < δ} ⊆ ρ(T ; X) and {R(μ, T ) : μ ∈ B(λ, δ)} is
an equicontinuous subset of L(X). Define σ ∗(T ; X) := C\ρ∗(T ; X), which is a closed set
with σ(T ; X) ⊆ σ ∗(T ; X). For the spectral theory of compact operators in lcHs’ we refer to
[15, 18], for linear dynamics to [6], [17] and for mean ergodic operators to [23], for example.

2 Continuity, compactness and spectrum of Ct

In this section we establish, for t ∈ [0, 1), the continuity of Ct : H(D) → H(D) as well
as the continuity of Ct from H∞ (resp., H∞

v ) into H∞ (resp., H∞
v ). The same is true for

Ct : H0
v → H0

v whenever limr→1− v(r) = 0. It is also shown that the bi-transpose C ′′
t of

Ct ∈ L(H0
v ) is the generalized Cesàro operatorCt ∈ L(H∞

v ), provided that limr→1− v(r) =
0. For such weights v it also turns out that both Ct ∈ L(H0

v ) and Ct ∈ L(H∞
v ) are compact

operators (cf. Proposition 2.7); their spectrum is identified in Proposition 2.8. Of particular
interest are the standard weights vγ (z) := (1 − |z|)γ , for γ > 0 and z ∈ D.

Proposition 2.1 For every t ∈ [0, 1) the operator Ct : H(D) → H(D) is continuous. More-
over, the set {Ct : t ∈ [0, 1)} is equicontinuous in L(H(D)).

Proof Fix f ∈ H(D). Taking into account that Ct f (0) = f (0), for all t ∈ [0, 1) and, for
each r ∈ (0, 1), that sup|z|≤r |Ct f (z)| = sup|z|=r |Ct f (z)|, the formula (1.5) implies, for
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Generalized Cesàro operators in weighted Banach spaces… 401

each z ∈ D\{0}, that

|Ct f (z)| = 1

|z|
∣∣∣∣
∫ z

0

f (ξ)

1 − tξ
dξ

∣∣∣∣ ≤ 1

|z| |z| max
ξ∈[0,z]

| f (ξ)|
|1 − tξ |

≤ 1

1 − |z| max|ξ |≤|z| | f (ξ)| = 1

1 − |z| max|ξ |=|z| | f (ξ)|,

because |1− tξ | ≥ 1− t |ξ | ≥ 1−|ξ | ≥ 1−|z|, for all |ξ | ≤ |z|. It follows from the previous
inequality, for each r ∈ (0, 1), that

qr (Ct f ) = sup
|z|≤r

|Ct f (z)| ≤ 1

1 − r
sup
|ξ |≤r

| f (ξ)| = 1

1 − r
qr ( f ); .

see (1.4). This implies the result. �


The following example will prove to be useful in the sequel.

Example 2.2 Consider the constant function f1(z) := 1, for every z ∈ D, in which case
Ct f1(0) = f1(0) = 1 for every t ∈ [0, 1]. For t = 0, it was noted in Sect. 1 that C0 is

the Hardy operator. In particular, C0 f1(z) = 1, for every z ∈ D. For t ∈ (0, 1], note that
Ct f1(0) = 1 and

Ct f1(z) = 1

z

∫ z

0

dξ

1 − tξ
= − 1

t z
log(1 − t z), z ∈ D\{0}.

For t = 1 this shows, in particular, that C1(H∞) �⊂ H∞, which is well known. For an
investigation of the operator C1 acting in H∞ we refer to [14].

Concerning t ∈ (0, 1), recall the Taylor series expansion

− log(1 − z) = z
∞∑
n=0

zn

n + 1
, z ∈ D,

from which it follows that

− log(1 − t z)

t z
=

∞∑
n=0

tn

n + 1
zn, z ∈ D\{0},

with the series having radius of convergence 1
t > 1. The claim is that ‖Ct f1‖∞ =

sup|z|<1 |Ct f1(z)| = − log(1−t)
t . Indeed, Ct f1 is clearly holomorhic in B(0, 1

t ) := {ξ ∈
C : |ξ | < 1

t } hence, continuous in B(0, 1
t ), and satisfies Ct f1(1) = − log(1−t)

t with
limr→1− Ct f1(r) = Ct f1(1). On the other hand, for every z ∈ D\{0} and t ∈ (0, 1) we
have that

|Ct f1(z)| =
∣∣∣∣− log(1 − t z)

t z

∣∣∣∣ ≤
∞∑
n=0

tn

n + 1
|z|n ≤

∞∑
n=0

tn

n + 1
= − log(1 − t)

t
.

This completes the proof of the claim. Observe that ‖Ct f1‖∞ > 1. Indeed, define γ (t) =
− log(1− t) − t , for t ∈ [0, 1). Then γ (0) = 0, limt→1− γ (t) = ∞ and γ ′(t) = 1

1−t − 1 =
t

1−t , for t ∈ [0, 1). Since γ ′(t) > 0, for t ∈ (0, 1), it follows that γ is strictly increasing

and so γ (t) > 0 for all t ∈ (0, 1). This implies that ‖Ct f1‖∞ = − log(1−t)
t > 1 for every
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402 A. A. Albanese et al.

t ∈ (0, 1). On the other hand, for t ∈ (0, 1), the inequality
∑∞

n=0 t
n/(n + 1) <

∑∞
n=0 t

n

implies that − log(1−t)
t < 1

1−t . So, we have shown that ‖C0 f1‖∞ = 1 and

1 < ‖Ct f1‖∞ <
1

1 − t
, t ∈ (0, 1).

We now turn to the action of Ct in various Banach spaces. For t = 1 it was noted above
that C1 fails to act in H∞.

Proposition 2.3 For t ∈ [0, 1) the operator Ct : H∞ → H∞ is continuous. Moreover,
‖C0‖H∞→H∞ = 1 and

‖Ct‖H∞→H∞ = − log(1 − t)

t
, t ∈ (0, 1).

Proof Let f ∈ H∞ be fixed. Then

|C0 f (z)| =
∣∣∣∣1z

∫ z

0
f (ξ)dξ

∣∣∣∣ ≤ max|ξ |≤|z| | f (ξ)| ≤ ‖ f ‖∞.

This implies that ‖C0‖H∞→H∞ ≤ 1. On the other hand, C0 f1 = f1 and so we can conclude
that ‖C0‖H∞→H∞ = 1.

Now let t ∈ (0, 1). Then, for the parametrization ξ := sz, for s ∈ (0, 1), it follows from
|1 − stz| ≥ 1 − |stz| ≥ 1 − st that

|Ct f (z)| =
∣∣∣∣1z

∫ z

0

f (ξ)

1 − tξ
dξ

∣∣∣∣ =
∣∣∣∣
∫ 1

0

f (sz)

1 − stz
ds

∣∣∣∣ ≤ max|ξ |≤|z| | f (ξ)|
∫ 1

0

ds

1 − st |z|
≤ ‖ f ‖∞

∫ 1

0

ds

1 − st
= − log(1 − t)

t
‖ f ‖∞.

So,Ct ∈ L(H∞)with ‖Ct‖H∞→H∞ ≤ − log(1−t)
t . But, ‖Ct f1‖∞ = − log(1−t)

t . Accordingly,

‖Ct‖H∞→H∞ = − log(1−t)
t . �


Proposition 2.4 Let v be a weight function on [0, 1). For each t ∈ [0, 1) the operator
Ct : H∞

v → H∞
v is continuous. Moreover, ‖C0‖H∞

v →H∞
v

= 1 and

1 ≤ ‖Ct‖H∞
v →H∞

v
≤ − log(1 − t)

t
, t ∈ (0, 1).

Proof Recall that Ct f (0) := f (0) for each f ∈ H(D) and t ∈ [0, 1]. Fix t ∈ (0, 1). Given
f ∈ H∞

v and z ∈ D\{0}, observe that

v(z)|Ct f (z)| = v(z)

|z|
∣∣∣∣
∫ z

0

f (ξ)

1 − tξ
dξ

∣∣∣∣ = v(z)

∣∣∣∣
∫ 1

0

f (sz)

1 − stz
ds

∣∣∣∣
≤ v(z)

∫ 1

0

| f (sz)|
|1 − stz|ds ≤

∫ 1

0

v(sz)| f (sz)|
|1 − stz| ds

≤ ‖ f ‖∞,v

∫ 1

0

ds

|1 − stz| ≤ ‖ f ‖∞,v

∫ 1

0

ds

1 − st |z|
= − log(1 − t |z|)

t |z| ‖ f ‖∞,v,
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where we used that v(sz) = v(s|z|) ≥ v(|z|) = v(z), for s ∈ (0, 1), as v is non-increasing on
(0, 1) and that |1− stz| ≥ 1− st |z|, for s ∈ (0, 1). According to the calculations in Example
2.2 we can conclude that

‖Ct f ‖∞,v = sup
z∈D

|Ct f (z)|v(z) ≤ ‖ f ‖∞,v sup
z∈D

[
− log(1 − t |z|)

t |z|
]

= − log(1 − t)

t
‖ f ‖∞,v.

This implies that Ct ∈ L(H∞
v ) and ‖Ct‖H∞

v →H∞
v

≤ − log(1−t)
t .

For t = 0 observe that

|C0 f (z)| ≤
∫ 1

0
| f (sz)|ds ≤ max|ξ |≤|z| | f (ξ)| = 1

v(z)
max|ξ |=|z| | f (ξ)|v(ξ) ≤ 1

v(z)
‖ f ‖∞,v,

as v(ξ) = v(z) whenever |ξ | = |z| with ξ ∈ D. This shows that ‖C0‖H∞
v →H∞

v
≤ 1. Since

C0 f1 = f1, it follows that actually ‖C0‖H∞
v →H∞

v
= 1.

It remains to show that ‖Ct‖H∞
v →H∞

v
≥ 1 for t ∈ (0, 1). To this end, fix t ∈ (0, 1) and

consider the function g0(z) := 1
1−t z = ∑∞

n=0 t
nzn , for z ∈ D. Then ‖g0‖∞ = 1

1−t and so
g0 ∈ H∞ ⊆ H∞

v . Moreover, for every z ∈ D\{0}, it is the case that

Ct g0(z) = 1

z

∫ z

0

dξ

(1 − tξ)2
= 1

z

[
1

t(1 − tξ)

]z
0

= 1

t z

[
1

1 − t z
− 1

]
= 1

1 − t z
= g0(z).

It follows that ‖g0‖∞,v = ‖Ct g0‖∞,v ≤ ‖Ct‖H∞
v →H∞

v
‖g0‖∞,v which implies that

‖Ct‖H∞
v →H∞

v
≥ 1. �


Corollary 2.5 Let v be a weight function on [0, 1) satisfying limr→1− v(r) = 0. For each t ∈
[0, 1) the operator Ct : H0

v → H0
v is continuous and satisfies ‖Ct‖H0

v →H0
v

= ‖Ct‖H∞
v →H∞

v
.

Proof By Proposition 2.4 and the fact that H0
v is a closed subspace of H∞

v , to obtain the
result it suffices to establish that Ct (H0

v ) ⊆ H0
v . To this effect, observe that H∞ ⊆ H0

v and
that H∞ is dense in H0

v , as the space of polynomials is dense in H0
v ; see Section 1 of [11]

and also [7]. Proposition 2.3 implies that Ct (H∞) ⊆ H∞ ⊆ H0
v . Since Ct acts continuously

on H∞
v , it follows that

Ct (H
0
v ) = Ct (H∞) ⊆ Ct (H∞) ⊆ H0

v .

Moreover, limr→1− v(r) = 0 implies that H∞
v is canonically isometric to the bidual of H0

v ,
[8, Example 2.1], and that the bi-transpose C ′′

t : H∞
v → H∞

v of Ct : H0
v → H0

v coincides
with Ct : H∞

v → H∞
v (see Lemma 2.6 below), from which the identity ‖Ct‖H0

v →H0
v

=
‖Ct‖H∞

v →H∞
v

follows. �

Lemma 2.6 Let v be a weight function on [0, 1) satisfying limr→1− v(r) = 0. For each t ∈
[0, 1), the bi-transposeC ′′

t : H∞
v → H∞

v of Ct : H0
v → H0

v coincides with Ct : H∞
v → H∞

v .

Proof By Proposition 2.3 and Corollary 2.5, together with the fact that H∞
v is canonically

isometric to the bidual of H0
v , both of the operators C ′′

t and Ct act continuously on H∞
v .

To show that the bi-transpose C ′′
t : H∞

v → H∞
v of Ct : H0

v → H0
v coincides with

Ct : H∞
v → H∞

v we proceed via several steps.
First step Given f ∈ H(D), its Taylor polynomials pk(z) = ∑k

j=0 f̂ ( j)z j , z ∈ D, for
k ∈ N0, converge to f uniformly on compact subsets of D. That is, pk → f in (H(D), τc)

as k → ∞. Accordingly, the averages of (pk)k∈N0 , that is, the Cesàro means fn(z) :=
1

n+1

∑n
j=0 p j (z), for z ∈ D and n ∈ N0, also converge to f in (H(D), τc) as n → ∞.
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Second step Lemma 1.1 in [7] implies, for every f ∈ H∞
v and n ∈ N0, that ‖ fn‖∞,v ≤

‖ f ‖∞,v , where fn is the n-th Cesàro mean of f , as defined in the First step. Denote by Uv

the closed unit ball of (H∞
v , ‖ · ‖∞,v). Then, for any given f ∈ Uv , its sequence of Cesàro

means satisfies ( fn)n∈N0 ⊆ Uv and fn → f in (H(D), τc) as n → ∞.
Third step With the topology of uniform convergence on the compact subsets of Uv

denoted by τc, let X := {F ∈ (H∞
v )′ : F |Uv is τc − continuous } be endowed with the

norm ‖F‖ := sup{|F( f )| : f ∈ Uv}. Then [8, Theorem 1.1(a)] ensures that (X , ‖ · ‖) is a
Banach space and that the evaluation map � : H∞

v → X ′ defined by (�( f ))(F) := 〈 f , F〉,
for F ∈ X and f ∈ H∞

v , is an isometric isomorphism onto X ′ (where X ′ is the dual Banach
space of (X , ‖ · ‖)). Moreover, by [8, Theorem 1.1(b) and Example 2.1] the restriction map
R : X → (H0

v )′ given by F �→ F |H0
v
, is also a surjective isometric isomorphism. Therefore,

the spaces H∞
v and (H0

v )′′ are isometrically isomorphic, that is, X and (H0
v )′ are isometrically

isomorphic and hence, also H∞
v and (H0

v )′′ are isometrically isomorphic.
It is easy to see, since the Banach space X above is the predual of H∞

v , that the evaluation
map δz ∈ X , for every z ∈ D, where δz : f �→ f (z), for f ∈ H∞

v , satisfies |〈 f , δz〉| ≤
‖ f ‖∞,v/v(z). In particular, the linear span L of the set {δz : z ∈ D} separates the points of
H∞

v = X ′ and hence, L is dense in X . Therefore, the pointwise convergence topology τp on
H∞

v is Hausdorff and coarser than the w∗-topology σ(H∞
v , X).

Fourth step The closed unit ball Uv of H∞
v is a τc-compact set by Montel’s theorem,

as it is τc-bounded and closed. On the other hand, Uv is also σ(H∞
v , X)-compact by the

Alaoglu-Bourbaki theorem. Since τp|Uv is coarser than τc|Uv andHausdorff, we can conclude
that τp|Uv = τc|Uv . In the same way, it follows that τp|Uv = σ(H∞

v , X)|Uv . Accordingly,
τp|Uv = τc|Uv = σ(H∞

v , X)|Uv .
We are now ready to prove that (Ct )

′′ = Ct . To show this, it suffices to establish that
(Ct )

′′ f = Ct f for every f ∈ Uv .
So, fix f ∈ Uv . With ( fn)n∈N0 as in the First step it follows from there that fn → f

in (H(D), τc) as n → ∞ and, by the Second step, that ( fn)n∈N0 ⊆ Uv . This implies that
Ct fn → Ct f in (H(D), τc) as n → ∞. Since Ct ∈ L(H∞

v ) and f ∈ Uv , it is clear that
Ct f ∈ H∞

v . On the other hand, by the Fourth step the sequence ( fn)n∈N0 also converges to f
in (H∞

v , σ (H∞
v , X)) = (H∞

v , σ (H∞
v , (H0

v )′)). Since (Ct )
′′ : ((H0

v )′′, σ ((H0
v )′′, (H0

v )′)) →
((H0

v )′′, σ ((H0
v )′′, (H0

v )′) is continuous, [20, §8.6], that is, (Ct )
′′ : (H∞

v , σ (H∞
v , X)) →

(H∞
v , σ (H∞

v , X)) is continuous, it follows that (Ct )
′′ fn → (Ct )

′′ f in (H∞
v , σ (H∞

v , X)) as
n → ∞. Now, ( fn)n∈N0 ⊂ H∞ ⊆ H0

v , as each fn is a polynomial, and (Ct )
′′ fn = Ct fn

for every n ∈ N0. Moreover, the sequence Ct fn → (Ct )
′′ f in (H(D), τp) as n → ∞. Thus,

(Ct )
′′ f = Ct f as desired. �


Proposition 2.7 Let v be a weight function satisfying limr→1− v(r) = 0. For each t ∈ [0, 1),
both of the operators Ct : H∞

v → H∞
v and Ct → H0

v → H0
v are compact.

Proof Fix t ∈ [0, 1). Since H0
v is a closed subspace of H∞

v and Ct (H0
v ) ⊆ H0

v (cf. Corollary
2.5), it suffices to show that Ct : H∞

v → H∞
v is compact. First we establish the following

Claim:

(*) Let the sequence ( fn)n∈N ⊂ H∞
v satisfy ‖ fn‖∞,v ≤ 1 for every n ∈ N and fn → 0 in

(H(D), τc) for n → ∞. Then Ct fn → 0 in H∞
v .

To prove the Claim, let ( fn)n∈N ⊂ H∞
v be a sequence as in (*). Fix ε > 0 and select

δ ∈ (0, β), where β := min{1, ε(1−t)
2 ,

ε(1−t)
2v(0) }. Since {ξ ∈ C |ξ | ≤ (1 − δ)} is a compact

subset of D, there exists n0 ∈ N such that

max|ξ |≤1−δ
| fn(ξ)| < δ, n ≥ n0.
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Recall that Ct fn(0) = fn(0) for every n ∈ N. For z ∈ D\{0} we have seen previously that

v(z)|Ct fn(z)| = v(z)

∣∣∣∣
∫ 1

0

fn(sz)

1 − stz
ds

∣∣∣∣ ≤ v(z)
∫ 1−δ

0

| fn(sz)|
|1 − stz|ds + v(z)

∫ 1

1−δ

| fn(sz)|
|1 − stz|ds.

Denote the first (resp., second) summand in the right-side of the previous inequality by (An)

(resp., by (Bn)). Using the facts that |1 − stz| ≥ 1 − st |z| ≥ max{1 − s, 1 − t, 1 − |z|}, for
all s, t ∈ [0, 1) and z ∈ D, and that v is non-increasing on [0, 1) it follows, for every n ≥ n0,
that

∫ 1−δ

0 | fn(sz)| ds ≤ (1− δ)max|ξ |≤(1−δ) | fn(ξ)| (as |sz| ≤ (1− δ) for all s ∈ [0, 1− δ])
and hence, that

(An) ≤ v(0)(1 − δ)

1 − t
max|ξ |≤1−δ

| fn(ξ)| <
ε

2
.

On the other hand, for every n ≥ n0, we have (as ‖ fn‖∞,v = supξ∈D v(ξ)| fn(ξ)| ≤ 1) that

(Bn) =
∫ 1

1−δ

v(z)

v(sz)

v(sz)| fn(sz)|
|1 − stz| ds ≤

∫ 1

1−δ

‖ fn‖∞,v

1 − t
ds ≤ δ

1 − t
<

ε

2
.

It follows that ‖Ct fn‖∞,v < ε for every n ≥ n0. That is, Ct fn → 0 in H∞
v for n → ∞ and

so (*) is proved.
The compactness ofCt ∈ L(H∞

v ) can be deduced from (*) as follows. Let ( fn)n∈N ⊂ H∞
v

be any bounded sequence. There is no loss of generality in assuming that ‖ fn‖∞,v ≤ 1 for
all n ∈ N. To establish the compactness of Ct ∈ L(H∞

v ) we need to show that (Ct fn)n∈N
has a convergent subsequence in H∞

v .
Since H∞

v ⊆ H(D) continuously, the sequence ( fn)n∈N is also bounded in the Fréchet–
Montel space H(D). Hence, there is a subsequence g j := fn j , for j ∈ N, of ( fn)n∈N and
f ∈ H(D) such that g j → f in H(D) with respect to τc. In particular, g j → f pointwise
on D. Since v(z)|g j (z)| = v(z)| fn j (z)| ≤ 1 for all z ∈ D and j ∈ N, letting j → ∞
it follows that v(z)| f (z)| ≤ 1 for all z ∈ D, that is, f ∈ H∞

v with ‖ f ‖∞,v ≤ 1. Let
h j := 1

2 (g j − f ), for j ∈ N. Then ‖h j‖∞,v ≤ 1, for j ∈ N, and h j → 0 in H(D)

with respect to τc. Condition (*) implies that Cth j → 0 in H∞
v from which it follows that

Ct fn j = Ct g j = Ct (g j − f ) + Ct f = 2Cth j + Ct f → Ct f in H∞
v , as desired. �


Proposition 2.8 Let v be a weight function on [0, 1) satisfying limr→1− v(r) = 0. For each
t ∈ [0, 1) the spectra of Ct ∈ L(H∞

v ) and of Ct ∈ L(H0
v ) are given by

σpt (Ct ; H∞
v ) = σpt (Ct ; H0

v ) =
{

1

m + 1
: m ∈ N0

}
, (2.1)

and

σ(Ct ; H∞
v ) = σ(Ct ; H0

v ) =
{

1

m + 1
: m ∈ N0

}
∪ {0}. (2.2)

Proof Let t ∈ [0, 1) be fixed. By [13, Lemma 3.6] we know that the point spectrum of
the operator Cω

t ∈ L(ω) is given by σpt (Cω
t ;ω) = { 1

m+1 : m ∈ N0} and, for each m ∈
N0, that the corresponding eigenspace Ker( 1

m+1 I − Cω
t ) is 1-dimensional and is generated

by an eigenvector x [m] = (x [m]
n )n∈N0 ∈ �1. Since H0

v ⊆ H∞
v ⊆ H(D) with continuous

inclusions and � : H(D) → ω (cf. Sect. 1) is a continuous embedding, this implies that
σpt (Ct ; H0

v ) ⊆ σpt (Ct ; H∞
v ) ⊆ { 1

m+1 : m ∈ N0}. Indeed, let f ∈ H(D)\{0} and λ ∈ C

satisfy Ct f = λ f . Then λ f (z) = ∑∞
n=0 (̂λ f )(n)zn = ∑∞

n=0 λ f̂ (n)zn and, by (1.6), we
have that (Ct f )(z) = ∑∞

n=0(C
ω
t f̂ )nzn . It follows that Cω

t f̂ = λ f̂ in ω with f̂ �= 0 and so
λ ∈ σpt (Cω

t ;ω) = { 1
m+1 m ∈ N0}.
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To conclude the proof, it remains to show that { 1
m+1 : m ∈ N0} ⊆ σpt (Ct ; H0

v ). To
establish this recall, for each m ∈ N0, that the eigenvector x [m] ∈ �1 and hence, the function
gm(z) := ∑∞

n=0(x
[m])nzn belongs to H0

v because 0 ≤ v(z)|gm(z)| ≤ v(z)‖x [m]‖�1 for z ∈ D

and limr→1− v(r) = 0. Moreover, according to (1.5) and (1.6) we have, for each z ∈ D, that

Ct gm(z) =
∞∑
n=0

(Cω
t x

[m])nzn =
∞∑
n=0

(
1

m + 1
x [m])nzn = 1

m + 1

∞∑
n=0

(x [m])nzn = 1

m + 1
gm(z).

Thus gm is an eigenvector of Ct ∈ L(H0
v ) corresponding to the eigenvalue 1

m+1 .

The validity of σ(Ct ; H0
v ) = σ(Ct ; H∞

v ) = { 1
m+1 : m ∈ N0} ∪ {0} follows from the fact

that Ct is a compact operator on both spaces. �

We now investigate the norm of Ct on H∞

v for the standard weights vγ (z) := (1− |z|)γ ,
for γ > 0 and z ∈ D, which satisfy limr→1− vγ (r) = 0.

Proposition 2.9 Let t ∈ (0, 1) and γ > 0.

(i) The operator norm ‖Ct‖H∞
vγ

→H∞
vγ

= 1, for every γ ≥ 1.

(ii) For each γ ∈ (0, 1), the inequality ‖Ct‖H∞
vγ

→H∞
vγ

≤ min{− log(1−t)
t , 1

γ
} is valid.

Proof We adapt the arguments given for the Cesàro operator C1 in the proof of [2, Theorem
2.3].

Let γ > 0 and t ∈ (0, 1) be fixed. For f ∈ H∞
vγ

with ‖ f ‖∞,vγ = 1 we have

|Ct f (z)| = 1

|z|
∣∣∣∣
∫ 1

0

f (sz)

1 − stz
ds

∣∣∣∣ ≤
∫ 1

0

| f (sz)|
1 − st |z|ds

≤
∫ 1

0

| f (sz)|
1 − s|z|ds ≤

∫ 1

0

ds

(1 − s|z|)γ+1 = 1

(1 − |z|)γ
1 − (1 − |z|)γ

γ |z| ,

as z ∈ D implies that 1 − st |z| ≥ 1 − s|z|, for s ∈ (0, 1). Accordingly,

vγ (z)|Ct f (z)| = (1 − |z|)γ |Ct f (z)| ≤ 1 − (1 − |z|)γ
γ |z| , z �= 0,

and hence,

‖Ct f ‖∞,vγ ≤ 1

γ
sup
z∈D

1 − (1 − |z|)γ
|z| .

Define φ(s) := 1−(1−s)γ

s for s ∈ (0, 1] and φ(0) = γ , in which case φ is con-

tinuous. So, the previous inequality yields ‖Ct f ‖∞,vγ ≤ Mγ

γ
, for all ‖ f ‖∞,vγ ≤ 1,

that is, ‖Ct‖H∞
vγ

→H∞
vγ

≤ Mγ

γ
, where Mγ := sups∈[0,1] φ(s). Proposition 2.4 yields that

1 ≤ ‖Ct‖H∞
vγ

→H∞
vγ

≤ − log(1−t)
t for t ∈ (0, 1). On page 101 of [2] it is shown that Mγ

γ
≤ 1

whenever γ ≥ 1 and that Mγ ≤ 1 for all γ ∈ (0, 1). The proof of both parts (i) and (ii)
follows immediately. �

Remark 2.10 For each γ > 0 let vγ (z) = (1 − |z|)γ , for z ∈ D. Proposition 2.9 implies that
sup0≤t<1 ‖Ct‖H∞

vγ
→H∞

vγ
< ∞. Moreover, if γ ≥ 1, then ‖Cn

t ‖H∞
vγ

→H∞
vγ

= 1 for every n ∈ N;
see case (i) in the proof of [2, Theorem 2.3] together with the fact that 1 ∈ σpt (Ct , H∞

vγ
) by

Proposition 2.8.
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Let n ∈ N be fixed. Consider the weight v(z) = (log e
1−|z| )

−n , for z ∈ D, which satisfies
v(0) = 1 and lim|z|→1− v(z) = 0.

The function f (z) := [log(1 − z)]n ∈ H(D) belongs to H∞
v . Indeed, for each z ∈ D, we

have that

| log(1 − z)| =
∣∣∣∣∣−

∞∑
n=1

zn

n

∣∣∣∣∣ ≤
∞∑
n=1

|z|n
n

= − log(1 − |z|)

and hence, that | f (z)| = | log(1 − z)|n ≤ (− log(1 − |z|))n . Since v is given by v(z) =
(1 − log(1 − |z|))−n and lim|z|→1− − log(1−|z|)

1−log(1−|z|) = 1, it follows that ‖ f ‖∞,v < ∞ and so
f ∈ H∞

v . On the other hand,

C1 f (z) = 1

z

∫ z

0

(log(1 − ξ)n)

1 − ξ
dξ = − 1

(n + 1)z
(log(1 − z))n+1, z ∈ D.

Accordingly, C1 f /∈ H∞
v since

lim
s→s−

v(s)|(C1) f (s)| = 1

n + 1
lim
s→1−

∣∣∣∣ (log(1 − s))n+1

s(1 − log(1 − s))n

∣∣∣∣
= 1

n + 1
lim
s→1−

∣∣∣∣
(

log(1 − s)

1 − log(1 − s)

)n log(1 − s)

s

∣∣∣∣ = ∞.

This implies that the Cesàro operatorC1 is not well-defined on H∞
v , that is,C1(H∞

v ) � H∞
v .

But, by Proposition 2.4 the generalized Cesàro operatorCt ∈ L(H∞
v ) for every t ∈ [0, 1). At

this point, the following question arises: Is supt∈[0,1) ‖Ct‖H∞
v →H∞

v
< ∞ for this particular

v? Our next two results show that the answer is negative for certain weights v, which includes

v(z) =
(
log e

1−|z|
)−n

for z ∈ D.

Proposition 2.11 Let v be aweight function on [0, 1) such that supt∈[0,1) ‖Ct‖H∞
v →H∞

v
< ∞.

Then C1 ∈ L(H∞
v ).

Proof Proposition 2.1 implies that {Ct : t ∈ [0, 1)} is equicontinuous in L(H(D)). The
claim is that limt→1− Ct f (z) = C1 f (z), for every f ∈ H(D) and z ∈ D.

To prove this claim fix f ∈ H(D) and z ∈ D\{0}. Recall, for t ∈ [0, 1), that

Ct f (z) = 1

z

∫ z

0

f (ξ)

1 − tξ
dξ =

∫ 1

0

f (sz)

1 − stz
ds

and

C1 f (z) = 1

z

∫ z

0

f (ξ)

1 − ξ
dξ =

∫ 1

0

f (sz)

1 − sz
ds.

Moreover, for each z ∈ D\{0}, we have (as |1 − stz| ≥ (1 − |z|)) that∣∣∣∣ f (sz)

1 − stz

∣∣∣∣ ≤ | f (sz)|
1 − |z| ≤ 1

1 − |z| max|ξ |≤|z| | f (ξ)|, s ∈ [0, 1],

and that limt→1− f (sz)
1−stz = f (sz)

1−sz for every s ∈ [0, 1]. So, we can apply the dominated
convergence theorem to conclude that limt→1− Ct f (z) = C1 f (z) for z ∈ D\{0}. For z = 0
we have Ct f (0) = f (0) = C1 f (0) for each f ∈ H(D) and t ∈ [0, 1). So, for each
f ∈ H(D), we can conclude that Ct f → C1 f pointwise on D for t → 1−. The claim is
thereby established.
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We now show that Ct f → C1 f in H(D) as t → 1− for every f ∈ H∞
v . The assumption

supt∈[0,1) ‖Ct‖H∞
v →H∞

v
< ∞ implies that there exists M > 0 satisfying ‖Ct‖H∞

v →H∞
v

≤ M
for every t ∈ [0, 1). Therefore,

sup
z∈D

|Ct f (z)|v(z) ≤ M‖ f ‖∞,v, f ∈ H∞
v , t ∈ [0, 1). (2.3)

Fix f ∈ H∞
v . Then {Ct f : t ∈ [0, 1)} is a bounded set in H(D). Indeed, given r ∈ (0, 1)

and t ∈ [0, 1) we have (as v(r) ≤ v(z) for all |z| ≤ r ) that

qr (Ct f ) = sup
|z|≤r

|Ct f (z)| = max|z|=r
|Ct f (z)| ≤ M

v(r)
‖ f ‖∞,v.

So, the set {Ct f : t ∈ [0, 1)} is bounded in the Fréchet–Montel space H(D) and hence, it is
relatively compact in H(D). Since Ct f → C1 f pointwise on D for t → 1−, it follows that
Ct f → C1 f with respect to τc, that is, in the Fréchet space H(D), for t → 1−. In particular,
C1 f ∈ H(D).

Since H∞
v ⊆ H(D) and Cth → C1h pointwise on D as t → 1−, for every h ∈ H(D),

letting t → 1− in (2.3) it follows that

|C1 f (z)|v(z) ≤ M‖ f ‖∞,v, z ∈ D,

that is, ‖C1 f ‖∞,v ≤ M‖ f ‖∞,v . But, f ∈ H∞
v is arbitrary and so C1 ∈ L(H∞

v ). �

Proposition 2.12 For each n ∈ N, let v(z) = (log( e

1−|z| ))
−n for z ∈ D. Then

supt∈[0,1) ‖Ct‖H∞
v →H∞

v
= ∞.

Proof Apply Proposition 2.11 and the discussion prior it. �


3 Linear dynamics andmean ergodicity of Ct

The aim of this section is to investigate the mean ergodicity and the linear dynamics of the
operators Ct , for t ∈ [0, 1), acting on H(D), H∞

v and H0
v

An operator T ∈ L(X), with X a lcHs, is called power bounded if {T n : n ∈ N0} is an
equicontinuous subset ofL(X). For a Banach space X , this means that supn∈N0

‖T n‖X→X <

∞. Given T ∈ L(X), the averages

T[n] := 1

n

n∑
m=1

Tm, n ∈ N,

are usually called the Cesàro means of T . The operator T is said to be mean ergodic (resp.,
uniformly mean ergodic) if (T[n])n∈N is a convergent sequence in Ls(X) (resp., in Lb(X)).
It is routine to check that T n

n = T[n] − n−1
n T[n−1], for n ≥ 2, and hence, τs-limn→∞ T n

n = 0
whenever T is mean ergodic. Every power bounded operator on a Fréchet–Montel space X
is necessarily uniformly mean ergodic, [1, Proposition 2.8]. Concerning the linear dynamics
of T ∈ L(X), with X a lcHs, the operator T is called supercyclic if, for some z ∈ X , the
projective orbit {λT nz : λ ∈ C, n ∈ N0} is dense in X . Since the closure of the linear span
of a projective orbit is separable, if such a supercyclic operator T ∈ L(X) exists, then X is
necessarily separable.

Observe that the space H∞
v is never separable, [24, Theorem 1.1]. Therefore, every opera-

tor T ∈ L(H∞
v ) is clearly not supercyclic. However, the spaces H(D), [21, Theorem 27.2.5],
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and H0
v , [24, Theorem 1.1], for every weight v are always separable. Hence, the problem of

supercyclicity for non-zero operators T ∈ L(H(D)) and T ∈ L(H0
v ) arises.

The following result, [5, Theorem 6.4], is stated here for Banach spaces.

Theorem 3.1 Let X be a Banach space and let T ∈ L(X) be a compact operator such that
1 ∈ σ(T ; X) with σ(T ; X)\{1} ⊆ B(0, δ) for some δ ∈ (0, 1) and satisfying Ker(I − T ) ∩
Im(I − T ) = {0}. Then T is power bounded and uniformly mean ergodic.

A consequence of the previous theorem is the following result.

Proposition 3.2 Let v be a weight function on [0, 1) satisfying limr→1− v(r) = 0. For each
t ∈ [0, 1) both of the operators Ct ∈ L(H∞

v ) andCt ∈ L(H0
v ) are power bounded, uniformly

mean ergodic and fail to be supercyclic.

Proof Fix t ∈ [0, 1). It was already noted that Ct ∈ L(H∞
v ) cannot be supercyclic. The

operator Ct is a compact operator on both H∞
v and on H0

v (cf. Proposition 2.7). Therefore,
the compact transpose operatorsC ′

t ∈ L((H∞
v )′) andC ′

t ∈ L((H0
v )′) have the same non-zero

eigenvalues as Ct (see, e.g., [15, Theorem 9.10-2(2)]). In view of Proposition 2.8 it follows
that σpt (C ′

t ; (H∞
v )′) = σpt (C ′

t ; (H0
v )′) = { 1

m+1 : m ∈ N0}. We can apply [6, Proposition
1.26] to conclude that Ct is not supercyclic on H0

v .
ByProposition 2.8 and its proof (as x [0] = (tn)n∈N0 )we have thatKer(I−Ct ) = span{g0},

with g0(z) = ∑∞
n=0 t

nzn , for z ∈ D. On the other hand, Im(I − Ct ) is a closed subspace of
H∞

v (resp., of H0
v ), as Ct is compact in H∞

v (resp., in H0
v )), and Im(I − Ct ) ⊆ {g ∈ H∞

v :
g(0) = 0} (resp., ⊆ {g ∈ H0

v : g(0) = 0}), because Ct f (0) = f (0) for each f ∈ H∞
v

(resp., each f ∈ H0
v ). Moreover, [15, Theorem 9.10.1] implies that codim Im(I − Ct ) =

dimKer(I −Ct ) = 1. Accordingly, both Im(I −Ct ) and {g ∈ H∞
v : g(0) = 0} = Ker(δ0)

are hyperplanes, where δ0 ∈ (H∞
v )′ is the linear evaluation functional f �→ f (0), for

f ∈ H∞
v . It follows that necessarily Im(I − Ct ) = {g ∈ H∞

v : g(0) = 0}.
Let h ∈ Im(I−Ct )∩Ker(I−Ct ). Then h(0) = 0 and there existsλ ∈ C such that h = λg0.

This yields that 0 = h(0) = λg0(0) = λ. Hence, h = 0. So, Im(I −Ct )∩Ker(I −Ct ) = {0}.
Proposition 2.8 implies that 1 ∈ σ(Ct ; H∞

v ) = σ(Ct ; H0
v ) = { 1

m+1 ; m ∈ N0} ∪ {0}.
Consequently, for δ = 1

2 , all the assumptions of Theorem 3.1 are satisfied. So, we can
conclude that Ct is power bounded and uniformly mean ergodic on both H∞

v and on H0
v . �


In contrast to the compactness of Ct acting in the Banach spaces H∞
v and H0

v (cf. Propo-
sition 2.7) the situation for the Fréchet space H(D) is different.

Proposition 3.3 For each t ∈ [0, 1) the operator Ct : H(D) → H(D) is an isomorphism
and, hence, it is not compact.

Proof Fix t ∈ [0, 1). Consider the operator Tt : H(D) → H(D), for f ∈ H(D), given by

Tt f (z) := (1 − t z)(z f (z))′ = (1 − t z)( f (z) + z f ′(z)), z ∈ D.

Then Tt is clearly well-defined. Moreover, its graph is closed. Indeed, for a given sequence
( fn)n∈N ⊂ H(D), suppose that fn → f in H(D) and Tt fn → g in H(D). Since multiplica-
tion operators (by elements from H(D)) and the differentiation operator are continuous on
H(D) and the evaluation functionals at points of D belong to H(D)′, it follows that f ′

n → f ′
in H(D) and hence, Tt fn = (1−t z)( fn+z f ′

n) → (1−t z)( f +z f ′) = Tt f in H(D). Accord-
ingly, g = Tt f . Since H(D) is a Fréchet space, the closed graph theorem, [20, Corollary
5.4.3], implies that Tt ∈ L(H(D)).
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Finally, it is routine to verify that Ct ◦ Tt = Tt ◦ Ct = I . So, the inverse operator
C−1
t = Tt ∈ L(H(D)) exists and hence, Ct is a bi-continuous isomorphism of H(D) onto

itself. In particular, Ct cannot be compact. �

Let � := { 1

n+1 : n ∈ N0} and �0 := � ∪ {0}. We recall from [4, Lemma 2.7] the
following lemma, which is an extension of a result of Rhoades [27].

Lemma 3.4 For every μ ∈ C\�0 there exist δ = δμ > 0 and constants dδ, Dδ > 0 such that
B(μ, δ) ∩ �0 = ∅ and

dδ

nα(ν)
≤

n∏
k=1

∣∣∣∣1 − 1

kν

∣∣∣∣ ≤ Dδ

nα(ν)
, ∀n ∈ N, ν ∈ B(μ, δ), (3.1)

where α(ν) := Re( 1
ν
).

Remark 3.5 As a direct application of Lemma 3.4 we obtain, for every μ ∈ C\�0, that there
exist δ > 0 and dδ, Dδ > 0 such that B(μ, δ) ∩ �0 = ∅ and, for every ν ∈ B(μ, δ) and
n ∈ N0, we have that

dδD
−1
δ

(
n − h

n + 1

)α(ν)

≤
n+1∏

j=n−h+1

∣∣∣∣1 − 1

jν

∣∣∣∣ ≤ Dδd
−1
δ

(
n − h

n + 1

)α(ν)

, (3.2)

for all h ∈ {1, . . . , n − 1}, where α(ν) = Re( 1
ν
).

For each k ∈ N with k ≥ 2 define rk := (1 − 1
k ). Define the norms ‖ · ‖k and ||| · |||k on

H(D) by

‖ f ‖k :=
∞∑
n=0

| f̂ (n)|rnk , f =
∞∑
n=0

f̂ (n)zn,

and

||| f |||k := sup
n∈N0

| f̂ (n)|rnk f =
∞∑
n=0

f̂ (n)zn .

Lemma 3.6 Each of the sequences {‖ · ‖k}k≥2 and {||| · |||k}k≥2 is a fundamental system of
norms for (H(D), τc).

Proof Given r ∈ (0, 1) choose any k ≥ 2 such that 0 < r < (1 − 1
k ). Then, for every

f ∈ H(D), we have

qr ( f ) = sup
|z|=r

∣∣∣∣∣
∞∑
n=0

f̂ (n)zn
∣∣∣∣∣ ≤

∞∑
n=0

| f̂ (n)|rn ≤
∞∑
n=0

| f̂ (n)|
(
1 − 1

k

)n

= ‖ f ‖k .

On the other hand, given k ≥ 2, let rk := (1 − 1
k ) < (1 − 1

k+1 ) := rk+1. By the Cauchy
inequalities, for n ∈ N0, we have

| f̂ (n)| ≤ 1

rnk+1
max|z|=rk+1

| f (z)| = 1

rnk+1
qrk+1( f ), f ∈ H(D),

and hence,

‖ f ‖rk =
∞∑
n=0

| f̂ (n)|rnk ≤ qrk+1( f )
∞∑
n=0

(
rk
rk+1

)n

= cqrk+1( f ), f ∈ H(D),
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with c = 1
1− rk

rk+1

= k2 > 0 as rk
rk+1

< 1, which is independent of f .

So, the systems {qr }r∈(0,1) and {‖ · ‖k}k≥2 are equivalent on H(D).
Observe, for every k ≥ 2, that

||| f |||k = sup
n∈N0

| f̂ (n)|rnk ≤
∞∑
n=0

| f̂ (n)|rnk = ‖ f ‖k, f ∈ H(D),

and that

‖ f ‖k =
∞∑
n=0

| f̂ (n)|rnk =
∞∑
n=0

| f̂ (n)|
(

rk
rk+1

)n

rnk+1

≤ sup
n∈N0

| f̂ (n)|rnk+1

∞∑
n=0

(
rk
rk+1

)n

= k2||| f |||k+1,

for f ∈ H(D), where
∑∞

n=0

(
rk

rk+1

)n = k2. Therefore, the systems {‖·‖k}k≥2 and {|||·|||k}k≥2

are equivalent. �

Proposition 3.7 For each t ∈ [0, 1) the spectra of the operator Ct ∈ L(H(D)) are given by

σpt (Ct ; H(D)) = σ(Ct ; H(D)) = � (3.3)

and
σ ∗(Ct ; H(D)) = �0. (3.4)

Proof Let t ∈ [0, 1) be fixed. For any weight function v on [0, 1) satisfying limr→1− v(r) =
0, we have H∞

v ⊆ H(D) continuously and � : H(D) → ω is a continuous imbedding.
Accordingly, σpt (Ct ; H∞

v ) ⊆ σpt (Ct ; H(D)) ⊆ �; see the proof of Proposition 2.8. Since
σpt (Ct ; H∞

v ) = � (cf. Proposition 2.8) andσpt (Cω
t ;ω) = � [5, Theorem3.7], it follows that

σpt (Ct ; H(D)) = �. Moreover, in view of Proposition 2.8 above and Theorem 3.7 in [5], the
eigenspace corresponding to each eigenvalue 1

n+1 ∈ � is 1-dimensional. By Proposition 3.3,
the operator Ct : H(D) → H(D) is a bi-continuous isomorphism and so 0 /∈ σ(Ct ; H(D)).

The claim is that C\�0 ⊆ ρ(Ct ; H(D)). To establish this claim, fix ν ∈ C\�0. Given
g(z) = ∑∞

n=0 cnz
n ∈ H(D), consider the identity

(Ct − ν I ) f (z) = g(z), z ∈ D, (3.5)

where f (z) = ∑∞
n=0 anz

n ∈ H(D) is to be determined. It follows from (1.6) that

Ct f (z) = ∑∞
n=0(

tna0+tn−1a1+···+an
n+1 )zn from which the identity (Ct − ν I ) f (z) =∑∞

n=0(
tna0+tn−1a1+···+an

n+1 − νan)zn is clear. So, (3.5) is satisfied if and only if

∞∑
n=0

(
tna0 + tn−1a1 + · · · + an

n + 1
− νan

)
zn =

∞∑
n=0

cnz
n, z ∈ D,

that is, if and only if

tna0 + tn−1a1 + · · · + an
n + 1

− νan = cn, n ∈ N0.

In view of this we can argue, as in the proof of [5, Lemma 3.6], to show that if a function
f ∈ H(D) exists which satisfies the identity (3.5), then the Taylor coefficients (an)n∈N0 of
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f must verify the following equalities

a0 = c0
1 − ν

an = cn
( 1
n+1 − ν)

+
n∑

h=1

(−1)h
νh−1thcn−h

(n + 1)
∏n+1

j=n−h+1(
1
j − ν)

=: An + Bn, n ≥ 1. (3.6)

Observe, for each n ≥ 1 and h ∈ {1, . . . , n}, that

(−1)h
n+1∏

j=n−h+1

(
1

j
− ν

)
= −

n+1∏
j=n−h+1

(
ν − 1

j

)
= −νh+1

n+1∏
j=n−h+1

(
1 − 1

jν

)

and so

Bn = −
n∑

h=1

νh−1thcn−h

νh+1(n + 1)
∏n+1

j=n−h+1(1 − 1
jν )

= − 1

ν2

n∑
h=1

thcn−h

(n + 1)
∏n+1

j=n−h+1(1 − 1
jν )

.

Accordingly, to verify the claim we need to prove that the power series
∑∞

n=0 anz
n is

convergent in D, with (an)n∈N0 defined according to (3.6). First, observe that the series
g(z) = ∑∞

n=0 cnz
n is convergent in D and satisfies

lim sup
n→∞

n
√|cn | = lim sup

n→∞
n

√ |cn |
| 1
n+1 − ν| = lim sup

n→∞
n
√|An |.

Therefore, the series
∑∞

n=1 Anzn has the same radius of convergence as the series
∑∞

n=0 cnz
n

and hence, it converges in H(D). Accordingly, f1(z) := ∑∞
n=1 Anzn , for z ∈ D, belongs to

H(D). On the other hand, the series
∞∑
n=1

Bnz
n = − 1

ν2

∞∑
n=1

n∑
h=1

thcn−h

(n + 1)
∏n+1

j=n−h+1(1 − 1
jν )

= − 1

ν2

∞∑
h=1

th zh
∞∑
n=h

cn−hzn−h

(n + 1)
∏n+1

j=n−h+1(1 − 1
jν )

, z ∈ D.

To establish the convergence of the series
∑∞

n=1 Bnzn in H(D), fix z ∈ D\{0} and r ∈ (|z|, 1).
Recall, for every n ∈ N0, that the Taylor coefficients of g satisfy (as 1

r > 1)

|cn | =
∣∣∣∣∣
g(n)(0)

n!

∣∣∣∣∣ =
∣∣∣∣ 1

2π i

∫
|ξ |=r

g(ξ)

ξn+1 dξ

∣∣∣∣ ≤ 1

rn
max|ξ |=r

|g(ξ)| ≤ C

rn+1

where C := max|ξ |=r |g(ξ)|. Therefore, setting α := α(ν) = Re( 1
ν
) and d := dδ and

D := Dδ for a suitable δ > 0 (cf. Remark 3.5), we obtain via (3.1) and (3.2) that
∞∑
h=1

th |z|h
∞∑
n=h

|cn−h | |z|n−h

(n + 1)
∏n+1

j=n−h+1 |1 − 1
jν |

≤ C
∞∑
h=1

th |z|h−1

(
|z|
r
d−1(h + 1)−α−1 +

∞∑
n=h+1

( |z|
r

)n−h+1

Dd−1
(
n + 1

n − h

)α
)

= Cd−1
∞∑
h=1

th(h + 1)−α−1|z|h + CDd−1
∞∑
h=1

th |z|h−1
∞∑

n=h+1

( |z|
r

)n−h+1 (
n + 1

n − h

)α
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≤ Cd−1

( ∞∑
h=1

th(h + 1)−α−1|z|h + D
∞∑
h=1

th |z|h−1 max{1, (2 + h)α}
∞∑

n=h+1

( |z|
r

)n−h+1
)

,

which is finite after observing that if α ≤ 0, then
(
n+1
n−h

)α =
(
n−h
n+1

)−α ≤ 1 for every h ∈ N

and every n ≥ h + 1, whereas if α > 0, then ( n+1
n−h )α = (1 + h+1

n−h )α ≤ (2 + h)α . This
implies that the series

∑∞
n=1 B

nzn converges in H(D). Accordingly, f2(z) := ∑∞
n=1 Bnzn ,

for z ∈ D, belongs to H(D).
Set f (z) := c0

1−ν
+ f1(z) + f2(z), for z ∈ D. Then f ∈ H(D). Moreover, the arguments

above imply that f satisfies (3.5). The identities (3.6) imply that f is the unique solution of
(3.5). Accordingly, the inverse operator (Ct − ν I )−1 : H(D) → H(D) exists. In particular,
(Ct − ν I )−1 ∈ L(H(D)) as it is the inverse of a continuous linear operator on a Fréchet
space.

Since ν ∈ C\�0 is arbitrary and 0 ∈ ρ(Ct ; H(D)), we can conclude that σ(Ct ; H(D)) =
�.

It remains to show that σ ∗(Ct ; H(D)) = �0. To establish this, fixμ ∈ C\�0 and observe,
by Lemma 3.4, that there exist δ > 0 and constants dδ, Dδ > 0 such that B(μ, δ) ∩ �0 = ∅
and the inequalities (3.1) and (3.2) are satisfied. We will show that B(μ, δ) ⊂ ρ(Ct ; H(D))

and that the set {(Ct − ν I )−1 : ν ∈ B(μ, δ)} is equicontinuous in L(H(D)). To see this,
first observe that the function ν ∈ B(μ, δ) �→ Re( 1

ν
) ∈ R is continuous and hence, α0 :=

maxν∈B(μ,δ){Re( 1ν )} exists. For the sake of simplicity of notation set d := dδ and D := Dδ .

Let ν ∈ B(μ, r), where r := 1
2d(�0, B(μ, δ)) > 0 has the property that |ν − 1

j | > r for

all j ∈ N. It was proved above, for any fixed g(z) = ∑∞
n=0 cnz

n ∈ H(D), that

(Ct − ν I )−1g(z) = c0
1 − ν

+
∞∑
n=1

(
cn

1
n+1 − ν

− 1

ν2

n∑
h=1

(−1)hthcn−h

(n + 1)
∏n+1

j=n−h+1(1 − 1
jν )

)
zn,

for each z ∈ D. So, for k ≥ 2 fixed, consider the norm ‖ · ‖k in H(D). Then we have, via
(3.6), that

‖(Ct − ν I )−1g‖k

≤ |c0|
|1 − ν| +

∞∑
n=1

∣∣∣∣∣
cn

1
n+1 − ν

− 1

ν2

n∑
h=1

(−1)hthcn−h

(n + 1)
∏n+1

j=n−h+1(1 − 1
jν )

∣∣∣∣∣
(
1 − 1

k

)n

≤
(
1

r

∞∑
n=0

|cn |
(
1 − 1

k

)n
)

+ 1

|ν|2
∞∑
n=1

n∑
h=1

th |cn−h |
(n + 1)

∏n+1
j=n−h+1 |1 − 1

jν |
(
1 − 1

k

)n

= 1

r
‖g‖k + 1

|ν|2
∞∑
h=1

th
(
1 − 1

k

)h ∞∑
n=h

|cn−h |
(n + 1)

∏n+1
j=n−h+1 |1 − 1

jν |
(
1 − 1

k

)n−h

.

Moreover, (3.1) and (3.2) with α(ν) = Re( 1
ν
) ≤ α0 imply, for each h ∈ N, that

∞∑
n=h

|cn−h |
(n + 1)

∏n+1
j=n−h+1 |1 − 1

jν |
(
1 − 1

k

)n−h

=
∞∑
l=0

|cl |
(l + h + 1)

∏l+h+1
j=l+1 |1 − 1

jν |
(
1 − 1

k

)l

= |c0|
(h + 1)

∏h+1
j=1 |1 − 1

jν | +
∞∑
l=1

|cl |
(l + h + 1)

∏l+h+1
j=l+1 |1 − 1

jν |
(
1 − 1

k

)l

≤ d−1|c0|(h + 1)α(ν)−1 + d−1D
∞∑
l=1

|cl |
l + h + 1

(
l + h + 1

l

)α(ν) (
1 − 1

k

)l
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≤ d−1|c0|(h + 1)α0−1 + d−1D
∞∑
l=1

|cl |
l + h + 1

(
l + h + 1

l

)α0
(
1 − 1

k

)l

≤ max{d−1, d−1D}(2 + h)α0
∞∑
l=0

|cl |
(
1 − 1

k

)l

= K (2 + h)α0‖g‖k ,

with K := max{d−1, d−1D}, and hence, since |ν| > r for all ν ∈ B(μ, δ), that

1

|ν|2
∞∑
h=1

th
(
1 − 1

k

)h ∞∑
n=h

|cn−h |
(n + 1)

∏n+1
j=n−h+1 |1 − 1

jν |
(
1 − 1

k

)n−h

≤ K

r2
‖g‖k

∞∑
h=1

th
(
1 − 1

k

)h

(2 + h)α0 = K ′‖g‖k,

with K ′ = K
r2

∑∞
h=1 t

h
(
1 − 1

k

)h
(2 + h)α0 < ∞, by the ratio test, for instance.

We have established, for every ν ∈ B(μ, δ), that

‖(Ct − ν I )−1g‖k ≤ (
1

r
+ K ′)‖g‖k .

Since g ∈ H(D) and k ≥ 2 are arbitrary, this shows that the set {(Ct −ν I )−1 : ν ∈ B(μ, δ)}
is equicontinuous. Hence, σ ∗(Ct ; H(D)) = �0. �

Proposition 3.8 For each t ∈ [0, 1) the operator Ct : H(D) → H(D) is power bounded,
uniformly mean ergodic but, it fails to be supercyclic. Moreover, (I −Ct )(H(D)) is the closed
subspace of H(D) given by

(I − Ct )(H(D)) = {g ∈ H(D) : g(0) = 0} (3.7)

and we have the decomposition

H(D) = Ker(I − Ct ) ⊕ (I − Ct )(H(D)). (3.8)

Proof Fix t ∈ [0, 1). We first prove that Ct is power bounded. Once this is established,
Ct is necessarily uniform mean ergodic because H(D) is a Fréchet- Montel space (see [1,
Proposition 2.8]).

Given k ≥ 2 we have, for every f ∈ H(D) and with rk := (1 − 1
k ), that

|||Ct f |||k = sup
n∈N0

∣∣∣∣∣∣
1

n + 1

n∑
j=0

tn− j f̂ ( j)

∣∣∣∣∣∣ rk ≤ sup
n∈N0

1

n + 1

n∑
j=0

| f̂ ( j)|rnk

≤ sup
n∈N0

1

n + 1

n∑
j=0

| f̂ ( j)|r j
k ≤ sup

j∈N0

| f̂ ( j)|r j
k = ||| f |||k,

because rnk ≤ r j
k for all j ∈ {0, 1, . . . , n}. It follows, for every n ∈ N, that

|||Cn
t f |||k ≤ ||| f |||k, f ∈ H(D).

Since k ≥ 2 is arbitrary, the operator Ct ∈ L(H(D)) is indeed power bounded.
To establish that Ct : H(D) → H(D) is not supercyclic, note that the continuous embed-

ding � : H(D) → ω has dense range. The operator Cω
t ∈ L(ω) satisfies � ◦ Ct = Cω

t ◦ �

as an identity in L(H(D), ω), which implies if Ct : H(D) → H(D) is supercyclic, then also
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Cω
t : ω → ω must be supercyclic as � ◦ Cn

t = � ◦ Ct ◦ Cn−1
t = Cω

t ◦ � ◦ Cn−1
t = · · · =

(Cω
t )n ◦ �, for all n ∈ N, and �(H(D)) is dense in ω. A contradition with [5, Theorem 6.1].
To establish (3.7) note that (I − Ct )(H(D)) ⊆ {g ∈ H(D) : g(0) = 0} because

Ct f (0) = f (0) for every f ∈ H(D). To show the reverse inclusion, let g ∈ H(D) satisfy
g(0) = 0. Then h(z) := zg′(z)+g(z), for z ∈ D, is holomorphic and h(0) = 0. Accordingly,
also z �→ h(z)

z , for z ∈ D\{0}, and taking the value h′(0) at z = 0 is holomorphic inD. Define
f ∈ H(D) by

f (z) := 1

t z − 1

∫ z

0
(1 − tξ)

h(ξ)

ξ
dξ, z ∈ D,

and note that f (0) = 0. Direct calculation reveals that

f (z)

1 − t z
− (z f (z))′ = h(z) = (zg(z))′, z ∈ D,

from which it follows that∫ z

0

f (ξ)

1 − tξ
dξ − z f (z) = zg(z), z ∈ D.

Since f (0) = 0, we can conclude that

1

z

∫ z

0

f (ξ)

1 − tξ
dξ − f (z) = g(z), z ∈ D,

that is, (Ct − I ) f = g and so g ∈ (I − Ct )(H(D)). Hence, (3.7) is valid.
To show the validity of (3.8) it suffices to repeat the argument given in the proof of

Proposition 3.2. �
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