Titelangaben
Gärttner, Stephan ; Alpak, Faruk O. ; Meier, Andreas ; Ray, Nadja ; Frank, Florian:
Estimating permeability of 3D micro-CT images by physics-informed CNNs based on DNS.
In: Computational geosciences : modeling, simulation and data analysis. 27 (April 2023).
- S. 245-262.
ISSN 1420-0597 ; 1573-1499
Volltext
![]()
|
Text (PDF)
Verfügbar unter folgender Lizenz: ![]() Download (4MB) | Vorschau |
|
![]() |
Link zum Volltext (externe URL): https://doi.org/10.1007/s10596-022-10184-0 |
Kurzfassung/Abstract
In recent years, convolutional neural networks (CNNs) have experienced an increasing interest in their ability to perform a fast approximation of effective hydrodynamic parameters in porous media research and applications. This paper presents a novel methodology for permeability prediction from micro-CT scans of geological rock samples. The training data set for CNNs dedicated to permeability prediction consists of permeability labels that are typically generated by classical lattice Boltzmann methods (LBM) that simulate the flow through the pore space of the segmented image data. We instead perform direct numerical simulation (DNS) by solving the stationary Stokes equation in an efficient and distributed-parallel manner. As such, we circumvent the convergence issues of LBM that frequently are observed on complex pore geometries, and therefore, improve the generality and accuracy of our training data set …
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data
Science (MIDS)
Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Geomatik und Geomathematik |
DOI / URN / ID: | 10.1007/s10596-022-10184-0 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Peer-Review-Journal: | Ja |
Verlag: | Springer Nature |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 34991 |
Letzte Änderung: 22. Apr 2025 13:31
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/34991/