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Abstract

A theorem of Grothmann states that interpolating polynomials to a holomorphic func-
tion on a compact set E is maximally convergent to f only if a subsequence of the
interpolation points converges to the equilibrium distribution of E in the weak* sense.
Grothmann’s proof applies only for connected sets E. The objective of this paper is to
provide a new necessary condition for maximal convergence which is the crucial tool
to prove Grothmann’s theorem for unconnected sets E.
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1 Introduction

For B C C, we denote by B its closure and by 3B the boundary of B and we use
|| - g for the supremum norm over B. Let A(B) be the class of functions that are
holomorphic (i.e., analytic and single-valued) in a neighborhood of B, and we denote
by P, the set of algebraic polynomials of degree at most .

Let E be acompact subset of the complex plane C, and let M (E) be the collection of
all probability measures supported on E, then the logarithmic potential of © € M(E)
is defined by
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Uk = f log du ()

|z — 1]

and the logarithmic energy 7 (u) by

1
I(w) :=f/10g du(t) du(z) =/U“(Z) du(z).

|z — 1]

Let
V(E) :=inf{l(n) : p € M(E)},

then V (E) is either finite or V(E) = +o00. The quantity

cap E = e V)

is called the logarithmic capacity or capacity of E.

Let E be compact in the complex plane C with connected complement = C \ E
in the extended plane C. The domain 2 is called regular if the Green function G (z) =
G (z, 00) on 2 with pole at oo tends to 0 as z € €2 tends to the boundary 92 of Q2. If Q2
is regular, then cap £ > 0 and there exists a unique measure g € M(E) such that

I(up) = —logcap E = V(E)
and we have
UME(z) = —G(z) —logcap E, z € Q.

wg is called equilibrium measure of E.
__In the following, let E' be compact in C with regular connected complement 2 =
C\ E. Then, we define for o > 1 the Green domains E; by

Ey ={z€eQ:G(z) <logo}UE

with boundary ', := 0E,. Since Q is regular, the Green domain E, consists of a
finite number of Jordan regions which are mutually exterior (cf. Walsh ([4], Chapter
4, section 4.1). Only in the case that E is connected, each E is a single Jordan region
forany o > 1.

If f € A(E), then there exists p > 1 and polynomials p,, € P,, n € N, such that

) 1 1
limsup || f — pull /" < .
n—o00 /Yy

due to a result of Walsh ([4]).
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Let p(f) denote the maximal parameter p > 1, 1 < p < oo, such that f is
holomorphic on E,. Then, there exist polynomials p,, € P, such that

. 1/n
limsup || f — pullp” = —-
nﬁoop "E p(f)

Such a sequence p, € P, is called maximally convergent. Moreover, Walsh ([4],
Sect 4.7, Theorem 7, Theorem 8§ and its Corollary, pp. 79-81) proved that for such
maximally convergent polynomials

lim sup ”f_p"”;{’n:p%f)’ 1 <o <p(f). (L.1)

Consider Lagrange—Hermite interpolation to f on point sets
Z,: Zn,0s Zn,1s--+sZnn € E

by polynomials p, € P,. Then, it is known, due to Bernstein—Walsh, that the inter-
polation on such schemes Z, yields (1.1) if the normalized counting measures v,,
ie.,

#{zn,j 2 zn,j € B}

v (B) = o

(B C O,

satisfy

—~ *
Vn > ME
n—o0

in the weak* sense, where V,, denotes the balayage measure of v, on the boundary of
E, i.e., D, is the measure supported on the boundary of E such that

U™ (z) =U"(z) forallzeC\E.

Conversely, Grothmann stated the following theorem.

Theorem (Grothmann [1]): Let p,, be the polynomial of interpolation on Z,, C E. If
feAE), 1 < p(f) < oo, and if

. 1
limsup || f — pall" =
n—o0

p(f)’
then g is a weak* limit point of {V,},en-

The proof given in ([1]) applies only if E is connected or, at least, if £, r) is connected.
Hence, one objective of this paper is to provide a proof of Grothmann’s theorem
even for unconnected sets E. The crucial tool will be a new necessary condition for
maximally convergent polynomials which seems to be interesting itself.
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2 Maximal Convergence and Interpolation

Let E C C be compact with regular connected complement @ = C \ E and let
Pn € Py, n € N, denote polynomials such that

. 1/n
lim su — = —,
m sup If = palg o)

where p(f) is the maximal parameter of holomorphy of f and 1 < p(f) < oco.
The Green domains E,, | < r < oo, consist of a finite number of disjoint regions
Eri )

E, = E'UE>U...UE", I, eN. Q2.1)

Each E! is a Jordan region, and we write I'. = 9 E’. Then, the boundary T, = 9 E, is

Iy
r.=Jri
i=1

and we note that I'. and I'} may have points in common if i # j, but only a finite
number of points (cf. Walsh ([4], chapter 4, section 4.1).

Our first result is a necessary condition for maximal convergence that is new if £
is not connected.

Proposition1 Let f € A(E,), | < p < oo, and let p, € Py, n € N, be polynomials
such that

. 1/n 1
limsup || f — pallp” = —. (2.2)
n—00 1Y
Ifl <o < pandif
li . 1/n o
msup min ”f - p"l“l"i < —, (23)
n—oo 1=<i<ly o 14

then the maximal parameter p( f) of holomorphy of f satisfies p(f) > p.

As a consequence of Proposition 1, we get immediately

Theorem 1 Let f € A(E), andlet1 < o < p(f) < oo. Then, the sequence {pn},cn
with p, € Py is maximally convergent to f if and only if

. 1 . . 1
= limsup || f = paly! = limsup min || f —pul )" @4)

,O(f) n—00 n—00

If E is connected, then [, = 1 for any o and Theorem 1 coincides with the well-
known characterization of Bernstein—Walsh.
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Next, we want to use the above results to characterize interpolating polynomials
converging maximally to f by the distribution of the interpolation points.

Proposition2 Let f € A(E,), 1 < p < oo, and let p, € P, be the interpolating
polynomial to f on the point set Z,, C E, n € N, with

*
limsup |1 f — pullf/" < & @5)
n—00 7 1%
forallo*, 1 < o* < p.
Let A C N and let g be not a weak* limit point of v, n € A. If o is fixed with
1 <o < p, then foralln € A there exists an index s(n), 1 < s(n) < ly, such that the
strict inequality

1/n

limsup || f _pn”Fs(n)

neA,n— o0

<Z (2.6)
0

holds.

Finally, we combine Proposition 2 with Proposition 1 to obtain a characterization
of maximally converging interpolation polynomials.

Theorem2 Let f € A(E) with 1 < p(f) < oo, and let {py},cn be maximally
convergent to f on E. If p, interpolates f at the interpolation point set Z,, C E with
counting measure v, and balayage measure v, on 3 E, then the following holds:

(a) wg is a weak* limit point of {V, },en-
(b) For every fixed o, 1 < o < p(f), there exists a subset A C N such that

= limsup | f = pullf)’ = lim  min [f = pall )" 27

o
,O(f) n—00 neA,n—oo 1<i<l,
and
~ %
V, > WE asn— oo,n € A.
The first statement (a) is Grothmann’s theorem, even proved here for unconnected E.
The second statement (b) describes the subsequences A € N which lead to ug as a
weak* limit point of V,,, n € N.
3 Proof of Proposition 1
The proof is based on constructing a telescoping series of f,
o
f = pnl + Z(panr] - pnj)s
j=1

which is holomorphic in a neighborhood of E ,.
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Because of (2.2), the Lemma of Bernstein—Walsh induces that there exists fore > 0
and 1 <r < p anumber n.(r) € N such that

1 r
—log | f — pullr, < log—+e¢ 3.1
n o

for n > n.(r). Because of (2.3), there exist a map
s: N = {1,2,...,1,}

and § > 0 and n(8) € N such that
1 o
—logllf — pullpseon < log — —34. (3.2)
n o 1%

forall n > n(6).

3.1 The Starting Telescoping Series

Let us fix a parameter « > 1, then the telescoping series

F=pm+ Y. Pmiyy — Pm) 3.3)

i=1

and the sequence A (k) := {m;};2, is defined recursively:
Set my := 1. If m; is defined and if there exists m > m; with

s(m) =s(m;) and m/m; <k,
then we define
Mmi+1 :=m, otherwise m;y1 :=m; + 1.
Hence, A1(k) = {m;};2, has the following properties:
miy1/m; <k and s(m;q1) = s(m;) 3.4
or
miy1 =m; + 1 and s(m) # s(m;) form; +1 <m < k m;. 3.5)
Next, we decompose A1 (k) into
Ai(k) == A1) U Aga(k) (3.6)
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with
A11(k) = {m; € A1(k) : m; satisfies (3.4)} 3.7
and
A12() = {m; € A1(k) : m; satisfies (3.5)} = A1(k) \ A1.1(k). (3.8)
The next lemma shows how to estimate the norm of the difference
Pmipy — Pm; for m; € Aq1(k)
outside of E,. We use as auxiliary tool the harmonic measure
hi(2) = T, C\E,), 1<i=<l,
where I', = 9 E] is the boundary of the Jordan region E/. in the decomposition of E; in
(2.1), ie., hl,.is the harmonic functiqn in C\ E, that satisfies the boundary conditions
hi. =1onT! and A. =0on I, \ I}, possibly except of a finite number of points (cf.
[3], p. 111, section III, 17 or [2]). Then,
hi >0 forallz e C\E,

and if we define for r* > r

o, (r*) ;= min min hi(z),
1<i<l, zel'x

we obtain
a,(r*) > 0.
Lemma 1 Letn,m € Nwithm <nandn/m <k, andlet 1 <r < p such that
1 r
— log |l f = pmlpsom = log— =6, (3.9)
m r 0
and
1 r
— log | f = pallpsw = log— —6. (3.10)
n r P
where 8, > 0. If r* > r, s(m) = s(n) and if
ar(r*)

l<k<1l4+——7>7-—35, (3.11)
log (p/r) "
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then there exists 8% > 0 and n* = n*(«) € N such that

1 r*
= logllpn — pmlir,, < log— — 3§ (3.12)
n P
for m > n*, where
1/8 1
8> = (la,(r*) - (1 - —> log 3) : (3.13)
2\ k K r

Proof (3.9) and (3.10) imply

r m r n/k
lpn — pm”FS(n) <2 <— 6_5r> <2 (— e_‘s’>
r p p

or

3 1 log2
=log£ — =+ (— — 1) logz—i-&. (3.14)
K 0 n
Fix 0 < ¢ < log p/o. Because of (3.1), there exists n.(r) € N such that
1 r
—logl|lf — pullr, < log—+¢
n o

forn > n.(r). Then,

r m r nj/k
1Pn = Pullpsor <2 (log; e8> <2 <log; eg)

or
1 log2 1 roe
= log|lpn — Pm”I«r(n) < —+4+ —log—+ —
n r n K Tp K
1 log?2
<log— + <— - 1) log = + <2224 £ 315)
0 K 0 n K
Define
Akc) = (1 - —> log 2
.
and

1
H(z) = - log|(pn(2) = pm(2))| — G(2) + log p.
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Then, H(z) is subharmonic in C \ E, and the harmonic function

) log2 ¢
~2 @)+ AG) + = 4 E
K n K

is an upper bound of H (z) iq C\ E,, where we have taken into account (3.14) and
(3.15) and the definition of 4. fori = s(n) = s(m). Inserting z € I';+, we obtain

Ly % 10g2 &
H(D) < == o) + AG) + —— + =
K n K
and
1 rc 4 N log2 ¢
— logllpn — pmllr,« <log— — —o,(r") + Alk) + — +—.  (3.16)
n 0 K n K

If we choose « as in (3.11), we get with

8 8 1
—La, (r*) + Alk) = —— o, (r*) —l-logg - —logﬁ
K K r K r

1
=—— (5, a,(r*) +log 8) + log L
K r r
< 0.

Now, let us define

5t = (L o) - A
= 2(K (Xr(r )_ (K)>7

then §%. > 0, and we can choose n large enough and ¢ sufficiently small such that

log2 ¢
g +—<6;’<*.
n K

Hence, we can find n* = n*(x) € N such that by (3.16) we obtain

*

1 r "
— log|lpn — pmlir,. <log— —3§,
n p

for m > n*, and (3.12) and (3.13) are proven. O

We know from (3.2) that
1 o
- log|lf = pallpse = log o 8, n=nyd). (3.17)
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Let

x . ag(p)
SR TR (3.18)

and let 1 < « < «i in the definition of Aj(x) in (3.6)—(3.8), then we obtain by
Lemma 1 and choosing r = ¢ and r* = p:
There exists 87 > 0 and n] = nj(x) € N such that

log ||I7m[+1 — Pm; ”Fp =< _ST (3.19)
mi+1

forall m; € Ay1(x), m; > nj, and

1/6 1
r> (—ag(m = (1 - —) 1og£> -
2 \«k K o
Corollary 1 Letl < x < KT and assume that A (k) is a finite set in the decomposition

of A1(k) in (3.6). Then, the telescoping series (3.3) converges uniformly on compact
sets of a neighborhood of E,, i.e., p(f) > p.

Proof We apply the Bernstein—Walsh Lemma to the differences
DPmipy — Pm;
and use the inequality (3.19). O
Hence, Proposition 1 is proved for this special situation.
3.2 The Auxiliary Parameter 1 < 0 < 0

To restrict « in the definition of A (k) completely, we start with the decomposition of
E, in (2.1),

E, = ELNUE2U. . UEl, I, eN

Then, we can define a parameter o, 1 < ¢ < o, such that the decomposition of E,

into disjoint Jordan regions E ,

lo
Eqy = Ey UEZ U...UEs, Iy €N,
satisfies
log =ls and Ei C EL forl<i <ly.
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This can be achieved by the strict monotonicity of E, with respect to r and the fact
that the Green function G (z) of 2 has only a finite number of critical points in C \ E
(cf. Walsh [4], chapter 4, section 4.1).

Lemma2 Let§ > 0andlet 1 < oy < o such that according to (3.2)
1 o
~log | f = pull e < log= =8, n =ni(s).
n o 0
Then, there exist 5o > 0 and ny(8) such that
1 00
p log | f — Pn”FfT((Jn) < log i S0 for n =no(d). (3.20)
Proof Because of (3.1), there exists n. (1) such that
1 1
zlog If —pulle < log ; +e, n>ng(l).
Let us consider the Dirichlet problem for the harmonic function g;(z) in the region
E,\E, 1<i<l,,
with the boundary conditions
gi(z) =—8forzel! and g(z)=0forze ELNT,
where I' = 0E. Then, g;(z) < 0forz € E(’7 \ E. Define

Bi := max g;(z),

zel'g,
then B; < 0 and also

B = max B; <O.

l<i<ly

Moreover, the function
8sm (@) + ¢
is a harmonic majorant of
1 .
~log IS @) = pn(@)] = G@) +logp in Ej™\E.
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That leads to
1 0o
— log|lf — pullpsen —log — =< max gy (z) +¢€
m o cersy)
or
1 Oo
= log|lf — pallpson <log— + B +e.
n 0 P

If we define ¢ := — /2, then we get

1 o0 B
= log|lf = pallsw <log—+ =
n o0 0 2

for all n > n.(1). Therefore,
no(6) :=n.(1) and 8g:=—pB/2

satisfy the statement of Lemma 2. O

Lemma3 Letn,m € Nwithm < nand n/m < k. Let 69 > 0 and no(§) € N such
that (3.20) holds according to Lemma 2. Moreover, let s(m) = s(n) and let

Qo (0)

— dp, 3.21
log(p/o0) G20

l <k <i;:=1+

then there exists 55 > 0 and n3 = n3 (k) € N such that

1 o
—log|pn — pmllr, <log— —&; (3.22)
n 0
form > n3 and
1/6 1
8 = 5 <—005<70(U) - <1 - —) log ﬁ) . (3.23)
2\« K 00

Proof Because of Lemma 2, there exists n¢(8) such that
1 o0
—log|lf — pmllsom <log— — 3o
m ) p

and
1 00
—logllf — pallpson <log— —do
n o0 10
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form < n and m > ng(8). Since s(m) = s(n) and « satisfies (3.21), then Lemma 1
yields that there exists n5 = nj(x) € N and §; > 0 such that

1 o N
—log || pm — pn”l"(7 <log — — 5()
n p
for m > n3 and & satisfies (3.23). O

3.3 The Final Telescoping Series
We start with the telescoping series associated with
Ay () = {m;}72,
satisfying (3.4) and (3.5) and choosing the parameter « such that
1<k <min(Kf‘,K§‘,K§‘).
K is defined by (3.18), i.e.,

* _ ag(p)
log (p/0)
and § satisfies (3.17). k7 is defined by (3.21), i.e.,
* _ Ao (o) 0
log (p/00)
and § satisfies (3.20). ng will be defined by

K; = 1 aU (10) ﬁ

log (p/o) 2

and & satisfies (3.23). The role of x5 will be seen in the proof of Lemma 5. As above,
we use the decomposition

(3.24)

Ar(k) == Aq1() U Aga(k)

Hence, by (3.19) there exist §7 > 0 and n] = nj(x) € N such that

log || pmiyy — Pmyllr, < =87 (3.25)
mi41

forall m; € Ay 1(x), m; > n’]" So, as critical differences in the telescoping series
with respect to A1(«x) remain py,;,, — pm;, where

miy1 =m; + 1 and s(m;41) # s(m;).
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In Corollary 1, we have given already the proof of Proposition 1 for the case that
A1,2(x) is a finite sequence. Therefore, we assume henceforth that

Alpk) = A <Ai<t3< ...} (3.26)

is an infinite sequence.
In the following, we use a real parameter c € R, 0 < ¢ < 1.

Lemma4 Let Ax € A1.2(k) be fixed. Then, there exist at most l, elements of A12(k)
in the interval

(A5 KA.

Moreover, let the parameter ¢ € R, 0 < ¢ < 1, be fixed and let the semi-open
intervals I (A, j) be defined by

' c /! c j
I(Ak, J) == | M 1+<1+C> k—=1)), A l+(1—|—c> k—1)

for0 < j <ly — 1. Then, there exists l; 0< [1; <ls — 1, such that

I, ) N A a(k) = 9.

Proof Let us assume that there exist at least /, elements of Aj2(x) in the interval

(Mk, kAk]. Then, the definition of Aj(x), resp. A1 2(x), implies that the values of the
function s at the points

Ay Metds - vy Ak,

are all different, which contradicts the definition of /.
Let us assume that the second part of the Lemma is false. Then, in each

Ik, ), 0=j=ls —1,

there exists at least one element of A 2(x). Hence, the interval

(o552 ) ]

contains at least [, elements of A1 (), contradicting the first part of the lemma. O
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3.3.1 The Telescoping Defining Sequence A(k, ¢)

Let
Ar(k) = {mi}i2,
satisfies (3.4) and (3.5) with a parameter « where
1<k < min(Kf,Kik,Ké‘).
K is defined by (3.18), 5 by (3.21), k5 by (3.24). As in (3.6) - (3.8), we decompose
A1) = A1) U Apa(k).

Then, we define the sequence

o0

At = )7,

as follows: If A 2(k) is a finite sequence, then A(k, c) := Aj(k). If Aj2(k) is an
infinite sequence, we define

1
yi=| — |41 (3.27)

CONGE

and we set
M :=min{m; € A{(k) : m; > y}.

Then, we define n; := m; for 1 < m; < M. The remaining elements n; €
Ak, c), nj > M, will be defined recursively: ~
Ifn; > M is already constructed, we note that we obtain by (3.27) for0 < /; <[, —1

17-'1-1 lo
nj <1L+C> (k —1)>n; (ﬁ) k=1 > 1. (3.28)

Then, we fix
m :=min {m; € Aj(x) : m; > n;}

and distinguish 2 cases:

(i) Ifs(m) =s(n;), thenn;y :=m.
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(ii) If s(m) # s(n;), then we apply Lemma 4. Hence, there exists kg € N and
0 <!lj <ly — 1, such that

e\t
)\ko S}’l] 1+<1_—{—0> (K—l)

and

i
c J
)\.kOJrl >I’l] <1+(1—_’_C> (K-l)),

where we have used (3.28) and the enumeration of A 2(x) as in (3.26). Then,
we define

Njtl = Ak

Properties of A(«, c) We have always njy1 <knj. If s(njy1) # s(nj), then

njr1—nj < nj(l—i—c) k—1) (3.29)
and
PN
i A ; 1 e -1 .
Aeglﬁl;(}{){ >n,+1}>n] +<1+c> (x )], (3.30)

where 0 < lNJ < I, — 1. Moreover, s(m) = s(n 1) for

Ij
m € A(k), wherenj 1 <m <n; <1+(%> (K—l)). (3.31)
C

In the following, we use the decomposition
Ak, c) := Ai(k,c) U Ax(k,c),
where
Ai(k,c)={nj e Ak, c) :njp1/nj <k and s(nj+1) = s(n;)}
and

Ay(k,c) = {nj €A,c):njy1/nj <kands(njy1) # s(nj).}
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Lemma5 Let nj € Ay(k,c), then there exists 63 j > 0 and n; = n3(k) € N such
that

1 o
——log || f — pnjllr, < log— —682; forn;>nj. (3.32)
nj+1 P

Moreover, 53 j can be chosen in such a way that

| 1/ ¢ Nie=1. p
8 ;i > —min|8;, — | —— log — 3.33
2= me(o 2K (l+c> 1+¢ Oga) ( )

with 8§ satisfying (3.22) and (3.23) of Lemma 3.

Proof We consider the telescoping series

o0
f = pnj+1 + Z (pl’lj+k+l - pl’ljJrk)
k=1

and define
kj=sup{k:snjy1) =snjz) =...=smj)}. (3.34)

Because of (3.30), we have

j
njk, = n; (1 + <1‘:?> (e — 1)) ~1, (3.35)

keeping in mind that n; ¢, € N. Now, we write

o
Z (pl’lj+k+l - pl’lj+k) = A/ + B/’
k=1

where

kj—1
Aj= Z (Pnjsrsr = Pnjr)
k=1

and

00
Bj = Z (p’lj+k+l - pnj+k)'
k=k;
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Estimation of A; on I'; Because of the definition of k; in (3.34), we use (3.31)
and apply Lemma 3 for all differences

Prjygr = Pnjyx

occurring in A ;. We obtain with 5 > 0 and n5 = n*(x) € N that

o
* *
P log ||Pn,-+k+1 - Pn,~+k||l"g = IOg; - 80, Nj+k > ny,
J

where 4 satisfies the inequality (3.23), since

Ao (o)

1 QI R A
DR log(p/o0)

and 4y is defined by Lemma 2 in (3.20). Then,

kj—1

1A Ir, < D 1P — Prjclis
k=1

o0 (0 _8*)”_/+k+1
<> (T
k=1 P

— A (%M) " (3.36)

for all j withn; > n3 and B is a constant independent of ;.
Estimation of B; on I'; Let us define

I;
C J
i =14+— — 1. 3.37
Vi (1 +c) (k= 1) (3.37)
Because of (3.1), there exists n. (o) such that for n > n.(o)
1 o
—log|lf — pullr, <log— +e¢,
n o
where 0 < ¢ < log(p/o) is fixed. Then, forn; > n. (o)

nj+k;
||pnj+kj+l - pnj+kj||f‘(r <2 (; €€>
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and with (3.35) and (3.37) we obtain

||Pn_,v+k_,~+1 - Pn_,-+k_/ ”l"a =<

IA |
= \S)
) —
Z N D | Q
> Q
Q
mm \_m/
S— =
= 3
E Ny
TN
> Q
Q
™
N——"
|

with

Analogously,

o yjnj+k—k;j
I Pnj+h+1 = Prj+xlln, < B2 <; 68>

forall k > k; and n; > n.(0). Hence, for such n;
o0
1Bilir, = Y Pnjasss — Prjelirs
k=k

0

IA
=
(3]
PR
| Q
o
™
~
=
I 3
PR
| Q
o
s>}
~—
<

(3.38)

where

Because of (3.29),
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and therefore

vinj

nji41 l_i_(lL

(3.39)

For abbreviation, we define

and note that

1 -1 <
() o <k (3.40)
Kk \1+c¢ 14+c¢

Since ¢ < log(p/o), multiplication of (3.39) by log(o/p) + ¢ yields

riny <logg+s> < logz+8~jlogg+s(l+5~j).
njtl o o o
Hence, the upper bound in (3.40) leads to

- N
riny <logg+e> < logg—8jlog£~l—8;c.
Mj+1 P p o

Next, we define

! ¢ 17'(_11 p (3.41)
E = —= og— 1. R
2 k2 l+c¢ 1+c¢ ga

Then the general condition ¢ < log(p/o) is satisfied and the lower bound of (3.40)
yields

~ ~ 1 ~
—Sjlogg—i—ex < —8j10g§+§8j10g§
1

= ——§ilog?
2 018
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Therefore, for such & we obtain by (3.38) forn; € Ax(x,c) andnj > ng(0)

nj+l

g _sx.
I1Bjllr, < B3 ;e 2 , (3.42)

where 85 j is defined by

5, =
and ¢ is defined by (3.41).
Summarizing, by (3.36) and (3.42) we have got for n; € Ajz(k,c) and n; >

max (n}, ng (o))

If —njtillir, < I1Ajllr, +1Bjlr,

O _gx nj+1 o _gr nj+1
= Bi|—e ™ + B3| —e 2 :
p p

B1 and B3 are constants, independent of n ;. Hence, if we define

5 OV A 17K—11 p
;= —min , — | —— og —
2 2 O 2 \1+¢ 1+c¢ go

and if we use the lower bound in (3.40), then there exists n3 = n3(x, c) such that

1 o
1 — Dn; < log— —8.;, n;>ni,
ni 0og Il f Pnjy lre < log 0 2,j» Nj =Nz
and (3.32) and (3.33) of Lemma 5 are proven. m]

3.3.2 Fixing the Parameter cin A(k, ¢)

In the case that n; € Ax(k, c¢), we have by Lemma 5: There exists 8 ; > 0 and
n3 = nj3(k, c) such that

1 o
_1 lOg ”f - pnj+1 ”FU < lOg ; - 52,j (343)

}’l]+

foralln; > né‘ (x, ¢). Moreover,

5 > = min (87, — (= 17“_11 L (3.44)
;> — min , — | —— og — .
=3 2k \1+e¢ 1+¢ ga
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with §5 > 0 as in Lemma 3. Because of (3.43), we have a fortiori

o
— o sy < = — 8. .
. log |l f — pnj, ||F0< » < log P 8, (3.45)

On the other hand, we have by (3.2)

1 o
—log |l f = pn;ll spy < log——34 (3.46)
n; L P

for all n; > n1(8) with § > 0. Now, we can apply Lemma 1 by taking into account
(3.45) and (3.46): There exists n}; = nj (k) such that

1
——1og1pn,sy — Pu,llr, < =835, nj >nj, (3.47)
nj+1

where

1 1
5 > ~ <“"(p)min(5, 52.) — (1 _ —> 10g£> >0,
- 2 K K o

if we can achieve, i.e., if we can arrange ¢ with 0 < ¢ <1 such that

ko= I < < 1+”‘—@min(5,52,,). (3.48)
Y log (/) -
Since
P L R R L. AT Ry
n;j log (p/o)
the inequalities (3.48) are fulfilled if
o = D) o
T on log (/o)
Taking into account (3.44) and
c < K:;‘k _ Qs (p) ﬁ’
log (p/o) 2

the inequality (3.48) is satisfied if

1 b —1
Kj§K<1+w'—w— ¢ K logﬁ.
log(p/o) 4k \1+c
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Because of (3.29), we know that

[i+1

n; 7

K= < 1+(]fr ) k—1).
nj C

Therefore, (3.48) is guaranteed if

c < Lotg(,o). (3.49)
4k

3.4 Conclusions

We consider the telescoping series

9]
Z Pnj = p”/

associated with the sequence
o
Ak, c) = {nj}j=1 = Aq(k,c) U Ax(k, c).
The parameter « satisfies
1 <k < min (], k3, k3),

and we fix a parameter ¢ such that

1
0<c<—oas(p),
4k

where k', k3, k3 are defined by (3.18), (3.21), (3.24).If n; € A(k, c), then according
to (3.25)

IOg ||Pnj+1 - Pn]-”I‘,, = _ST
nj_;,_]

foralln; € Aj(x,c),nj > n’f(/c). If n; € Az(«, ¢), then according to (3.47)

log ||pnj+1 - Pnj”I‘p =< _8;
nj+1

foralln; € Ax(x,c),nj > nj(k), since c satisfies (3.49). Therefore,

log l1pn;yy — Pn;lr, < —min (87, 83) <0
nj+1 ' -
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foralln; € A(k, c) withn; > max (n’lk (), nZ(/c)). Finally, the Lemma of Bernstein—
Walsh implies that f is holomorphic in a neighborhood of E_p, ie.,

p(f) > p,

and Proposition 1 is proven.

4 Proof of Proposition 2
We choose r and R such that
l<r<o<R<p

under the additional condition that in the decomposition of Eg, resp. E,, analogous
to (2.1), the numbers /g and [, satisfy [g = [,. For abbreviation, we define

Now, forall z € Q = @\ E we have
(U™ —U") (z) = U™(2) + G(z) + logcap E
and therefore
max (U™ —U"¥)(z) = max U™(z) + log r + logcap E
zely zel,
= max U"(z) + logcap E,.
zel,

Hence, the uniqueness of the equilibrium measure of E, implies

8y = max (U —U")(z) > 0. 4.1

zel,
Next, we fix z, € ', such that
8 = (U™ —U"F) (zn) (4.2)
and we choose s*(n) € N such that
1 <s*(n) <landz, € E, ™. (4.3)
Consider
DR = ER"\E,
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then D‘;; (r") is a region with boundary
s*(n) s*(n)
ry® v (rnEg™),
where
™ N (Fr N E}*(’”) = 0.
The Lagrange—Hermite formula for the error f — p, atz € ', is

| \
F@ =) = — [ 2@ SO 40

2wi Jrp, wa() t—z

with

n

wa(t) = [](t=2ni). teC.

i=0
where z,,;, 0 <i < n, are the interpolation points of Z,,. Moreover, we can write

wy(z) @) — pa(®)

2wi Jr, wy(f) t—z

f@) = pal2) = d(t)

forzel,. Ifzel, N Ej:(") , we may reduce the path of integration to F;: ™ hence

wy(z) f(@) — pat)

- = — d(). 4.4
f@ = @) = — T R () (4.4)
Let ¢ > 0, then (2.5) implies that there exists no(e) such that
1 R
—log I f — pullry < log — +e¢
n o
and
1 r
—log | f — pullr, < log —+¢
n o
foralln > ng(e). Using (4.4), we may choose ng(¢) in such a way thatforall z € Ff*(")

and n > ng(e)

1 1
= log|f(z) — pn(@)| < =U"(2) + max U™ (t) + —log | f — pullr; +&
n tel'g n

IA

R
—U"(z) + max U (t) +log — + 2.
tel'g P
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Since

UME (1) = UME(Z)-i-lOg% fort eTg andzeT,,

we get for z € I} ™

%log lf(2) — pu(@)] < (UME _ UU”) (2) + tnel?); (UV" _ UME) (1)

- 4.5)
+log — +2e.
I

Now, let us consider the difference
U'(z) —U"E(z), z€R,

which is a harmonic function in 2. Then, the maximum of this difference on the level
curve ['4+ is increasing with decreasing o, 1 < o* < oco. Consequently,

max (U — UME) (1) > max (U = U"E) (1). (4.6)

tel’)
We note for further applications that (4.6) holds also if we replace v, by any probability
measure v # g with supportin E.

Because of (4.1) and (4.2) and the choice of s*(n), we have

max (U“” —U"E) (2) = max(U“” —U"E) (2)

zerf*(”) zel,

> max (U™ — U"F) (1).

tel’'g

Next, we define the Dirichlet problem for the harmonic function @, (z) in the region
Dy = By N,
with the boundary conditions
®,(z) = 0, €™
and
®,(z) = min (0, (U — U™) (@) +ca: TR)), z€ T, NER™, (47
where

c(vy; TR) = ;Ielgx (U”n — UME) (1).
R
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Because of (4.3) and (4.6), ®,,(z,) < 0 and therefore ®,(z) < 0 for all z € D‘;:,(r”).
Thus, if we define

7 = max  ®,(), r<o <R,
teMeNES ™

then
@7 <0 foralln € A.

Moreover, the maximum principle for harmonic functions, together with (4.5), implies
that the harmonic function

®,(z) + G(z) —logp + 2,

is an upper bound for the subharmonic function

1
;loglf(z)—Pn(z)l,

ie.,
1
;loglf(z)—pn(z)l < ®,(2)+G(z) —logp +2¢

forall z € D‘;;(r"). Hence, we obtain

1 o
;10g|f(2)—Pn(Z)I < 10g;+¢§+28 (4.8)

forallz € 'y N E;;(") and all n > ng(¢e).
Now, we claim: There exists § > 0 such that
7 < —§ foralln e A. 4.9)

Let us assume that the claim is false:
Then, there exists a subsequence A| C A such that

lim d% = 0.

n
nelA|,n—00

By Helly’s theorem, there exists a subsequence A> C Aj such that

im v, =v
nelAr,n—>o0
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with supp(v) C E and v # pg. Since there are only / different sets
o NEL, 1<i<l,
we can finally choose A» such that the sets
Ty NES™

are fixed for all n € Ay, i.e., s*(n) = jo is fixed for all n € A».
Because of

o~ *
Vn U,
neAr,n—00

there exists n1(e) > ng(e) such that
U"(z) —U"(2)| < &, z€Tl,UTg,
foralln € Ap,n > ni(e). Then, forz € I'; and n > nj(e)

(UME —U") (2) + c¢(vn; Tr)
= (UM = U™) () + max (U™ = U (1)
= (U -U") @+ (U= U")(2)
+max (U™ —=U") () + (U” = U"E) (1))

tel'g

< (UM =U") (@) +c(v;Tr) + 26,
where we have defined

c(v;TR) = max (U” - U“E) (1). (4.10)
el'R

Therefore, the boundary condition (4.7) can be estimated by

min (0, (UM — U") (z) + ¢(va: TR))

) 4.11)
< min (0, (U" — U") (2) + c(v; Tg) +2¢)

forzel', NE {'eo .
Now, we consider the Dirichlet Problem for the function ®(z) in the region D;eo,r =

E {eo \ E, with the boundary conditions

®(z) =0forz e 'Y (4.12)
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and
®(z) = min (0, (U*E — U") (2) + c(v; Tg) +2¢), z€ T, NEY  (4.13)

where c(v; I'g) is defined by (4.10).The continuous functions U*£ — U™ converge
in © uniformly on compact sets, especially on I' UT'g, asn € Az, n — oo. Hence,
by (4.1) and (4.2)

max (UU — U"LE) () = lim max (UVn — UME)(Z)

zel,NED nEA2N=00 e, NED

= lim max (U" — UME)(z)
nelAr,n—o0 zel,

= max (U" — UME)(z)

zel,

> max (U" — UME)(1).

tel'g

= c(v;TpR).

The last inequality follows from v # g, mentioned in the remark following (4.6).
Next, we choose ¢ > 0 such that

max (U” — U”E) (z) —=2¢ > c(v;TR).
zelNEY

Hence, the boundary conditions for the harmonic function ®(z) in (4.12) and (4.13)
read as ®(z) < 0, but ®(z) is not identically 0 on ', N E{e". Then, the maximum
principle for harmonic functions yields
®(1) <0 for te Dy, =ER \E.
If we compare the Dirichlet problems for &, and @, then by (4.11)
®,(t) < ®(r) forr e DY, andforalln € Ag,n > nye).

Therefore,

PP = max P,() < max D) <0
€T NEPY 1€l NEPY

forn € Ay, n > ny(¢g), contradicting our assumption that (4.9) is not true.
Hence, (4.8) and (4.9) imply that

1 o
—1f@ —pa@] < log——8+2¢
n p
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forallz e I'xc N E‘;;(") and n > no(e),n € A. If we choose ¢ = §/4, then we finally
get

(4.14)

N o

1
—1f(@ —pa@] =
n

| Q

forz eI’y N Ef;(") and n > ng(e),n € A.

We note that each T’y N E;*("), 1 < s*(n) < I, consists of a finite number of
connected components of I';. Therefore, because of (4.14) we can define for each
n € A anumber s(n), 1 < s(n) <, such that

o
limsup ||f — Pn|| s(n) ;

neA,n—oo

Hence, (2.6) of Proposition 2 is proven.

5 Proof of the Theorems

We have already mentioned that Theorem 1 is a direct consequence of Proposition 1.
More precisely, if the condition (2.4) of Theorem 1 is true, then the sequence p, € P,
is maximally convergent to f, due to Bernstein—Walsh. Conversely, if the condition
(2.4) is not true for some o, 1 <o < p(f) < o0, i.e.,

lim sup min | f - pallis’ < —— = limsup | f — pul)",

n—oo 1= (f) n— 00

then Proposition 1 shows that po(f) is not the maximal parameter of holomorphy of
f, which is a contradiction.

Concerning part (a) of Theorem 2, let us assume that p g is not a weak™ limit point
of U, n € N. Then, Proposition 2 yields—using A = N—that there exist parameter
s(n), 1 <s(n) <l,, such that

o
lims .
ln»ol:)p | f — pu ” v(n) (f)

But according to Theorem 1, then p( f) could not be the maximal parameter of holo-
morphy of f. This is a contradiction to the maximal convergence of {p,},¢y-

Concerning part (b), we know already that there exists a subsequence A € N such
that (2.7) holds. Let us assume that u g is not a weak* limit point of D, n € A. Then,
Proposition 2 implies that there exist

s(n), 1 <s(n) <ly,
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such that

. 1/n
limsup || f — pl’L”l_,s(n) <
neA,n—o00 7

o
p(f)
This contradicts (2.7) and Theorem 2 is proven.
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