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Abstract
A theorem of Grothmann states that interpolating polynomials to a holomorphic func-
tion on a compact set E is maximally convergent to f only if a subsequence of the
interpolation points converges to the equilibrium distribution of E in the weak* sense.
Grothmann’s proof applies only for connected sets E . The objective of this paper is to
provide a new necessary condition for maximal convergence which is the crucial tool
to prove Grothmann’s theorem for unconnected sets E .
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1 Introduction

For B ⊂ C, we denote by B its closure and by ∂B the boundary of B and we use
‖ · ‖B for the supremum norm over B. Let A(B) be the class of functions that are
holomorphic (i.e., analytic and single-valued) in a neighborhood of B, and we denote
by Pn the set of algebraic polynomials of degree at most n.

Let E be a compact subset of the complex planeC, and letM(E) be the collection of
all probability measures supported on E , then the logarithmic potential of μ ∈ M(E)

is defined by
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Uμ(z) =
∫

log
1

|z − t | dμ(t)

and the logarithmic energy I (μ) by

I (μ) :=
∫ ∫

log
1

|z − t | dμ(t) dμ(z) =
∫

Uμ(z) dμ(z).

Let

V (E) := inf{I (μ) : μ ∈ M(E)},

then V (E) is either finite or V (E) = +∞. The quantity

cap E = e−V (E)

is called the logarithmic capacity or capacity of E .
Let E be compact in the complex plane C with connected complement � = C \ E

in the extended planeC. The domain � is called regular if the Green function G(z) =
G(z,∞) on� with pole at ∞ tends to 0 as z ∈ � tends to the boundary ∂� of �. If�
is regular, then cap E > 0 and there exists a unique measure μE ∈ M(E) such that

I (μE ) = − log cap E = V (E)

and we have

UμE (z) = −G(z) − log cap E, z ∈ �.

μE is called equilibrium measure of E .
In the following, let E be compact in C with regular connected complement � =

C \ E . Then, we define for σ > 1 the Green domains Eσ by

Eσ := {z ∈ � : G(z) < log σ } ∪ E

with boundary �σ := ∂Eσ . Since � is regular, the Green domain Eσ consists of a
finite number of Jordan regions which are mutually exterior (cf. Walsh ([4], Chapter
4, section 4.1). Only in the case that E is connected, each Eσ is a single Jordan region
for any σ > 1.

If f ∈ A(E), then there exists ρ > 1 and polynomials pn ∈ Pn , n ∈ N, such that

lim sup
n→∞

‖ f − pn‖1/nE ≤ 1

ρ
,

due to a result of Walsh ([4]).
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Let ρ( f ) denote the maximal parameter ρ > 1, 1 < ρ ≤ ∞, such that f is
holomorphic on Eρ . Then, there exist polynomials pn ∈ Pn such that

lim sup
n→∞

‖ f − pn‖1/nE = 1

ρ( f )
.

Such a sequence pn ∈ Pn is called maximally convergent. Moreover, Walsh ([4],
Sect 4.7, Theorem 7, Theorem 8 and its Corollary, pp. 79–81) proved that for such
maximally convergent polynomials

lim sup
n→∞

‖ f − pn‖1/n�σ
= σ

ρ( f )
, 1 < σ < ρ( f ). (1.1)

Consider Lagrange–Hermite interpolation to f on point sets

Zn : zn,0, zn,1, . . . , zn,n ∈ E

by polynomials pn ∈ Pn . Then, it is known, due to Bernstein–Walsh, that the inter-
polation on such schemes Zn yields (1.1) if the normalized counting measures νn ,
i.e.,

νn(B) := #{zn, j : zn, j ∈ B}
n + 1

(B ⊂ C),

satisfy

ν̂n
∗−→

n→∞ μE

in the weak* sense, where ν̂n denotes the balayage measure of νn on the boundary of
E, i.e., ν̂n is the measure supported on the boundary of E such that

U ν̂n (z) = U ν(z) for all z ∈ C \ E .

Conversely, Grothmann stated the following theorem.

Theorem (Grothmann [1]): Let pn be the polynomial of interpolation on Zn ⊂ E. If
f ∈ A(E), 1 < ρ( f ) < ∞, and if

lim sup
n→∞

‖ f − pn‖1/nE = 1

ρ( f )
,

then μE is a weak* limit point of {̂νn}n∈N.

The proof given in ([1]) applies only if E is connected or, at least, if Eρ( f ) is connected.
Hence, one objective of this paper is to provide a proof of Grothmann’s theorem
even for unconnected sets E . The crucial tool will be a new necessary condition for
maximally convergent polynomials which seems to be interesting itself.
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2 Maximal Convergence and Interpolation

Let E ⊂ C be compact with regular connected complement � = C \ E and let
pn ∈ Pn , n ∈ N, denote polynomials such that

lim sup
n→∞

‖ f − pn‖1/nE = 1

ρ( f )
,

where ρ( f ) is the maximal parameter of holomorphy of f and 1 < ρ( f ) < ∞.
The Green domains Er , 1 < r < ∞, consist of a finite number of disjoint regions

Er
i ,

Er = E1
r ∪ E2

r ∪ . . . ∪ Elr
r , lr ∈ N. (2.1)

Each Ei
r is a Jordan region, and we write �i

r = ∂Ei
r . Then, the boundary �r = ∂Er is

�r =
lr⋃
i=1

�i
r

and we note that �i
r and �

j
r may have points in common if i 
= j , but only a finite

number of points (cf. Walsh ([4], chapter 4, section 4.1).
Our first result is a necessary condition for maximal convergence that is new if E

is not connected.

Proposition 1 Let f ∈ A(Eρ), 1 < ρ < ∞, and let pn ∈ Pn, n ∈ N, be polynomials
such that

lim sup
n→∞

‖ f − pn‖1/nE ≤ 1

ρ
. (2.2)

If 1 < σ < ρ and if

lim sup
n→∞

min
1≤i≤lσ

‖ f − pn‖1/n�i
σ

<
σ

ρ
, (2.3)

then the maximal parameter ρ( f ) of holomorphy of f satisfies ρ( f ) > ρ.

As a consequence of Proposition 1, we get immediately

Theorem 1 Let f ∈ A(E), and let 1 < σ < ρ( f ) < ∞. Then, the sequence {pn}n∈N
with pn ∈ Pn is maximally convergent to f if and only if

σ

ρ( f )
= lim sup

n→∞
‖ f − pn‖1/n�σ

= lim sup
n→∞

min
1≤i≤lσ

‖ f − pn‖1/n�i
σ

. (2.4)

If E is connected, then lσ = 1 for any σ and Theorem 1 coincides with the well-
known characterization of Bernstein–Walsh.
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Next, we want to use the above results to characterize interpolating polynomials
converging maximally to f by the distribution of the interpolation points.

Proposition 2 Let f ∈ A(Eρ), 1 < ρ < ∞, and let pn ∈ Pn be the interpolating
polynomial to f on the point set Zn ⊂ E, n ∈ N, with

lim sup
n→∞

‖ f − pn‖1/n�σ∗ ≤ σ ∗

ρ
(2.5)

for all σ ∗, 1 < σ ∗ < ρ.
Let � ⊂ N and let μE be not a weak* limit point of ν̂n, n ∈ �. If σ is fixed with
1 < σ < ρ, then for all n ∈ � there exists an index s(n), 1 ≤ s(n) ≤ lσ , such that the
strict inequality

lim sup
n∈�,n→∞

‖ f − pn‖1/n
�
s(n)
σ

<
σ

ρ
(2.6)

holds.

Finally, we combine Proposition 2 with Proposition 1 to obtain a characterization
of maximally converging interpolation polynomials.

Theorem 2 Let f ∈ A(E) with 1 < ρ( f ) < ∞, and let {pn}n∈N be maximally
convergent to f on E. If pn interpolates f at the interpolation point set Zn ⊂ E with
counting measure νn and balayage measure ν̂n on ∂E, then the following holds:

(a) μE is a weak* limit point of {̂νn}n∈N.
(b) For every fixed σ , 1 < σ < ρ( f ), there exists a subset � ⊂ N such that

σ

ρ( f )
= lim sup

n→∞
‖ f − pn‖1/n�σ

= lim
n∈�,n→∞ min

1≤i≤lσ
‖ f − pn‖1/n�i

σ
(2.7)

and

ν̂n
∗→ μE as n → ∞, n ∈ �.

The first statement (a) is Grothmann’s theorem, even proved here for unconnected E.
The second statement (b) describes the subsequences � ∈ N which lead to μE as a
weak* limit point of ν̂n, n ∈ N.

3 Proof of Proposition 1

The proof is based on constructing a telescoping series of f ,

f = pn1 +
∞∑
j=1

(pn j+1 − pn j ),

which is holomorphic in a neighborhood of Eρ .
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Because of (2.2), the Lemma of Bernstein–Walsh induces that there exists for ε > 0
and 1 ≤ r < ρ a number nε(r) ∈ N such that

1

n
log ‖ f − pn‖�r ≤ log

r

ρ
+ ε (3.1)

for n ≥ nε(r). Because of (2.3), there exist a map

s : N → {1, 2, . . . , lσ }

and δ > 0 and n1(δ) ∈ N such that

1

n
log ‖ f − pn‖�

s(n)
σ

≤ log
σ

ρ
− δ. (3.2)

for all n ≥ n1(δ).

3.1 The Starting Telescoping Series

Let us fix a parameter κ > 1, then the telescoping series

f = pm1 +
∞∑
i=1

(pmi+1 − pmi ) (3.3)

and the sequence �1(κ) := {mi }∞i=1 is defined recursively:
Set m1 := 1. If mi is defined and if there exists m > mi with

s(m) = s(mi ) and m/mi ≤ κ,

then we define

mi+1 := m, otherwise mi+1 := mi + 1.

Hence, �1(κ) = {mi }∞i=1 has the following properties:

mi+1/mi ≤ κ and s(mi+1) = s(mi ) (3.4)

or

mi+1 = mi + 1 and s(m) 
= s(mi ) for mi + 1 ≤ m ≤ κ mi . (3.5)

Next, we decompose �1(κ) into

�1(κ) := �1,1(κ) ∪ �1,2(κ) (3.6)
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with

�1,1(κ) = {mi ∈ �1(κ) : mi satisfies (3.4)} (3.7)

and

�1,2(κ) = {mi ∈ �1(κ) : mi satisfies (3.5)} = �1(κ) \ �1,1(κ). (3.8)

The next lemma shows how to estimate the norm of the difference

pmi+1 − pmi for mi ∈ �1,1(κ)

outside of Er . We use as auxiliary tool the harmonic measure

hir (z) = ω(z, �i
r ,C \ Er ), 1 ≤ i ≤ lr ,

where�i
r = ∂Ei

r is the boundary of the Jordan region E
i
r in the decomposition of Er in

(2.1), i.e., hir is the harmonic function in C \ Er that satisfies the boundary conditions
hir = 1 on �i

r and h
i
r = 0 on �r \ �i

r , possibly except of a finite number of points (cf.
[3], p. 111, section III, 17 or [2]). Then,

hir > 0 for all z ∈ C \ Er

and if we define for r∗ > r

αr (r
∗) := min

1≤i≤lr
min
z∈�r∗

hir (z),

we obtain

αr (r
∗) > 0.

Lemma 1 Let n,m ∈ N with m < n and n/m ≤ κ , and let 1 < r < ρ such that

1

m
log ‖ f − pm‖

�
s(m)
r

≤ log
r

ρ
− δr (3.9)

and

1

n
log ‖ f − pn‖�

s(n)
r

≤ log
r

ρ
− δr . (3.10)

where δr > 0. If r∗ > r , s(m) = s(n) and if

1 < κ < 1 + αr (r∗)
log (ρ/r)

δr , (3.11)
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then there exists δ∗
r∗ > 0 and n∗ = n∗(κ) ∈ N such that

1

n
log ‖pn − pm‖�r∗ ≤ log

r∗

ρ
− δ∗

r∗ (3.12)

for m ≥ n∗, where

δ∗
r∗ ≥ 1

2

(
δr

κ
αr (r

∗) −
(
1 − 1

κ

)
log

ρ

r

)
. (3.13)

Proof (3.9) and (3.10) imply

‖pn − pm‖
�
s(n)
r

≤ 2

(
r

ρ
e−δr

)m

≤ 2

(
r

ρ
e−δr

)n/κ

or

1

n
log ‖pn − pm‖

�
s(n)
r

≤ log 2

n
+

(
log

r

ρ
− δr

)
1

κ

= log
r

ρ
− δr

κ
+

(
1

κ
− 1

)
log

r

ρ
+ log 2

n
. (3.14)

Fix 0 < ε < log ρ/σ . Because of (3.1), there exists nε(r) ∈ N such that

1

n
log ‖ f − pn‖�r ≤ log

r

ρ
+ ε

for n ≥ nε(r). Then,

‖pn − pm‖
�
s(n)
r

≤ 2

(
log

r

ρ
eε

)m

≤ 2

(
log

r

ρ
eε

)n/κ

or

1

n
log ‖pn − pm‖

�
s(n)
r

≤ log 2

n
+ 1

κ
log

r

ρ
+ ε

κ

≤ log
r

ρ
+

(
1

κ
− 1

)
log

r

ρ
+ κ log 2

n
+ ε

κ
. (3.15)

Define

A(κ) :=
(
1 − 1

κ

)
log

ρ

r

and

H(z) := 1

n
log |(pn(z) − pm(z))| − G(z) + log ρ.
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Then, H(z) is subharmonic in C \ Er and the harmonic function

−δr

κ
hs(n)
r (z) + A(κ) + log 2

n
+ ε

κ

is an upper bound of H(z) in C \ Er , where we have taken into account (3.14) and
(3.15) and the definition of hir for i = s(n) = s(m). Inserting z ∈ �r∗ , we obtain

H(z) < −δr

κ
αr (r

∗) + A(κ) + log 2

n
+ ε

κ

and

1

n
log ‖pn − pm‖�r∗ ≤ log

r∗

ρ
− δr

κ
αr (r

∗) + A(κ) + log 2

n
+ ε

κ
. (3.16)

If we choose κ as in (3.11), we get with

−δr

κ
αr (r

∗) + A(κ) = −δr

κ
αr (r

∗) + log
ρ

r
− 1

κ
log

ρ

r

= − 1

κ

(
δr αr (r

∗) + log
ρ

r

)
+ log

ρ

r
< 0.

Now, let us define

δ∗
r∗ := 1

2

(
δr

κ
αr (r

∗) − A(κ)

)
,

then δ∗
r∗ > 0, and we can choose n large enough and ε sufficiently small such that

log 2

n
+ ε

κ
< δ∗

r∗ .

Hence, we can find n∗ = n∗(κ) ∈ N such that by (3.16) we obtain

1

n
log ‖pn − pm‖�r∗ ≤ log

r∗

ρ
− δ∗

r∗

for m ≥ n∗, and (3.12) and (3.13) are proven. �


We know from (3.2) that

1

n
log ‖ f − pn‖�

s(n)
σ

≤ log
σ

ρ
− δ, n ≥ n1(δ). (3.17)
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Let

κ∗
1 := 1 + ασ (ρ)

log (ρ/σ)
δ (3.18)

and let 1 < κ < κ∗
1 in the definition of �1(κ) in (3.6)−(3.8), then we obtain by

Lemma 1 and choosing r = σ and r∗ = ρ:
There exists δ∗

1 > 0 and n∗
1 = n∗

1(κ) ∈ N such that

1

mi+1
log ‖pmi+1 − pmi ‖�ρ ≤ −δ∗

1 (3.19)

for all mi ∈ �1,1(κ), mi ≥ n∗
1, and

δ∗
1 ≥ 1

2

(
δ

κ
ασ (ρ) −

(
1 − 1

κ

)
log

ρ

σ

)
.

Corollary 1 Let1 < κ < κ∗
1 andassume that�1,2(κ) is a finite set in the decomposition

of �1(κ) in (3.6). Then, the telescoping series (3.3) converges uniformly on compact
sets of a neighborhood of Eρ , i.e., ρ( f ) > ρ.

Proof We apply the Bernstein–Walsh Lemma to the differences

pmi+1 − pmi

and use the inequality (3.19). �

Hence, Proposition 1 is proved for this special situation.

3.2 The Auxiliary Parameter 1 < �0 < �

To restrict κ in the definition of �1(κ) completely, we start with the decomposition of
Eσ in (2.1),

Eσ = E1
σ ∪ E2

σ ∪ . . . ∪ Elσ
σ , lσ ∈ N.

Then, we can define a parameter σ0, 1 < σ0 < σ , such that the decomposition of Eσ0

into disjoint Jordan regions Ei
σ0
,

Eσ0 = E1
σ0

∪ E2
σ0

∪ . . . ∪ E
lσ0
σ0 , lσ0 ∈ N,

satisfies

lσ0 = lσ and Ei
σ0

⊂ Ei
σ for 1 ≤ i ≤ lσ0 .
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This can be achieved by the strict monotonicity of Er with respect to r and the fact
that the Green function G(z) of � has only a finite number of critical points in C \ E
(cf. Walsh [4], chapter 4, section 4.1).

Lemma 2 Let δ > 0 and let 1 < σ0 < σ such that according to (3.2)

1

n
log ‖ f − pn‖�

s(n)
σ

≤ log
σ

ρ
− δ, n ≥ n1(δ).

Then, there exist δ0 > 0 and n0(δ) such that

1

n
log ‖ f − pn‖�

s(n)
σ0

≤ log
σ0

ρ
− δ0 for n ≥ n0(δ). (3.20)

Proof Because of (3.1), there exists nε(1) such that

1

n
log ‖ f − pn‖E ≤ log

1

ρ
+ ε, n ≥ nε(1).

Let us consider the Dirichlet problem for the harmonic function gi (z) in the region

Ei
σ \ E, 1 ≤ i ≤ lσ ,

with the boundary conditions

gi (z) = −δ for z ∈ �i
σ and gi (z) = 0 for z ∈ Ei

σ ∩ �,

where � = ∂E . Then, gi (z) < 0 for z ∈ Ei
σ \ E . Define

βi := max
z∈�i

σo

gi (z),

then βi < 0 and also

β := max
1≤i≤lσ

βi < 0.

Moreover, the function

gs(n)(z) + ε

is a harmonic majorant of

1

n
log | f (z) − pn(z)| − G(z) + log ρ in Es(n)

σ \ E .
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That leads to

1

n
log ‖ f − pn‖�

s(n)
σ0

− log
σo

ρ
≤ max

z∈�
s(n)
σo

gs(n)(z) + ε

or

1

n
log ‖ f − pn‖�

s(n)
σ0

≤ log
σo

ρ
+ β + ε.

If we define ε := −β/2, then we get

1

n
log ‖ f − pn‖�

s(n)
σ0

≤ log
σ0

ρ
+ β

2

for all n ≥ nε(1). Therefore,

n0(δ) := nε(1) and δ0 := −β/2

satisfy the statement of Lemma 2. �

Lemma 3 Let n,m ∈ N with m < n and n/m ≤ κ . Let δ0 > 0 and n0(δ) ∈ N such
that (3.20) holds according to Lemma 2. Moreover, let s(m) = s(n) and let

1 < κ < κ∗
2 := 1 + ασ0(σ )

log(ρ/σ0)
δ0, (3.21)

then there exists δ∗
0 > 0 and n∗

2 = n∗
2(κ) ∈ N such that

1

n
log ‖pn − pm‖�σ ≤ log

σ

ρ
− δ∗

0 (3.22)

for m ≥ n∗
2 and

δ∗
0 ≥ 1

2

(
δ0

κ
ασ0(σ ) −

(
1 − 1

κ

)
log

ρ

σ0

)
. (3.23)

Proof Because of Lemma 2, there exists n0(δ) such that

1

m
log ‖ f − pm‖

�
s(m)
σ0

≤ log
σ0

ρ
− δ0

and

1

n
log ‖ f − pn‖�

s(n)
σ0

≤ log
σ0

ρ
− δ0
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for m < n and m ≥ n0(δ). Since s(m) = s(n) and κ satisfies (3.21), then Lemma 1
yields that there exists n∗

2 = n∗
2(κ) ∈ N and δ∗

0 > 0 such that

1

n
log ‖pm − pn‖�σ ≤ log

σ

ρ
− δ∗

0

for m ≥ n∗
2 and δ∗

0 satisfies (3.23). �


3.3 The Final Telescoping Series

We start with the telescoping series associated with

�1(κ) = {mi }∞i=1

satisfying (3.4) and (3.5) and choosing the parameter κ such that

1 < κ < min
(
κ∗
1 , κ∗

2 , κ∗
3

)
.

κ∗
1 is defined by (3.18), i.e.,

κ∗
1 = 1 + ασ (ρ)

log (ρ/σ)
δ

and δ satisfies (3.17). κ∗
2 is defined by (3.21), i.e.,

κ∗
2 = 1 + ασ0(σ )

log (ρ/σ0)
δ0,

and δ0 satisfies (3.20). κ∗
3 will be defined by

κ∗
3 := 1 + ασ (ρ)

log (ρ/σ)

δ∗
0

2
(3.24)

and δ∗
0 satisfies (3.23). The role of κ∗

3 will be seen in the proof of Lemma 5. As above,
we use the decomposition

�1(κ) := �1,1(κ) ∪ �1,2(κ)

Hence, by (3.19) there exist δ∗
1 > 0 and n∗

1 = n∗
1(κ) ∈ N such that

1

mi+1
log ‖pmi+1 − pmi ‖�ρ ≤ −δ∗

1 (3.25)

for all mi ∈ �1,1(κ), mi ≥ n∗
1. So, as critical differences in the telescoping series

with respect to �1(κ) remain pmi+1 − pmi , where

mi+1 = mi + 1 and s(mi+1) 
= s(mi ).
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In Corollary 1, we have given already the proof of Proposition 1 for the case that
�1,2(κ) is a finite sequence. Therefore, we assume henceforth that

�1,2(κ) = {λ1 < λ2 < λ3 < . . . } (3.26)

is an infinite sequence.
In the following, we use a real parameter c ∈ R, 0 < c < 1.

Lemma 4 Let λk ∈ �1,2(κ) be fixed. Then, there exist at most lσ elements of �1,2(κ)

in the interval

(λk , κλk] .

Moreover, let the parameter c ∈ R , 0 < c < 1, be fixed and let the semi-open
intervals I (λk, j) be defined by

I (λk, j) :=
(

λk

(
1 +

(
c

1 + c

) j+1

(κ − 1)

)
, λk

(
1 +

(
c

1 + c

) j

(κ − 1)

)]

for 0 ≤ j ≤ lσ − 1. Then, there exists l̃k , 0 ≤ l̃k ≤ lσ − 1, such that

I (λk, l̃k) ∩ �1,2(κ) = ∅.

Proof Let us assume that there exist at least lσ elements of �1,2(κ) in the interval
(λk, κλk]. Then, the definition of �1(κ), resp. �1,2(κ), implies that the values of the
function s at the points

λk, λk+1, . . . , λk+lσ

are all different, which contradicts the definition of lσ .
Let us assume that the second part of the Lemma is false. Then, in each

I (λk, j), 0 ≤ j ≤ lσ − 1,

there exists at least one element of �1,2(κ). Hence, the interval

(
λk

(
1 +

(
c

1 + c

)lσ
(κ − 1)

)
, λκ

]

contains at least lσ elements of �1,2(κ), contradicting the first part of the lemma. �
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3.3.1 The Telescoping Defining Sequence3(�, c)

Let

�1(κ) = {mi }∞i=1

satisfies (3.4) and (3.5) with a parameter κ where

1 < κ < min
(
κ∗
1 , κ∗

2 , κ∗
3

)
.

κ∗
1 is defined by (3.18), κ∗

2 by (3.21), κ∗
3 by (3.24). As in (3.6) - (3.8), we decompose

�1(κ) := �1,1(κ) ∪ �1,2(κ).

Then, we define the sequence

�(κ, c) = {
n j

}∞
j=1

as follows: If �1,2(κ) is a finite sequence, then �(κ, c) := �1(κ). If �1,2(κ) is an
infinite sequence, we define

γ :=

⎢⎢⎢⎢⎣ 1(
c

1+c

)lσ
(κ − 1)

⎥⎥⎥⎥⎦ + 1 (3.27)

and we set

M := min {mi ∈ �1(κ) : mi > γ } .

Then, we define n j := m j for 1 ≤ m j ≤ M . The remaining elements n j ∈
�(κ, c), n j > M , will be defined recursively:
If n j ≥ M is already constructed, we note that we obtain by (3.27) for 0 ≤ l̃ j ≤ lσ −1

n j

(
c

1 + c

)l̃ j+1

(κ − 1) ≥ n j

(
c

1 + c

)lσ
(κ − 1) > 1. (3.28)

Then, we fix

m := min
{
mi ∈ �1(κ) : mi > n j

}

and distinguish 2 cases:

(i) If s(m) = s(n j ), then n j+1 := m.
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(ii) If s(m) 
= s(n j ), then we apply Lemma 4. Hence, there exists k0 ∈ N and
0 ≤ l̃ j ≤ lσ − 1, such that

λk0 ≤ n j

(
1 +

(
c

1 + c

)l̃ j+1

(κ − 1)

)

and

λk0+1 > n j

(
1 +

(
c

1 + c

)l̃ j
(κ − 1)

)
,

where we have used (3.28) and the enumeration of �1,2(κ) as in (3.26). Then,
we define

n j+1 := λk0 .

Properties of �(κ, c) We have always n j+1 ≤ κ n j . If s(n j+1) 
= s(n j ), then

n j+1 − n j ≤ n j

(
c

1 + c

)l̃ j+1

(κ − 1) (3.29)

and

min
λ∈�1,2(κ)

{
λ : λ > n j+1

}
> n j

(
1 +

(
c

1 + c

)l̃ j
(κ − 1)

)
, (3.30)

where 0 ≤ l̃ j ≤ lσ − 1. Moreover, s(m) = s(n j+1) for

m ∈ �1(κ), where n j+1 ≤ m < n j

(
1 +

(
c

1 + c

)l̃ j
(κ − 1)

)
. (3.31)

In the following, we use the decomposition

�(κ, c) := �1(κ, c) ∪ �2(κ, c),

where

�1(κ, c) = {
n j ∈ �(κ, c) : n j+1/n j ≤ κ and s(n j+1) = s(n j )

}

and

�2(κ, c) = {
n j ∈ �(κ, c) : n j+1/n j ≤ κ and s(n j+1) 
= s(n j ).

}
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Lemma 5 Let n j ∈ �2(κ, c), then there exists δ2, j > 0 and n∗
3 = n∗

3(κ) ∈ N such
that

1

n j+1
log ‖ f − pn j+1‖�σ ≤ log

σ

ρ
− δ2, j for n j ≥ n∗

3. (3.32)

Moreover, δ2, j can be chosen in such a way that

δ2, j ≥ 1

2
min

(
δ∗
0 ,

1

2κ

(
c

1 + c

)l̃ j κ − 1

1 + c
log

ρ

σ

)
(3.33)

with δ∗
0 satisfying (3.22) and (3.23) of Lemma 3.

Proof We consider the telescoping series

f = pn j+1 +
∞∑
k=1

(pn j+k+1 − pn j+k )

and define

k j := sup
{
k : s(n j+1) = s(n j+2) = . . . = s(n j+k)

}
. (3.34)

Because of (3.30), we have

n j+k j ≥ n j

(
1 +

(
c

1 + c

)l̃ j
(κ − 1)

)
− 1, (3.35)

keeping in mind that n j+k j ∈ N. Now, we write

∞∑
k=1

(pn j+k+1 − pn j+k ) = A j + Bj ,

where

A j =
k j−1∑
k=1

(pn j+k+1 − pn j+k )

and

Bj =
∞∑

k=k j

(pn j+k+1 − pn j+k ).
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Estimation of A j on �σ Because of the definition of k j in (3.34), we use (3.31)
and apply Lemma 3 for all differences

pn j+k+1 − pn j+k

occurring in A j . We obtain with δ∗
0 > 0 and n∗

2 = n∗(κ) ∈ N that

1

n j+k+1
log ‖pn j+k+1 − pn j+k‖�σ ≤ log

σ

ρ
− δ∗

0 , n j+k ≥ n∗
2,

where δ∗
0 satisfies the inequality (3.23), since

1 < κ < κ∗
2 = 1 + ασ0(σ )

log(ρ/σ0)
δ0

and δ0 is defined by Lemma 2 in (3.20). Then,

‖A j‖�σ ≤
k j−1∑
k=1

‖pn j+k+1 − pn j+k‖�σ

≤
∞∑
k=1

(
σ

ρ
e−δ∗

0

)n j+k+1

= β1

(
σ

ρ
e−δ∗

0

)n j+1

(3.36)

for all j with n j ≥ n∗
2 and β1 is a constant independent of j .

Estimation of Bj on �σ Let us define

γ j := 1 +
(

c

1 + c

)l̃ j
(κ − 1). (3.37)

Because of (3.1), there exists nε(σ ) such that for n ≥ nε(σ )

1

n
log ‖ f − pn‖�σ ≤ log

σ

ρ
+ ε,

where 0 < ε < log(ρ/σ) is fixed. Then, for n j ≥ nε(σ )

‖pn j+k j+1 − pn j+k j ‖�σ ≤ 2

(
σ

ρ
eε

)n j+k j
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and with (3.35) and (3.37) we obtain

‖pn j+k j+1 − pn j+k j ‖�σ ≤ 2

(
σ

ρ
eε

)γ j n j
(

σ

ρ
eε

)−1

≤ β2

(
σ

ρ
eε

)γ j n j

with

β2 = 2

(
σ

ρ
eε

)−1

.

Analogously,

‖pn j+k+1 − pn j+k‖�σ ≤ β2

(
σ

ρ
eε

)γ j n j+k−k j

for all k ≥ k j and n j ≥ nε(σ ). Hence, for such n j

‖Bj‖�σ ≤
∞∑

k=k j

‖pn j+k+1 − pn j+k‖�σ

≤ β2

(
σ

ρ
e ε

)γ j n j ∞∑
ν=0

(
σ

ρ
eε

)ν

= β2
ρ

ρ − σ eε

(
σ

ρ
eε

)γ j n j

= β3

(
σ

ρ
eε

)γ j n j

,

(3.38)

where

β3 = β2
ρ

ρ − σ eε
.

Because of (3.29),

1 ≤ n j

n j+1

(
1 +

(
c

1 + c

)l̃ j+1

(κ − 1)

)
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and therefore

γ j n j

n j+1
≥

1 +
(

c
1+c

)l̃ j
(κ − 1)

1 +
(

c
1+c

)l̃ j+1
(κ − 1)

= 1 +
(

c
1+c

)l̃ j κ−1
1+c

1 +
(

c
1+c

)l̃ j+1
(κ − 1)

.

(3.39)

For abbreviation, we define

δ̃ j :=
(

c
1+c

)l̃ j κ−1
1+c

1 +
(

c
1+c

)l̃ j+1
(κ − 1)

and note that

1

κ

(
c

1 + c

)l̃ j κ − 1

1 + c
< δ̃ j < κ − 1. (3.40)

Since ε < log(ρ/σ ), multiplication of (3.39) by log(σ/ρ) + ε yields

γ j n j

n j+1

(
log

σ

ρ
+ ε

)
≤ log

σ

ρ
+ δ̃ j log

σ

ρ
+ ε

(
1 + δ̃ j

)
.

Hence, the upper bound in (3.40) leads to

γ j n j

n j+1

(
log

σ

ρ
+ ε

)
< log

σ

ρ
− δ̃ j log

ρ

σ
+ ε κ.

Next, we define

ε := 1

2 κ2

((
c

1 + c

)l̃ j κ − 1

1 + c
log

ρ

σ

)
. (3.41)

Then the general condition ε < log(ρ/σ) is satisfied and the lower bound of (3.40)
yields

−δ̃ j log
ρ

σ
+ ε κ < −δ̃ j log

ρ

σ
+ 1

2
δ̃ j log

ρ

σ

= −1

2
δ̃ j log

ρ

σ
.
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Therefore, for such ε we obtain by (3.38) for n j ∈ �2(κ, c) and n j ≥ nε(σ )

‖Bj‖�σ < β3

(
σ

ρ
e−δ∗

2. j

)n j+1

, (3.42)

where δ∗
2. j is defined by

δ∗
2. j := δ̃ j

2
log

ρ

σ

and ε is defined by (3.41).
Summarizing, by (3.36) and (3.42) we have got for n j ∈ �2(κ, c) and n j ≥

max (n∗
2, nε(σ ))

‖ f − n j+1‖�σ ≤ ‖A j‖�σ + ‖Bj‖�σ

≤ β1

(
σ

ρ
e−δ∗

0

)n j+1

+ β3

(
σ

ρ
e−δ∗

2, j

)n j+1

.

β1 and β3 are constants, independent of n j . Hence, if we define

δ2, j := 1

2
min

(
δ∗
0 ,

1

2κ

(
c

1 + c

)l̃ j κ − 1

1 + c
log

ρ

σ

)

and if we use the lower bound in (3.40), then there exists n∗
3 = n∗

3(κ, c) such that

1

n j+1
log ‖ f − pn j+1‖�σ ≤ log

σ

ρ
− δ2, j , n j ≥ n∗

3,

and (3.32) and (3.33) of Lemma 5 are proven. �


3.3.2 Fixing the Parameter c in3(�, c)

In the case that n j ∈ �2(κ, c), we have by Lemma 5: There exists δ2, j > 0 and
n∗
3 = n∗

3(κ, c) such that

1

n j+1
log ‖ f − pn j+1‖�σ ≤ log

σ

ρ
− δ2, j (3.43)

for all n j ≥ n∗
3(κ, c). Moreover,

δ2, j ≥ 1

2
min

(
δ∗
0 ,

1

2 κ

(
c

1 + c

)l̃ j κ − 1

1 + c
log

ρ

σ

)
(3.44)

123



526 Constructive Approximation (2022) 56:505–535

with δ∗
0 > 0 as in Lemma 3. Because of (3.43), we have a fortiori

1

n j+1
log ‖ f − pn j+1‖

�
s(n j )
σ

≤ log
σ

ρ
− δ2, j . (3.45)

On the other hand, we have by (3.2)

1

n j
log ‖ f − pn j ‖

�
s(n j )
σ

≤ log
σ

ρ
− δ (3.46)

for all n j ≥ n1(δ) with δ > 0. Now, we can apply Lemma 1 by taking into account
(3.45) and (3.46): There exists n∗

4 = n∗
4(κ) such that

1

n j+1
log ‖pn j+1 − pn j ‖�ρ ≤ −δ∗

3 , n j ≥ n∗
4, (3.47)

where

δ∗
3 ≥ 1

2

(
ασ (ρ)

κ
min (δ, δ2, j ) −

(
1 − 1

κ

)
log

ρ

σ

)
> 0,

if we can achieve, i.e., if we can arrange c with 0 < c <1 such that

κ j := n j+1

n j
≤ κ < 1 + ασ (ρ)

log (ρ/σ)
min (δ, δ2, j ). (3.48)

Since

κ j = n j+1

n j
≤ κ < κ∗

1 = 1 + ασ (ρ)

log (ρ/σ)
δ,

the inequalities (3.48) are fulfilled if

κ j = n j+1

n j
< 1 + ασ (ρ)

log (ρ/σ)
δ2, j .

Taking into account (3.44) and

κ < κ∗
3 = 1 + ασ (ρ)

log (ρ/σ)

δ∗
0

2
,

the inequality (3.48) is satisfied if

κ j ≤ κ < 1 + ασ (ρ)

log(ρ/σ)

1

4 κ

(
c

1 + c

)l̃ j κ − 1

1 + c
log

ρ

σ
.
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Because of (3.29), we know that

κ j = n j+1

n j
≤ 1 +

(
c

1 + c

)l̃ j+1

(κ − 1) .

Therefore, (3.48) is guaranteed if

c <
1

4 κ
ασ (ρ). (3.49)

3.4 Conclusions

We consider the telescoping series

f = pn1 +
∞∑
j=1

(
pn j+1 − pn j

)
,

associated with the sequence

�(κ, c) = {
n j

}∞
j=1 = �1(κ, c) ∪ �2(κ, c).

The parameter κ satisfies

1 < κ < min (κ∗
1 , κ∗

2 , κ∗
3 ),

and we fix a parameter c such that

0 < c <
1

4 κ
ασ (ρ),

where κ∗
1 , κ

∗
2 , κ

∗
3 are defined by (3.18), (3.21), (3.24). If n j ∈ �1(κ, c), then according

to (3.25)

1

n j+1
log ‖pn j+1 − pn j ‖�ρ ≤ −δ∗

1

for all n j ∈ �1(κ, c), n j ≥ n∗
1(κ). If n j ∈ �2(κ, c), then according to (3.47)

1

n j+1
log ‖pn j+1 − pn j ‖�ρ ≤ −δ∗

3 .

for all n j ∈ �2(κ, c), n j ≥ n∗
4(κ), since c satisfies (3.49). Therefore,

1

n j+1
log ‖pn j+1 − pn j ‖�ρ ≤ −min (δ∗

1 , δ
∗
3) < 0
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for all n j ∈ �(κ, c)with n j ≥ max
(
n∗
1(κ), n∗

4(κ)
)
. Finally, the Lemma of Bernstein–

Walsh implies that f is holomorphic in a neighborhood of Eρ , i.e.,

ρ( f ) > ρ,

and Proposition 1 is proven.

4 Proof of Proposition 2

We choose r and R such that

1 < r < σ < R < ρ

under the additional condition that in the decomposition of ER , resp. Eρ , analogous
to (2.1), the numbers lR and lρ satisfy lR = lρ . For abbreviation, we define

l := lR = lρ.

Now, for all z ∈ � = C \ E we have

(
U νn −UμE

)
(z) = U νn (z) + G(z) + log cap E

and therefore

max
z∈�r

(
U νn −UμE

)
(z) = max

z∈�r
U νn (z) + log r + log cap E

= max
z∈�r

U νn (z) + log cap Er .

Hence, the uniqueness of the equilibrium measure of Er implies

δn := max
z∈�r

(
U νn −UμE

)
(z) > 0. (4.1)

Next, we fix zn ∈ �r such that

δn = (
U νn −UμE

)
(zn) (4.2)

and we choose s∗(n) ∈ N such that

1 ≤ s∗(n) ≤ l and zn ∈ Es∗(n)
R . (4.3)

Consider

Ds∗(n)
R,r := Es∗(n)

R \ Er ,
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then Ds∗(n)
R,r is a region with boundary

�
s∗(n)
R ∪

(
�r ∩ Es∗(n)

R

)
,

where

�
s∗(n)
R ∩

(
�r ∩ Es∗(n)

R

)
= ∅.

The Lagrange–Hermite formula for the error f − pn at z ∈ �r is

f (z) − pn(z) = 1

2π i

∫
�R

wn(z)

wn(t)

f (t)

t − z
d(t)

with

wn(t) =
n∏

i=0

(
t − zn,i

)
, t ∈ C,

where zn,i , 0 ≤ i ≤ n, are the interpolation points of Zn . Moreover, we can write

f (z) − pn(z) = 1

2π i

∫
�R

wn(z)

wn(t)

f (t) − pn(t)

t − z
d(t)

for z ∈ �r . If z ∈ �r ∩ Es∗(n)
R , we may reduce the path of integration to �

s∗(n)
R , hence

f (z) − pn(z) = 1

2π i

∫
�
s∗(n)
R

wn(z)

wn(t)

f (t) − pn(t)

t − z
d(t). (4.4)

Let ε > 0, then (2.5) implies that there exists n0(ε) such that

1

n
log ‖ f − pn‖�R ≤ log

R

ρ
+ ε

and

1

n
log ‖ f − pn‖�r ≤ log

r

ρ
+ ε

for all n ≥ n0(ε). Using (4.4), wemay choose n0(ε) in such away that for all z ∈ �
s∗(n)
r

and n ≥ n0(ε)

1

n
log | f (z) − pn(z)| ≤ −U νn (z) + max

t∈�R
U νn (t) + 1

n
log ‖ f − pn‖�R + ε

≤ −U νn (z) + max
t∈�R

U νn (t) + log
R

ρ
+ 2 ε.
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Since

UμE (t) = UμE (z) + log
r

R
for t ∈ �R and z ∈ �r ,

we get for z ∈ �
s∗(n)
r

1

n
log | f (z) − pn(z)| ≤ (

UμE −U νn
)
(z) + max

t∈�R

(
U νn −UμE

)
(t)

+ log
r

ρ
+ 2 ε.

(4.5)

Now, let us consider the difference

U νn (z) −UμE (z), z ∈ �,

which is a harmonic function in �. Then, the maximum of this difference on the level
curve �σ ∗ is increasing with decreasing σ ∗, 1 < σ ∗ < ∞. Consequently,

max
t∈�r

(
U νn −UμE

)
(t) > max

t∈�R

(
U νn −UμE

)
(t). (4.6)

We note for further applications that (4.6) holds also if we replace νn by any probability
measure ν 
= μE with support in E .

Because of (4.1) and (4.2) and the choice of s∗(n), we have

max
z∈�

s∗(n)
r

(
U νn −UμE

)
(z) = max

z∈�r

(
U νn −UμE

)
(z)

> max
t∈�R

(
U νn −UμE

)
(t).

Next, we define theDirichlet problem for the harmonic function�n(z) in the region

Ds∗(n)
R,r = Es∗(n)

R \ Er

with the boundary conditions

�n(z) = 0, z ∈ �
s∗(n)
R

and

�n(z) = min (0,
(
UμE −U νn

)
(z) + c(νn;�R)), z ∈ �r ∩ Es∗(n)

R , (4.7)

where

c(νn;�R) := max
t∈�R

(
U νn −UμE

)
(t).
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Because of (4.3) and (4.6), �n(zn) < 0 and therefore �n(z) < 0 for all z ∈ Ds∗(n)
R,r .

Thus, if we define

�σ
n := max

t∈�σ ∩Es∗(n)
R

�n(t), r < σ < R,

then

�σ
n < 0 for all n ∈ �.

Moreover, the maximum principle for harmonic functions, together with (4.5), implies
that the harmonic function

�n(z) + G(z) − log ρ + 2 ε,

is an upper bound for the subharmonic function

1

n
log | f (z) − pn(z)|,

i.e.,

1

n
log | f (z) − pn(z)| ≤ �n(z) + G(z) − log ρ + 2 ε

for all z ∈ Ds∗(n)
R,r . Hence, we obtain

1

n
log | f (z) − pn(z)| ≤ log

σ

ρ
+ �σ

n + 2 ε (4.8)

for all z ∈ �σ ∩ Es∗(n)
R and all n ≥ n0(ε).

Now, we claim: There exists δ > 0 such that

�σ
n ≤ − δ for all n ∈ �. (4.9)

Let us assume that the claim is false:
Then, there exists a subsequence �1 ⊂ � such that

lim
n∈�1,n→∞ �σ

n = 0.

By Helly’s theorem, there exists a subsequence �2 ⊂ �1 such that

lim
n∈�2,n→∞ ν̂n = ν
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with supp(ν) ⊂ E and ν 
= μE . Since there are only l different sets

�σ ∩ Ei
R, 1 ≤ i ≤ l,

we can finally choose �2 such that the sets

�σ ∩ Es∗(n)
R

are fixed for all n ∈ �2, i.e., s∗(n) = j0 is fixed for all n ∈ �2.
Because of

ν̂n
∗−→

n∈�2,n→∞ ν,

there exists n1(ε) ≥ n0(ε) such that

|U ν(z) −U νn (z)| < ε, z ∈ �r ∪ �R,

for all n ∈ �2, n ≥ n1(ε). Then, for z ∈ �r and n ≥ n1(ε)

(
UμE −U νn

)
(z) + c(νn;�R)

= (
UμE −U νn

)
(z) + max

t∈�R

(
U νn −UμE

)
(t)

= (
UμE −U ν

)
(z) + (

U ν −U νn
)
(z)

+ max
t∈�R

((
U νn −U ν

)
(t) + (

U ν −UμE
)
(t)

)

≤ (
UμE −U ν

)
(z) + c(ν;�R) + 2 ε,

where we have defined

c(ν;�R) := max
t∈�R

(
U ν −UμE

)
(t). (4.10)

Therefore, the boundary condition (4.7) can be estimated by

min (0,
(
UμE −U νn

)
(z) + c(νn;�R))

≤ min (0,
(
UμE −U ν

)
(z) + c(ν;�R) + 2 ε)

(4.11)

for z ∈ �r ∩ E j0
R .

Now, we consider the Dirichlet Problem for the function�(z) in the region D j0
R,r =

E j0
R \ Er with the boundary conditions

�(z) = 0 for z ∈ �
j0
R (4.12)

123



Constructive Approximation (2022) 56:505–535 533

and

�(z) = min
(
0,

(
UμE −U ν

)
(z) + c(ν;�R) + 2 ε

)
, z ∈ �r ∩ E j0

R (4.13)

where c(ν;�R) is defined by (4.10).The continuous functions UμE − U νn converge
in � uniformly on compact sets, especially on �r ∪ �R , as n ∈ �2, n → ∞. Hence,
by (4.1) and (4.2)

max
z∈�r∩E

j0
R

(
U ν −UμE

)
(z) = lim

n∈�2,n→∞ max
z∈�r∩E

j0
R

(U νn −UμE )(z)

= lim
n∈�2,n→∞ max

z∈�r
(U νn −UμE )(z)

= max
z∈�r

(U ν −UμE )(z)

> max
t∈�R

(U ν −UμE )(t).

= c(ν;�R).

The last inequality follows from ν 
= μE , mentioned in the remark following (4.6).
Next, we choose ε > 0 such that

max
z∈�r∩E

j0
R

(
U ν −UμE

)
(z) − 2 ε > c(ν;�R).

Hence, the boundary conditions for the harmonic function �(z) in (4.12) and (4.13)
read as �(z) ≤ 0, but �(z) is not identically 0 on �r ∩ E j0

R . Then, the maximum
principle for harmonic functions yields

�(t) < 0 for t ∈ D j0
R,r = E j0

R,r \ Er .

If we compare the Dirichlet problems for �n and �, then by (4.11)

�n(t) ≤ �(t) for t ∈ D j0
R,r and for all n ∈ �2, n ≥ n1(ε).

Therefore,

�σ
n = max

t∈�σ ∩E
j0
R

�n(t) ≤ max
t∈�σ ∩E

j0
R

�(t) < 0

for n ∈ �2, n ≥ n1(ε), contradicting our assumption that (4.9) is not true.
Hence, (4.8) and (4.9) imply that

1

n
| f (z) − pn(z)| ≤ log

σ

ρ
− δ + 2 ε
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for all z ∈ �σ ∩ Es∗(n)
R and n ≥ n0(ε), n ∈ �. If we choose ε = δ/4, then we finally

get

1

n
| f (z) − pn(z)| ≤ log

σ

ρ
− δ

2
(4.14)

for z ∈ �σ ∩ Es∗(n)
R and n ≥ n0(ε), n ∈ �.

We note that each �σ ∩ Es∗(n)
R , 1 ≤ s∗(n) ≤ l, consists of a finite number of

connected components of �σ . Therefore, because of (4.14) we can define for each
n ∈ � a number s(n), 1 ≤ s(n) ≤ lσ such that

lim sup
n∈�,n→∞

‖ f − pn‖1/n
�
s(n)
σ

<
σ

ρ
.

Hence, (2.6) of Proposition 2 is proven.

5 Proof of the Theorems

We have already mentioned that Theorem 1 is a direct consequence of Proposition 1.
More precisely, if the condition (2.4) of Theorem 1 is true, then the sequence pn ∈ Pn

is maximally convergent to f , due to Bernstein–Walsh. Conversely, if the condition
(2.4) is not true for some σ, 1 < σ < ρ( f ) < ∞, i.e.,

lim sup
n→∞

min
1≤i≤lσ

‖ f − pn‖1/n�i
σ

<
σ

ρ( f )
= lim sup

n→∞
‖ f − pn‖1/n�σ

,

then Proposition 1 shows that ρ( f ) is not the maximal parameter of holomorphy of
f , which is a contradiction.
Concerning part (a) of Theorem 2, let us assume that μE is not a weak* limit point

of ν̂n, n ∈ N. Then, Proposition 2 yields—using � = N—that there exist parameter
s(n), 1 ≤ s(n) ≤ lσ , such that

lim sup
n→∞

‖ f − pn‖1/n
�
s(n)
σ

<
σ

ρ( f )
.

But according to Theorem 1, then ρ( f ) could not be the maximal parameter of holo-
morphy of f. This is a contradiction to the maximal convergence of {pn}∞n∈N.

Concerning part (b), we know already that there exists a subsequence � ∈ N such
that (2.7) holds. Let us assume that μE is not a weak* limit point of ν̂n, n ∈ �. Then,
Proposition 2 implies that there exist

s(n), 1 ≤ s(n) ≤ lσ ,
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such that

lim sup
n∈�,n→∞

‖ f − pn‖1/n
�
s(n)
σ

<
σ

ρ( f )
.

This contradicts (2.7) and Theorem 2 is proven.
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