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ARTICLE INFO ABSTRACT

Keywords: E-commerce retailers are challenged to maintain cost-efficiency and customer satisfaction while pursuing
Routing sustainability, especially in the last mile. In response, retailers are offering a range of delivery speeds, including
E-commerce

same-day and instant options. Faster deliveries, while trending, often increase costs and emissions due to
limited planning time and reduced consolidation opportunities in the last mile. In contrast, this paper proposes
the inclusion of a slower delivery option, termed some-day. Slowing down the delivery process allows for
greater shipment consolidation, achieving cost savings and environmental goals simultaneously. We introduce
the dynamic and stochastic some-day delivery problem, which accounts for a latest delivery day, customer
time windows, and capacity limitations within a multi-period planning framework. Our solution approach is
based on addressing auxiliary prize-collecting vehicle routing problems with time windows (PCVRPTW) on
a daily basis, where the prize reflects the benefit of promptly serving the customer. We develop a hybrid
adaptive large neighborhood search with granular insertion operators, outperforming existing metaheuristics
for PCVRPTWSs. Our numerical study shows significant cost savings with only small increases in delivery times
compared to an earliest policy.

Last mile delivery
Vehicle routing problem
Adaptive large neighborhood search

1. Introduction consolidation of more shipments over an extended time period. The

idea originates from the concept of slow logistics. Slow logistics covers

Parcel deliveries are at an all-time high, amounting for 161 billion
parcels worldwide in 2022 (Pitney Bowes, 2023), driven mainly by
the continuous growth of e-commerce. This surge in online shopping
is accompanied by a growing demand for even faster deliveries in the
business-to-consumer (B2C) sector. Although the standard delivery time
from retailer to the customer’s home typically falls within the range
of one to three days for most deliveries, the segments experiencing
the fastest growth are same-day and instant delivery (Deloison et al.,
2020). For instance, as early as 2019, Amazon managed to deliver
72% of its U.S. customers within 24 h (Kim, 2019). However, short
delivery times put tremendous pressure on traditional transportation
networks and often lead to less efficient distribution processes. This
inefficiency is characterized by poorly and unevenly utilized resources,
greatly increased costs and emissions per parcel. In particular, this is
caused by a lack of consolidation possibilities and insufficient time for
planning. To address this challenge, for instance Dumez et al. (2021)
introduce delivery location options to foster consolidation.

In this paper, we explore a straightforward and potentially rapid
implementation of a delivery concept for B2C parcel delivery. The
primary goal is to reduce delivery costs and thus the environmental
impact. This can be achieved by deliberately slowing down the lo-
gistics processes involved in parcel delivery, thereby allowing for the
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various methods and approaches associated to logistical activities in
supply chains which explicitly make use of available time potentials,
tolerating a slowdown of processes in order to reduce costs and adverse
environmental impacts (Wiese, 2017). A well-known example of a slow
logistics instrument is slow steaming, where ocean container carriers
intentionally reduce vessel speeds to enhance fuel efficiency and reduce
greenhouse gas emissions (see, e.g., Maloni et al., 2013). The practice of
consolidating shipments is another commonly employed technique that
plays a major role in nearly all applications of slow logistics concepts.
Nevertheless, it is important to note that slow logistics concepts have
primarily found application in supply chain problem scenarios within
business-to-business industries.

Applications in the last-mile delivery of parcels in the B2C sector
have been relatively rare, but notable exceptions exist. For instance,
Amazon already provides a “free no-rush” delivery option in many U.S.
regions (Amazon, 2022). Customers who select this option accept a
longer delivery time frame and, in return, receive a discount on their
order or another type of reward. Alternatively, a significant portion of
customers may be encouraged to accept the potential delay by high-
lighting the reduced emissions associated with slower delivery (Dietl
et al., 2024).
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In the following, we assume the point of view of an e-commerce
retailer who operates its own delivery fleet and is thus able to directly
benefit from greater flexibility in delivery dates. The retailer offers
a range of delivery options to their customers, including a notably
slower some-day alternative. Each customer’s order is subject to specific
delivery date constraints, comprising both an earliest and a latest
possible delivery day that must be strictly adhered to.

We introduce the some-day delivery problem (SDDP) to assess the
implications of implementing a some-day delivery option for tour plan-
ning. The SDDP aims to determine the most cost-effective delivery
day for each customer, as well as the clustering and routing. Our
modeling assumptions align with the broader category of multiple
period VRPs (MPVRP, see Archetti et al., 2015). In practice, customer
orders arrive continuously throughout the planning period, creating
a dynamic setting. While a similar dynamic MPVRP, incorporating
constraints on delivery days, has been proposed by Wen et al. (2010),
our situation differs in that not all relevant information is known in
advance but may be available in a stochastic manner such as forecasts
on customer demands and their geographical distribution. The goal
is to leverage these available data when assigning delivery days to
customers. Consequently, the SDDP falls within the domain of dynamic
and stochastic vehicle routing problems with multiple periods.

The paper contributes to the current literature by (1) describing a
novel slow logistics concept for B2C parcel delivery, (2) reviewing and
categorizing existing work in the field of MPVRPs with delivery dates,
(3) introducing a solution approach for a dynamic MPVRP that utilizes
stochastic information, (4) implementing a powerful hybrid adaptive
large neighborhood search with granular insertion operators for solving
an auxiliary prize-collecting VRPTW, and (5) show by simulation that
a slow delivery option significantly improves costs.

The remainder of this paper is organized as follows: Section 2
describes the dynamic and stochastic some-day delivery problem. In
Section 3, we offer an overview of related literature. We describe a
static and deterministic model in Section 4 and a solution approach
for the dynamic and stochastic extension in Section 5. In Section 6,
we conduct extensive numerical experiments. Finally, in Section 7, we
summarize our findings and conclude our work.

2. Some-day delivery problem: Concept, costs and constraints
2.1. Last mile delivery concept with slow delivery option

We propose to slow down the delivery process to enable a more
efficient customer clustering in the time dimension. We achieve this by
introducing a significantly slower delivery option for customers, which
we refer to as the some-day delivery option. This some-day option is
presented during the delivery method selection at the online checkout
and ensures that customers receive their orders by a specified latest
delivery day. However, the exact delivery day is only revealed to the
customer once their order has been finalized for delivery. Importantly,
we do not compromise customer satisfaction by altering their freedom
to choose their preferred delivery method. Instead, the retailer may
offer this some-day option as an additional choice alongside existing
ones.

From a last mile perspective, the some-day delivery option increases
flexibility for a retailer operating its own vehicle fleet. When customers
select the some-day delivery option, their orders can be delivered
on any day within the specified delivery interval. Within this time
interval, the retailer can allocate orders to the best (i.e., cost-effective
and eco-friendly) delivery day, respecting orders with fixed delivery
dates (e.g., next-day orders) and other logistical constraints. However,
the some-day delivery option could potentially lead to an increase in
failed delivery attempts, as it does not allow customers precise control
over the exact day of delivery. Therefore, the benefits of this option
must outweigh any potential rise in the costs associated with failed
deliveries. Nevertheless, the retailer may have some knowledge of
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the availability profile of flexible customers and could take this into
account when setting up its delivery schedule (Voigt et al., 2023).

Fig. 1 provides three illustrative scenarios. In cases where fixed
delivery dates are imposed, tours on two days are scheduled less
efficiently in terms of costs (case 1) or uneven capacity utilization
(case 2). In contrast, the scenario including customers who selected the
some-day delivery option, demonstrates how this added flexibility can
reduce costs and emissions associated with inefficient tours. Moreover,
it allows for a more even distribution of demands across multiple days.
Obviously, the flexibility effects grow with the share of customers
selecting the some-day delivery option. However, it is important to
note that as the retailer now has to make decisions about the delivery
days for these orders, the complexity of tour planning rises with the
number of days. Thus, a decision problem emerges where the retailer
has to decide (1) on the delivery day for each flexible order, (2) on the
clustering of orders into tours on each day, and (3) on the sequence on
those tours.

The problem setting described is not exclusive to e-commerce re-
tailers with their own delivery fleets but also extends to parcel service
providers, given they have the capability to temporarily store ship-
ments and access information about the latest delivery dates. Parcel
service providers can gather these information through various means,
including offering differently prioritized delivery options. For example,
DHL provides a slower delivery option with a transit time of four or
more days, which is well-suited for shipping e-commerce goods (DHL,
2021). Alternatively, the parcel service provider could collaborate with
an e-commerce retailer to obtain the requested delivery intervals.

2.2. Consumer behavior

One fundamental assumption in our problem setting is that cus-
tomers would opt for a slower some-day delivery option, even though
literature suggests that e-commerce customers typically prefer receiv-
ing their orders as quickly as possible (e.g., Nogueira et al., 2021).
To encourage customers to choose the some-day option, retailers can
employ several strategies, such as offering monetary incentives like
lower shipping costs, discounts, or other rewards (see, e.g., Amazon,
2022). Another effective approach that has yet to be fully utilized
is to appeal to customers’ environmental consciousness by provid-
ing information about the ecological benefits of opting for slower
delivery at the checkout. Recent studies indicate that a majority of e-
commerce customers is open to choosing a slower delivery option. For
instance, Buldeo Rai et al. (2019) found that more than two-thirds of
customers may be willing to wait longer for their parcels if it leads to
fewer kilometers driven or if all parcels from a single order transaction
are delivered together. However, it is essential to explicitly display
the environmental impacts of each delivery option, as customers are
often not fully aware of them. Ignat and Chankov (2020) demonstrated
that the probability of an online customer choosing a slower delivery
increased significantly, from 4% to 66%, after being provided with in-
formation on its environmental impact. Furthermore, Buldeo Rai et al.
(2021) discovered that the percentage of customers selecting the slower
delivery option could be further boosted through additional measures,
such as indicating that many others have already chosen this option.
While the findings of Nogueira et al. (2021) confirm the willingness of
e-commerce customers to wait, they also reveal differences based on the
type of product ordered. Additionally, Dietl et al. (2024) found that the
effectiveness of incentives on the willingness to wait depends on indi-
vidual characteristics and socio-demographics. In particular, customers
with a strong environmental awareness are more willing to wait longer
when presented with emission savings associated with delayed delivery.
Another potential incentive to increase the willingness to wait is to
offer customers greater flexibility in their delivery choices, including
the option to select preferred delivery time windows (TWs).
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Increased flexibility with

Case 1: high costs/emissions some-day-delivery
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Case 2: unbalanced capacities

Depot
Fixed Day-1 Order

Fixed Day-2 Order

O®Een

Some-day Order

— day-1-tour
--+ day-2-tour

Fig. 1. Flexibility effects through some-day delivery option.

2.3. Decision-relevant costs and constraints

In order to formalize the decision problem stemming from the last
mile delivery concept with slow delivery option outlined above, we
examine decision-relevant costs and constraints in the following.

Multi-period planning horizon. The planning horizon is divided into
multiple periods, each representing a day. For clarity, we will use days
as the term for each delivery period to distinguish it clearly from time
windows (discussed in the next paragraph). It is important to note that
the planning horizon is considered infinite.

Demand, time window, and delivery interval for each order. Customers
continuously place their orders throughout the planning horizon, spec-
ifying their demand, eligible delivery days by selecting from available
delivery options, and potentially a delivery time window (TW) during
which delivery is possible on the specified day. Each delivery option
includes a delivery interval, which consists of the earliest possible and
latest allowable delivery days. The earliest is the day following the
order placement, excluding same-day and instant delivery options. For
example, if a customer selects a standard option promising delivery
within one to three days, delivery can occur as early as day one and not
later than day three, but the customer cannot exert more precise control
over the specific delivery day. Even customers who intentionally opt for
slower delivery options may prefer a faster delivery over a slower one.
To account for this, calculative penalty costs, referred to as waiting
costs, may be applied, occurring per order and per day.

Delivery structures. We assume a single distribution center (DC) with
sufficient capacity where orders are picked and packed as soon as
they arrive. This setup allows to offer a next-day delivery option.
However, orders which are not scheduled for the following day must be
temporarily stored in designated areas at the DC (possibly over multiple
days) until they are scheduled for delivery. Therefore, inventory costs
that occur per order and per day may be taken into account.

Vehicle fleet. The retailer operates its own vehicle fleet for last mile
delivery and is therefore able to flexibly (re-)arrange orders to delivery
tours on any day. Each vehicle has a capacity that may not be exceeded
and must arrive at the DC within a time limit. Transportation costs
arise for conducting the delivery tours, depending on the distances
between the customer locations. These costs include factors such as fuel
consumption, driver wages, and also vehicle emissions. The number
of vehicles to be used each day is restricted by the fleet’s size. Ad-
ditionally, there is a contingency plan in place, such as an external
logistics provider, to prevent the violation of latest delivery days.
This backup option becomes particularly relevant in scenarios with
stochastic customer orders and high utilization of vehicles. Backup
costs are incurred for each order where the backup option must be
employed. These backup costs are independent of each other, similar
to penalty costs for unserved orders in Archetti et al. (2015).
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2.4. Order information quality and availability

Customer order data play a central role in the problem setting. Four
main characteristics of an order can be identified: the customer’s loca-
tion, demand, delivery TW, and the selected delivery option (i.e., de-
livery days interval). These characteristics, along with the overall set
of orders, determine the feasible delivery tours on each day. However,
these details are revealed only as orders are placed, which occurs
gradually over time. Consequently, the order data are not known
with certainty for the entire planning horizon when delivery tours are
being planned. However, we assume, that the retailer has stochastic
information on the expected number of orders on future days as well
as on the geographical demand distribution (i.e., customer density
and related probabilities on order frequencies). In contrast, we assume
that customer individual demands, delivery TWs and selected delivery
options are highly stochastic and are only revealed when the customer
places the order. As such, these information cannot be utilized for
planning.

2.5. Summary

We adopt the perspective of an e-commerce retailer with its own
delivery fleet or a collaborating parcel service provider that receives
information about requested (latest) delivery days. Customers can se-
lect from various delivery options when placing their orders, including
a considerably slower alternative, termed some-day option. Customers
may opt for this slower option due to monetary incentives, sustainabil-
ity concerns, or due to additional incentives like the option to select
delivery TWs. This some-day option provides the retailer or parcel
service provider with increased flexibility regarding when to make the
delivery, thus offering more opportunities to consolidate shipments
from the customer’s vicinity over time. We assume that orders arrive
gradually over time but probabilistic information is available about
the number of future customer orders and their geographical distribu-
tion. In such a dynamic setting, the ability to anticipate future orders
becomes crucial in finding feasible tour plans, avoiding penalties for
exceeding capacities, and capitalizing on consolidation opportunities.
The decision model for this problem setting determines the delivery
day for each order and plans the clustering and routing of orders
with a constrained vehicle fleet across multiple days. The objective
is to devise a tour plan that minimizes costs, encompassing waiting
costs/inventory costs, transportation costs and penalty costs for backup
deliveries. Waiting and inventory costs can be combined into a single
cost parameter, as they depend on the same decision. The trade-off
revolves around balancing waiting and inventory costs, which favor
delivering as soon as possible, against transportation and backup costs,
which tend to favor slower, consolidated deliveries. We henceforth
refer to the setting described as the some-day delivery problem (SDDP).
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3. Literature

Conceptually, the problem is related to vehicle routing problems
with delivery options (e.g., Dragomir et al., 2022; Dumez et al., 2021;
Tilk et al., 2021). However, this stream of literature focuses on enhanc-
ing flexibility during the day by introducing options for the delivery
location. In contrast, the SDDP enhances flexibility by allowing the
service provider to freely select the delivery day within an earliest
and latest delivery day. As such, the problem setting belongs to the
class of multi-period vehicle routing problems (MPVRP). The classical
MPVRP considers a planning period consisting of several days, where
each customer requires a single visit and a fixed number of capacitated
vehicles is available each day to fulfill these customer demands (e.g.,
Archetti et al., 2015). As there exists an abundance of literature on
problems with multiple periods (see Campbell & Wilson, 2014; Francis
et al., 2008), we focus the following review on publications related
to MPVRPs that closely align with our problem setting. We deem a
publication as related if it restricts customer visits to individual delivery
intervals, defined by a release and/or due date. Table 1 presents the
reviewed literature, structured according to the taxonomy introduced
by Bektas et al. (2014) in the context of dynamic vehicle routing.
Note that settings featuring dynamic and/or stochastic elements are
of particular interest, as our problem includes dynamic and stochastic
order information.

« Static and deterministic: All orders are known in advance with
certainty. A comprehensive decision model can be formulated and
solved once, providing delivery tour plans valid for the entire
planning horizon.
Static and stochastic: At least some information such as demand
quantity, selected delivery options, customer locations, or the
number of orders placed on any given day is stochastic. However,
the probabilities and distributions are known in advance and re-
main constant throughout the planning horizon. Decision making
still occurs only once, but it must account for the stochasticity
through recourse actions. Appropriate approaches are chance-
constrained models or robust optimization techniques.

* Dynamic and deterministic: Information is not fully available when
planning begins but is partially revealed over time. Initial tour
plans are constructed based on the orders known at the start of
the planning horizon. As additional orders arrive on subsequent
days, re-planning actions are required, either instantly as new
information becomes available or periodically (e.g., daily) using
a rolling horizon approach.

* Dynamic and stochastic: Re-planning actions are necessary to ac-
count for order information that becomes available during the
planning horizon. However, probabilistic information about fu-
ture orders is available, such as weekly seasonality, which can be
integrated into the decision-making process to anticipate uncer-
tain orders or their characteristics.

3.1. Static MPVRP settings

3.1.1. Static and deterministic settings

Most research on MPVRPs with delivery intervals falls within the
area of static and deterministic settings. Ceschia et al. (2010) consider
an MPVRP arising from a real-world application. They are the first
to include delivery intervals (i.e., earliest and latest allowed delivery
day) in an MPVRP. Compared to the SDDP, delivery intervals are
treated as soft constraints only, and no inventory/waiting costs are
assumed. Similarly, the study by Cantu-Funes et al. (2017) incorporates
a latest delivery day among numerous other constraints, all driven by
a complex real-world application. Mancini (2016) formulates a rich
MPVRP with allowed delivery days, motivated by a real-life problem
setting, too. On any given day, vehicles have the flexibility to start
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Table 1
Overview of reviewed MPVRPs with delivery intervals.

Deterministic Stochastic

Ceschia et al. (2010)

Pacheco et al. (2012)

Archetti et al. (2015)

Mancini (2016)

Cantu-Funes et al. (2017)
Darvish et al. (2019)

Larrain et al. (2019)
Estrada-Moreno et al. (2019)
Yildiz and Savelsbergh (2020)
Muifoz-Villamizar et al. (2021)

Static Darvish et al. (2020)

Subramanyam et al. (2021)

Angelelli, Grazia Speranza et al. (2007)
Angelelli, Savelsbergh et al. (2007)
Angelelli et al. (2009b)

Angelelli et al. (2009a)

Angelelli et al. (2010)

Wen et al. (2010)

Lagana et al. (2021)

Albareda-Sambola et al. (2014)
Ulmer et al. (2018)

Billing et al. (2018)

Ulmer (2018)

Keskin et al. (2023)

Dynamic

their routes from one depot and conclude them at another one, pro-
vided it optimizes the subsequent day’s delivery schedule. Again, only
transportation costs are considered. Pacheco et al. (2012) investigate
the flexibility of delivering earlier in an MPVRP. Again, additional
costs that depend on the selected delivery day are missing. Archetti
et al. (2015) introduce an MPVRP with due dates motivated by a city
logistics problem. In their model, transportation costs are accompanied
by inventory costs incurred for each day an order remains at the depot
beyond its release date. The MPVRP with due dates of Archetti et al.
(2015) is the model closest to our setting and could be further adapted
to fully match the requirements for a static and deterministic variant
of the SDDP. Building on the work of Archetti et al. (2015) and Larrain
et al. (2019) present two new solution approaches for the same problem
setting and tackle instances with up to 100 customers. Darvish et al.
(2019) extend the setting of Archetti et al. (2015) by introducing sev-
eral depots, from which one is selected for delivery. Mufioz-Villamizar
et al. (2021) link the MPVRP with due dates to ecological factors. No
additional features compared to the setting of Archetti et al. (2015)
are considered. Estrada-Moreno et al. (2019) introduce price discounts
for delivery flexibility. Customers specify a preferred delivery day,
not guaranteed by the service provider. Instead, customers receive a
fixed price discount if the delivery occurs on any other day. Yildiz
and Savelsbergh (2020) also focus on customer discounts to increase
flexibility but determine discounts based on routing rather than pre-
specified rates. They assume a single vehicle serving customers with
delivery locations on a line, simplifying the routing.

3.1.2. Static and stochastic settings

MPVRP models that are stochastic and static at the same time
are quite hard to find in literature, let alone such models that also
include delivery dates. This scarcity may be attributed to the fact that
static-stochastic optimization models typically adhere to the a priori
optimization approach, where a stochastic model is solved only once.
However, in a multi-period context, there is a high likelihood that some
stochastic elements will reveal their actual values over time, allowing
for the opportunity to re-design solutions for later periods based on
new information. Darvish et al. (2020) present an MPVRP with a single
vehicle arising in the context of e-commerce parcel delivery. Orders can
generally be delivered in an interval spanning from the day where the
order is placed to a specified latest delivery day. However, the avail-
ability of products to be delivered at the depot each day follows a given
probability distribution. The delivery dates must be communicated to
the customers already at the beginning of the planning horizon. This
setting can be regarded as a variant of the SDDP, where only the lower
bound of the delivery interval (i.e., the earliest possible delivery day)
is subject to stochasticity. Subramanyam et al. (2021) study an MPVRP
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where customers can place their orders on any given day within the
planning horizon, thereby revealing demand quantities and allowed
delivery days. The authors state that their solution approach would
be implemented in a rolling horizon fashion (i.e., dynamically), where
order information is updated and delivery tours are re-optimized. In
their modeling approach, however, it is assumed that only customers
who have already placed their orders are known.

3.2. Dynamic MPVRP settings

3.2.1. Dynamic and deterministic settings

The literature on dynamic and deterministic multi-period settings is
rather scarce, even though we were able to identify seven contributions
that can be assigned to our categorization (see also Psaraftis et al.,
2015). Angelelli, Grazia Speranza et al. (2007) introduce the dynamic
and deterministic MPVRP, where orders arrive at the beginning of each
day. The planner must decide which orders to fulfill on the current day
and which to postpone to the next day, without knowing the set of
new requests that will emerge the following day. This scenario involves
a single vehicle with unlimited capacity available at a central depot
for making deliveries, with the objective of minimizing total trans-
portation costs. The authors present three straightforward algorithms
and assess their performance. These are further analyzed in Angelelli,
Savelsbergh et al. (2007) for a special case. The uncertainty in this
setting corresponds to the uncertainty within the SDDP regarding the
number of future customers and their locations. However, unlike the
SDDP, they assume that the delivery interval of future customers is
known. Angelelli et al. (2009a) expand on their previous works by
introducing a set of uncapacitated vehicles and a maximum route
length constraint. Moreover, some orders may arrive during the day,
allowing tour plans to be modified while vehicles are already en route
between customers. Unlike their previous works this extension includes
unpostponable same-day orders. Similar to the SDDP approach, as
orders are never rejected, some need to be directed to a backup option
at a higher cost. This group of authors further extends their prior work
by implementing a rolling horizon solution framework (Angelelli et al.,
2009b) and conducting additional numerical experiments (Angelelli
et al., 2010). Wen et al. (2010) formulate an extended variant of the
dynamic MPVRP where orders arrive over time and must be deliv-
ered within customer-specific delivery intervals. The objective function
considers transportation costs, customer waiting costs, and workload
balancing. This setting closely resembles a dynamic-deterministic case
of the SDDP, as it includes all relevant constraints and a similar
objective function. The primary distinction is the absence of a backup
delivery option and that stochastic forecasts on future demand and
potential customer locations are not taken into account. Lagana et al.
(2021) define a general dynamic MPVRP where both vertices and edges
in the mixed graph can serve as delivery destinations. This setting arises
in combined postal and parcel delivery when no prior knowledge of
future demand is available.

3.2.2. Dynamic and stochastic settings

The field of dynamic and stochastic VRPs has gained significant
attention in recent years, as evident in the comprehensive reviews
conducted by Ritzinger et al. (2015) and Soeffker et al. (2022). Nev-
ertheless, the combination of multiple periods and delivery intervals,
characterizing the SDDP, has not been as frequently explored. Albareda-
Sambola et al. (2014) extend the deterministic model of Wen et al.
(2010) and add the assumption that for each customer, a probabil-
ity distribution is known indicating the likelihood of the customer
requiring service in future periods. However, they consider demand
quantities to be fixed and known in advance. In contrast, we assume
the customer set is unknown, but we have access to a probability dis-
tribution describing the potential demand. Furthermore, their objective
function only includes transportation costs. They propose an adaptive
policy for determining which customer to serve each day and which to
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postpone. This is achieved by solving an auxiliary PCVRP based on a
customer compatibility index that reflects the potential savings if two
customers are served together and is used to define an appropriate
prize. Our solution approach builds on this concept by introducing a
method of determining the prize suitable for the SDDP. Billing et al.
(2018) present a model motivated by the delivery of vehicles to dealers.
The dealers make up a fixed set of known customers that place their
requests on a daily basis and without prior notice. However, historical
orders from a customer can be used to forecast future ones. Probabilities
are provided for each customer to place an order on the next day, but
the associated demands and deadlines remain unknown. The objective
is to minimize transportation costs consisting of costs for traveled
distances and fixed costs per tour and per customer stop. To address
this problem, the authors propose a three-phase heuristic based on a
customer compatibility index like in Albareda-Sambola et al. (2014).
Ulmer et al. (2018) introduce an MPVRP where same-day orders can
be postponed by one day similar to the deterministic setting outlined
by Angelelli et al. (2009a). Each day, some customers are known in
advance and must be served on the same day. Additional customer
orders arrive during the day according to a known stochastic distribu-
tion. The objective is to minimize the number of postponed orders. In a
subsequent work, Ulmer (2018) develops a new solution approach for
the model defined in Ulmer et al. (2018). Keskin et al. (2023) consider
an MPVRP with due dates and dynamically arriving customer orders.
They use predictive information for demand management, including
customer calls when early service may be beneficial. This demand
management aspect represents a unique feature in their paper.

4. Static and deterministic model formulation

In the following, we formulate a static and deterministic definition
of the SDDP. The model is inspired by an MPVRP proposed by Archetti
et al. (2015). We intentionally present a more straightforward (but
computationally more demanding) flow based formulation, as the goal
of this section is to clearly define our problem including the objec-
tive function and all constraints. The central idea of model SDDP is
therefore the unambiguous definition of the formal problem setting
under consideration, even though the stochastic-dynamic environment
assumed later is initially neglected.

The problem is defined on a directed graph G(N, A) with node set
N and arc set A. Node set N consists of the depot 0 and customers
i € C. The arc set is defined as A = {(i,j) : i # j,i,j € N}. The
parameter c;]r.ans denotes the associated costs with each arc, c}“" denotes
the inventory/waiting costs per day and customer, and ¢ denotes
the costs when the customer is served by a backup option. A fleet K of
homogeneous vehicles with capacity Q is available to perform routes
starting and ending at the depot on each day. The vehicle has to arrive
at the depot within the deadline D. A customer’s demand d; can be
delivered on any day within its allowed delivery interval [e;,/;], where
e; < I, and I; < T. On the selected delivery day the service which
takes service time .S; must begin within the customer’s designated TW
[etw;, Itw;]. For simplicity, we assume that the time window remains
consistent across all days. However, this assumption is not essential for
the subsequent models or solution approach. If multiple orders from
the same customer are considered, this can be modeled by co-locating
customers. Table 2 summarizes the notation.

Model static and deterministic SDDP

Minimize Z Z it Xy + Z cinv. Z t—e)
kEK ijEN t€lerd;] ieC t€le;+ 1]
back
: <yit + 2 Zikt> + 2 e 2 Vit 1
keK ieC t€ler;]
s.t.

X+ Y, Y =1 vieC

keK jEN tele;l;] r€le; l;]

(2)
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Table 2
Notation used to model static and deterministic SDDP.
Sets
C Set of customers C = {1,...,|C|}
N Set of nodes N = {0} uC = {0,...,|C|}
K Set of vehicles K = {1,...,|K]|}
T Set of days T = {l,...,|T|}
Parameters
e Transportation costs for traveling from location i to j; i,j € N
cinv Inventory/waiting costs for storing the order of customer i for one
day; ie C
chack Backup costs when customer i is delivered via backup option; i € C
d Demand size of customer i;i € C

Earliest delivery day of customer i; i € C
I Latest delivery day of customer i; i € C
Time for traveling from location i to j; i,j € N

S; Service time at customer i;i € C

etw, Earliest delivery time of customer i; i € C
Itw, Latest delivery time of customer i; i € C
D Latest arrival time at depot

o Vehicle capacity

Decision and auxiliary variables

Xijke Indicates whether arc (i, ) is traversed by vehicle k on day 7;
i,jeEN,keK,teT

Zige Indicates whether customer i is served by vehicle k on day 1;
ieCkeK,teT

Yir Indicates whether customer i is served by a backup option on day #;
ieCteT

Sike Start time of service of vehicle k at node i on day

ieN,keK,teT

ZdizxijkrSQ VkeK,teT
ieC jeN

3
X X = Y X VieN.keK,teT
JEN JEN

(©)]
zikt=zxijkt VieC,keK,teT

JEN

%)
Zx()jkrsl VkeK,teT
JEN

(6)
ij()krﬁl VkeK,teT
JEN

)]
Sii +Sj+750<D VieCkeK,teT

®
Sike = Sike = (T3 + SXij — D1 = X;504) Vi,jeC,i#jkeK,teT

(©)]
etw; < s, < ltw; VieCkeK,teT

10)
Xijke € 10,1} Vi,jeNkeK,teT

1)
zj; € {0,1} VieC,keK,teT

12)
yie €{0,1} VieC,teT

13)
Sk € RY VieN,keK,t€T

14)

The objective function (1) minimizes transportation costs, inven-
tory/waiting costs of customers served via the own fleet and backup
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option, and costs for customers served via the backup option. Con-
straints (2) ensure that every customer is delivered within the requested
delivery interval via the own fleet or backup option. Constraints (3)
prohibit the vehicle capacities to be exceeded. Constraints (4) are flow-
conserving constraints. Constraints (5) link the assignment variables
z;, with the flow variables x;;,,. Constraints (6) and (7) ensure that
only one tour is performed per vehicle and day. Constraints (8)-(10)
guarantee that the vehicle arrives back at the depot in time, customer
TWs are respected and subtours are eliminated. Constraints (11)-(14)
define the respective domain of the variables.

Model SDDP can be used to calculate lower bounds for the
stochastic-dynamic case, i.e., the costs that arise under the assumption
of perfect information. However, model SDDP is difficult to solve for
real-sized instances. For example, the related model by Archetti et al.
(2015) can only consistently handle instances with fewer than 50
customers. We leave this open for future research and focus below on
developing a solution approach that can be used to solve and analyze
the stochastic-dynamic problem case.

5. Stochastic and dynamic solution approach

We use the deterministic model formulated as the basis for our
stochastic-dynamic modeling approach. In this dynamic setting, only
a subset of customer orders is known at planning instant, i.e., only cus-
tomers revealing their demand on the current and previous days. The
customer demands within the following days are uncertain and stochas-
tic. New orders arrive at the end of each day. A periodic re-planning
is carried out each day to account for the newly arrived orders and
updated demand forecasts. The proposed solution approach is based on
the suggested heuristics for a similar setting used by Albareda-Sambola
et al. (2014). In this approach, we solve an auxiliary prize-collecting
VRP with TWs (PCVRPTW, see Section 5.1) for the current day, that
decides which customers to deliver on that day and the correspond-
ing routing. We define a benefit measure for each known customer
indicating the value of serving the customer on the current day rather
than postponing the customer to future days. We henceforth call this
benefit/reward measure “prize” following the nomenclature in vehicle
routing literature (see e.g., Feillet et al., 2005). The prize combines
positive and negative effects of servicing an order on the current
day, including the following aspects: urgency of the order and the
probabilities of emerging nearby customers on future days. As intuition,
the prize should be high if the order is urgent or we expect a high
demand on future days. Contrary, the prize should be low if we expect
nearby customers to emerge in the coming days. We elaborate on
the calculation of the prize in Section 5.2. The PCVRPTW is solved
heuristically with a hybrid adaptive large neighborhood search with
granular insertion operators (HALNS-G, see Section 5.3) that has shown
promising results when solving several VRPs (Voigt et al., 2022, 2023).

5.1. Auxiliary prize-collecting vehicle routing problem with time windows

In this section, we model the PCVRPTW. The goal of the PCVRPTW
is to maximize the sum of collected prizes minus the transportation
costs for traveling to the customers to collect the prize during the
current day, """, The set of customers known on this day is denoted
by Cjcurren. We formulate the problem with an equivalent minimization
objective (15) which minimizes transportation costs and the sum of
uncollected prizes, i.e., the sum of prizes for customers not served on
this day. Ultimately, the decision variable v; indicates whether we serve
the customer immediately (v; = 1, i.e., the prize is collected) or whether
we postpone her/him to future days (v; = 0).

Model PCVRPTW
Minimize Z Z C;;ans X+ Z 1=y

keK i,jeN i€Ccurrent

(15)

s.t.



S. Voigt et al.

IPIRIEY

Vie Ctﬂurrem‘ (16)

keK jeN

Y 4 Y xu<o0 Vke K (17)
i€Ccurrent  JEN
Dox= D X Vie N.ke K (18)
JEN JEN
Y xop <1 vk e K (19)
JEN
Y x <1 vk € K (20)
JEN

S+ S +1jg<D Vj € Coewren, k € K (21)

Sjk = Sk 2 (@ + SPxyj — DL = x;3) Vi, j € Creuwrem, 1 # jk € K (22)

etw; < sj < ltw; Vj € Coeurren, k € K (23)

x;jx € {0, 1} Vi,j € N,k € K (24)
v; € {0,1} Vi € Ceurrem (25)
sk €RY Vie N,k e K (26)

Constraints (16) ensure that the prizes are collected only for cus-
tomers delivered via the own fleet. Constraints (17) guarantee that
the vehicle capacities are respected. Constraints (18) conserve flow.
Constraints (19) and (20) ensure that only one tour is performed
per vehicle. Constraints (21)—(23) guarantee that the vehicle arrives
at the depot in time, customer TWs are respected and subtours are
eliminated. Constraints (24)-(26) define the respective domain of the
variables. As only small instances of this formulation can be solved
with exact procedures, we propose a metaheuristic solution approach
in Section 5.3.

5.2. Determining prizes

A crucial part of the overall solution approach is to appropriately
determine the prize within the PCVRPTW, in order to make the right
decision about which customers to serve immediately and which to
postpone to future days. The calculation of the prize heavily depends on
data availability; more information allows for more nuanced decision-
making regarding which customers to serve on the current day and
which to postpone. It is also conceivable that prizes could be deter-
mined using more sophisticated approaches, such as machine learning.
Here, however, we present a straightforward and intuitive calculation
of prizes, leaving potential improvements to future research. Neverthe-
less, please refer to Appendix A where we demonstrate a method for
extending prize calculations to advanced scenarios.

In cases of relatively stable demand, a sufficient number of vehicles,
and negligible inventory costs, we use only stochastic information on
customer densities within the delivery area. Such information can be
derived from, for example, publicly available population densities or
the company’s demand data. Let ¢’ denote the prize of customer i
that utilizes this stochastic information in Eq. (27).

C_back

prize _ t
Ci T Yw - ctrans .

s ¢ remainin;
if 7] £=0
1; ccurrent

f EIN]

t=rcurrent

if t[jemaining >0 Vi € Ceurrent 27)
i

This measure primarily depends on the urgency, i.e., the remaining
days ;""" to serve the customer. The remaining days are calculated
as the difference between the latest delivery day /; and the current day
feurrent j o emaining __jcurrent [f the order is urgent (i.e fremaining _ )

e, ; . e, t; ,
the prize corresponds to the backup costs of the respective customer,
Cback

i -

For postponable orders (/;""""¢ > 0), we define the prize as follows.
Recall, that customers with high prizes (rewards) are more likely to
be served on the current day. Intuitively, the prize should be higher
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when few days are remaining. Conversely, the prize should be low
when there are only few customers nearby but more customers are
expected to appear nearby in future days. More formally (see the
second case of Eq. (27)), the prize depends on a term weighted by
, an empirically determined factor that adjusts the prizes and guides
decision-making. This term is calculated using the average transporta-
tion costs when all customers are served as early as possible ¢t and
the number of nearby customers on the current day #; currem divided
by the sum of expected nearby customers for customer i over the
remaining delivery days. There may be several ways to estimate the
expected transportation cost. In practice, one could use the historical
average transportation costs (i.e., the total transportation costs over
several periods divided by the number of customers served) or the
costs incurred when serving all currently known customers in a single
period (i.e., solving a classical VRP under an earliest policy). For our
experiments, we use the average transportation cost for the respective
instance class under the earliest policy.

The number of nearby customers #; curent cOunts how many cus-
tomers are within an area A; around customer i on the current day. 4, is
defined as the area encompassing customers reachable from customer i
within 10% of the average transportation cost, i.e., 0.1¢trans, For future
days N;, is a random variable, that depends on the customer density
around customer i within area A;.

5.3. Hybrid adaptive large neighborhood search with granular insertion
operators for the PCVRPTW

This section outlines the hybrid adaptive large neighborhood search
with granular insertion operators (HALNS-G) and explains the problem-
specific operators, in particular the granular insertion operators, which
play a crucial role in improving the original HALNS as presented
in Voigt et al. (2023). The concept of granular insertion operators
is inspired by the granular tabu search (Toth & Vigo, 2003). This
approach restricts the neighborhood of local search operators based
on geographic proximity. In other words, it only considers moves that
affect nearby edges. In the granular insertion operators suggested, the
insertion positions are similarly confined to customers located in close
proximity to the customer being inserted.

5.3.1. Framework

As the HALNS-G (see Algorithm 1) closely resembles the original
HALNS, we provide a concise description only. For a more compre-
hensive understanding of this framework, we refer interested readers
to the works of Voigt et al. (2022, 2023). The main distinction lies
in the usage of granular insertion operators within the ALNS, in the
following referred to as ALNS-G. The HALNS-G combines ideas from
genetic algorithms, in particular the use of a population of individuals
(solutions) and a crossover mechanism, with the well-known adaptive
large neighborhood search (ALNS) introduced by Ropke and Pisinger
(2006). Genectic algorithms construct solutions by iteratively generat-
ing new solutions from parent solutions with a crossover mechanism
and potentially mutation operators and/or local search operators. In
contrast, the ALNS is a neighborhood-based metaheuristics that gen-
erates solutions by iteratively removing customers from one solution
and reinserting them by means of a removal and insertion operator,
respectively. The operators are chosen from a set of available operators
in an adaptive manner, i.e., the likelihood of selecting an operator
depends on its performance during the search.

The HALNS-G starts by generating an initial population P of indi-
viduals by executing the ALNS-G »® times (lines 1-3). This means each
run of the ALNS-G generates a solution which is then added to the
population of individuals. Subsequently, the ALNS-G is employed to
create new individuals by comparing a solution from the population,
denoted as s, with the global best solution, denoted as § (line 8-
15). This crossover mechanism is based on the assumption that the
optimal solution shares similarities with both s and, to a greater extent,
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1 while |P| < rn? do // Initial population Input : Starting solution s, global best solution §, parameters (y,, n,
2 S — ALNS-G() itstop’ a, B, pbinom’ G, Gy O3, ngranular)

3 P < PU {s} Output: Best solution s*

4 end 15" <5

5 while time limit not reached do // Generations 2 while Iterations without improvement < it*'®* do

6 § « DetermineBestSolution(P) 3 ChooseOperators() ‘

” ie0 4 CRC « GetRemovalCandidates(s, 3, p*™™ ) // Determine
8 while i < n” do // Crossover and ALNS-G phase removal candidates

9 s < P[i] 5 (s"%, CR) « Remove(s, CRC, p°inom ) // Removal operators
10 if gens without improvement mod gen™*~"% £ 0 then (Section 5.3.3) . )

1 | s« ALNS-G(s,3) 6 CR « Sort(CR) // Sorting operators (Section 5.3.4)
12 else 7 s"" « Insert(s"Y, CR, peranilar ) // Granular insertion
13 | s < ALNS-G( operators (Section 5.3.5)

14 end 8 if f(s"%) < f(s*) then

15 P« PU({s} 9 5%, 8« sV

16 i—i+1 10 UpdateGranularity( ngrmar)

17 end 1 if f(s*) < f(5) then

P « DiversityManagement(P) // Select survivors and

manage diversity

19 end

Algorithm 1: Hybrid adaptive large neighborhood search with
granular insertion operators

with §. Consequently, if customers are placed in the same position
in both solutions, it is presumed that this placement is likely to be
present in the optimal solution as well and should therefore not be
removed. We define a customer to be placed in the same position in
both solutions in case its preceding and succeeding node are the same in
both solutions. As such, the crossover mechanism aims at reducing the
probability of removing such probably already well-placed customers.
To diversify the population, the HALNS-G generates new individuals
every gen"V~i"dS generations without any improvement (line 13). In
this case, the ALNS-G is applied in the same manner as in the first
generation, i.e., without a starting solution from the population and
without the global best solution. The individuals that are carried over
to the next generation are selected based on their objective value and
diversity (line 18). The HALNS-G terminates when a specified time limit
is reached (line 5).

5.3.2. Adaptive large neighborhood search with granular insertion operators

Algorithm 2 describes the ALNS-G adapted for the PCVRPTW used
within the HALNS-G framework, as depicted in the previous section.

In all but the first generation and after gen""~"d generations
without improvement the ALNS-G takes a starting solution s and the
global best solution § as input. In contrast, in the first generation, s is
initialized by applying one of the insertion operators randomly chosen.
Furthermore, several parameters (y,, ng, it"°®, @, f, pP™™, 6,, 05, 03,
ngramlary need to be set appropriately. The values chosen and their
meaning can be found in Appendix B.

The algorithm starts by initializing the local best solution s* with
the starting solution s (line 1). The ALNS-G iteratively seeks improve-
ments until a stopping condition is met (line 2). During each iteration,
operators (removal, sorting and insertion) are selected depending on
their historical performance (line 3). Customers are added to the set of
removal candidates CRC under two conditions: (1) when their position
in the current solution s differs from the global best solution § or (2)
when they are randomly selected (line 4). To be more precise, for
condition (1), a customer is added to CRC if its direct predecessor or
successor in s differs from the predecessor/successor in §. For condition
(2), a customer whose placement in s matches that in § (i.e., it has the
same predecessor and successor) is added to CRC with a probability
pPi"om Only customers in the set CRC can be removed from the solution
using removal operators (line 5) and are added to the set of removed
customers CR. The number of customers to be removed is sampled
in every iteration from a binomial distribution. The parameters for
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§« s*
else if accept(f(s™V), f(s*), ) then
S« Snew
end
a—a-f
UpdateALNSParameters(c,, 0,, 03)

// Simulated annealing

17

18 end

Algorithm 2: Adaptive large neighborhood search with granular
insertion operators

this distribution are set as |C*™¥®d|, indicating the number of served
customers in solution s (i.e., the customers that are served by a vehi-
cle) and probability pb™™, The set of removed customers, which also
represents the customers to be inserted, is then sorted by a sorting op-
erator (line 6) to determine the insertion order. The selected insertion
operator is subsequently applied to insert customers from CR in the
determined order. In contrast to the original HALNS, not all customers
in CR have to be reinserted. Customers remaining in the set CR are
accounted for with their uncollected prizes in the objective function.
The ALNS-G uses simulated annealing as acceptance criterion (lines 8-
14), where worse solutions are accepted with a probability depending
on the difference of the objective values f(s"*V)— f(s*) and a decreasing
temperature «. The initial temperature is determined instance-specific

by using a = —£>, following the formula from Johnson et al. (1989).

o In(xo
Here, AE represents an estimate of the increase in cost for strictly

positive transitions, and y, is a parameter indicating the likelihood
of accepting a worsening solution. To generate these transitions, we
perform n, iterations of the ALNS-G. Whenever a new best solution
s* is found, the granularity sets are updated (line 10), as described in
the following paragraph on granular insertion operators. Finally, the
temperature « is reduced by multiplying it with a cooling rate g (line
16), and the algorithm’s ALNS parameters are updated (line 18, see
e.g., Ropke & Pisinger, 2006).

5.3.3. Removal operators

We use four removal operators, each named in accordance with the
nomenclature suggested in Voigt (2025). All removal operators work
with the set CRC. Therefore, only customers included in CR® may be
removed from the solution.

+ Random customers: Randomly removes customers from the so-
lution.

* Worst cost customers: Removes customers in descending order
of 4; — ¢™". 4; denotes the change in transportation costs if
customer i is removed from the solution, and ¢™" denotes the
minimum insertion cost of customer i encountered during the
search.
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» A posteriori score related customers - to seed customer: The
first customer (i.e., the seed customer) is removed using the afore-
mentioned random customers operator. Subsequently, additional
customers are selected for removal from the set CRC based on
a relatedness measure. This relatedness Rel(l,m) between two
customers / and m is measured by a score that considers both
geographical proximity and the start times of service of the
vehicle at each customer’s location in the current solution. The re-

. c
latedness score is calculated as follows: Rel(l,m) = Im +
max; jen ¢;;

|Sl,k(1) - Sm,k(m)l
Itw,

All customers - from randomly selected sequence within con-
catenated routes: This operator concatenates all routes into one
giant tour by randomly adding one tour after the other, and then
randomly selects a customer to remove. It continues removing the
successors of the selected customers if they are included in CRC
until the desired number of customers has been removed.

5.3.4. Sorting operators

The set of removed customers CR is sorted with one of the following
two sorting operators selected adaptively. These sorting criteria differ
from the original proposed sorting operator. In the context of the
PCVRPTW, the goal is not to serve every customer (as in e.g., CVRP or
VRPTW), and as such priority is given to customers with high prizes.

+ Customers with highest ratio of prize and demand first: This
operator sorts customers in descending order of the ratio of their
prize and demand, denoted as <*/4,. Customers with a high

prize/demand ratio are inserted earlier, increasing their chances

of being delivered.

Customers with highest profit first: This operator sorts cus-

tomers in descending order of their profit. The profit of a cus-

tomer is defined as the difference of their prize and the insertion
costs, represented as c/"** — 4;, where 4; denotes the change in

transportation costs when customer i is present in the solution.

5.3.5. Granular insertion operators

After sorting CR as described previously, the customers are inserted
using granular insertion operators. The goal of the granular insertion
operators is to determine the most suitable positions to insert customers
into the existing solution. This operation is based on the concept of
insertion operator - best cost position (Voigt, 2025). Instead of considering
all possible insertion positions, the granular approach narrows the
search scope, focusing on insertion positions that are more likely to
yield improved solutions. The classical insertion operator - best cost
position typically iterates across all vehicles and nodes to find the
position where the customer can be inserted with lowest total cost.
In the granular implementation, the operator does not iterate across
all nodes but restricts the search to nodes that are likely to appear as
predecessors of the customer to be inserted. This significantly reduces
run time without being detrimental to solution quality. Crucial for
this presumption to be true is an appropriate restriction of nodes to
examine. Let N f”"”m denote the granular node set including only nodes
that we deem likely to appear as predecessor of customer j i.e, nearby
nodes or nodes that have been a predecessor in previous good solutions.
In more detail, we determine N jgra"“la’ = N;O”ed[l, ..., ngranular] ywhere
N;"”ed denotes the node set sorted in increasing order of c}j‘.a"s and
ngranular the number of nodes to be examined. In other words N j‘.gm"“""
initially includes the n#"#"1¥" nearest neighbors of customer j. The set
NEUR o dynamically updated when a new best solution s* is found
such that if node i is followed by customer j in s*, all nodes having
lower or equal ¢/ to node i are now included in NEET M ore
formally, we set n€lar — max(peranular index of node i in N;O‘ tedy,
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To account for the possibility that not all customers must be served
in the solution, the customer will only be inserted if the penalized inser-
tion costs are lower than a given acceptance threshold. The insertion
costs are the additional routing costs incurred when adding the cus-
tomer to the route. These costs may be penalized by a factor when the
insertion would lead to violating time windows or capacity constraints.
The threshold is sampled from a uniform distribution ranging from
[min, max] times the average costs per customer in the current solution
s. There are two variants of the granular best position insertion operator
based on the acceptance threshold.

» High acceptance threshold: This operator is designed to po-
tentially insert more customers into the solution. The threshold
is sampled from a uniform distribution ranging from min"e" to
max"eh, Therefore, it accepts to insert customers with insertion
costs that are (up to max"e" times) higher than the average costs
per customer, meaning that customers with relatively high costs
are still inserted. This approach aims to diversify the search.
Low acceptance threshold: In contrast, this operator uses a
lower acceptance threshold. The threshold is sampled from a
uniform distribution ranging from min'®" to max'*", with min'*¥ <
max'% < minM < maxMe". Consequently, only customers with
low insertion costs are accepted. This approach is more selective
and tends to intensify the search.

6. Numerical experiments

In this section, we present results of several numerical experiments.
In Section 6.1 we establish that the HALNS-G works well on PCVRPTW
instances and analyze how the granular insertion operators impact the
overall performance of the HALNS. In Section 6.2 we introduce the
simulation framework and use it to conduct several experiments aimed
at generating valuable managerial insights.

The HALNS-G is implemented in C++ and run on an AMD Ryzen
7 2700X with 32 GB RAM. The simulation component is implemented
using Python 3.7. Parameters of HALNS-G can be found in Appendix B.
These values are set according to previous research and preliminary
experiments.

6.1. Performance evaluation of HALNS-G

6.1.1. Performance on PCVRPTW instances with 1000 customers

We evaluate the performance of the HALNS-G on PCVRPTW in-
stances with 1000 customers based on VRPTW instances by Homberger
and Gehring (1999) against pyVRP (Wouda, Lan et al., 2024) in Table 3.
The instances are developed by Wouda, Aerts-Veenstra et al. (2024) and
can be found at PyVRP (2023). Both algorithms are run on the same
machine with the same time limits.

pyVRP is a powerful improved version of the open-source hy-
brid genetic search introduced by Vidal (2022) which has consis-
tently shown outstanding performance in implementation challenges
for solving VRPs (http://dimacs.rutgers.edu/programs/challenge/vrp/)
and dynamic VRPTWs (https://euro-neurips-vrp-2022.challenges.ortec
.com/). Furthermore it has a direct implementation for the PCVRPTW
developed for solving a waste-collection problem (Wouda, Aerts-Veenstra
et al., 2024) and as such no adjustments were necessary for our bench-
marks. Table 3 shows the instance names, best-known solutions (BKS,
available on the pyVRP GitHub repository), the respective objective
values and the percentage gap to the BKS (Gap = %) for both
pyVRP and HALNS-G, respectively. Instances labeled with C represent
cases with clustered customers, R with randomly distributed customers,
and RC instances feature a mix of randomly distributed and clustered
customers. Upon examining the average gap (last row), it becomes
evident that both HALNS-G and pyVRP yield similar gaps compared
to the BKS.
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Table 3

Results for PCVRPTW instances with 1000 customers.
Instance BKS PyVRP HALNS-G

Objective Gap [%] Objective Gap [%]

C1.10.1 24539.1 24559.5 0.08 24539.1 0.00
C1.102 24901.5 24913.7 0.05 24848.7 -0.21
C1.10_3 24502.8 24419.3 -0.34 24410.7 -0.38
C1.10_4 24456.2 24464.5 0.03 24410.4 -0.19
C1.105 24860 24871.8 0.05 24857.3 -0.01
C1.10.6 24676.3 24718.1 0.17 24652.4 -0.1
C1.107 24463.1 24469.6 0.03 24463.4 0.00
C1.108 24427.3 24423.2 -0.02 24423.2 -0.02
C1.109 24589.1 24609.9 0.08 24603.2 0.06
C1.10_10 24860.5 24830.4 -0.12 24808.6 -0.21
C2.10.1 16581.6 16636 0.33 16613.9 0.19
C2.10_2 16212.8 16292.1 0.49 16 225.3 0.08
C2.103 15718.4 15846.5 0.81 15837.4 0.76
C2.10_4 15096.9 15524.9 2.84 15449.4 2.33
C2.105 16257.1 16291 0.21 16 300.5 0.27
C2.10_6 16004.3 16167.1 1.02 16 085.8 0.51
C2.10_7 16017.7 16115.3 0.61 16031.7 0.09
C2.108 15706.7 15817.3 0.7 15812.6 0.67
C2.109 15819.2 15997.4 1.13 15857.7 0.24
C2.10_10 15362.5 15535.7 1.13 15519 1.02
R1.10_1 26271.1 26274 0.01 26271.1 0.00
R1.10_2 26312.5 26314.4 0.01 26321.7 0.03
R1.103 25615.7 25617.8 0.01 25657.6 0.16
R1.10.4 25212.2 25219.5 0.03 25251.1 0.15
R1.10.5 25788.2 25789.9 0.01 25790.1 0.01
R1.10_6 25397 25401.7 0.02 25406.5 0.04
R1.107 25137.8 25142.3 0.02 25152.2 0.06
R1.108 24896 24904.9 0.04 24931.1 0.14
R1.109 25433.4 25433.4 0.00 25443.5 0.04
R1.10_10 25790.3 25790.3 0.00 25816.4 0.1
R2.101 24115.9 24200.4 0.35 24072.5 -0.18
R2.102 20975.8 21205.1 1.09 21081.1 0.5
R2.103 18269.5 18605.4 1.84 18530.8 1.43
R2.10.4 15689.5 15910.1 1.41 15880.4 1.22
R2.105 23461.4 23599.9 0.59 23452.6 -0.04
R2.10_6 20423.1 20485.8 0.31 20468.7 0.22
R2.107 17790.1 18167.2 212 17 852.5 0.35
R2.108 15542.4 15782 1.54 15645.2 0.66
R2.109 22990.7 23019.6 0.13 22997 0.03
R2.10_10 22133 22322.2 0.85 22282.3 0.67
RC1.10_1 24816.1 24826.1 0.04 24817.3 0.00
RC1.10_2 25043.1 25047.4 0.02 25066.4 0.09
RC1.10.3 24461.4 24477.6 0.07 24488.4 0.11
RC1.10 4 24495.6 24523.1 0.11 24528.8 0.14
RC1.105 25102.6 25113.3 0.04 25126.6 0.1
RC1.10.6 24623.5 24625.7 0.01 24650.3 0.11
RC1.107 24874.2 24894.3 0.08 24 886.4 0.05
RC1.108 24549.7 24565.6 0.06 24559.3 0.04
RC1.109 24435.3 24488 0.22 244829 0.19
RC1.10_10 24615.2 24634.5 0.08 24653.7 0.16
RC2.10_1 19726.8 19863.7 0.69 19746 0.1
RC2.10_2 17 359.1 17635.1 1.59 17623.8 1.52
RC2.10.3 15419.6 15562.4 0.93 15683.2 1.71
RC2.10 4 13917.6 14296.8 2.72 14092.7 1.26
RC2.105 18198.7 18412.9 1.18 18427 1.25
RC2.10.6 18257 18448 1.05 18315 0.32
RC2.107 17718.4 17852.8 0.76 17827.2 0.61
RC2.108 17 046.5 17113.4 0.39 17164.5 0.69
RC2.109 16576 16739.3 0.99 16826.1 1.51
RC2.10_10 16625.9 16779.8 0.93 16779.2 0.92
Average 21336.0 21426.5 0.53 21396.7 0.36

Both algorithms have been run with a time limit of 60 min.

6.1.2. Performance on PCVRPTW instances with increasing number of
customers

To evaluate the scalability of HALNS-G as the number of customers
increases, we have created a set of instances featuring 200, 400, 600,
and 800 customers by randomly sampling the desired number of cus-
tomers from the 60 instances with 1000 customers. This leads to an
additional 240 instances. The performance of HALNS-G compared to
PYVRP across various instance sizes is summarized in Table 4 (Gap =
e “ﬁueHo[t NS;G ;?Vbﬁff””"pva ) . The HALNS-G tends to outperform pyVRP
on medium-sized instances. This observation is particularly relevant as
we execute the simulation (see Section 6.2) with instances featuring a
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Table 4
Average gap against pyVRP [%] for PCVRPTW instances with 200,400...,1000 cus-
tomers.

Instance Number of customers

200 400 600 800 1000
C1 0.00 0.00 0.00 -0.06 -0.11
c2 -0.17 -0.53 -1.15 -0.15 -0.31
R1 0.00 0.00 0.00 0.03 0.06
R2 -0.07 —-0.44 -0.54 —-0.56 -0.53
RC1 0.00 0.00 —-0.01 -0.01 0.03
RC2 -0.16 -0.74 —-0.81 -0.34 -0.13
Average [%] -0.07 -0.28 -0.42 -0.18 -0.16
Runtime [min] 6 12 30 45 60

Table 5
Average gap against pyVRP [%] for PCVRPTW instances with 200 customers and
varying prizes.

Multiple of original prize

x1 X2 x3 x4 x5

Average [%] -0.07 -0.01 0.27 0.57 0.47

Both algorithms have been run with a time limit of 6 min.

moderate number of customers. Consequently, HALNS-G appears to be
a suitable choice for solving such instances.

6.1.3. Performance on PCVRPTW instances with 200 customers and in-
creasing prizes

The prizes applied in the PCVRPTW can vary greatly depending
on the urgency of a customer delivery. We therefore evaluate the
robustness of the HALNS-G across a range of prizes by varying the
prizes in instances with 200 customers by multiplying the original prize
with a factor ranging from 1 to 5. Table 5 shows once more the average
gap of the HALNS-G against pyVRP. The HALNS-G exhibits superior
performance on instances with lower prizes (factors 1 to 2) when
compared to pyVRP. In contrast, for instances with higher prize values
(factors of 3 to 5), pyVRP attains better solutions. In these scenarios,
routing decisions become more challenging as a larger number of
customers should be served. Given that pyVRP is built on the hybrid
genetic search and incorporates a highly effective local search capable
of identifying near-optimal routing solutions, the observed results align
with expectations.

6.1.4. Contribution of granular insertion operators

This section examines the contribution of granular insertion oper-
ators on the overall performance. We implement the original HALNS,
which does not restrict the set of insertion positions, i.e., N f”"“mr =
N,Vj € C. We then compare the performance of this HALNS with
regular insertion operators (HALNS) against HALNS-G on PCVRPTW
instances with 200, ...,1000 customers. Fig. 2 shows the average gaps
against pyVRP for the various instance sizes, achieved without (HALNS)
and with granular insertion operators (HALNS-G).

HALNS-G clearly outperforms HALNS, and the effect becomes more
pronounced as the number of customers increases. In fact, the gran-
ular insertion operators are responsible for achieving superior perfor-
mance for instances with 600 and more customers against pyVRP.
This suggests that granular insertion operators may be a powerful and
straightforward device for improving the performance of the ALNS
methodology in general.

6.2. Experiments and managerial insights

The experiments aim to quantify the benefits associated with intro-
ducing a some-day option compared to an earliest policy (EP) which
may be followed in practice. In the EP, each customer is served as
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Fig. 2. Effect of granular insertion operators (HALNS vs. HALNS-G).

quickly as possible, i.e., within the day following the order. Sec-
tion 6.2.1 introduces the simulation framework. Section 6.2.2 inves-
tigates the relationship between the length of the some-day option and
the achievable savings in costs and vehicles. Section 6.2.3 examines
the savings associated with increasing the share of customers choosing
the some-day option. Section 6.2.4 investigates whether a retailer can
offer customers the option to select TWs in exchange for accepting an
extended delivery interval.

6.2.1. Simulation framework and performance measures

The simulation is based on six VRPTW instances by Homberger
and Gehring (1999) with 1000 customers (C1_10_1, C2.10_1, R1_10_1,
R2.10.1, RC1.10_1, and RC2_10_1, see Table 3). For each day, the
simulator randomly samples a set of 100 customers from the respective
instance. Each customer is characterized by its coordinates, demand
and TW, as specified in the original instance. This set is then revealed
as the pending customer set for the current planning day. We assume
no inventory or waiting costs, sufficiently high backup costs and an
unlimited number of vehicles in order to achieve meaningful and, above
all, comparable results between the different experiments. The backup
costs for customers (c}?"“k > cg;+¢;0) are set so high that they are served
with the given fleet in any case, even if this requires a separate vehicle
for an individual customer. Consequently, each customer can be served
within its delivery day interval. We are interested in the steady state
(long-term) behavior of the system. To achieve this, we exclude the
first five days and the last day, as these days are not representative
of the system’s long-term behavior. For each instance, we generate
30 days, thus providing 24 days for calculating three performance
measures: (1) Average costs per customer served, calculated as the total
transportation costs divided by the number of customers served, (2)
average number of vehicles used per day, and (3) average delay per
customer who have chosen the some-day option.

6.2.2. Impact of delivery interval length of some-day option

In this experiment we analyze the impact of the interval length of
the some-day option. We assume that all customers select the some-
day option, and we increase the delivery interval in each simulation
by one day up to a length of five days. The goal of this experiment
is to quantify the savings in costs and number of vehicles used when
compared to the EP. Note that the EP is equivalent to the case where
the delivery interval length is zero days, i.e., [, = ¢;, Vi € C.

We analyze two distinct scenarios. In one case, we assume that the
logistics service provider must respect TWs (with TWs), meaning cus-
tomers are only available to receive their deliveries within specific time
windows during the day. The other case assumes no predetermined TWs
for the delivery day (without TWs), allowing customers to receive their
deliveries at any time throughout the selected day. For example, in
the with TWs case, the shipping of high-value products or bulky goods
might require deliveries at certain times to align with the availability
of the customer. In contrast, general parcel deliveries, may not require
specific TWs (without TWs). In both cases, however, it is possible to
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select the day of delivery from an interval of several days (some-day
option).

Fig. 3 presents the results of the simulations. The upper plot shows
the scenarios where customer TWs are respected, and the lower plot
the scenarios without customer TWs. Both plots display the delivery
interval length on the x-axis (I; — ¢;, YV i € C), the average number of
vehicles and the average costs on the y-axis, and the average delay on
the secondary y-axis. The average number of vehicles and the average
costs are standardized against the EP. Following the EP, the scenarios
analyzed show that incorporating TWs results in average costs per
customer of 96.34 compared to 48.30 when TWs are not considered.
Similarly, the average vehicle requirements are 15.5 with TWs and
6.1 without. Consequently, when adherence to TWs is required, the
some-day option can be expected to yield a greater savings potential
compared to scenarios without TW constraints.

In both cases (with and without customer TWs), the average costs
and average number of vehicles used decrease significantly with an
increasing length of delivery intervals. However, the savings become
increasingly marginal with every additional day. The actual delay is
far less than the given delivery interval length, for instance customers
can expect to be served within 1.67 days (with TWs) and 2.18 days
(without TWs) even if they have chosen the some-day option with 5
days, respectively. Interestingly, the reduction in costs goes along with
the reduction in vehicles only if TWs are respected (upper plot). For
scenarios without TWs (lower plot), the number of vehicles is only
slightly affected by the delivery interval, but the transportation costs
are. This means that the distance per vehicle is noticeably reduced, but
not the number of vehicles used.

In summary, the results show that the some-day option offers a
relatively higher savings potential in scenarios where specific TWs have
to be respected on the delivery day compared to scenarios where no
specific TWs have to be taken into account. Independent of the presence
of TWs, a delivery interval length of three days seems sufficient to
reduce costs up to 60% compared to the EP in exchange for a moderate
increase in delay of less than 1.5 days. As an added bonus, the average
number of vehicles is decreased, in particular when TWs are present.
This is especially important in the light of driver shortages.

6.2.3. Impact of share of customers selecting the some-day option

If the retailer/service provider offers a range of delivery options
with varying speeds, from which the customer can freely choose, it
is obvious that not all customers will opt for the some-day option. To
account for these scenarios, we vary the share of customers selecting
the some-day option and analyze its impact on the same measures
as shown before. In this experiment, we randomly sample a share of
customers to select the some-day option (with a length of three days),
while all other customers are assumed to select the fastest delivery
option. We incrementally increase the share from 10% to 100% in steps
of 10% in Fig. 4 for the case with TWs. Similar results are achieved for
the case without TWs.

The figure shows nearly linear relations between the share of cus-
tomers selecting the some-day option and the performance measures.
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Fig. 4. Effect of share of customers selecting the some-day option for the case with customer time windows.

If the retailer motivates an additional 10% of customers to choose
the some-day option, costs are expected to reduce by 3.9%, and the
number of vehicles by 3.7%. These analyses may help estimate the
benefits (e.g., discounts on shipping costs) the retailer may offer their
customers in exchange for their willingness to wait. Furthermore, the
experiment shows that cost savings are possible with a small number
of customers opting for the some-day option. This can be achieved
without additional costs for the retailer, for instance, by showcasing the
emissions savings associated with selecting the some-day option (Dietl
et al., 2024). Due to the linearity of the reduction in transportation
costs, the retailer could provide a rough estimate of emission savings.
However, to produce a precise estimate of achievable emissions savings,
additional factors need to be considered, such as vehicle load, elevation
profile, and vehicle type. Consequently, further research is required to
accurately quantify the potential impact on emissions.

6.2.4. Impact of a some-day option with the incentive of selecting time
windows

Retailers may consider increasing the attractiveness of the some-day
delivery option by allowing the customers to choose a delivery TW. In
that case customers get in exchange for their patience the option to
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select their preferred delivery time. This is particularly appealing for
customers with a predictable schedule, such as an employed person
available after work every day. Such an option can also benefit the
service provider by reducing failed delivery attempts (see Voigt et al.,
2023), as customers can choose a time when they are more likely
to be at home. However, there is a downside to the introduction of
TWs, as it significantly increases the number of vehicles required and
transportation costs, as illustrated by Punakivi and Saranen (2001) and
by our experiments in Section 6.2.2 (see above). This experiment aims
to determine if the some-day option may compensate for these negative
effects. For this purpose, we once again vary the share of customers
selecting the some-day option (with 3 days) in Fig. 5.

TWs are exclusively applicable for customers who have chosen the
some-day option. We benchmark against the EP without TWs. Addi-
tionally, we vary the width of the TWs. The original TW width given
in the respective instance is considered as narrow TWs. In the original
instance, the TW width averages 2% of the delivery horizon equivalent
to a mere 15-min time frame assuming a 12-h delivery horizon. Medium
TWs are four times wider (on average approx. 1 h), and wide TWs are
eight times wider (on average approx. 2 h).

Fig. 5(a) shows that the number of vehicles heavily increases with
the share of customers choosing the some-day option with TWs as



S. Voigt et al.

European Journal of Operational Research 324 (2025) 477-491

< I 130 T T T T T 3 . . -
= 200 X2 —a— Narrow TWs
c 2120 £ ) —+— Medium TWs
= | TR | e Wide TWS
;5 150 |- . 110 =
%) > - —
n > <
S £ 100 =
E 8 e o0 4 o A
o 100 p—= O *
> \ \ | | | | 90 L | | | | | 0 | | | | |
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Share in % Share in % Share in %

(a) Average vehicles

(b) Average costs

(c) Average delay
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incentives. However, the magnitude of the increase in vehicles is de-
pendent on the width of the TW. Notably, only for wide TWs and a low
share of customers choosing the some-day option, a slight decrease in
vehicles is achievable (see the brown line with pentagon markers at a
10% share).

The development of costs (Fig. 5(b)) is heavily dependent on the
TW width. With narrow TWs (dark gray line with triangle markers),
costs steadily increase but at a moderate pace. Therefore, implementing
narrow TWs as an incentive for an extended delivery interval may only
be sensible in terms of costs when the number of failed deliveries due to
customer absence is high and costly. For medium sized TWs (magenta
line with diamond markers), costs decrease only when up to 30% of
customers select the some-day option with these medium-sized TWs
as incentive. When more customers demand TWs, the some-day option
cannot fully compensate for the additional costs associated with TWs.
The retailer/service provider can take advantage of these results by
dynamically adjusting the offer. They can suspend the offer as soon
as the number of some-day customers reaches the break-even point
and resume it when it becomes profitable again. The situation changes
when TWs are wide (brown line with pentagon markers). In this case,
as more customers choose the same-day option, costs steadily decrease.
However, the incentive (i.e., selecting TWs) for a some-day option
becomes less attractive with wider TWs.

The average delay per customer (Fig. 5(c)) remains unaffected by
the width of the TW and the share of customers selecting the some-
day option with TW incentive. Thus, during checkout, the retailer can
inform the customer about the expected average delay without needing
to know the exact share of customers selecting the some-day option.

In summary, this experiment clearly shows that the retailer/service
provider must carefully evaluate which width of TWs is attractive
for customers, anticipate the share of customers choosing the some-
day option with the given TW incentive, and weigh the reduction in
transportation costs (plus failed delivery costs) against the probable
increase in vehicles.

7. Conclusion

Summary. This paper is motivated by the idea to apply the concept
of shipment consolidation over time from the field of slow logistics
to e-commerce deliveries. The potential for increased consolidations is
achieved by providing the customer with a slow delivery alternative,
termed some-day option. Customers may opt for this alternative be-
cause they receive monetary incentives or additional perks from the
retailer or parcel service provider. It may also be sufficient to simply
inform customers of the environmental impact of immediate delivery
and they may choose the some-day option due to their environmental
awareness. This gives the retailer or the parcel service provider more
flexibility when to deliver the customer and therefore more opportuni-
ties to bundle shipments from the customer’s neighborhood over time,
resulting in cost savings and lower emissions. After establishing the
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basic slow delivery concept, we identified the required features and cost
components for a dynamic-stochastic optimization model considering
the last mile delivery. In a first step, we model the entire decision
problem as a multi-period VRP and assume a static and deterministic
setting for definition purposes. For the dynamic and stochastic setting,
a solution approach is then implemented based on solving auxiliary
prize-collecting VRPs with time windows (PCVRPTW). The PCVRPTW
in turn, is solved by a tailored hybrid adaptive large neighborhood
search with granular insertion operators (HALNS-G). The HALNS-G
outperforms state-of-the-art metaheuristics, when the trade-off between
transportation costs and prizes is more pronounced. Our experiments
show that significant cost savings are possible with a moderate increase
in delay. Furthermore, the savings exhibit a linear relation to the share
of customers choosing the some-day option. This means that the retailer
benefits, even if only a minority of customers can be motivated to
choose the some-day option. The simulation also shows, that time win-
dows as incentive for selecting the some-day option can be reasonable,
if the retailer expects high costs resulting from failed deliveries, and/or
the time windows are sufficiently wide.

Limitations and future areas of research. In addition, we would like
to draw attention to some interesting research directions that can be
examined with regards to the problem setting and solution approach we
have presented in this article. In terms of sustainability, we have thus
far quantified only the economic benefits of the some-day option and
anticipate potential reductions in emissions. Further research should
focus on precisely quantifying these emission reductions, factoring in
variables such as vehicle types, speed, elevation, and load (e.g., Rave
& Fontaine, 2024). Additionally, the social impact of workload bal-
ancing deserves further investigation. This article primarily addresses
routing within a B2C context. However, the some-day option could
also enhance picking and packing processes by allowing multiple orders
from the same customer to be consolidated, thus further streamlining
logistics. Moreover, the slow logistics concept could be adapted for
application in business-to-business (B2B) environments. Regarding our
solution approach, future research might explore more sophisticated
methods for prize calculation within the prize-collecting VRP, poten-
tially leveraging machine learning or other advanced techniques to
set appropriate prizes. Our experiments demonstrate that HALNS with
granular insertion operators is effective. This suggests that studying
the impact of granular insertion operators within ALNS across other
problem types could yield valuable insights.
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Appendix A. Prize calculations for scenarios with unstable de-
mand, limited number of vehicles or inventory costs

For our numerical experiments (see Sections 5.2 and 6.2), we as-
sumed a stable demand, a sufficient number of vehicles and no inven-
tory costs. In this section, we demonstrate how the prize calculation
could be easily adapted to relax these assumptions.

Intuitively, the prizes should be higher when inventory costs are
significant and future capacity utilization is expected to be high. The
prizes can be calculated by using Eq. (27) with additional terms for the
case where the order can still be postponed (t;em"’i"i"g > 0).

In the presence of inventory costs, incurred for each day the order
is postponed, these costs are simply added to the prize. As a result,
the order will only be postponed if the expected savings exceed the
inventory costs.

. ¢ Jemainin;
e if e _
prize
C. = trans 1; ccurrent
i w - ctrans .

_ " C}"V if t:emaining >0 Vi € Cieurrent
! E[N;]

t=fcurrent

(A1)

In order to account for unstable demand (or a varying number of
vehicles each day), we need forecasts of total demands in the upcoming
days (and/or the number of available vehicles) to estimate the expected
capacity utilization in the remaining delivery days, E[U;,]. This measure
depends on the number of the currently known customers, |Cieurrent | and
the expected number of customers in the following remaining days,
E[|C,]], t = eurrent 4 1, ... ,tlr.e"“i"i"g, divided by the maximum possible
number of customers served in the remaining days. The latter number
is quantified by the available vehicles |K;| in the remaining planning
horizon, ¢ = reurrent ,t;emainmg and the expected number of customers
served per vehicle E[n"ehicle]

/
| Creurrent | + Zt’

—eurrent 4 |

R 1.
E[pehice] . 3 1K

ENGI

E[U,] = (A.2)

This factor is then incorporated into the prize calculation given
in Eq. (A.1) as follows:

c})ack if ticmaining -0
. —— N; scurrent
rize . ptrans , P [P Y hhehin .
cf =Jw-c EU]- BN Vi € Cieurrent
Z,:,currem [Ni] o
+C;HV if tiemamlng > 0

(A.3)

Appendix B. Parameters

See Table B.6.

Table B.6
Parameters for HALNS-G.

Parameter Meaning Chosen value
n? Size of the initial population 12
gennewTinds Number of generations without improvement 5
irstop Number of iterations without improvement (one 5000
ALNS run)

(continued on next page)
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Table B.6 (continued).

Parameter ~ Meaning Chosen value

pPinom Probability for binomial distribution drawn for uni £(0.12,0.24)
every ALNS run

p Cool rate in simulated annealing 0.9999

Yo Acceptance probability in simulated annealing 0.04

ngy Number of iterations for determining the initial 400
temperature

o, Score for operator - new best solution 35

o, Score for operator - new best current solution

o3 Score for operator - worse solution, but accepted 1
via simulated annealing

peranular Initial number of nodes to be examined in 30
granular insertion operator

min"eh Minimum acceptance threshold for insertion 1.0
operator with high threshold

max™eh Maximum acceptance threshold for insertion 10.0
operator with high threshold

min'¥ Minimum acceptance threshold for insertion 0.05
operator with low threshold

max'o" Maximum acceptance threshold for insertion 0.5
operator with low threshold

5} Empirical factor for prize calculation 2.0
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