Titelangaben
Krebs, Johannes ; Polonik, Wolfgang:
On the asymptotic normality of persistent Betti numbers.
In: Advances in applied probability / published by the Applied Probability Trust. (3. Dezember 2024).
- 32 S.
ISSN 1475-6064 ; 0001-8678
Volltext
![]() |
Link zum Volltext (externe URL): https://doi.org/10.1017/apr.2024.61 |
Kurzfassung/Abstract
Persistent Betti numbers are a major tool in persistent homology, a subfield of topological data analysis. Many tools in persistent homology rely on the properties of persistent Betti numbers considered as a two-dimensional stochastic process . So far, pointwise limit theorems have been established in various settings. In particular, the pointwise asymptotic normality of (persistent) Betti numbers has been established for stationary Poisson processes and binomial processes with constant intensity function in the so-called critical (or thermodynamic) regime; see Yogeshwaran et al. (Prob. Theory Relat. Fields 167, 2017) and Hiraoka et al. (Ann. Appl. Prob. 28, 2018).
In this contribution, we derive a strong stabilization property (in the spirit of Penrose and Yukich, Ann. Appl. Prob. 11, 2001) of persistent Betti numbers, and we generalize the existing results on their asymptotic normality to the multivariate case and to a broader class of underlying Poisson and binomial processes. Most importantly, we show that multivariate asymptotic normality holds for all pairs (r, s), , and that it is not affected by percolation effects in the underlying random geometric graph.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Statistik |
DOI / URN / ID: | 10.1017/apr.2024.61 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Nein |
Peer-Review-Journal: | Ja |
Verlag: | Cambridge University Press |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 34883 |
Letzte Änderung: 21. Mär 2025 10:55
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/34883/