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Abstract
Differentiating errors on the basis of the distinct cognitive mechanisms that may have generated them has provided neu-
ropsychologists with useful diagnostic tools. For example, perseverative errors arising from the inability of the patient to set 
a new criterion for responding are considered one of the hallmarks of cognitive inflexibility. Similarly, in the task-switching 
paradigm it is possible to distinguish between task-confusion errors, produced by a failure in task selection, and response-
confusion errors, arising when the correct task is selected, but the wrong response is given. Nonetheless, only a few studies 
so far have exploited the existence of different kinds of errors in multitasking situations to inform theories of cognitive flex-
ibility. In the present study, we set out to use a variety of methodologies employed so far in the literature for disentangling 
errors due to task-selection failure from errors due to task-execution failure. In three experiments, we assessed the capacity 
of each method to produce error categories that can be mapped as clearly as possible to the cognitive mechanism(s) underly-
ing them using multinomial processing tree modelling. Subsequently, the distinction between task- and response-confusion 
errors was used to test their differential impact on inhibitory mechanisms in task switching as measured by N-2 repetition 
costs. Our results are encouraging regarding the possibility of correctly detecting response- and task-selection failures, thus 
allowing us to assess their differential impact on N-2 repetition costs.

Introduction

While leaving his house, a man, immersed in his thoughts, 
starts walking the usual way to work, until he realises that 
it is Sunday and he was not planning on going to work at 
all, but rather on visiting his mother. He, therefore, changes 
direction, but when he gets to his mother’s house door, again 
thinking of something else, he tries to open it using his office 
key.

Although both mistakes made by the absent-minded 
man prevent him from reaching his goal (pay a visit to his 
mother), they greatly differ from one another when consider-
ing the underlying cognitive mechanisms producing them. 
From a classical cognitive control perspective, it is possible 
to distinguish between the activation of an action schema, 
automatically driven by sensory input (Gade & Koch, 2007a; 

Meiran & Kessler, 2008; Steinhauser & Gade, 2015; Yama-
guchi & Proctor, 2011), and its implementation (Norman & 
Shallice, 1986; Stuss & Alexander, 2007; Stuss et al., 1995). 
As the man stands in front of his door he takes the most 
common and automatic route to work, and thus fails to set 
the appropriate goal for his actions (i.e. “visit mom”). He 
chooses the appropriate action (walking), but for the wrong 
task. When instead he attempts to open the door with the 
wrong key, he is correctly pursuing his goal (i.e. “open the 
door to visit mom”), but he is choosing the wrong action to 
implement it.

The present study is concerned with empirically disentan-
gling errors arising from inappropriate task selection from 
those that are due to inappropriate task execution. After a 
brief review of the methodologies employed in previous 
behavioural studies for drawing this distinction, we will pre-
sent three task-switching experiments implementing these 
different methodologies. This will allow for a direct compar-
ison of different approaches for disentangling the two kinds 
of errors occurring in multi-tasking situations. In particular, 
multinomial processing tree models will be used to estimate 
how often task-selection failures and task-execution failures 
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result in separate observable error categories, which have 
been used in previous literature as their empirical markers.

Furthermore, the (different) impact of these errors on 
task-switching performance is going to be assessed. Other 
than previous task-switching studies, which focused on the 
measure of task-switch costs (i.e., the performance differ-
ence between task switches and task repetitions), we will 
investigate the impact of (different) errors on an index of 
task inhibition, the N-2 repetition costs (i.e., the perfor-
mance difference between task-switch sequences of type 
ABA vs. CBA), building up on a previous study from our 
lab (Moretti et al., 2021). Based on a task-strengthening 
account of task-switching performance (Steinhauser & Hüb-
ner, 2006), we predicted that N-2 repetition costs will be 
abolished following a task-selection failure in trial N-2, but 
not a task-execution failure.

How to disentangle task‑selection failures 
and task‑execution failures?

The task-switching paradigm has been widely used to 
investigate cognitive flexibility in humans (Koch et al., 
2018; Vandierendonck et al., 2010). In studies using this 
paradigm, participants are asked to rapidly switch among 
simple stimulus-judgment tasks such as indicating whether 
a digit is odd or even, or whether the same digit is greater 
or smaller than five.

Since the very beginning of research on cognitive flex-
ibility, particular attention was devoted to different kinds of 
errors, distinguishing errors due to application of the no-
longer relevant task set from other errors (Grant & Berg, 
1948). Outside the neuropsychological tradition, however, 
this distinction has been less regarded (see Schuch et al., 
2019, for a review of error processing in task switching). 
As outlined in the present paper, the occurrence of different 
error types can nonetheless be used also outside the clinical 
field for informing theories of cognitive flexibility. However, 
as outlined in the next section, unambiguously detecting the 
source of an error can be a non-trivial endeavour in task 
switching.

The distinction between cognitive and observed 
error types

One important issue when studying errors due to task-
selection failure, and errors due to task-execution failure, is 
that these distinct cognitive processes do not always clearly 
map to observable behaviour in the laboratory. As such, for 
the present paper it is crucial to distinguish between these 
two levels (cognitive process vs. empirical phenomenon). 
When referring to the processing level, we will use the term 
task-selection failure to describe those situations in which 

the participant performs the currently irrelevant task, and 
task-execution failure to refer to those situations in which 
the correct task is selected, but the response is still wrongly 
executed. We will instead use the terms task-confusion error 
and response-confusion error to describe those observable 
events that we suppose to be (mostly) stemming from task-
selection failures and task-execution failures, respectively. In 
what follows we provide a short review of the methodologies 
used in behavioural research to map the different error types 
to observable error categories (see Fig. 1). After this, we 
present three task-switching experiments using the reviewed 
methodologies to provide a direct comparison between them. 
Finally, the (different) impact of the task- and response-con-
fusion errors on task-switching performance (focusing on 
N-2 repetition costs) will be assessed, allowing us to test 
critical predictions from the response-based strengthen-
ing account of task-switching performance (Steinhauser & 
Hübner, 2006), which posits that activated task-sets become 
strengthened upon their execution.

Methodology I: univalent task‑response mapping

Perhaps the most intuitive way to differentiate between 
errors due to task-selection failure versus task-execution 
failure is to use univalent task-response mappings (Des-
met et al., 2011, 2012; Meiran & Daichman, 2005; see also 
Zheng et al., 2018), meaning that the response-set for each 
task is unique (see an upper panel of Fig. 1).

In a first study on the occurrence of task-selection fail-
ures, for example, participants had to indicate the spatial 
location of a stimulus presented in a 2 × 2 grid along the 
vertical (“top”/ “bottom”) or horizontal (“left”/” right”) 
dimension (Meiran & Daichman, 2005; see also: Meiran 
et al., 2001). To do so, they could press one of 4 arrow keys; 
the vertical task was mapped to two keys arranged vertically 
(to be pressed with the middle and index finger of the right 
hand), and the horizontal task was mapped to two separate 
keys, arranged horizontally (to be pressed with middle and 
index finger of the left hand). With this set-up, a response 
would be labelled as a task-confusion error if a key belong-
ing to the response-set associated with the irrelevant task 
was pressed (e.g. if the relevant task was “vertical”, press-
ing either the “left” or “right” key). On the other hand, a 
response-confusion error would be present if the wrong key 
of the correct response-set was pressed (e.g. if the stimulus 
was “top”, but the participant pressed the “down” key). The 
results show that task-confusion errors were extremely rare 
(about 2%) when extensive preparation time was given (i.e. 
when the cue-stimulus interval [CSI] was long).

As Meiran and Daichman (2005) notice, despite the 
intuitive appeal of this methodology, it is possible that 
the effect of preparation time (reduction of task-confu-
sion errors with long vs. short CSI) is not driven by task 
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preparation, but rather by effector preparation. In other 
words, it is possible that when the task cue appears, the 
participants pre-activate the effectors they are going to 
use (e.g., middle and index finger of left hand). However, 
choosing one of these pre-activated effectors does not nec-
essarily imply that the participants are actually attending 
to the relevant stimulus dimension, and hence, are per-
forming the correct task. Therefore, many errors due to 
failures in task selection may go undetected with this 
methodology, and become classified as response-confusion 
errors.

Methodology II: capitalizing on stimulus 
congruency

To circumvent the confound between effector selection and 
task selection, bivalent task-response mappings can be used 
(see the central panel of Fig. 1), where the same response set 
is used for responding to both tasks. In this case, however, it 
is less straightforward to distinguish between errors due to 
task-selection failure and errors due to task-execution failure.

Consider the example given in the previous paragraph. 
Having bivalent task-response mappings means that only 

Fig. 1   On the left: visual representation of the different method-
ologies used in Experiments 1, 2 and 3. At the top of each row, an 
example stimulus is depicted. In Experiments 1 and 2, the participant 
needs to perform the “Shape” task, in Experiment 3, the “Letter” 
task. Below each example stimulus, the words within the boxes rep-
resent all the possible abstract response categories present in a given 
experiment. Response categories marked in bold are those afforded 
by the example stimulus, of which only one represents the correct 
answer. The black boxes below (or next) one or more categories rep-
resent the keys used for indicating those categories. Finally, the let-
ters below (or next) the response keys represent how that response 
would be classified in a given trial: C = Response classified as correct, 
RC = Response classified as response-confusion error, TC = Response 
classified as task-confusion error. ME = Response classified as a 

mixed error. On the right: Graphical representations of the multi-
nomial processing trees. Rectangles on the left denote different trial 
types, each constituting different trees. From them different branches 
depart each terminating on a square on the right, representing observ-
able response categories. Ovals in the middle represent unobservable 
cognitive events. Each unobservable event occurs with a probability 
expressed by the associated parameter on the link. Parameter T cor-
responds to the probability of selecting the required task in a given 
trial. Parameter R is the probability of choosing the correct response 
for the selected task. Parameter RE represents the probability that, 
having chosen the wrong response for the wrong task, accidentally 
leads to performing the correct response. As this is the result of a 
supposedly random process, this parameter was fixed to 0.5
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two response keys are used for both tasks, e.g. one key 
indicates both “up” and “left”, and the other one “down” 
and “right” (Meiran & Daichman, 2005). In this context 
if a congruent stimulus is presented, meaning that the cor-
rect responses to the relevant and to the irrelevant stimulus 
dimensions are both mapped to the same key, it would 
be impossible to disentangle a correct response from the 
correct application of the irrelevant task. For example, if 
the stimulus is presented on the top-left part of the grid, 
and the task is to judge it on the vertical dimension, the 
correct response would be “up”. However, since in our 
example the same key is also used for indicating “left”, 
it is not clear whether the participant correctly indicated 
“up”, or rather they intended to indicate the currently irrel-
evant dimension of the stimulus, “left”. It follows that an 
error made on a congruent trial is most likely due to a 
task-execution failure, and can be classified as a response-
confusion error. On the other hand, errors in incongruent 
trials, where the correct responses for the relevant and 
irrelevant tasks are spatially separated, can either be due 
to task-selection failure or task-execution failure.

Previous studies have often assumed that errors in 
incongruent trials would be due to task-selection fail-
ure much more frequently than errors in congruent trials 
(Ikeda & Hasegawa, 2012; Meiran & Daichman, 2005; 
Steinhauser & Hübner, 2006, 2008). To corroborate this 
assumption, multinomial-processing trees (MPT) mod-
els have been used to estimate the relative frequency of 
task-selection failures in congruent and incongruent tri-
als (Meiran & Daichman, 2005; Steinhauser & Hübner, 
2006; Steinhauser et al., 2017; Steinhauser & Steinhauser, 
2019). MPT are a class of models that allow for estimat-
ing latent processes underlying observed frequency data 
(for a formal definition see: Riefer & Batchelder, 1988; 
Hu & Batchelder, 1994; for a review see: Erdfelder et al., 
2009; we will explain MPT methodology in more detail 
in the General method section). Results from such MPT 
modelling show a rather large variability, with errors due 
to task-selection failures ranging between 19% (Meiran & 
Daichman, 2005) and 54.7% (Steinhauser & Steinhauser, 
2019) in incongruent trials. Crucially, however, all of these 
studies found that task-selection failures were much more 
frequent (up to 10 times) in incongruent trials than in con-
gruent trials, supporting the idea that comparing errors in 
incongruent versus congruent trials can be used as a proxy 
for disentangling errors due to task-selection failure and 
task-execution failure in task switching.

While MPT models provide several advantages, however, 
one limitation remains: other than the methodology of uni-
valent response mappings, they do not allow for separating 
task-selection and task-execution failures on the level of sin-
gle trials (for a possible solution to this issue, see Gluth & 
Meiran, 2019).

Methodology III: using more response keys 
than levels of stimulus dimension

The most recently introduced method for disentangling 
task- and response-selection failures is that of using more 
response keys than responses afforded by the currently 
presented stimulus (see bottom panel of Fig. 1).

Typically, in this paradigm stimuli are composed of 
a target and a distractor presented spatially segregated 
(Steinhauser & Gade, 2015; Steinhauser et  al., 2017; 
Steinhauser & Steinhauser, 2019). As only incongruent 
stimuli are used, in each trial one response key represents 
the correct response for the target (i.e. correct response), 
and another key is mapped to the correct response for the 
distractor (i.e. task-confusion error). Differently from the 
methodology presented in the previous section, however, 
a third key is present which is neither the correct response 
for the target, nor for the distractor (i.e. corresponding 
to a response-confusion error). This is made possible by 
the fact that each task has three response options; that is, 
each stimulus dimension varies on three levels, which are 
mapped to three separated keys.

For instance, in the aforementioned studies, a character-
picture pair was presented in each trial, and participants 
were asked to either make a classification of the charac-
ter while ignoring the picture, or the other way around. 
Crucially, the character dimension could vary on three 
levels, so that in each trial a character could be a letter, a 
numeral, or a symbol. In the same way, the pictures could 
be of animals, fruits, or vehicles. As such, one key was 
present for e.g. “letter” and “animal”, one for “numeral” 
and “fruit”, and one for “symbol” and “vehicle”. However, 
of these three keys, only two were mapped to the currently 
presented stimulus (e.g., letter and fruit).

Compared to the congruency-based methodology pre-
sented in the previous section, this methodology seems to 
provide a better way of disentangling the different error 
types, because here, failures in response selection can 
be measured more directly as the frequency of third-key 
responses (whereas no such direct measure exists in the 
method described in the previous section). In fact, task-
selection failures with the three-response methodology 
have been estimated to be more prevalent among classi-
fied task-confusion errors (~ 50%; see Steinhauser et al., 
2017; Steinhauser & Steinhauser, 2019) than with the 
congruency-based methodology presented in the previous 
paragraph (~ 20%; Meiran & Daichman, 2005; Steinhauser 
& Hübner, 2006).

Nonetheless, the limitation remains that MPT modelling 
does not allow for determining the error type on a trial-by-
trial basis, but only allows for estimating the overall propor-
tion of correctly classified task-selection and task-execution 
failures across the entire experimental session.
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The role of inhibition and associative 
learning in task switching

While the first aim of this study was to compare the differ-
ent methodologies of disentangling task-selection failures 
and task-execution failures in task switching, the second 
aim was to investigate whether these different error types 
differentially affect inhibitory control in task switching, 
building up on a previous study from our lab (Moretti 
et al., 2021).

In task-switching studies, the most common measure 
of the processes underlying cognitive flexibility are the 
task-switch costs: When comparing performance between 
repeat trials, where the task is the same as in trial N-1, 
and switch trials, where the task is different compared 
to trial N-1, task-switch costs are typically observed 
(Roger & Monsell, 1995; Meiran, 1996). There is nowa-
days some consensus on the fact that performance costs 
associated with switching are, at least partly, due to inter-
ference caused by carryover activation of the previously 
relevant task-set (Allport & Wylie, 2000; Allport et al., 
1994; Rubinstein et al., 2001). The automatic tendency 
to repeat the positively primed previous task is counter-
acted in switch trials by cognitive control mechanisms that 
inhibit the now irrelevant task-set, a presumed mechanism 
known as backward inhibition (Mayr & Keele, 2000; for a 
review, see: Koch et al., 2010). One well-established find-
ing generally interpreted as supporting the existence of 
backward inhibition are N-2 repetition costs (Gade et al., 
2014; Kiesel et al., 2010; Mayr & Keele, 2000). When 
asking participants to switch between three tasks, and the 
task switches on every trial, only two kinds of triplet task 
sequences are possible. Either after a first switch one needs 
to switch back to the first executed task (e.g. ABA), or 
three different tasks are performed in a row (e.g. CBA). 
The only difference between the two triplets is that in the 
first case the task in trial N-2 matches the one in trial 
N, whereas in the latter scenario it does not. The ABA 
kind of sequences is, therefore, referred to as N-2 rep-
etition sequences, whereas a CBA sequence would be an 
N-2 switch sequence. N-2 repetition costs are the perfor-
mance decrement found in the N trial of an N-2 repeti-
tion sequence, compared to the N trial of an N-2 switch 
sequence (Mayr & Keele, 2000; Koch et al., 2010; for a 
computational account see Sexton & Cooper, 2017). The 
most common explanation for this finding is that in an 
ABA sequence, task A needs to be inhibited in trial N-1 to 
successfully execute task B, and therefore strong persist-
ing inhibition of this task impairs performance in trial N 
when task A is required again. In comparison, task A is 
not recently inhibited in a CBA sequence, and therefore its 
residual inhibition is smaller in trial N compared to ABA 

sequences. N-2 repetition costs are thus considered to be 
an empirical marker of inhibition in task switching.

But what exactly needs to be inhibited? What is carried 
over from the previous trial? One early idea in the task-
switching literature is that abstract response categories rel-
evant to one task (e.g. “odd”/ “even”) may become associ-
ated with the response-set (e.g. “left”/” right”) (Meiran, 
2000; Schuch & Koch, 2004). If a task repeats, the same 
category-response associations can be easily used. If the 
task switches, however, interference is generated at the 
response selection stage, and inhibition is needed (Koch 
et al., 2010; Philipp et al., 2007; Schuch & Koch, 2003; 
Sinai et al., 2007). In favour of this idea, both switch costs 
and N-2 repetition costs were found to be absent follow-
ing no-go trials in which response selection does not take 
place (Philipp et al., 2007; Schuch & Koch, 2003).

Based on these and other findings, Steinhauser and 
Hübner (2006) proposed the response-based strength-
ening account of task-switching (see also Philipp et al., 
2007). According to this account, strengthening of task 
sets (including strengthening of category-response rules) 
takes place during response execution in an automatic 
fashion, outside the reach of cognitive control. The crucial 
prediction of this response-based strengthening account 
is that if the irrelevant task is executed in a given trial, 
this task is automatically strengthened so that it is the 
wrongly executed task that is still active in the subsequent 
trial. As such, trials following task-confusion errors are 
not expected to exhibit switch costs because “switching” 
actually requires to perform the currently activated task in 
these trials (and “repeating” involves to actually inhibit the 
currently activated task). If task selection is accomplished 
correctly instead, and the relevant task is executed, it is 
predicted that task-switch costs will be found in the fol-
lowing trial, irrespective of whether the correct response 
was chosen. In other words, task-switch costs should 
still be present following correct trials, and following 
response-confusion errors.

These predictions were tested in a series of experiments 
using bivalent task-response mappings and both congruent 
and incongruent trials, as described above (Steinhauser & 
Hübner, 2006, 2008). Switch benefits were indeed found 
following an error. Importantly, this was the case only if 
the error was made on an incongruent trial, where task-
selection failures were found to be more prevalent than on 
congruent trials (as estimated by MPT modelling). Fur-
thermore, similar findings were observed in subsequent 
studies using both univalent task-response mappings (Des-
met et al., 2012) and using three response options per task 
(Steinhauser et al., 2017): task-switch costs were observed 
after response-confusion errors, but not after task-confu-
sion errors.
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Evidence for a slow error‑correction mechanism 
in task switching

As explained in the previous section, the response-based 
strengthening account has received empirical support from 
a number of studies that assessed task-switch costs when 
switching between two different tasks. Using the same logic, 
the response-based strengthening account also predicts that 
N-2 repetition costs should be reduced following a task-
confusion error in trial N-2. Let us take an ABA sequence 
as an example. If task A in trial N-2 is not executed, because 
task C is instead erroneously selected, task C, and not task 
A, will be inhibited in trial N-1. As such, no inhibition will 
need to be overcome in trial N, and no N-2 repetition costs 
will be observed.

In a recent study using only incongruent stimuli, we 
found that N-2 repetition costs were indeed absent after N-2 
(task-confusion) errors, but only when the response in the 
N-1 trial belonged to the fast part of the RT distribution 
(Moretti et al., 2021). In other words, if a task-confusion 
error was followed by a relatively fast response, N-2 rep-
etition costs were abolished in the N trial. Otherwise, they 
were still observed. A very similar observation was made 
by Steinhauser and Hübner (2008), who found that the 
switch facilitation effect following a task-confusion error 
was present only if the post-error trial was fast. These results 
were interpreted as indicating the existence of a cognitive 
control mechanism aimed at correcting the automatic and 
maladaptive strengthening of the erroneously executed task 
set. Importantly, such a control mechanism would be slowly 
building (see also: Ridderinkhof, 2002; Ridderinkhof et al., 
2004; Wildenberg et al., 2010), so that its corrective effects 
can be observed only in slow post-error trials, where it 
restores switch costs. Similarly to what was observed with 
switch costs, inhibiting the erroneously executed task-set in 
trial N-2 and/or re-instantiating the relevant task in trial N-2 
would also restore N-2 repetition costs, thus explaining our 
finding of reduced N-2 repetition costs following an error 
only for the N-1 Fast condition.

The present study

In the present study, we aim at further investigating this 
empirical signature of a slowly building error correction 
mechanism after task-confusion errors. Differently from 
our previous study, in which only incongruent stimuli were 
present, under the assumption that most errors would be 
due to task-selection failures, here we used the three dif-
ferent methodologies for disentangling errors due to task-
selection and task-execution failures introduced earlier 
on. Figure 1 provides an overview of the methodologies 
used in each experiment. In Experiment 1, a univalent 

task-response mapping was employed, which provides the 
most intuitive way to disentangle task selection and task 
execution errors (Desmet et al., 2012; Meiran & Daich-
man, 2005). In Experiment 2, a bivalent set-up with con-
gruent and incongruent stimuli was used, as it was used in 
the first studies testing the response-based strengthening 
account (Steinhauser & Hübner, 2006). Finally, in Experi-
ment 3 we used the more recent methodology of presenting 
stimuli with a lower number of stimulus dimensions (two) 
than response alternatives (three) (Steinhauser & Gade, 
2015; Steinhauser et al., 2017; Steinhauser & Steinhauser, 
2019). Experiments 1 and 2 were pre-registered laboratory 
experiments; for these experiments, we pre-specified out-
lier criteria, design, and ANOVA approach for data analy-
sis; we did not pre-register the addition of Bayes Factors 
to the ANOVA analysis, and neither did the use of MPT 
modelling. Experiment 3 was an online experiment. While 
Experiments 1 and 2 employed a similar paradigm as that 
of a previously published study (Moretti et al., 2021) and 
were carried out in the lab, Experiment 3 had a different 
set-up, which we expected to lead to a larger variability in 
the data. As this might require different outlier exclusion 
criteria, this experiment was not pre-registered.

Data analysis for each experiment proceeded in two 
steps. In a first step, we established whether the error tri-
als classified as task-confusion errors actually contained 
more task-selection failures than the error trials classified 
as response-confusion errors. To this end, we used MPT 
models (Batchelder & Riefer, 1999; Riefer & Batchelder, 
1988) in Experiments 2 and 3 (see right panels of Fig. 1). 
For Experiment 1, this was not possible by design, so we 
only report descriptive statistics for each error type.

In a second step, we analysed how N-2 repetition costs 
are modulated by the different error types, and by response 
speed in the N-1 trial. As outlined above, we expected 
N-2 repetition costs to be reduced after N-2 task-confu-
sion errors, but not after N-2 response-confusion errors. 
Moreover, we expected the reduction of N-2 repetition 
costs after N-2 task-confusion error to be restricted to the 
fast N-1 trials, where a slow error-correction mechanism 
has not yet become effective. In contrast, no modulation 
of N-2 repetition costs by N-1 speed was expected for tri-
als following N-2 response-confusion errors. To antici-
pate the results, with the exception of Experiment 2, we 
did not obtain enough trials for some of the error-type 
conditions: in Experiment 1, we did not obtain enough 
N-2 task-confusion errors; in Experiments 3, we did not 
obtain enough N-2 response-confusion errors. In these 
experiments, we, therefore, analysed N-2 repetition costs 
in a simplified design with just two levels of the N-2 error 
type factor (Experiment 1: N-2 correct vs. N-2 response-
confusion error; Experiment 3: N-2 correct vs. N-2 task-
confusion error).
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General method

MPT modelling

MPT are a class of statistical models fitted on frequency 
data that allow estimating the probability of an observed 
response to be produced by the occurrence of a series of 
underlying cognitive events (Batchelder & Riefer, 1999; 
Hu & Batchelder, 1994; Riefer & Batchelder, 1988). In our 
case, we used MPT models to estimate the probability of a 
given response to be produced by the success or failure of 
task-selection and response-selection processes. The right 
panels of Fig. 1 represent examples of such models. As 
can be seen, in MPT models the probability of a cognitive 
event to succeed is represented by a parameter θs whose 
value is constrained to fall between 0 and 1. An observ-
able event (e.g. an error that is empirically categorized 
as task-confusion error) is considered to be the result of 
the success (or failure) of those unobservable cognitive 
events. Crucially, the structure of a model depends on 
the cognitive processes that the experimenter assumes to 
take place in the paradigm. For this reason, the equations 
describing an MPT model depend on how a response is 
thought to arise from the specific cognitive mechanisms 
involved in the paradigm. Having set the equations for 
mapping the observable response categories to the cogni-
tive processes, and knowing the frequencies with which 
each response category is observed, it is possible to esti-
mate the probabilities of the latent cognitive events, which 
are represented by the model’s parameters (Hu & Batch-
elder, 1994). After this, the probability of occurrence of 
an observable event can be computed by first multiplying 
the model’s parameters along a branch, and second, add-
ing the resulting probabilities for all branches that lead to 
this event.

In our case, MPT can be fit to estimate the probabil-
ity that an observed error category would be produced 
depending on the outcome of task selection and response 
selection processes. Figure 1 illustrates how latent cog-
nitive events are mapped to overt response categories in 
our experiments. The set of Eqs. 1 and 2 provide a math-
ematical formalisation of such models. In our models, we 
defined a parameter T, representing the probability of cor-
rect task selection, and a parameter R, representing the 
probability of a correct response selection for the chosen 
task. For the incongruent trials in Experiments 2 and 3, 
we also defined a third parameter RE (random execution), 
representing the probability of randomly choosing the cor-
rect response after a combined task-selection failure and 
response-selection failure had occurred (see Fig. 1). As we 
assumed this to be a random process of selecting one of 
two possible responses, RE was set to 0.5. For Experiment 

2, the observed response categories were “correct incon-
gruent” “error incongruent” (corresponding to task-con-
fusion errors), “correct congruent”, and “error congruent” 
(corresponding to response-confusion errors). For experi-
ment 3, the observed response categories were “correct”, 
“task-confusion error”, “response-confusion error”. Mod-
els were fit to each individual participant in R using the 
MPTinR package (Singmann & Kellen, 2013).

Once the model’s parameters had been estimated, we 
assessed the capacity of each methodology to correctly 
classify the unobservable cognitive event of a task-selec-
tion failure into the empirical category of “task-confusion 
errors”, by computing two indices. First, we computed 
the estimated percentage of task-selection failures among 
classified task-confusion errors. We did so by dividing the 
probability that an observed task-confusion error resulted 
from a task-selection failure (i.e. considering only those 
MPT branches that include parameter (1 − T) and lead to a 
task-confusion error) by the total probability of observing 
a task-confusion error (i.e., considering all MPT branches 
that lead to a task-confusion error). Second, we computed 
the estimated percentage of task-selection failures among 
classified response-confusion errors, by dividing the esti-
mated probability that a response-confusion error would be 
observed given a task-selection failure (i.e. considering only 
those MPT branches that include parameter (1 − T) and lead 
to a response-confusion error) by the total probability of 
observing a response-confusion error (i.e., considering all 
MPT branches that lead to a response-confusion error).

Analysis of N‑2 repetition costs

In all experiments, N-2 repetition costs were analysed in an 
ANOVA design, with Task Sequence (N-2 repetition, N-2 
switch), N-2 Accuracy (N-2 correct, N-2 error) and N-1 
speed (fast vs. slow, as defined by median split) as inde-
pendent variables.

Additional ANOVAs with only Task Sequence and N-2 
Accuracy as independent variables are reported in the 
Appendix. While in the main text we only analyse N-2 rep-
etition costs in RTs, the additional ANOVAs reported in the 
Online Appendix were performed on both RTs and arcsine 
transformed error rates as dependent variables.

The different error types were defined somewhat dif-
ferently in the three different paradigms: in Experiments 1 
and 3, the N-2 Accuracy factor included three levels (N-2 
correct, N-2 task-confusion error, N-2 response-confusion 
error). In Experiment 2, the design included N-2 Congru-
ency as an additional independent variable (N-2 congruent, 
N-2 incongruent); in this experiment, errors in congruent 
trials would be classified as response-confusion errors, 
whereas errors in incongruent trials would be labelled as 
task-confusion errors.
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If we did not obtain enough trials for reliable estimation 
of performance in one of the N-2 error conditions, we would 
remove this condition from statistical analysis and proceed 
with a simplified design. Significant 3-way interactions in 
the ANOVA involving the N-1 Speed factor were further 
explored by dividing the dataset into two separate N-1 fast 
and N-1 slow datasets, and performing a 2-way ANOVA 
on each of those. 2-way interactions were further analysed 
with post-hoc paired t-tests, assessing N-2 repetition costs 
separately in the different N-2 error conditions.

The dependent variable of the ANOVAs was mean RT 
(see Online Appendix for ANOVAs on arcsine transformed 
error rates). In all ANOVAs, we report both �2

p
 and �2

G
 to pro-

vide useful measures of effect size for both power analysis 
and meta-analysis, respectively (Bakeman, 2005; Lakens, 
2013; Olejnik & Algina, 2003). Cohen’s dz is reported for 
paired t-tests, computed by dividing mean difference scores 
by their standard deviation (Brysbaert, 2019; Lakens, 2013).

Computation of Bayes factors (BFs)

In addition to frequentist ANOVAs, we also report Bayes 
factors (BFs) for most of the effects under consideration. In 
particular, we computed BFs for all the ANOVAs involving 
less than 4 independent variables. This choice was made for 
two reasons. First, it is computationally very demanding to 
compute BFs for such complex designs (see below for the 
computation procedure). Second, we used BFs mostly for 
assessing evidence in favour of the null hypothesis: as we 
do not make any prediction for a null effect in any 4-way 
ANOVA, computation of BFs was not strictly needed for 
our purposes.

BFs were calculated in two steps. First, for each set of 
independent variables models were built with all the possible 
combinations of effects involving them1 (e.g., for a design 
with the independent variables A and B, the following models 
were built: Null model without any effects, model with only 
main effect of A, model with only main effect of B, model 
with main effects of A and B, but no interaction, full model 
with main effects of A and B and interaction AxB). After the 
models were built, and the likelihood for each model given the 
data were computed, BFs were calculated as the ratio between 

this likelihood and that of a null model containing only the 
grand average and participants as a random effect. Afterwards, 
inference on a particular effect of interest was achieved by 
comparing the BF of the best fitting model (i.e. that with the 
highest BF compared to the null) with that of an identical 
model which differs only in the presence/absence of the effect 
of interest. For example, if the best fitting model contains the 
main effect of A and an AxB interaction, evidence in favour of 
the interaction was computed as the ratio between this model’s 
BF and the BF of a model only containing the main effect of 
A (Rouder et al., 2017).

Data trimming

For both MPT analysis and analysis of N-2 repetition costs, 
in all experiments, the first two trials of each block were 
removed, along with the trial immediately following an 
error, timeouts, and the subsequent two trials. Fast guesses 
were defined as responses below 300 ms in the laboratory 
Experiments 1 and 2, whereas in the online Experiments 
3, we used a threshold of 100 ms as responses were much 
faster in those experiments. Fast guesses and the subsequent 
two trials were removed in each experiment. For RT analy-
sis of N-2 repetition costs, error trials were also removed. 
After applying these trimming criteria, data from all par-
ticipants holding less than 10 trials in any of the ANOVA 
conditions (Task Sequence x N-2 Accuracy x N-1 Speed) 
were excluded. Furthermore, data from participants that 
made systematic use of fast guesses (i.e. > 10% of the total 
number of trials), or whose error rate was above 33% were 
excluded from the analysis.

Experiment 1

The first method used in the literature for disentangling 
errors due to task selection and task execution failure was to 
use univalent task-response mappings (Desmet et al., 2012; 
Meiran & Daichman, 2005; Meiran et al., 2001), where sep-
arate response sets are used for the different tasks.

Methods

Pre‑registration

Experiment 1 was pre-registered at https://​aspre​dicted.​org 
#27,335 (https://​aspre​dicted.​org/​v7qm9.​pdf).

Participants

30 participants (25 females) spanning 18–25 years of age 
(20.9 ± 2.2) took part in the study at the Institute of Psychol-
ogy at RWTH Aachen, in exchange for course credits.

1  Marginal likelihoods for each model were calculated using a nor-
mal prior distribution on the effect size d with mean 0 and standard 
deviation σd, where σd ~ Inverse χ2 (1, h2). The value of h2 must be 
set with caution as it determines the shape of the likelihood function 
on the effect size (i.e. it determines which effect sizes are expected 
to be likely a-priori according to the alternative hypothesis). We used 
h2 = 0.5, which is the default setting in the BayesFactor package for R 
(Rouder et al., 2017). Also, since the computation of marginal likeli-
hoods is often computationally demanding, and Monte Carlo simula-
tion is required for integration in relatively complex models such as 
ours (Rouder & Morey, 2012), we set the number of iterations to 1 
million for each of the models.

https://aspredicted.org
https://aspredicted.org/v7qm9.pdf
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Stimuli

The employed stimuli were colored geometrical shapes pre-
sented at different orientations on a grey background. Each 
stimulus dimension varied on two levels, each mapped to 
a different key. The shape dimension could be a rectangle 
or triangle. Colors could be red or blue. The orientation of 
the figure could be upright, or horizontal. The total area 
subtended by the visual stimuli was roughly equal. From a 
viewing distance of 100 cm, the base and the height of the 
rectangle were 11.42° and 5.72°, respectively. The isosceles 
triangle had a base of 6.86° and a height of 13.12°.

A cue presented at the beginning of each trial indicated 
which stimulus dimension was to be attended (for further 
details, see the procedure section). The letters “A”, “B” and 
“C” were used as cues. Each cue was 0.85° high and 0.5° 
wide. The experiment was run using PsychoPy toolbox 3.1 
(Peirce et al., 2019).

Trial procedure

On each trial participants classified, via a button press, a 
visual stimulus according to one of three possible rules 
or tasks. The currently relevant task was indicated at the 
beginning of the trial by a cue. If letter “A” was presented, 
participants had to indicate the stimulus’ shape (shape clas-
sification task). If the cue was “B”, the stimulus’ color had to 
be recognized (color classification task). Finally, the “C” cue 
indicated to classify the stimulus according to its orientation 
(orientation classification task).

For responding, participants used 6 keys: ‘X’, ‘C’,’V’,’B’, 
‘N’, ‘M’ of a QWERTZ keyboard. Each task was mapped to 
two different keys to be pressed with one finger of each hand. 
For instance, the color task could be mapped to keys ‘V’ and 
‘B’ to be pressed with the left and right index finger, respec-
tively. This way we aimed at distinguishing between task-
confusion errors and response-confusion errors. A response 
was labelled as a task-confusion error whenever the correct 
response for one of the wrong task sets was executed (i.e., 2 
of the 6 keys corresponded to task-confusion errors for each 
stimulus). Response-confusion errors were present when the 
participant pressed a key relevant to the present task, but 
inappropriate for the stimulus at hand (1 of the 6 keys cor-
responded to a response-confusion error for each stimulus). 
The remaining errors were considered mixed errors (i.e., the 
remaining 2 of the 6 keys).

Each trial started with a cue being presented for 100 ms. 
After this time elapsed, the cue disappeared and the screen 
stayed blank for 300 ms, followed by a stimulus presenta-
tion. The target then stayed on the screen until participants’ 
response, up to a maximum of 2000 ms. If no response was 
given within this interval, the trial was considered a timeout. 

Either after this time, or after a response, the screen turned 
blank again, and a new trial started after 100 ms.

Experimental procedure

The experiment began with a practice phase consisting of 3 
pure blocks and 4 mixed blocks. In pure blocks, participants 
performed only one task in isolation for 48 trials. As the 
main aim of pure blocks was to get familiarised with the S-R 
mappings, there was a pure block for each task. Furthermore, 
throughout practice, and contrary to the experimental phase, 
a sheet with the S-R mapping was attached 20 cm above the 
computer monitor, to further aid memorization. Finally, only 
during practice, feedback was presented following error and 
timeout trials. After the pure blocks, participants were intro-
duced to the practice mixed blocks, in which all tasks were 
present in alternation. Before the practice of mixed blocks 
started, it was communicated that the three fastest partici-
pants whose error rate would not exceed 25%, would receive 
a monetary award (20€, 10€ and 5€ for the first, second and 
third prize, respectively). In this context, it was emphasised 
that whenever the error rate would fall under 15%, the partici-
pant should speed up. On the other hand, if errors were above 
20%, it was recommended to slow down. To enable partici-
pants to monitor their own performance, the mean error rate 
and mean response time were displayed at the end of each 
block. Even though it was made explicit that performance in 
the practice mixed blocks would not be taken into account for 
determining the winners of the monetary award, speed and 
accuracy feedback were provided at the end of each block in 
this phase as well. Four practice mixed blocks of 120 trials 
each were presented to ensure stable performance.

After these, the experimental phase began, consisting of 
18 mixed blocks of the same length, for a total of 2160 tri-
als. Across participants, stimuli and tasks were presented in 
a pseudorandom fixed sequence, which met the following 
constraints. Only task switches were present in the experi-
ment (i.e., the task could never repeat). Furthermore, the 
number of N-2 repetition sequence and N-2 switch sequence 
was equal within each block, as well as for each combi-
nation of task and stimuli. Finally, to avoid N-2 repetition 
costs to be confounded with episodic repetition and retrieval 
effect (Gade et al., 2017; Grange et al., 2017; Kowalczyk & 
Grange, 2019), a stimulus presented in trial N could never 
appear in N + 1 or N + 2 trials.

Design

For the N-2 repetition costs analysis we planned to run a 
2 × 3 × 2 ANOVA with factors Task Sequence (N-2 repeti-
tion, N-2 switch), N-2 Accuracy (correct, task-confusion 
error, response-confusion error), and N-1 Speed (fast, slow) 
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as independent within-subjects’ variables, and RTs as a 
dependent variable. As, following data trimming, there were 
not enough trials in the N-2 task-confusion error condition, 
this level was removed and we proceeded with a simplified 
2 × 2 × 2 design. With such a design we did not expect to find 
any modulation of N-2 Accuracy or N-1 Speed on the N-2 
repetition costs. To confirm the absence of a 3-way interac-
tion (which we only would have expected in the full design 
with the condition of N-2 task-confusion errors included), 
we computed BFs for the simplified 3-way ANOVA.

Results

Data trimming

Data trimming proceeded according to the criteria specified 
in the General Method. No participant had to be excluded on 
the basis of the pre-defined criteria for excessive fast guesses 
or due to low accuracy. When re-assessing the number of 
trials per participant in each cell of the 2 × 2 × 2 ANOVA 
design, six subjects still did not meet the criterion of at least 
10 trials in the N-2 response confusion conditions. Con-
sequently, their data were removed from further analysis, 
leaving a sample of 24 participants.2

Frequency of different error types

After data trimming, participants made, on average, an 
error in 7.4% of the total number of trials (SD 3.8%, range 
3.0–14.8%). 79.8% of these error trials were classified as 
response-confusion errors (SD 8.6%, range 56.0–93.5%), 
14.8% as task-confusion errors (SD 7.6%, range 4.8–38.0%), 
and the remaining 5.4% as mixed errors (SD 2.9%, range 
0.5–12.4%).

Proportion of task‑selection failures and task‑execution 
failures

The model for Experiment 1 is depicted in Fig. 1. Note that 
for Experiment 1, we could not fit an MPT model, because 
each possible response category is uniquely linked to one 
processing path. Therefore, we simply computed the prob-
ability of task-selection failures per participant as the sum of 
task-confusion errors and mixed errors, divided by the total 
number of trials. The probability of a task-selection failure 
in Experiment 1 (which corresponds to parameter (1 − T) 
in the MPT models of Experiments 2 and 3) was 1.5% (SD 

0.9%, range 0.3–3.7%). Likewise, the probability of a task-
execution failure in Experiment 1 was computed as the sum 
of response-confusion errors and mixed errors, divided by 
the total number of trials. The probability of a task-execution 
failure in Experiment 1 (which corresponds to parameter (1 
− R) in the MPT models of Experiments 2 and 3) was 6.3% 
(SD 3.4%, range 2.4–12.9%).

Analysis of N‑2 repetition costs

Descriptive statistics are reported in Fig. 2. N-2 repeti-
tion costs were found overall (28 ms) as demonstrated by 
a main effect of Task Sequence, F(1,23) = 6.72, p = 0.016, 
�2
p
 = 0.23, �2

G
= 0.012 , BF10 = 5.75. Furthermore, there was 

a main effect of N-1 Speed, F(1,23) = 5.33, p = 0.030, �2
p
 = 

0.19, �2
G
= 0.010 , BF10 = 2.90, indicating that trials follow-

ing a slow response were slower compared to trials following 
a fast response. N-2 Accuracy significantly interacted with 
N-1 Speed, F(1,23) = 11.02, p = 0.003, �2

p
 = 0.32,�2

G
= .012 , 

BF10 = 6.33. Most importantly, the three-way interaction 
between Task Sequence, N-2 Accuracy and N-1 Speed was 
not significant, F < 1, BF10 = 0.31. N-2 repetition costs fol-
lowing an N-2 correct response were 52 ms for the N-1 fast 
condition and 37 ms for the N-1 slow condition. If there was 
a response-confusion error in N-2, N-2 repetition costs were 
identical irrespective of N-1 Speed (13 ms in both N-1 fast 
condition and N-1 slow condition).

Discussion

Using separate response sets for each task, we aimed at 
disentangling task-selection failures (here: choosing a 
response from the wrong response set) from task execu-
tion failures (here: choosing a response from the cor-
rect response set, which however does not map to the 
relevant dimension of the stimulus). The results showed 
that participants produced a sufficient number of empiri-
cally classified response-confusion errors (about 6.3% on 
average), but hardly made any empirically classified task-
confusion errors (about 1.5% on average). It is unlikely, 
however, that participants produced so few task-selection 
failures in this paradigm. Possibly, failures in task selec-
tion were wrongly classified as “response-confusion 
errors”. In particular, the task cue might have led to a 
strong pre-activation of the task-specific response-set, so 
that participants are more likely to produce a response 
from this pre-activated response-set than from the alter-
native response-set. However, this does not necessarily 
imply that the participants are actually attending to the 
task-relevant stimulus dimension, and hence, are perform-
ing the correct task (see Meiran & Daichman, 2005, for 
a discussion of task preparation vs. effector preparation 
in switching between tasks with separate response sets).

2  As in all the experiments a large proportion of participants was 
excluded from analyses due to insufficient number of trials in some 
condition, we report some further analyses using a less stringent 
exclusion criterion in the Appendix.
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Regarding N-2 repetition costs, we expected to find 
reduced N-2 repetition costs after N-2 task-confusion 
errors, but not after N-2 response-confusion errors. 
Moreover, we expected the reduction of N-2 repetition 
costs after N-2 task-confusion errors to be restricted to 
those trials with a little post-error slowing in the N-1 trial 
(i.e., the fast N-1 trials), where the slow error-correction 
mechanism has not yet kicked in (see Moretti et al., 2021). 
However, we did not obtain enough task-confusion errors 
for statistical analysis, and therefore we could only com-
pare the conditions with N-2 response-confusion errors 
and N-2 correct trials. Under such circumstances, we pre-
dicted that the three-way interaction of N-2 accuracy, Task 
Sequence, and N-1 Speed would not be present. In line 
with our expectation, we indeed did not observe any three-
way interaction (F < 1, BF10 = 0.31). N-2 repetition costs 
after N-2 response-confusion errors were numerically 
identical after fast and slow N-1 trials, suggesting that 
N-2 repetition costs after N-2 response-confusion errors 
were not modulated by N-1 speed (for further analysis 
excluding the N-1 speed factor, see the Online Appendix).

Experiment 2

The paradigm employed in Experiment 1 (using a univalent 
task-response mapping) failed to elicit enough task-confu-
sion error trials, possibly due to the strong pre-activation of 

effectors during the task-preparation interval (CSI). In Experi-
ment 2, we used a methodology similar to that employed by 
Steinhauser and Hübner (2006). We employed both congruent 
and incongruent stimuli in a bivalent task-response setting, 
and assumed that errors in incongruent trials were often due 
to task-selection failure, while errors in congruent trials would 
be attributable to task-execution failure. To check whether this 
assumption held to be valid, we used MPT modelling. We pre-
dicted that N-2 repetition costs would be significantly reduced 
following an N-2 error compared to N-2 correct sequences, but 
only if the N-2 trial was incongruent (and hence, task-selection 
failures occurred), and only when N-1 trial RT was fast (and 
hence, no task-level correction mechanism has kicked in). In 
contrast, N-2 repetition costs following an error in an N-2 con-
gruent trial (where task-execution failure occurred) was not 
expected to be influenced by N-1 trial speed.

Methods

Pre‑registration

Experiment 2 was pre-registered at: https://​aspre​dicted.​org/​
6ut4t.​pdf.

Participants

60 participants (34 females) spanning 18–34 years of age 
(24 ± 4.1) took part in the experiment at the Institute of 

Fig. 2   Experiment 1: Mean 
N-2 repetition costs (in ms) as a 
function of N-2 Accuracy (N-2 
correct, N-2 response-confusion 
error), and N-1 Speed (N-1 
slow, N-1 fast, as defined by 
median split on N-1 reaction 
times). Error bars indicate one 
standard error of the mean

https://aspredicted.org/6ut4t.pdf
https://aspredicted.org/6ut4t.pdf
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Psychology at RWTH Aachen, in exchange for money (12 
€) or course credits.

Stimuli

Target stimuli were identical to those used in Experiment 1, 
except for two differences. First, both congruent and incon-
gruent stimuli were used. Second, the three stimulus dimen-
sions varied on three levels instead of two. In addition to rec-
tangle and triangle, an oval was also present covering roughly 
the same visual area as the other shapes. The color green was 
added to red and blue. Finally, the figures could be presented 
also tilted by 45° in addition to vertically or horizontally. The 
choice of adding a third level for each stimulus dimension 
was made to obtain incongruent trials in which the correct 
response to each dimension was mapped to a different key, 
which, with three tasks, requires the presence of three keys. 
Similarly, stimuli were defined to be congruent only when 
the correct response to each task afforded by the stimulus was 
mapped to the same key. The stimulus-set was thus composed 
of 6 figures, 3 congruent and 3 incongruent (Fig. 3).

Responses

For responding, the C, V and B keys of a QWERTZ key-
board were used. One key was always mapped to rectangle, 
red or vertical, another one was used for triangle, blue or 
horizontal, and the third key indicated oval, green or tilted. 
The mapping of each of these three combinations (e.g. 

rectangle-red-vertical) to a particular key (C, V, or B key) 
was fully counterbalanced across participants, resulting in 6 
different stimulus–response (S-R) mappings.

Procedure

The procedure was similar to that of Experiment 1. However, 
due to the different number of stimuli employed, each block 
was composed of 108 trials instead of 120. To render the 
total trial number identical across experiments, the number 
of blocks for the experimental phase was increased from 18 
to 20 (total number of trials: 2160).

Design

We performed a 2 × 2 × 2 × 2 within-subjects ANOVAs on 
RTs, with Task Sequence (N-2 repetition, N-2 switch), N-2 
Accuracy (N-2 Correct, N-2 Error), N-2 Congruency (N-2 
Congruent, N-2 Incongruent), and N-1 Speed (Fast, Slow), 
as factors. For the same design excluding N-1 Speed, on 
both RTs and error rates, the reader is referred to the Appen-
dix. We expected a 4-way interaction indicating that for N-2 
Incongruent, but not for N-2 Congruent trials, N-2 repetition 
costs would be modulated by N-2 Accuracy and N-1 Speed. 
That is, we expected to observe a 3-way interaction for N-2 
Incongruent trials, but no such 3-way interaction for N-2 
Congruent trials. We, therefore, conducted follow-up 3-way 
ANOVAs, including BFs, separately for the N-2 Incongruent 
and N-2 Congruent conditions.

Fig. 3   Experiment 2: Mean 
N-2 repetition costs (in ms) as a 
function of N-2 Accuracy (N-2 
correct, N-2 error), N-2 Con-
gruency (N-2 congruent, N-2 
incongruent), and N-1 Speed 
(N-1 slow, N-1 fast, as defined 
by median split on N-1 reaction 
times). Error bars indicate one 
standard error of the mean. 
According to the experimen-
tal logic, errors in congruent 
trials correspond to response-
confusion errors, while errors in 
incongruent trials correspond to 
task-confusion errors
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Data trimming

Participants who made systematic use of fast guesses 
(i.e. > 10% of the total number of trials) (N = 4), and/or who 
had an accuracy below 33% (N = 4) were excluded from the 

analysis. Moreover, participants who had less than 10 trials 
per condition of the ANOVA design (Task Sequence x N-2 
accuracy x N-2 congruency x N-1 Speed) after data trim-
ming were excluded. This led to exclusion of a large number 
of participants (N = 31), mainly driven by the fact that these 
participants did not have enough trials in the N-2 congruent 
error conditions. The analyses were therefore conducted on 
a total of 21 participants.

Results

Frequency of different error types

On average, participants made an error in 17.2% of the trials 
(SD 4.9%, range 8.6–29.0%). Errors in congruent trials were 
on average 5.7% of the total (SD 2.6%, range 2.4–12.6%), 
whereas errors in incongruent trials were 11.5% of the total 
(SD 3.3%, range 6.2–19.2%).

Proportion of task‑selection failures and task‑execution 
failures

In Experiment 2, we assumed that errors in incongruent tri-
als are more likely to be due to failure in task selection than 
errors in congruent trials. To test this assumption empiri-
cally, we modelled the error data using MPT. A visual rep-
resentation of our model can be found in Fig. 1. The set of 
equations describing such a model was as follows:

The mean estimated parameters were R = 0.885 (SD = 0.05, 
range 0.778–0.949), and T = 0.864 (SD = 0.07, range 
0.748–1). After estimating the models’ parameters, we esti-
mated the number of task-selection failures among classified 

(1)

p(correct congruent) = T ∗ R + (1 − T) ∗ R

p(error congruent) = T ∗ (1 − R) + (1 − T) ∗ (1 − R)

p(correct incongruent) = T ∗ R + (1 − T) ∗ (1 − R) ∗ 0.5

p(error incongruent) = T ∗ (1 − R) + (1 − T) ∗ R + (1 − T) ∗ (1 − R) ∗ 0.5

task-confusion errors (i.e. among errors in incongruent trials), 
and the number of task-selection failures among response-
confusion errors (i.e. among errors in congruent trials). This 
was done separately for each participant using the following 
equations:

The probability that an error in an incongruent trial was 
actually due to task-selection failure was on average 54.8% 
(SD = 20.3). At the same time, the probability that an error 
on a congruent trial was due to task-selection failure was esti-
mated to be 13.5% (SD = 6.8%). According to these estimates, 
therefore, the proportion of task-selection failures in incon-
gruent errors was roughly 4 times higher than in congruent 
errors. Our assumption that errors in incongruent trials are 
more likely to be due to task-selection failures than errors in 
congruent trials was thus corroborated.

Analysis of N‑2 repetition costs

Descriptive statistics for the 4-way ANOVA design are reported 
in Fig. 2. A significant main effect of Sequence, F(1,20) = 22.99, 
p < 0.001, �2

p
 = 0.53,�2

G
= 0.015 , indicated the overall presence 

of N-2 repetition costs (34 ms). Furthermore, the main effect of 
N-1 Speed was also significant, F(1,20) = 17.91, p < 0.001, �2

p
 = 

0.47,�2
G
= 0.040 , indicating that after a slow response in N-1, 

responses were slower than after a fast response (54 ms). Also, 
we observed a significant 3-way interaction of the factors Task 
Sequence, N-2 Congruency, and N-1 Speed, F(1,20) = 4.78, 
p = 0.041, �2

p
 = 0.19,�2

G
= 0.003 , as well as a marginally 

significant 3-way interaction between Task Sequence, N-2 
Accuracy, and N-1 Speed, F(1,20) = 3.84, p = 0.064, �2

p
 = 

0.16,�2
G
= 0.002 . The four-way interaction was not significant, 

F(1,20) = 1.42, p = 0.247, �2
p
 = 0.06,𝜂2

G
< 0.001 . No other effect 

was significant.

For exploratory purposes, we analysed congruent and 
incongruent trials separately. In the N-2 congruent data-
set, a significant 3-way interaction between Task Sequence, 
N-1 Speed and N-2 Accuracy was found in the frequentist 

(2)
p(task-selection failure|error incongruent) =

(1 − T) ∗ R + (1 − T) ∗ (1 − R) ∗ 0.5

T ∗ (1 − R) + (1 − T) ∗ R + (1 − T) ∗ (1 − R) ∗ 0.5

p(task-selection failure|error congruent) =
(1 − T) ∗ (1 − R)

T ∗ (1 − R) + (1 − T) ∗ (1 − R)
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ANOVA, F(1,20) = 4.59, p = 0.045, �2
p
 = 0.19,�2

G
= 0.004 , but 

was not supported by the Bayes factor, BF10 = 0.73. Numeri-
cally, the data pattern was as follows: in N-1 fast trials, N-2 
repetition costs were present following a correct response in 
N-2 (38 ms), t(20) = 3.42, p = 0.003, dz = 0.75, BF10 = 15.26, 
but turned into a numerical facilitation in the N-2 error condi-
tion (− 28 ms), t > − 1, BF10 = 0.31. In contrast, in N-1 slow 
trials, N-2 repetition costs were present both after N-2 correct 
(44 ms), t(20) = 3.90, p < 0.001, dz = 0.85, BF10 = 40.10 and 
after N-2 error trials (55 ms), t(20) = 2.14, p = 0.044, dz = 0.47, 
BF10 = 1.49. In the N-2 incongruent dataset, on the other hand, 
the 3-way interaction was not significant, F < 1, BF10 = 0.29. 
N-2 repetition costs after N-1 fast trials were 61 ms after N-2 
correct and 37 ms after N-2 error; N-2 repetition costs after 
N-1 slow trials were 37 ms after N-2 correct and 30 ms after 
N-2 error.

Discussion

In Experiment 2, we wanted to distinguish errors due to 
task-selection failure and task-execution failure by mapping 
them to errors occurring on incongruent and congruent tri-
als, respectively. We report, in line with previous studies 
(Meiran & Daichman, 2005; Steinhauser & Hübner, 2006), 
that this methodology does allow us to distinguish between 
the two sources of errors, with task-selection failures being 
present almost four times more often among errors in incon-
gruent trials (53.5% of the occurrences) than among errors 
in congruent trials (13.5% of the occurrences).

Having validated our assumptions on the mapping 
between observable response categories and latent cogni-
tive processes in our paradigm, we went on to further test 
whether N-2 repetition costs are affected by either of the 
two error types in N-2. In line with the response-based 
strengthening account (Steinhauser & Hübner, 2006, 2008), 
we predicted N-2 repetition costs to be abolished following 
errors in incongruent trials, but to be spared when following 
errors in congruent trials. Most importantly, this would hold 
only for the fast N-1 condition. The results, however, did not 
reveal the predicted four-way interaction. When analyzing 
N-2 repetition costs separately in the different conditions, 
the data pattern was not as expected. On the one hand, trials 
following an N-2 congruent error showed a reduction in N-2 
repetition costs that was modulated by N-1 speed (but only 
in frequentist ANOVA, not supported by BF), thus display-
ing the pattern that was predicted for the N-2 incongruent 
trials. On the other hand, N-2 incongruent trials showed no 
significant modulation of N-2 repetition costs by N-2 Accu-
racy in neither of the N-1 Speed levels.

The latter finding is particularly surprising for us when 
one considers that in our previous study, using the exact 
same paradigm, the expected pattern of results in N-2 incon-
gruent trials was replicated in all three experiments (Moretti 

et al., 2021). The only differences between the previous and 
the present study were that, while in our previous study we 
used only incongruent stimuli, congruent trials were intro-
duced here, and that, as a consequence, the experiment lasted 
twice as long. We consider three possibilities for explaining 
this discrepancy.

The first is that in our previous study, the observed effect 
was driven by task-execution failures that we erroneously 
classified as task-confusion errors. This idea may seem plau-
sible when considering that our MPT model suggests that 
almost half of the errors in incongruent trials are actually 
due to task-execution failures. However, as will be shown 
in Experiment 3, our previous results could again replicate, 
even when the proportion of task-selection failures among 
classified task-confusion error was far from 100%. The sec-
ond possibility is that practice effects may have influenced 
the recruitment of the cognitive control mechanism correct-
ing for the automatic strengthening of the erroneously exe-
cuted task-set, thus making this mechanism more efficient 
in the second half of the present experiment. It is indeed 
well established that transient adjustments in cognitive con-
trol are sensitive to global features of the task, the effect 
of which may take time to build up over the experiment 
(Bugg & Crump, 2012; Cochrane et al., 2021; Ridderinkhof, 
2002Wenke et al., 2015). We will come back to this point in 
the general discussion. A third possibility is that introduc-
ing congruent trials per se may have led to some changes in 
the efficiency of the proposed cognitive control mechanism. 
For example, the efficiency of cognitive control in reducing 
conflict in task selection is increased as a function of the 
number of high-conflict trials in the experiment (for a recent 
review see: Braem et al., 2019). However, if similar effects 
were acting on our error-triggered cognitive control mecha-
nism, we would expect to observe the opposite pattern, with 
a strong re-establishment of N-2 repetition costs following a 
task-confusion error in the situation where N-2 incongruent 
trials were most common (i.e. in our previous study).

Experiment 3

After using a univalent task-response mapping in Experi-
ment 1, and comparing errors in congruent and incongruent 
trials in Experiment 2, in Experiment 3, we come to the third 
methodology that has been employed in the literature, using 
less stimulus dimensions than response keys in a given trial 
(see Fig. 1).

In addition to using a third methodology, Experiment 3 
was also designed so to assess the potential impact of time 
pressure on the occurrence of response-confusion errors. We 
reasoned that when little time is given both for preparing the 
task, and for responding to the stimulus, participants may be 
led to rely more on a bottom-up strategy in which “capture 
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errors”, namely errors due to attention being captured by 
the distractor, would be more likely. Empirically, this would 
therefore result in an abundance of task-confusion errors, 
but only a small number of response-confusion errors. As in 
Experiment 2, we had to exclude a large part of the sample 
due to a lack of response-confusion errors, in Experiment 
3 we had three experimental groups. In the first group, the 
same CSI and response time limit were given to the partici-
pants as in Experiment 1 and 2 (High time-pressure group). 
In the second group, CSI was increased from 400 to 1000 ms 
while the time limit was as before (Long CSI group). In 
the third group, the CSI was 400 ms, but the time limit for 
responding was removed (No response limit group). With 
this configuration, we aimed at assessing whether relaxing 
time pressure would help in eliciting more response-confu-
sion errors in the Long CSI and No response limit groups.

Methods

Participants

Experiment 3 was built and run online using Gorilla (Anwyl-
Irvine et al., 2020). Participants could access the study via 
a link advertised online. Before clicking on the link partici-
pants were informed of the aim and duration of the study 
(approx. 50 min), as well as of the presence of a monetary 
prize based on performance. 144 participants (84 females) 
took part in Experiment 3 after giving informed consent (48 
participants per group). Their age spanned between 19 and 
30 years (23.8 ± 3.3).

Stimuli

Each stimulus consisted of two spatially separated elements 
presented to the left and right of the screen center on a white 
background. Each element of the pair could be a number 
(“1”, “5” or “9”), a letter (“A”, “M” or “Z”), or a mathemati-
cal symbol (“ < ”, “ = ” or “ > ”). Importantly, only elements 
of two different categories (e.g. a number and a symbol) 
could form a stimulus. As the task of the participants was 
to attend to only one of the two categories, we will refer to 
the element to be attended to as the target, and to the other 
element as the distractor. Furthermore, only incongruent 
stimuli were selected. Applying these constraints, the stimu-
lus set was composed of 36 stimuli in total (i.e. 18 element 
pairs, in which each element would occur equally often on 
the left or on the right).

Procedure

After giving their consent, participants received the study’s 
link. Before running the experiment, they were required to 
open the link in either Safari or Chrome, as these browsers 

have been found to be the most precise in terms of dura-
tion of stimuli presentation and reaction times recording 
(Pronk et al., 2020). After demographics data were col-
lected, the experiment began with instructions. Partici-
pants were informed that they would have to switch among 
three different classification tasks, indicating the identity of 
the presented number, letter, or math symbol. They were 
instructed to categorize one of the two elements making up 
the stimulus (i.e. the target), while ignoring the other ele-
ment (i.e. the distractor). When a decision was reached, the 
participant should signal the target identity by pressing one 
of three keys. In each trial, one key was mapped to the cor-
rect response, one corresponded to the correct response for 
the distractor, and a third key was neither mapped to the 
target nor the distractor. An error was, therefore, classified as 
a task-confusion error if the participant pressed the correct 
key for the distractor, whereas if the third key was pressed, 
a response-confusion error was produced. Keys T, G and B 
on a QWERTZ keyboard were used, which are vertically 
arranged on the keyboard. Participants were instructed to 
use the ring, middle, and index finger of their left hand for 
responding, and place these fingers on the T, G, and B keys 
throughout the experiment. Importantly, the set of possible 
targets in each task was composed of elements that could be 
easily ordered e.g. “1” < “5” < “9”. This allowed creating a 
relatively easy stimulus–response (S-R) mapping in which 
the ordinal position of the element within its category was 
reflected in the spatial location of the key to be pressed. 
In this way “lower elements” (i.e. “1”, “A” and “ < ”) were 
mapped to the top key (i.e. T), “middle elements” (i.e. “5”, 
“M” and “ = ”) to the middle key (i.e. G), and highest ele-
ments (i.e. “9”, “Z” and “ > ”) to the lower key (i.e. B).

At the beginning of each trial, a cue was presented centrally 
on the screen for 400 ms (for the High-time pressure and the 
No response limit groups), or for 1000 ms (for the Long CSI 
group), indicating which task to perform next. Abstract sym-
bols were used for cueing the tasks (i.e. the drawings of a sun, 
a moon, and a cloud), and the six possible cue-task mappings 
were counterbalanced across participants. Following cue pres-
entation, the stimulus appeared centrally on the screen for 
300 ms (with one element presented to the left of the screen 
center, the other element to the right of the screen center). 
After this time elapsed, participants were given 1,500 ms 
for providing their response. In the No response limit group, 
this deadline was removed. A new trial began 100 ms after a 
response or after the response deadline was reached.

Following instructions, participants performed three pure 
blocks of 15 trials each in which only one task was present 
throughout the block. Furthermore, another practice block of 
144 trials was presented in which participants switched among 
the tasks: this block was identical to the test phase, except that 
visual feedback was presented for 1000 ms following a timeout 
or an incorrect response. Once practice was over, participants 
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were informed about the monetary price as in the other experi-
ments. The experimental phase consisted of 12 blocks of 144 tri-
als each, for a total of 1,728 trials. In all blocks of the test phase, 
the task switched in every trial, and each stimulus was presented 
an equal number of times in the two tasks it could afford, in both 
N-2 switch and N-2 repetition sequences. The stimuli could not 
repeat from trial N to N + 1 and repeated very rarely from trial 
N to N + 2 (43 times in the whole experiment).

Design

The planned analysis design comprised a 2 × 3 × 2 × 3 mixed 
ANOVA with Task Sequence (N-2 repetition, N-2 switch), 
N-2 Accuracy (N-2 correct, N-2 task-confusion error, N-2 
response-confusion error), and N-1 Speed (N-1 Fast, N-1 
Slow) as within-subjects factors, and Group (High time-
pressure, Long CSI, No response Limit) as between-subject 
factor. However, again very few participants had enough tri-
als in the N-2 response-confusion error conditions so that we 
dropped this level and used a simplified 2 × 2 × 2 × 3 design.

Results

Data trimming

Data trimming proceeded for all groups identically as 
described in the “General methods” section. In the No 
response limit group, we additionally removed slow 
responses (> 3000 ms), together with the subsequent two 
trials.

Nine participants were excluded from the analysis due to 
systematic fast guessing (three belonging to the High time-

pressure group, two to the Long CSI group, and four to the 
No response limit group). Furthermore, data from 11 par-
ticipants were removed due to excessive inaccuracy (five in 
High time-pressure group, five in Long CSI group, one in 
No response limit group). As anticipated above, very few 

participants had enough trials for statistical analysis in the 
N-2 response-confusion error condition (only 10 participants 
overall). As such, we decided to remove the N-2 response-
confusion error condition and use a simplified 2 × 2 × 2 × 3 
design. 35 participants still did not have a sufficient number 
of trials in at least one of the conditions (12 in High time-
pressure group, 13 in the Long CSI group, 10 in No response 
limit group). The final sample was thus composed of 89 
participants (28 in the High-time pressure group, 28 in the 
Long CSI group, 33 in No response limit group).

Frequency of different error types

Following data trimming, the average error rate was 12.6% 
(SD 6.2%, range 4.3–34.7%). Among errors, on average 
25.8% (SD = 7.6%, range 8.4–45.9%) were classified as 
response-confusion errors, whereas the remaining 74.1% 
were classified as task-confusion errors (SD = 7.6%, range 
54.1–91.5%).

Proportion of task‑selection failures and task‑execution 
failures

We assumed that task-confusion errors would more often 
be due to failure in task selection compared to response-
confusion errors (which are mainly due to the partici-
pants activating the correct task, but selecting the wrong 
response within this task-set). To empirically test this 
assumption for Experiment 3, we again employed MPT 
modelling. A visual representation of the model is pre-
sented in Fig. 1. The empirical response categories were 
“correct”, “response-confusion error” and “task-confusion 
error”. The equations representing this model were:

As described for Experiment 2, after estimating the 
model’s parameters using these equations, the parameter 
estimates were used to infer how many classified task- and 
response-confusion errors would be due to task-selection 
failures.

Given the model’s equations, this proportion were com-
puted as:

(3)
p(correct) = T ∗ R + (1 − T) ∗ R ∗ 0.5

p(task-confusion error) = T ∗ (1 − R) ∗ 0.5 + (1 − T) ∗ R

p(response-confusion error) = T ∗ (1 − R) ∗ 0.5 + (1 − T) ∗ (1 − R) ∗ 0.5

(4)
p(task selection failure | task confusion error) =

(1 − T) ∗ R

T ∗ (1 − R) ∗ 0.5 + (1 − T) ∗ R

p(task selection failure | response confusion error) =
(1 − T) ∗ (1 − R) ∗ 0.5

T ∗ (1 − R) ∗ 0.5 + (1 − T) ∗ (1 − R) ∗ 0.5
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The estimated parameters were R = 0.932 (SD = 0.05, 
range 0.727–0.991), and T = 0.934 (SD = 0.04, range 
0.837—0.988). Using the formulas presented in (4), the 
probability that a classified task-confusion error was 
due to task-selection failure was estimated to be 65.9% 
(SD = 14.2%), whereas the probability that an error classi-
fied as response-confusion error was actually due to task-
selection failure was 6.6% (SD = 3.6%).

Analysis of N‑2 repetition costs

The main effect of Group, F(2,86) = 19.59, p < 0.001, �2
p
 = 

0.31, �2
G
= .269 , revealed that RTs in the Long CSI group 

were shortest (466 ms), followed by the High time-pressure 
group (570 ms) and the No response limit group (698 ms). 
As in the other experiments, a main effect of Sequence 
indicated that N-2 repetition costs were found overall, 
F(1,86) = 25.53, p < 0.001, �2

p
 = 0.23, �2

G
= .007 , while the 

main effect of N-1 speed confirmed again that trials follow-
ing a slow response were slower than trials following a fast 
response, F(1,86) = 47.56, p < 0.001, �2

p
 = 0.36, �2

G
= .029 . 

Most importantly, the critical 3-way interaction between 
Task Sequence, N-2 Accuracy, and N-1 Speed was signifi-
cant, F(1,86) = 5.70, p = 0.019, �2

p
= .06 , �2

G
= 0.001 , and is 

depicted in Fig. 4. This effect was not significantly modu-
lated by Group, F < 1. When analysing the N-1 fast and N-1 
slow conditions separately, we found a significant 2 × 2 inter-
action between N-2 Accuracy and Task Sequence in the fast 
N-1 trials, F(1,86) = 4.39, p = 0.039, �2

p
= 0.05 , �2

G
= 0.002 , 

which however was not strongly supported by the Bayes Fac-
tor, BF10 = 1.23. The interaction indicates that N-2 repeti-
tion costs were present following a correct response in N-2 
(39 ms), t(88) = 8.91, p < 0.001, dz = 0.95, BF10 > 100, but 
were absent following a task-confusion error (5 ms), t < 1, 
BF10 = 0.12. In N-1 slow trials, the same 2 × 2 interaction 
was instead absent, F < 1, BF10 = 0.26. Within this subset, 
N-2 repetition costs were again found following a correct 
response in N-2 (26 ms), t(88) = 4.97, p < 0.001, dz = 0.53, 
BF10 > 100, as well as in the N-2 error condition (40 ms), 
t(88) = 3.28, p = 0.001, dz = 0.35, BF10 = 16.24.

In addition to this predicted pattern of results, another sig-
nificant 3-way interaction was found between Task Sequence, 
N-2 Accuracy, and Group, F(2,86) = 5.24, p = 0.007, 
�2
p
= 0.10 , �2

G
= 0.003 . When assessing the effect of task-

confusion errors on N-2 repetition costs separately for each 
group, we observed that N-2 task-confusion errors tended to 
reduce N-2 repetition costs in the Long CSI group and No 
response limit group, but not in the High time-pressure group. 
For the details of this analysis, and an additional analysis not 
involving N-1 Speed, the reader is referred to the Appendix.

Discussion

Generally speaking, the paradigm employed in Experiment 
3 proved to be the most solid for disentangling errors due to 
failures in task selection vs. task execution (see below for a 
statistical comparison with Experiment 2). MPT modelling 

Fig. 4   Experiment 3: Mean 
N-2 repetition costs (in ms) as a 
function of N-2 Accuracy (N-2 
correct, N-2 task-confusion 
error), and N-1 Speed (N-1 
slow, N-1 fast, as defined by 
median split on N-1 reaction 
times). Error bars indicate one 
standard error of the mean
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revealed that task-selection failures were indeed found to 
be present about 10 times more often in classified task-con-
fusion errors than in classified response-confusion errors, 
which means that the empirical classification of error types 
in this paradigm is able to separate quite well the errors aris-
ing from different cognitive processing failures. It should 
also be noted, though, that classified task-confusion errors 
do not represent a “pure” measure of task-selection failures; 
rather, MPT modelling revealed that about 66% of classi-
fied task-confusion errors in Experiment 3 were “true” task-
selection failures, whereas the remaining 34% were actually 
task-execution failures. Classified response-confusion errors, 
on the other hand, seem to provide a rather “pure” measure 
of task-execution failures: According to MPT modelling, 
93.4% of classified response-confusion errors are “true” 
task-execution failures, whereas the remaining 6.6% were 
actually task-selection failures. We also compared the esti-
mated proportions of task-selection failures between Experi-
ments 2 and 3 (see below).

Regarding the N-2 repetition costs analysis, this para-
digm still did not provide enough response-confusion errors 
for N-2 repetition costs to be analysed as a function of N-2 
error type, thus forcing us to perform our planned compari-
sons on N-2 correct trials and N-2 task-confusion errors 
only. These analyses met our predictions: N-2 repetition 
costs were found to be absent (5 ms, BF10 = 0.12) following 
task-confusion errors in trial N-2, but as expected, this was 
the case only when the N-1 post-error trial was a fast one 
(note that this three-way interaction was significant in the 
frequentist ANOVA, but was not strongly supported by the 
more conservative Bayes factor analysis). Instead, when the 
N-1 post-error trial was slow, there was no evidence for any 
difference in N-2 repetition costs following N-2 correct or 
N-2 error trials (F < 1, BF10 = 0.26, for the interaction). N-2 
repetition costs were observed in both conditions.

Comparison of correctly classified task‑selection 
failures among different methodologies

One aim of our study was to compare the different meth-
odologies for disentangling errors due to task-selection 
failures and task-execution failures and to explore which 
of these methodologies provide well-suited empirical 
markers of these different error types. In the analyses of 
Experiments 2 and 3, we reported the mean estimated pro-
portion of task-selection failures among the trials classified 
as task-confusion errors, and among the trials classified as 
response-confusion errors (- note that the paradigm applied 
in Experiment 1 does not allow for deriving such estimates). 
In the following, we compared these estimates directly 
across Experiments 2 and 3. We used permutation tests for 
the statistical comparison, as the distribution of our depend-
ent variables deviated significantly from normality, and the 

sample in each experiment was not perfectly balanced, this 
way avoiding inflation of Type I error (Bradley, 1978). Per-
forming independent sample t tests, however, showed a very 
similar result.

Regarding the category of task-confusion errors, the 
proportion of task-selection failures among task-confusion 
errors was significantly lower in Experiment 2 compared 
to Experiment 3, p = 0.007. Regarding the category of 
response-confusion errors, Experiment 2 contained a higher 
proportion of (wrongly classified) task-selection failures 
than Experiment 3, p < 0.001.

General discussion

Compared to single-task studies, errors in multitasking 
paradigms can either be due to the incorrect selection of 
the task or to a failure in correctly carrying out the selected 
task. Distinguishing between these two error types is useful 
for elucidating the cognitive mechanisms behind error com-
mission and for assessing the (differential) impact of these 
errors on subsequent performance. In the present study, we 
set out to use the three different methodologies employed 
so far in task-switching research for drawing this distinc-
tion. Applying MPT modelling, we tested how well each 
methodology provided an empirical marker of task-selection 
failures and task-execution failures. Importantly, being able 
to correctly detect these error types allowed us to assess their 
impact on N-2 repetition costs, which is an empirical marker 
of inhibitory control in task switching.

A comparison of different methodologies

Generally speaking, the results of MPT modelling consist-
ently revealed that it is possible to separate task-selection 
and task-execution failures into distinct empirical phenom-
ena, which we name task-confusion error and response-
confusion error, respectively. In particular, the models show 
very good results for unequivocally detecting errors due to 
task-execution failures: Among the labelled response-confu-
sion errors, 86.5% (Experiment 2) to 93.4% (Experiment 3) 
are indeed due to task-execution failure. Consistent with pre-
vious literature, it is instead harder to tell whether a labelled 
task-confusion error is actually due to task-selection failure 
(Meiran & Daichman, 2005; Steinhauser & Hübner, 2006; 
Steinhauser et al., 2017). In these studies, the estimated 
number of correctly classified task-selection failures ranged 
from 19% (Meiran & Daichman, 2005) and 54.7% (Stein-
hauser & Steinhauser, 2019). As such, even though in our 
experiments there was still a considerable number of task-
execution failures among classified task-confusion error, we 
believe our results to be very satisfying. In particular, the 
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methodology employed in Experiment 3 proved advanta-
geous in this respect, by showing that 65.9% of classified 
task-confusion errors were actually due to task-selection fail-
ure. In sum, we conclude that the methodology employed 
in Experiment 3 is superior in distinguishing the two error 
types.

As far as the use of univalent task-response mapping is 
concerned, we wish to stress that it is not possible with the 
data provided by Experiment 1 to draw a firm conclusion on 
its validity. In addition, to the best of our knowledge, this 
is one of only three studies using this methodology to dis-
tinguish task-selection and task-execution failures (Desmet 
et al., 2012; Meiran & Daichman, 2005), so that it is hard to 
establish a clear pattern of results. Nonetheless, we think it 
is interesting to notice that both in our study and in that of 
Meiran and Daichman (2005), the number of task-confusion 
errors was rather limited. This can either mean that univa-
lent task-response mappings drastically diminish task-selec-
tion failures, or that the mapping of task-selection failures 
to wrong-effector responses is not warranted. While it is 
surely possible that competition between tasks is diminished 
by using univalent task-response mappings (Gade & Koch, 
2007b; Kieffaber et al., 2013), it is worth noticing that N-2 
repetition costs still occurred here and in at least one previ-
ous report (Costa & Friedrich, 2012), thus indicating that the 
previously relevant task-set must be inhibited to some degree 
for correct performance of the currently relevant task. We 
believe, together with Meiran and Daichman (2005), that 
using univalent task-response mapping may prove problem-
atic as it confounds task preparation with effector prepara-
tion, thus resulting in strong effector pre-activation at the 
time of stimulus onset. This does not mean, however, that 
it is not possible at all to elicit task-confusion errors in this 
paradigm. In the study of Desmet et al. (2012), many task-
confusion errors were obtained by increasing between-task 
conflict using invalid cues.

To conclude, the methodology employed in Experiment 
3, using more response keys than levels of stimulus dimen-
sion, proved to be the most solid in disentangling errors due 
to task-selection and task-execution failures. This conclusion 
is suggested by the results of the permutation tests indicat-
ing that both task-execution and task-selection failures were 
correctly classified more often in Experiment 3 compared 
to Experiment 2. A similar conclusion can be derived from 
the existing literature showing that, on average, this meth-
odology shows a higher prevalence of task-selection failures 
among classified task-confusion errors (~ 50%; see Stein-
hauser et al., 2017; Steinhauser & Steinhauser, 2019) than 
the congruency-based methodology used in Experiment 2 
(~ 20%; Meiran & Daichman, 2005; Steinhauser & Hübner, 
2006). We, therefore, recommend its deployment, when pos-
sible, for future studies in which disentangling task-selection 
and task-execution failures is needed.

The impact of different error types on N‑2 repetition 
costs

Having validated our assumptions concerning the map-
ping of task-selection and task-execution failures to distinct 
responses in our paradigms, we further proceeded with test-
ing the impact of these error types on N-2 repetition costs. 
The general idea was to replicate the results obtained in a 
previous study from our group, showing that N-2 repetition 
costs are significantly reduced following an error in the N-2 
trial, but only if RT in the N-1 trial was performed relatively 
fast (Moretti et al., 2021). As our previous study employed 
only incongruent stimuli, we aimed at extending these 
results, showing that this pattern would be present only for 
N-2 task-confusion errors, and not for N-2 response-con-
fusion errors, as shown previously for reductions in task-
switch costs following errors in trial N-1 (Desmet et al., 
2012; Steinhauser & Hübner, 2006, 2008; Steinhauser et al., 
2017).

Unfortunately, in most of our experiments, such direct 
comparison was not possible due to a lack of analysable 
task-confusion errors (in Experiment 1), or response-con-
fusion errors (in Experiment 3). The only exception was 
Experiment 2, but even in this experiment, there was still a 
considerable number of subjects (~ 50% of the total) that had 
to be excluded due to a lack of response-confusion errors. 
We wish to underline here that part of the reason for the 
small number of analysable trials in these conditions was 
that many N-2 error trials were excluded during data trim-
ming. Compared to other studies in the literature assessing 
the impact of errors on the task-switch costs (taking trial 
N-1 into account), our data trimming procedure was stricter, 
because we analysed the effects of N-2 error trials, and, 
therefore, had to exclude all N-1 error trials.

Nonetheless, we believe that the data reported in the 
present study produce valuable insights for task-switching 
and error-processing research. First, we find overall support 
for the idea that automatic task-set strengthening can be 
counteracted by a slowly building cognitive control process 
initiated upon error commission (Steinhauser & Hübner, 
2008). In Experiment 3, we indeed found the expected 3-way 
interaction (at least in the frequentist ANOVA), showing 
that while “regular” N-2 repetition costs tend to decrease 
as a function of the time elapsed between trial N-2 and N 
(Gade & Koch, 2005; Koch et al., 2004; Scheil & Klein-
sorge, 2014), N-2 repetition costs following task-confusion 
errors show the opposite pattern. Importantly, this was not 
shown in Experiment 1, where N-2 repetition costs after N-2 
response-confusion error were of the same size in the N-1 
Fast and N-1 Slow conditions.

While Experiments 1 and 3 thus provide good support 
for our predictions, the results of Experiment 2 go in the 
opposite direction. Here, we did not observe the predicted 
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reduction of N-2 repetition costs after N-2 task-confusion 
errors in fast N-1 trials. Instead, we unexpectedly observed 
a reduction of N-2 repetition costs after N-2 response-con-
fusion errors in fast N-1 trials (at least in the frequentist 
ANOVA, not supported by Bayes factors). There are only 
two differences between the previous (Moretti et al., 2021) 
and the present study. The first is that while in the previ-
ous study, we employed only incongruent stimuli, here both 
congruent and incongruent trials were used. It may be tempt-
ing to argue that the significant 3-way interaction found in 
the previous study was driven by task-execution failures in 
N-2, rather than being the result, as we assumed, of task-
selection failures. After all, the MPT model in Experiment 2 
shows that within this paradigm almost half of the classified 
task-confusion errors are still due to failures in task execu-
tion. However, we consider this possibility to be unlikely, 
as the same effect was replicated for task-confusion errors 
in Experiment 3 where the percentage of correctly detected 
task-selection failures among the empirical category of task-
confusion errors was very high (i.e. 65.9%). The second dif-
ference between the present and the past study was that, to 
accommodate for an increased number of conditions, we 
doubled the length of the present experiment, compared to 
two out of three experiments in our previous study. This may 
have introduced some practice effects that were not observed 
in the previous study. An additional analysis exploring this 
possibility seems to point in this direction and can be found 
in the Online Appendix.

Conclusion

To conclude, our study highlights the importance of care-
fully choosing a suitable method for mapping task-selection 
and task-execution failures to different observable events 
in task-switching. We argue that the methodology used in 
Experiment 3 is the most appropriate for this aim. In addi-
tion, we were able to provide further support for the exist-
ence of a cognitive control process initiated upon error 
commission, and aimed at counteracting the automatic 
strengthening of the erroneously selected task set.
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