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A B S T R A C T

Cost-efficient and reliable transports are needed to supply products competitively. Thus, particularly in
increasingly complex and global supply chains, identifying the optimal transportation mode is a critical
decision. Transportation modes, however, are prone to disruptions, such as hurricanes, low water levels, or
port shutdowns, resulting in transportation stops and cost increases. To counteract these disruptions, different
resilience strategies are studied to increase the capability of a network to withstand, adapt, and recover from
disruptions. For a cost-optimal use, it is necessary to determine the optimal mix of strategic, tactical, and
operational strategies.

We provide a decision-support model that decides on the optimal mix of resilience strategies, such as multi-
sourcing, inventory, or operational re-routing, for a supply chain with transportation disruption uncertainty
to minimize total expected costs. The problem is formulated as a two-stage stochastic mixed-integer linear
program that explicitly considers lead times. To handle large instances, we propose a Benders decomposition
approach enhanced through lower-bound lifting and valid inequalities, branch-and-benders-cut, and a warm-
start heuristic. Computational experiments show that large instances can be solved to near-optimality, whereas
a commercial solver does not find feasible solutions.

We present a case study for a company’s inbound supply chain design with recurring transportation cost
uncertainty. Considering disruption and lead time effects, a mix of resilience strategies from strategic to
operational level leads to cost improvements of up to 50%. Furthermore, we show that the ability to predict
disruptions can further reduce resilience-related costs by 10% if sufficient operational re-routing capacities are

available.
1. Introduction

In October 2018, low water levels on the Rhine River, one of
Europe’s most important waterways, forced transportation for more
than a month to a standstill. No barge, even if loaded only to a fraction
of its original capacity, could travel without the risk of being grounded.
As a result, missing raw materials forced several companies, including
the chemical company BASF, to cut back production. This shortage and
a rise in logistics costs led BASF to lower its yearly profit forecast.
Experts estimate that the low water levels caused a 0.4% drop in GDP in
Germany (Ademmer et al., 2020). More importantly, this was not the
first time water levels limited the transportation capacities along the
river. Unlike single-event disruptions, such as the Suez-Canal blockage,
they occur regularly, even following seasonal patterns (Jonkeren et al.,
2007). In 2015, 2017, and 2021, low water levels led to similar, yet
not that extreme, reductions in shipping capacity and increases in
transportation costs. Note that such recurring disruptive effects are not
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only seen in waterway transportation. The hurricane season in North
America is another example of recurring yet impact-varying disruptions
that regularly result in port shutdowns and damage to transportation
infrastructure. While these disruptive events can be predicted some-
what, the exact timing and impact remain uncertain. This uncertainty
challenges decision-makers to plan and prepare.

In parallel, margin pressure has pushed companies to design their
supply chains increasingly complex, interdependent, and global. Thus,
supply chains need reliable transportation to connect the various stages
and ensure efficient operations. This need for reliability has motivated
practitioners to rethink how to increase their supply chain resilience
(SCR). One of the critical elements in improving SCR is the supply chain
network design (SCND) (Tang, 2006). The SCND involves strategic
decisions on the number, location, and capacity of own assets as well
as the selection of suppliers to serve demand in a timely and efficient
manner (Klibi et al., 2010). These strategic decisions are made under
vailable online 22 November 2024
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uncertainty about the future and require anticipating the consequences
on the tactical and operational level (Farahani et al., 2014). Thus,
SCND models need to account for the disruption uncertainty on the
strategic level, while decisions made play a role in operational transport
decisions once a disruption is known.

We study a SCND problem where a central decision-maker at the
production facility sources from various suppliers and is in full re-
sponsibility of the inbound flows. Transportation modes are prone to
uncertain disruptions concerning their duration, impact, and occur-
rence along the planning horizon. As a result of these disruptions,
transportation carriers enforce surcharges on their regular transporta-
ion prices that increase the mode-specific transportation costs. In

practice, these surcharges occur regularly due to, e.g., low water levels
(St. Lawrence River Canada, Rhine River Germany, Panama Canal)
accounting for lost shipment capacities within the general contractual
obligations. Depending on the disruption impact, surcharges and thus
cost increases range from modest surcharges to full transportation
stops, i.e., infinitely high costs. In addition, we explicitly consider lead
time differences between transportation alternatives. These lead time
differences can occur from varying transportation modes or geographi-
cal distances between suppliers and the production facility. We aim to
evaluate and compare the cost-effectiveness of strategic, tactical, and
operational resilience measures.

The following contributions are made. First, we introduce a two-
tage stochastic programming formulation to solve the multi-period
CND problem with recurring disruptions that are uncertain concern-
ng their time of occurrence and impact on the mode-specific costs.
urthermore, we integrate strategic, tactical, and operational resilience
trategies. Second, we are the first to explicitly consider individual lead
imes for all transportation modes in a resilient SCND problem to model
he lead time-delayed disruption response through the network flow on
perational level. Considering individual lead times allows us to quan-
ify the trade-off in choosing a closer supplier at higher disruption-free
osts (near-shoring) and their impact on the optimal resilience strategy
ix. Third, we show the value of disruption prediction and assess the

nterdependence with daily operational re-routing capacities. Fourth,
e methodologically propose an enhanced Benders decomposition (BD)
lgorithm with a non-standard split of decision variables to solve the
esulting two-stage stochastic problem and compare its performance
gainst a commercial solver and a standard BD implementation (L-
haped). Lastly, we present a case with time-dependent disruption
robability shifts that follow seasonal patterns to study differences
n the cost-optimal resilience mix to a numerical study with equal
robabilities of disruption occurrence throughout the planning horizon.

This paper is structured as follows. Section 2 presents an overview
of related literature. Section 3 details the research problem. Section 4
introduces the two-stage stochastic program. Next, we propose a solu-
ion procedure based on BD, including its enhancements in Section 5.

Section 6 outlines numerical results, and a case study is discussed in
ection 7. Finally, Section 8 concludes by summarizing findings and
roposing future research areas.

2. Literature review

Section 2.1 discusses literature on general levers that aim at in-
reasing the SCR. Then, in Section 2.2, work on resilient supply chain

network design for the SCND problem under uncertainty is reviewed.
Section 2.3 summarizes literature on resilient transportation systems

hile Section 2.4 reviews work on BD with a focus on two-stage
tochastic programs. Finally, Section 2.5. summarizes research gaps.

2.1. Increasing supply chain resilience with consideration of lead times

Various authors defined SCR, including crucial design characteris-
tics and capabilities in the past. We refer to Hosseini, Ivanov et al.
828
(2019) for a detailed overview. Designing resilient supply chains in-
olves uncertainty regarding both the impact and the occurrence of
isruptions. Due to this uncertainty, supply chains require a detailed
nderstanding of hidden interactions across different decision levels. In
rder to increase SCR, firms can adjust their network design as well as
heir tactical and operational decisions (Govindan et al., 2017). Various

SCR drivers have been identified and discussed in analytical models,
such as supplier segregation, multiple sourcing strategy, inventory posi-
tioning, multiple transportation channels, backup suppliers, re-routing,
and product substitution (Hosseini, Ivanov et al., 2019). Even though
most studies highlight the benefits of multiple sourcing and backup
suppliers, the explicit role of lead time is still not well understood
as immediate effects of disruptions and SCR strategies are common
assumptions (Aldrighetti et al., 2023).

To date, the effects of lead time under uncertainty have mostly
been discussed in related inventory control literature. de Treville et al.
(2014) presented a case study with managers of three companies
that underestimated the benefits of short lead times under uncer-
tainty. Boute and Van Mieghem (2015) study single and dual inventory
ontrol policies and compare local and global sourcing alternatives

based on the inclusion of capacity cost and flexibility in addition
to sourcing costs and lead times. In further understanding the ef-
fects of fast but expensive suppliers, Sun and Van Mieghem (2019)
determine a capped dual index policy for the dual replenishment
decision. Gijsbrechts et al. (2022) extend this view by considering
fast, thus local, supply that is less flexible and more expensive and
identify that local suppliers need to improve their volume flexibility
to compete with cheaper offshore supply. Boute et al. (2022) show
that local SpeedFactories can be valuable even when purchasing costs
from near-shored suppliers are higher than the offshore costs due
o significant inventory savings. However, the attractiveness of the
ear-shoring option is strongly influenced by the demand uncertainty

studied. While we assume known demands, we focus on the influence
of lead time effects through near-shored suppliers given the influence of
supply uncertainty that affect the transportation from global suppliers.

2.2. Supply chain network design under uncertainty

Quantitative decision models that decide on the cost-optimal mix of
resilience strategies for the SCND under disruption risks have become
ncreasingly relevant. We refer to Aldrighetti et al. (2021) and Snyder

et al. (2016) for recent overviews. Overall, SCND problems under dis-
uption uncertainty have developed from primary facility locations to

more integrated decision problems. Qi et al. (2010) solved the facility
location problem under disruption uncertainty and compared an inte-
grated against a sequential supply chain design to achieve considerable
cost benefits considering disruption uncertainty at the strategic design
hase. In contrast, Mete and Zabinsky (2010) proposed a two-stage
tochastic programming formulation to account for both the strategic
nd tactical design policies while considering operational re-routing
ecisions to solve the storage and distribution problem of medical
upplies in disaster management. While they focus on the special case
f earthquake disaster mitigation, we extend their work on an integra-

tion of strategic to operational resilience strategies for transportation
uncertainty to wider disruption scenarios. Nooraie and Parast (2016)
were the first to propose an end-to-end decision model for supply
hain design from suppliers to customers under disruption uncertainty

considering multiple time periods. Khalili et al. (2017) extended pre-
vious two-stage stochastic programming formulations by integrating
production and distribution planning problems under disruption risk,
considering both proactive and reactive resilience strategies. Simi-
larly, Azad et al. (2016) used a network optimization model to study
the cost-effectiveness of installing alternative links in railroad net-
works under random disruption scenarios. With an overall focus shift
from outbound to inbound logistic network models, Namdar et al.
(2018) analyzed the benefits of a multiple sourcing strategy under
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disruption risks of inbound suppliers. Snoeck et al. (2019) combined
strategic mitigation with operational decisions by incorporating the
inbound supply chain planning with production planning and setup
for the chemical industry and proposing a solution scheme based on
inear approximation. As an extension of previous supplier selection
roblems, Hosseini, Morshedlou et al. (2019) incorporated decisions

on additional manufacturing capacities and geographical separation of
suppliers, considering regional disruption scenarios. Azad and Hassini
(2019) developed an optimization model with partial failure of facilities
and multi-mitigation strategies and proposed an enhanced BD to solve
he problem. We build on their contribution of explicitly considering
artial disruption of facilities with uncertain recovery duration by
onsidering disruptions that are uncertain concerning their timing,
ength, and impact with seasonal patterns across the planning horizon.

Alikhani et al. (2023) used a multi-methodological approach to select
the best resilience strategies for varying supply chain disruptions.
Specifically, they quantified the synergistic effects of the best-fit of
candidate strategies on different disruption characteristics, such as
cyberattacks and natural disasters. Based on this idea, we study the
general differences on cost-optimal resilience strategies between low-
impact but high-probability against high-probability but low-impact
disruption events. They considered facility fortification, direct ship-
ping, inventory increase, facility dispersation, multiple set covering,
and cybersecurity in a single product flow and single time period
environment. Aldrighetti et al. (2023) studied a resilient SCND in
a multi-echelon, multi-period, and single-product setting with equal
isruption probabilities for all locations. Through numerical and a
ase study focusing on the COVID-19 pandemic, they identified a
ood trade-off between resilience and investment costs with minimal
nvestments focusing on agile and reconfigurable supply chains. Par-
icularly, backup suppliers outside the main supply chain footprint are
ost efficient for disruptions on the supply side, while re-routing of
aterial flows was a key SCR strategy for disruptions at own facilities.

n a similar multi-period setting, we study the impacts of disruption
robability shifts across the planning horizon on the optimal mix of
esilience strategies. Besides, in comparison to assuming immediate
mpacts of particularly re-routing decisions, we explicitly consider lead
imes to account more realistically for the impacts of strategic decisions
n the operational level, such as near-shoring.

2.3. Resilient transportation systems

Transportation systems are part of the critical infrastructure to
rovide essential commodities and services. Similar to supply chains,
hey have become more and more complex and interdependent, mak-
ng them prone to disruptions and increasing the time to recover.
s a result, research on resilient transportation systems is becoming

ncreasingly popular (Mattsson & Jenelius, 2015).
Miller-Hooks et al. (2012) determined the optimal set of mitigation

nd recovery actions to achieve service constraints of a transportation
ystem given a budget through a two-stage stochastic program for a
ail-based container network. Omer et al. (2012) study the resilience
f maritime transportation networks and the impacts of disruptions
n port capacities by identifying three different resilience metrics. To

increase the overall system understanding, Chen et al. (2017) study
the port-hinterland container transportation network under disrup-
tion uncertainty. Motivated by the diverging operator interests, Chen
et al. (2018) investigate the strategic resilience investments in a port-
interland container transportation network. Due to its vulnerability
nd importance to the economy of China, Wang and Yuen (2022)
onducted a simulation study on the Yangtze Estuary Deepwater Chan-
el to develop a resilience assessment indicator tested for different
ccident scenarios. While the focus of port-hinterland networks has
een on the effects of disruptions on port infrastructure and their
apacity, we discuss a new case example in which disruptions affect
he transportation links between the nodes, e.g., through water-level
829

riven effects. p
2.4. Benders decomposition for two-stage network design

As first proposed by Benders (1962), BD is a commonly used exact
lgorithm for problems with complicated and continuous variables in
hich, when fixing the complicated variables, an easier subproblem re-
ains. Due to the popularity of two-stage stochastic programs in SCND

under uncertainty (Govindan et al., 2017), we focus on the application
and recent improvements of the BD algorithm in two-stage stochastic
programs and recommend the detailed overview of Rahmaniani et al.
(2017).

The L-shaped method, as introduced by Van Slyke and Wets (1969),
s a BD algorithm applied to two-stage stochastic programs in which the
roblem is decomposed into a master problem (MP) that includes the
irst-stage decisions and a slave problem (SP) that contains the second-
tage decision variables. In contrast, we compare the performance of
his split against alternatives in which first-stage flow decisions are
ecomposed in the SP. Based on the idea of the L-shaped method, Birge

and Louveaux (1988) introduced the multicut algorithm for two-stage
tochastic programs in which a single cut is generated for each scenario
rom the subproblem. Still, a straightforward application of the BD
lgorithm might result in time-consuming iterations, poor feasibility,
nd zigzagging behavior. Thus, work has focused on exploring ways
o improve the (problem-specific) performance of the BD algorithm.

e classify these strategies that are relevant for this work into three
ifferent categories and discuss their benefits for the specific problem
t hand.

The first category contains strategies that aim to improve and
strengthen the cut-generation process itself. Particularly, we focus on
improving the cut-generation process by adding problem-specific valid
inequalities to complement or replace adding feasibility and optimality
cuts. Cordeau et al. (2006) have shown that introducing problem-
specific valid inequalities can significantly improve the algorithm’s
performance. While valid inequalities aim at strengthening the feasible
solution space of the MP, Adulyasak et al. (2015) have shown that
lower-bound lifting inequalities can significantly improve the perfor-
mance of the BD algorithm for a two-stage production routing problem
under demand uncertainty. Similarly, we derive lower-bound lifting
inequalities for our problem setting. In addition, they included pareto-
optimal cuts based on Papadakos (2008) and scenario group cuts
in which, in contrast to Birge and Louveaux (1988), cuts are only
enerated for groups of scenarios.

The second category groups methods that are based on the idea of
generating cuts without solving the master or subproblem to optimality
each time. For example, Easwaran and Üster (2009) incorporated a tabu
search in the BD algorithm to provide initial strong upper bounds and,
thus, initial good Benders cuts for a capacitated closed-loop network
design. Similarly, Pishvaee et al. (2014) used valid inequalities and
a local branching strategy that does not solve the master problem to
optimality at each iteration for a sustainable network design problem
under uncertainty.

The third category includes strategies that adjust the decomposition
strategy considering the separation of information and decisions into
master and subproblem for two-stage problems itself. Crainic et al.
(2021) introduced the idea of partial BD to include information from
the SP into the MP and showed its benefits for a general class of
two-stage stochastic multi-commodity network design problems. Re-
cently, Rahmaniani et al. (2024) explored parallelization strategies
in which multiple SPs are solved in parallel on different processors
and implemented the algorithm in a branch-and-cut framework for a
two-stage multi-commodity capacitated fixed-charge network design
roblem with stochastic demands.
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2.5. Discussion of research opportunities

To date, there needs to be more research combining strategic, tac-
tical, and operational resilience strategies to understand their interde-
pendence and cost-competitiveness (Govindan et al., 2017). Only Mete
and Zabinsky (2010) considered this combination for transportation
uncertainty; however, for the specific case of immediate earthquake
disaster mitigation. While multi-period models have been introduced,
time-dependent changes of the disruption probabilities to adequately
consider the dynamic nature of supply chain vulnerability still need
to be addressed (Aldrighetti et al., 2021; Hosseini & Khaled, 2019).
In addition, most models focus on low-probability/high-impact events
that are impossible to predict. With few exceptions, such as the time-to-
recover model (Simchi-Levi et al., 2015), common literature focuses on
equal disruption probabilities and assumes immediate effects of disrup-
tions and SCR strategies. However, this ignores both the effects of lead
times on operational decisions and the potential benefits of short-term
disruption prediction. As a result, research on disruption uncertainty
remains on expert estimates or assumes known distributions that do
not contribute towards an improved understanding of the proposed SCR
strategies’ cost-competitiveness (Aldrighetti et al., 2021).

3. Problem setting

Section 3.1 introduces the process and network structure of the
SCND problem. We discuss the effect of disruptions on parameters in
Section 3.2. Finally, the resilience strategies are introduced in Sec-
tion 3.3.

3.1. Network and process description

We consider a SCND problem with a single product in a discrete-
time horizon, where the transportation network consists of multiple
suppliers (as sources), multiple transportation modes (as arcs), and a
single production facility (as sink). Each supplier can deliver in unlim-
ited quantities and in each time period. To deliver, however, a supplier
needs to be qualified in the initial stage of the decision problem. Such
a qualification comes at an investment cost as it includes negotiations,
development of contracts or receiving and testing of product samples.
Different transportation modes are available for each supplier to deliver
raw materials to the production facility. However, only a single trans-
portation mode might be available depending on the supplier. These
transportation modes differ in transportation lead times, costs, and
disruption proneness. The production facility holds inventory to fulfill
its production demands. At the beginning of each period, transport
shipments arrive that were ordered lead time periods earlier. The inven-
tory capacity is limited and storage results in inventory holding costs
linear to the inventory quantity stored. Then, production demands are
fulfilled. These demands at the sink are defined through a deterministic
production schedule for each time period along the planning horizon.
Such deterministic schedules, e.g., are common for capital-intensive
process industries such as chemicals that often rely on a continuous
production process (Silver et al., 1998). An unfulfilled production
demand, thus if no inventory is available, forces a production stop that
results in shortage costs. Inventory holding costs are charged to the
inventory level at the end of the period and transportation costs to the
period of ordering. The simplified structure is shown in Fig. 1.

3.2. Transportation disruptions

We define a transportation disruption as an unfortunate event caus-
ing a transportation cost increase to a single or multiple transportation
modes along the planning horizon with varying duration and impact.
Disruption events occur independently from each other. Merely the
probability of occurrence and its impact depends on the transportation
mode. These cost increases are a result of surcharges that transportation
830
Fig. 1. Overview of SCND structure considered.

Fig. 2. Time window on information certainty of the transportation disruption impact.

carriers enforce as reaction to disruptions to balance the lost capac-
ities with the demands. Given these surcharge on top of the regular
transportation costs, a transport is always available. Depending on
the disruption impact and mode, these surcharges range from mod-
est increases to full production stops, i.e., an unlimited increase in
transportation costs. To account for full transportation stops, we bound
the surcharges with the shortage costs. After the disruption event, its
effects terminate immediately and transportation costs decrease to their
disruption-free values.

Limited time prior to a disruption, its duration and impact on the
transportation costs becomes known to the central decision-maker. We
define this time as the information window. This information window
is determined through the ability of a decision-maker to predict a
disruption prior to its occurrence. On a longer horizon, however, the
occurrence and impact of a disruption remain uncertain. For example,
this applies to hurricanes where the route and intensity of the storm is
known days before a landfall or strikes that are announced in advance.
Fig. 2 visualizes an example of a single disruption during the planning
horizon. In the example, the transportation disruption lasts from 𝑡 = 50
to 𝑡 = 70. With 𝑡𝑖𝑛𝑓 𝑜 = 5, the disruption becomes known in 𝑡 = 45
regarding its duration (20 days) and impact. Concerning the model
formulation in Section 4, this translates to 𝑇𝑠 = {45; 70}. In practice,
the possibility of predicting disruptions strongly depends on the specific
situation. We highlight the relevance of the information window as part
of our case study in Section 7.2.

3.3. Resilience strategies

A central decision-maker at the production facility sources from
various suppliers and is in full responsibility of the inbound flows. The
goal is to minimize the expected costs through an optimal mix of SCR
strategies. Thus, we minimize the trade-off between the costs of paying
a cost premium for strategic and tactical resilience capacities when no
disruption occurs and the uncertain cost increase from a disruption
given the potential limited re-routing abilities on the operational level.
We consider the following strategic, tactical, and operational SCR
strategies in a two-stage stochastic decision problem.

Multi-sourcing (strategic, first-stage). Qualification of multiple sup-
pliers. This includes both multi-sourcing, i.e., purchasing from two or
more suppliers in parallel, and the investment in a backup supplier.

Near-shoring (strategic, first-stage). Qualification of a supplier that
offers a transportation mode with a shorter lead-time (Chang & Lin,
2019) or less prone to disruptions at a cost-premium.
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Inventory capacity adjustment (strategic, first-stage). Investment
decision in additional inventory capacity increases the flexibility of
ecisions on the tactical and operational level.
Inventory (tactical, first-stage). Decision to increase inventory

hrough tactical transportation plan.
Re-routing (operational, second-stage). Decision to re-route quan-

ities from the tactical transportation plan due to a disruption. Be-
sides the differences in mode-specific transportation costs, re-routing
comes at a cancellation cost for the originally planned transportation
uantities on the tactical level.

In contrast, the decision-maker can decide for risk-taking and
gainst any SCR strategy but execute the same transportation plan
cross all scenarios.

4. Model formulation

Sets, decision variables and parameters are introduced in Sections
4.1–4.3 before we introduce the two-stage stochastic programming
ormulation in Section 4.4.

4.1. Sets

A set of suppliers 𝐼 delivers a product using a set of transport modes
 to the production facility over a time horizon  . To account for
he stochastic nature of the decision problem, we introduce a set of
isruption scenarios  and model the decision problem as two-stage
tochastic program. For each disruption scenario, we introduce 𝑠 ⊂ 

as disruptive time periods including a potential information window
(see Section 3.3) where operational re-routing is allowed.

4.2. Parameters

Scenarios occur with probability 𝜋𝑠, with 0 ≤ 𝜋𝑠 ≤ 1 and ∑

𝑠∈𝑆 𝜋𝑠 =
1. Each scenario 𝑠 represents a specific disruption situation as they can
occur along the planning horizon. Thus, the transportation costs 𝑐𝑀𝑚𝑡𝑠
reflect the scenario-specific (𝑠) transportation costs for each time period
(𝑡) as an outcome of the transportation mode-specific (𝑚) base costs and
disruption-driven cost increases.

Per time period and product units stored, inventory holding costs
𝐻 occur. Each unfulfilled unit of demand 𝑑𝑡 results in shortage costs
𝑁 . The total sum of all demands across the planning horizon is 𝑑𝐴. The

operational re-routing of transportation quantities requires cancellation
costs 𝑐𝑃𝑖 specific to supplier 𝑖. To qualify a supplier 𝑖, qualification
costs 𝑓 𝐼𝑖 are needed that depend on the specific supplier. The initial
inventory capacity to store inventory on hand is 𝑌 . Through an in-
vestment decision this capacity can be increased by multiples of 𝑌 +

at costs 𝑓𝑌 per multiple. In the starting period, an initial inventory of
𝑗0 is available. Transportation lead times 𝑙𝑚 are considered that depend
on the transportation time via mode 𝑚.

4.3. Decision variables

The model decides between different SCR strategies (see
ection 3.3) to minimize the total expected costs in a two-stage stochas-
ic program. Thus, the interlink between the strategic and tactical

decisions (first-stage) and the operational decisions (second-stage) are
onsidered.

The first-stage decisions determine the network structure. The bi-
nary decision 𝑧𝑖 determines if supplier 𝑖 is qualified (= 1) or not (=
0). The initial inventory capacity can be extended through an integer
nvestment decision 𝑤 in multiples of additional inventory capacity.
astly, a tactical transportation plan 𝑥𝑖𝑚𝑡 determines transportation

quantities across scenarios. On the second-stage, this transportation
lan can be adapted whenever disruptions occur in scenario 𝑠. This
perational re-routing consists of additional shipments �̂�𝑖𝑚𝑡𝑠 or quantity
eductions �̌� from the original plan.
831

𝑖𝑚𝑡𝑠 𝑥
Additional decision variables are needed to formulate the SCND
problem. Variables 𝑥𝑖𝑚𝑡𝑠 reflect the final transportation quantities from
upplier 𝑖 via transport mode 𝑚 in scenario 𝑠 based on the tactical plan
𝑖𝑚𝑡 (first-stage) and the operational re-routing decisions (second-stage)
�̌�𝑖𝑚𝑡𝑠, �̂�𝑖𝑚𝑡𝑠). In addition, we introduce the on-hand inventory 𝑦𝑡𝑠 in
eriod 𝑡 and scenario 𝑠. Instead of negative inventories, shortages 𝑝𝑡𝑠
ccur.

4.4. Model formulation

4.4.1. Objective function

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

first-stage
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓 𝑌 ⋅𝑤 +

∑

𝑖∈
𝑓 𝐼𝑖 ⋅ 𝑧𝑖 +

∑

𝑠∈
𝜋𝑠⋅

(

∑

𝑖∈,𝑚∈,𝑡∈
𝑐𝑀𝑚𝑡𝑠 ⋅ 𝑥𝑖𝑚𝑡𝑠 +

∑

𝑡∈
𝑐𝐻 ⋅ 𝑦𝑡𝑠 +

∑

𝑡∈
𝑐𝑁 ⋅ 𝑝𝑡𝑠 +

∑

𝑖∈,𝑚∈,𝑡∈𝑠

𝑐𝑃𝑖 ⋅ �̌�𝑖𝑚𝑡𝑠

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
second-stage

(1)

The objective function (1) minimizes the total expected costs across
scenarios by considering first-stage and second-stage decisions. Invest-

ent costs, on the first-stage, occur depending on the decision to invest
n multiples (𝑤) of inventory capacity (𝑌 +) and supplier qualification
𝑧𝑖). On the second-stage, we consider transportation costs based on the
uantities shipped (𝑥𝑖𝑚𝑡𝑠), inventory holding costs driven by inventory
n hand (𝑦𝑡𝑠), shortage costs (𝑝𝑡𝑠), and cancellation costs for transporta-
ion plan changes (�̌�𝑖𝑚𝑡𝑠). Note that disruptions affect the transportation
ode-specific costs (𝑐𝑀𝑚𝑡𝑠) in scenario 𝑠.

4.4.2. Constraints
∑

𝑖∈,𝑚∈,𝑡∈
𝑥𝑖𝑚𝑡 = 𝑑𝐴 (2)

Across the planning horizon, quantities that equal the total demand
(𝑑𝐴) must be assigned to the tactical transportation plan on the first-
stage decision, ensured by constraints (2).
∑

∈
𝑥𝑖𝑚𝑡𝑠 ≤ 𝑑𝐴 ⋅ 𝑧𝑖 ∀𝑖 ∈ , 𝑡 ∈  , 𝑠 ∈  (3)

𝑦𝑡𝑠 ≤ 𝑌 + 𝑌 + ⋅𝑤 ∀𝑡 ∈  , 𝑠 ∈  (4)

A supplier can only deliver once qualified (𝑧𝑖), ensured by constraints
3). Constraints (4) limit the inventory on hand to the respective

capacity, which is the sum of the initial available capacity 𝑌 and the
nteger multiples 𝑤 of additional inventory capacity 𝑌 + invested for.

𝑦𝑡𝑠 = 𝑦(𝑡−1)𝑠 + 𝑝𝑡𝑠 − 𝑑𝑡 +
∑

𝑖∈,𝑚∈
𝑥𝑖𝑚(𝑡−𝑙𝑚)𝑠 ∀𝑡 ∈  ⧵ {1}|𝑡 > 𝑙𝑚, 𝑠 ∈ 

(5)

𝑦1𝑠 = 𝑗0 − 𝑑1 ∀𝑠 ∈  (6)

Constraints (5) describe the inventory balance between two consecutive
periods 𝑡 and 𝑡− 1. The inventory on hand for each period 𝑡 consists of
the sum of the final inventory of the previous period 𝑡 − 1, incoming
nits (𝑥𝑖𝑚(𝑡−𝑙𝑚)𝑠) ordered lead time (𝑙𝑚) periods earlier and demands (𝑑𝑡).
he starting inventory for the initial period 𝑡 is defined in constraints
6). If the demands 𝑑𝑡 exceed the available inventory, shortages (𝑝𝑡𝑠)

occur, leading to lost sales,which are penalized in the objective function
(1).

𝑥𝑖𝑚𝑡𝑠 = 𝑥𝑖𝑚𝑡 + �̂�𝑖𝑚𝑡𝑠 − �̌�𝑖𝑚𝑡𝑠 ∀𝑚 ∈ , 𝑖 ∈ , 𝑡 ∈ 𝑠, 𝑠 ∈  (7)

𝑥𝑖𝑚𝑡𝑠 = 𝑥𝑖𝑚𝑡 ∀𝑖 ∈ , 𝑚 ∈ , 𝑡 ∈  ⧵ {𝑠}, 𝑠 ∈  (8)
̌ 𝑖𝑚𝑡𝑠 ≤ 𝑥𝑖𝑚𝑡 ∀𝑖 ∈ , 𝑚 ∈ , 𝑡 ∈ 𝑠, 𝑠 ∈  (9)
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∑

∈,𝑚∈,𝑡∈𝑠

�̂�𝑖𝑚𝑡𝑠 − �̌�𝑖𝑚𝑡𝑠 = 0 ∀𝑠 ∈  (10)

Constraints (7) ensure that actual transported quantities for each sce-
ario 𝑠 equal the tactical transport plan (𝑥𝑖𝑚𝑡) while taking operational
e-routing options during a disruption (𝑡 ∈ 𝑠) into account. This

approach is motivated by Lanza et al. (2021), who propose a similar
ecomposition strategy of tactical and operational decisions for sched-

uled service networks. The re-routing consists of transport cancellations
(�̌�𝑖𝑚𝑡𝑠) from the tactical plan and short-term orders from alternative
suppliers or transportation modes (�̂�𝑖𝑚𝑡𝑠). Without disruptions and out-
side of the information window, the actual transportation quantities
𝑥𝑖𝑚𝑡𝑠 equal the tactical transportation plan 𝑥𝑖𝑚𝑡 as defined in constraints
(8). Constraints (9) limit the cancellation quantity to the quantities of
the tactical transport plan from supplier 𝑖 via transport mode 𝑚 and
in time period 𝑡. On the operational level, constraints (10) ensure that
perational cancellations and additional order quantities are balanced.

𝑤 ∈ Z (11)

𝑧𝑖 ∈ {0, 1} ∀𝑖 ∈  (12)

𝑦𝑡𝑠, 𝑝𝑡𝑠 ≥ 0 ∀𝑡 ∈  , 𝑠 ∈  (13)

𝑥𝑖𝑚𝑡𝑠, 𝑥𝑖𝑚𝑡 ≥ 0 ∀𝑖 ∈ , 𝑚 ∈ , 𝑡 ∈  , 𝑠 ∈  (14)

̂ 𝑖𝑚𝑡𝑠, �̌�𝑖𝑚𝑡𝑠 ≥ 0 ∀𝑖 ∈ , 𝑚 ∈ , 𝑡 ∈ 𝑠, 𝑠 ∈  (15)

The non-negativity and variable definition constraints are summarized
n (11)–(15).

5. Benders decomposition

In our two-stage stochastic program for the SCND problem, the
first-stage decisions consist of a set of binary and integer investment
decisions and a continuous variable 𝑥𝑖𝑚𝑡. By fixing all first-stage de-
cisions, a network flow problem results as subproblem, which can be
decomposed by scenario and is easy to solve. However, our numerical
tests showed that this significantly increases the complexity of the MP,
and keeping 𝑥𝑖𝑚𝑡 (as first-stage decision) in the SP, with the drawback
of not decomposing the SP by scenario, outperforms the L-shaped
method. We show the performance of both formulations in Section 6.
Algorithm 1 outlines the proposed BD algorithm with 𝑥𝑖𝑚𝑡 in the SP.

fter initialization and warm start, the MP (see Section 5.2) is solved to
btain the supplier qualification decision (�̄�𝑖), the investment decision
n inventory multiples (�̄�), as well as the master objective, which equals
he current lower bound (LB). Using the fixed decision outputs of the
P (�̄�𝑖, �̄�), the dual slave problem (DSP) (see Section 5.1) is solved,

nd we check whether the current upper bound (UB) is better than
he known UB. Using the dual variables, an optimality cut is added

to the MP in each iteration 𝑙 of the cutting plane procedure as the
dual is always feasible (see Section 5.1). This procedure repeats until
he tolerance 𝑇 𝑂 𝐿 is met. Particularly due to the many time periods

and thus decision variables, the BD algorithm as outlined in Algorithm
1 does, even for small instances, not converge in an acceptable time
limit. Thus, we solve the two-stage stochastic SCND problem by de-
riving enhancements from ideas previously investigated in literature.
These are lower-bound lifting and valid inequalities (Section 5.3.1),
branch-and-benders-cut (Section 5.3.2), and warm-start (Section 5.3.3).

5.1. Slave problem

Upon fixing the first-stage decisions to �̄� and �̄�𝑖, we obtain a con-
tinuous linear program that is much easier to solve but not separable
by scenario 𝑠 due to 𝑥𝑖𝑚𝑡. Due to the presence of decision variables
𝑝𝑡𝑠, the SP is always feasible since negative inventory levels can be
avoided if at least one supplier is qualified (see Section 5.3.1). The
otal expected costs 𝑣(�̄�, �̄� ) of the second-stage can be calculated as
832

𝑖

Algorithm 1 Benders decomposition algorithm.
𝐼 𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑧𝑒 𝑙 ← 1, 𝑇 𝑂 𝐿, 𝑈 𝐵 ← +∞, 𝐿𝐵 ← −∞
Conduct warm start to obtain starting solution
Solve master problem to obtain �̄�𝑙 and �̄�𝑙𝑖
𝐿𝐵 ← Master objective
while 𝑈 𝐵 − 𝐿𝐵 ≥ 𝑇 𝑂 𝐿 do

Solve dual slave problem with �̄�𝑙 and �̄�𝑙𝑖
𝑈 𝐵 ←min[UB, (Master objective) + (Dual slave objective)]
Add a new optimality cut to master problem
𝑙 ← 𝑙 + 1
Solve master problem to obtain �̄�𝑙 and �̄�𝑙𝑖
𝐿𝐵 ← Master objective

end while

weighted sum across all scenarios 𝑠 with their probability of occurrence
𝑠. In addition, since all cost parameters in (16) are finite and subject
o constraints (5)–(6), any feasible solution of the SP must be bounded.
s a result, the dual of the SP is feasible and bounded as well. Thus,
e solve the following SP:

𝑣(�̄�, ̄𝑧𝑖) ∶= 𝑚𝑖𝑛
∑

𝑠∈𝑆
𝜋𝑠 ⋅ (

∑

𝑖∈,𝑚∈,𝑡∈
𝑐𝑀𝑚𝑡𝑠 ⋅ 𝑥𝑖𝑚𝑡𝑠 +

∑

𝑡∈
𝑐𝐻 ⋅ 𝑦𝑡𝑠

+
∑

𝑡∈
𝑐𝑁 ⋅ 𝑝𝑡𝑠 +

∑

𝑖∈,𝑚∈,𝑡∈𝑠

𝑐𝑃𝑖 ⋅ �̌�𝑖𝑚𝑡𝑠)
(16)

subject to:
∑

𝑖∈,𝑚∈,𝑡∈
𝑥𝑖𝑚𝑡 = 𝑑𝐴 (17)

𝑥𝑖𝑚𝑡𝑠 ≤ 𝑑𝐴 ⋅ �̄�𝑖 ∀𝑖 ∈ 𝐼 , 𝑚 ∈𝑀 , 𝑡 ∈ 𝑇 , 𝑠 ∈  (18)

𝑦𝑡𝑠 ≤ 𝑌 + 𝑌 + ⋅ �̄� ∀𝑡 ∈  , 𝑠 ∈  (19)

(5)–(10), (13)–(15).
To derive the Benders cuts, we define the DSP. In the DSP, the

ariable 𝛼 is the dual variable of constraint (17), which ensures that
he tactical transportation plan matches the total demand. The variables
𝛽𝑖𝑚𝑡𝑠 are the dual variables of the transportation limitation to suppliers
ualified (18), 𝛾𝑡𝑠 are the duals of the inventory capacity constraint
19), 𝛿𝑡𝑠 are the dual variables of the inventory balance constraints (5)

and (6), 𝜀𝑖𝑚𝑡𝑠 are the dual variables of re-routing constraints (7)–(8),
nd 𝜁𝑖𝑚𝑡𝑠 are the dual variables of constraints (9) limiting cancella-

tions, and 𝜃𝑠 the dual variables of the operational re-routing balance
constraints (10). The DSP can be stated as follows:

𝑣(�̄�, ̄𝑧𝑖) = 𝑚𝑎𝑥 𝑑𝐴 ⋅ 𝛼 +
∑

𝑖∈,𝑚∈,𝑡∈ ,𝑠∈
�̄�𝑖 ⋅ 𝑑

𝐴 ⋅ 𝛽𝑖𝑚𝑡𝑠

∑

𝑡∈ ,𝑠∈
(𝑌 + 𝑌 + ⋅ �̄�) ⋅ 𝛾𝑡𝑠 +

∑

𝑠∈
(𝑗0 − 𝑑1) ⋅ 𝛿1𝑠 +

∑

𝑠∈


∑

𝑡=2
𝑑𝑡 ⋅ 𝛿𝑡𝑠

(20)

subject to:

𝛽𝑖𝑚𝑡𝑠 + 𝛿(𝑡+𝐿𝑚)𝑠 + 𝜀𝑖𝑚𝑡𝑠 ≤ 𝜋𝑠 ⋅ 𝑐
𝑀
𝑚𝑡𝑠 ∀𝑖 ∈ , 𝑚 ∈ , 𝑡 ∈  ⧵ {1}, 𝑠 ∈ 

(21)

𝛽𝑖𝑚𝑡𝑠 − 𝛿𝑡𝑠 + 𝜀𝑖𝑚𝑡𝑠 ≤ 𝜋𝑠 ⋅ 𝑐
𝑀
𝑚𝑡𝑠 ∀𝑖 ∈ , 𝑚 ∈ , 𝑡 = 1, 𝑠 ∈  (22)

𝛾𝑡𝑠 + 𝛿(𝑡+1)𝑠 ≤ 𝜋𝑠 ⋅ 𝑐
𝐻 ∀𝑡 ∈  ⧵ {𝑛}, 𝑠 ∈  (23)

𝛾𝑡𝑠 + 𝛿𝑡𝑠 ≤ 𝜋𝑠 ⋅ 𝑐
𝐻 ∀𝑡 = 1, 𝑠 ∈  (24)

𝛿𝑡𝑠 ≤ 𝜋𝑠 ⋅ 𝑐
𝑁 ∀𝑡 ∈  ⧵ {1}, 𝑠 ∈  (25)
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𝜀𝑖𝑚𝑡𝑠 + 𝜁𝑖𝑚𝑡𝑠 − 𝜃𝑠 ≤ 𝜋𝑠 ⋅ 𝑐
𝑃
𝑖 ∀𝑖 ∈ , 𝑚 ∈ , 𝑡 ∈ 𝑠, 𝑠 ∈  (26)

𝛼 ≤ 0, 𝛽𝑖𝑚𝑡𝑠 ≤ 0, 𝛿𝑠 ≤ 0, 𝜁𝑖𝑚𝑡𝑠 ≤ 0, 𝛾𝑡𝑠, 𝜀𝑖𝑚𝑡𝑠, 𝜃𝑠 ∈ R, ∀𝑖 ∈ , 𝑚 ∈ , 𝑡 ∈  , 𝑠 ∈ 

(27)

5.2. Master problem

The MP is a relaxation of the two-stage stochastic problem defined
in Section 4 that only considers the binary and integer first-stage deci-
sions 𝑤 and 𝑧𝑖. At each iteration 𝑙 of the BD algorithm, an optimality
cut (29) needs to be added to the MP from the DSP(�̄�, �̄�𝑖). We formulate
he master problem as follows:
𝑚𝑖𝑛 𝑓 ⋅𝑤 +

∑

𝑖∈
𝑓𝑖 ⋅ 𝑧𝑖 + 𝜓 (28)

subject to:
𝑑𝐴 ⋅ �̄�𝑙 +

∑

𝑖∈,𝑚∈,𝑡∈ ,𝑠∈
𝑑𝐴 ⋅ 𝛽𝑙𝑖𝑚𝑡𝑠 ⋅ 𝑧𝑖 +

∑

𝑡∈ ,𝑠∈
(𝑌 + 𝑌 + ⋅𝑤) ⋅ �̄� 𝑙𝑡𝑠

+
∑

𝑠∈
(𝑗0 − 𝑑1) ⋅ 𝛿𝑙1𝑠 +

∑

𝑠∈

𝑇
∑

𝑡=2
𝑑𝑡 ⋅ 𝛿

𝑙
𝑡𝑠 ≤ 𝜓 ∀𝑙 = 1, 2, 3,…

(29)

𝑤 ∈ Z, 𝜓 ≥ 0, 𝑧𝑖 ∈ {0, 1} ∀𝑖 ∈  (30)

5.3. Algorithmic enhancements

5.3.1. Lower-bound lifting and valid inequalities
In BD, specifically in this problem setting, the optimality gap, which

s the delta between upper and lower bound divided by the upper
ound, may be large in initial iterations due to the poor quality of the

LB. To address this issue, Adulyasak et al. (2015) proposed using initial
cuts, called lower-bound lifting inequalities, for a production routing
problem. Following this idea, we derive problem-specific lower-bound-
ifting cuts for the MP by focusing on the flow costs, i.e., transportation

and inventory costs. These constraints are added to the MP formulation
f Section 5.2. We observe that, depending on the suppliers qualified
n the master problem, the total flow costs cannot be lower than the
ransportation costs in the disruption-free state 𝑐𝑀𝑖𝑚 of the most cost-

efficient transportation mode from a supplier qualified. We define the
additional auxiliary decision variable �̃�𝑖𝑚 ≥ 0 to define the lower-bound
lifting inequalities:
∑

𝑖∈
𝑧𝑖 ≥ 1 (31)
∑

∈,𝑚∈
�̃�𝑖𝑚 = 𝑑𝐴 (32)

�̃�𝑖𝑚 ≤ 𝑑𝐴 ⋅ 𝑧𝑖 ∀𝑖 ∈ , 𝑚 ∈  (33)
∑

∈,𝑚∈
𝑐𝑀𝑖𝑚 ⋅ �̃�𝑖𝑚 + 𝑐𝐻 ⋅ 𝐽0 ≤ 𝜓 (34)

�̃�𝑖𝑚 ≥ 0 ∀𝑖 ∈ , 𝑚 ∈  (35)

Constraint (31) ensures that at least one supplier is qualified. Con-
straint (32) ensures that the total demand is transported via one of
the available transportation modes from qualified suppliers (𝑧𝑖 = 1)
as defined in constraints (33). Based on this, constraint (34) provides
a lower bound for the transportation costs, which account for the
largest part of the total flow cost, and the initial inventory holding
cost based on the pre-defined average starting inventory 𝐽0 until its
ull consumption without any transports. Through these inequalities,
e ensure a higher LB in the initial iterations and a faster convergence
s suppliers with transportation modes that would already be higher in
erms of disruption-free transportation costs are neglected.
833
5.3.2. Branch-and-benders-cut
Instead of solving the updated MP at each iteration, we solve the

enders reformulation in a BC framework, often referred to as branch-
and-benders-cut. To avoid a large number of optimal cuts added within
a single tree, these cuts are added to the master problem only when
an incumbent solution is found. This technique has yielded promising
results in recent research (e.g., Codato & Fischetti, 2006; Crainic et al.,
2021).

5.3.3. Warm start
We obtain a starting solution by solving the deterministic,

disruption-free transportation problem and obtaining its objective value
𝑍𝐷 𝑒𝑡. To further strengthen the model formulation, we add the deter-

inistic solution as a lower bound for the master problem for the initial
iterations.

𝑍𝐷 𝑒𝑡 ≤ 𝜓 (36)

6. Numerical study

We performed numerical tests on eight problem instances of dif-
ferent sizes. Section 6.1 outlines the numerical setup. We evaluate
the effectiveness of our proposed BD solution method in Section 6.2.
Numerical results and sensitivities are shown in Section 6.3.

6.1. Numerical setup

The algorithm is implemented in Python 3.8 using Gurobi 10.0.3.
 desktop PC with an AMD Ryzen 9 5950X 16-Core processor with

3.4 GHz and 128 GB of RAM is used for model execution. All com-
putational results are reported in seconds. We generate eight different
problem sets as summarized in Table 1. Each problem set is gener-
ated in six problem sizes with the number of suppliers |𝐼| ranging
from 2 to 32, suppliers |𝑀| ranging from 2 to 64, 100 scenarios |𝑆|,
and a planning horizon of 365 days. While the number of scenarios
significantly drives computational complexity in two-stage network
design (Alikhani et al., 2023), we obtain first-stage decisions with
only minor differences in inventory capacity investments with 100
scenarios. Of the 24 problem set-size combinations that were solved to
optimality for all test instances, only 10 show a difference between the
maximum and minimum inventory capacity investment observed while
the overall mean of this delta is 0.61, thus less than a single incremental
integer investment capacity. Especially for commodities, even for single
product cases, many suppliers are available to source products from
various distribution facilities worldwide. Demands are constant and
deterministic. We distinguish between problem sets with (𝑃 1−𝑃 4) and
without (𝑃5−𝑃 8) a backup transportation mode per supplier. For the

ain transportation mode, we assume a linear dependence between
disruption free costs 𝑐𝑀𝑖𝑚 and lead time 𝑙𝑚 as shown in Eq. (37):

̂𝑀𝑖𝑚 = −𝑙𝑚 ⋅ 𝑎 + 𝑏 (37)

Specifically, we distinguish a low (𝑎 = 0.0025, 𝑏 = 0.215) and a high
(𝑎 = 0.005, 𝑏 = 0.30) delta on mode costs. All problem instances have
the same disruption-free costs for the supplier with the longest lead
ime, and, thus, are comparable. For this supplier with the longest
ead time, transportation costs in the disruption-free state account for
3% of the product value in comparison to 20% of inventory holding
osts, which represents a typical ratio in the process industry. Thus,
he difference is in the higher disruption-free costs of suppliers with a
horter lead time (high 𝛥 on mode costs). Transportation lead times
ange from 3 to 34 time periods (days). Each additional supplier is
onsidered to have a lower lead time on the main transportation mode
ut higher transportation costs. For all backup transportation modes 𝑚,
he transportation costs are set to 𝑐𝑀𝑖𝑚 = 0.3 with a lead time of 𝑙𝑚 = 14.
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Fig. 3. Convergence behavior of upper and lower bound.
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Table 1
Overview of problem sets.

Problem instance Modes per supplier 𝛥 Mode costs Disruptions

Probability Impact

P1 1 Low Low High
P2 1 High Low High
P3 1 Low High Low
P4 1 High High Low
P5 2 Low Low High
P6 2 High Low High
P7 2 Low High Low
P8 2 High High Low

Disruption events within and across scenarios occur independently
f each other. Scenarios occur with equal probability. In each scenario,

each transport mode can either face no disruption, a single or two
disruptions. We differentiate low-probability but high-impact and a
igh-probability but low-impact disruption situation. All disruption

probabilities and impacts are motivated by the case example of re-
urring disruptions at the Rhine River. We consider a low-probability

situation of 16% probability of a single and 4% of two disruptions
uring the planning horizon. In this situation, disruption impacts range
rom a 200% transportation cost increase to a full transportation stop,
odeled through a Big-M increase of transportation cost. This repre-

ents a situation in which severe disruptions occur every five years
ith severe impacts. In the case of a high-probability but low-impact, a

ingle disruption occurs with a probability of 75% and two disruptions
ith a probability of 20%. Their impacts range from a 40%–80% cost

ncrease, representing a nearly annual recurring disruption that affects
he cost-competitiveness of suppliers but not the general ability to
eliver goods. Each disruption occurs randomly during the planning

horizon with a uniformly distributed disruption length between 20 and
40 days. To account for the disruption uncertainty, we generate three
instances for each problem set in each problem size, thus solving 144
instances in total.

6.2. Algorithm performance

We benchmark our BD against the branch-and-bound algorithm of
urobi (GB) and the classical L-shaped implementation (LSHP) with all

irst-stage decisions in the MP, enhanced with partial BD (Crainic et al.,
2021; Rahmaniani et al., 2017) and lower-bound-lifting constraints.

he algorithms are terminated after 3600 s if no optimal solution is
ound prior. Table 2 summarizes the average results by problem size
nd across problem sets with a backup transportation mode (𝑃 5−𝑃 8).
834
For each problem size, the number of instances solved to optimality is
eported. In addition, we report whether or not a feasible solution was

found. While GB can prove optimal solutions faster for small problem
sizes, the BD algorithm starts to outperform GB, starting with a problem
size of 8 suppliers and 16 transportation modes. Particularly for large
instances, where GB cannot find feasible solutions within the time limit,
the BD can still identify solutions with low average optimality gaps of
1.27%. Additionally, three instances can still be solved to optimality.
Further, the enhanced LSHP leads to sub-optimal results. When keeping
𝑥𝑖𝑚𝑡 in the MP, a facility location problem structure with flows remains.
This is known to converge slowly. While the SP is solved faster, an
enormous number of cuts are needed to prove optimality, which we
can avoid through the alternative split of decision variables in our BD.

To understand the behaviors of the different BD algorithms and their
improvements, Fig. 3 visualizes the convergence curves for our pro-
posed BD algorithm, our proposed algorithm without problem-specific
valid inequalities and lower-bound-lifting constraints (BD-NoLBL), and
the LSHP when solving 𝑃 5 with an instance size of 8 suppliers and
16 transportation modes. Starting with the classical LSHP, one can see
that because of the lower-bound-lifting constraints, the lower bound
approaches the optimal solution relatively fast after 300 s of compu-
tation time. In addition, a strong incumbent solution is found even
slightly faster than for our BD algorithm. However, no further improved
incumbent solution is found, resulting in a remaining gap after the
algorithm is terminated after one hour. Next, we analyze the behavior
of our proposed BD without the problem-specific valid inequalities and
lower-bound-lifting constraint. It takes the longest for this algorithm to
find a strong first incumbent solution (after 2100 s). This incumbent
solution is even better than the LSHP incumbent solution after 3600 s.
However, without the lower-bound-lifting-constraints, we still see no
significant improvement of the lower bound after one hour of computa-
tion time, and thus a remaining large optimality gap. After continuing
the algorithm, finally, a slight improvement of the lower bound can
be observed. Our BD, in comparison, finds the strongest incumbent
solution with a very low gap to optimality because of the lower-bound-
lifting constraints. After 600 s, optimality of the incumbent solution is
proven and the algorithm terminates.

These analyses have demonstrated the added value of both the
problem-specific lower-bound-lifting constraints and the choice of the
actical transportation decision variable 𝑥𝑖𝑚𝑡 in the subproblem as non-
tandard split of decision variables in two-stage stochastic programs.
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Table 2
Comparison of proposed BD algorithm against Gurobi and LSHP.
|𝐼| |𝑀| Average optimality gap Average CPU Feasibility Optimality

BD LSHP GB BD LSHP GB BD LSHP GB BD LSHP GB

2 4 0.00% 0.81% 0.00% 306 3600 221 12/12 12/12 12/12 12/12 0/12 12/12
4 8 0.00% 1.62% 0.00% 1053 3600 1000 12/12 12/12 12/12 12/12 0/12 12/12
8 16 0.04% 2.97% 0.71% 2031 3600 2356 12/12 12/12 12/12 9/12 0/12 8/12
16 32 0.25% 2.63% 2.44% 3257 3600 3600 12/12 12/12 5/12 3/12 0/12 0/12
32 64 1.27% 3.49% – 3412 3600 – 12/12 12/12 0/12 3/12 0/12 0/12
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Table 3
Average optimal strategic resilience decisions across problem instances.

Problem Single-supplier case Multi-supplier case

ResC |𝑧| |𝑤| 𝑅𝑒𝑠𝐶 |𝑧| |𝑤|

Without backup
transportation mode

13.13 1.00 4.42 3.87 2.00 0.31

With backup
transportation mode

8.98 1.00 5.08 3.80 2.00 0.44

6.3. Sensitivity analysis

We discuss the benefits of considering multiple SCR strategies
in a joint decision framework. Specifically, we study the impact of
backup transportation modes (Section 6.3.1), the influence of disrup-
tion characteristics (Section 6.3.2), and the benefits of near-shoring
Section 6.3.3) on optimal decisions and costs by analyzing the dif-

ferences between the problem sets P1–P8. We split the total objective
value in a theoretical minimum cost (𝑀 𝑖𝑛𝐶) obtained by excluding
disruptions from each instance and define the resilience cost (𝑅𝑒𝑠𝐶)
as the delta between the total expected costs and 𝑀 𝑖𝑛𝐶. In addition,
we discuss the impact of lead time aspects for a single supplier with
ifferent backup transportation mode cost settings in Section 6.3.4.

Finally, Section 6.3.5 summarizes the insights from the sensitivity
analysis.

6.3.1. Value of a backup transportation mode
Depending on the specific problem set, there might only be a single

transportation mode that is available to ship products from the supplier
to the production location. Thus, we are interested in understanding
the impact of the availability of a backup transportation mode per
upplier (P5–P8) against sets without this availability (P1–P4). Table 3

summarizes the average results. The availability of a backup transporta-
ion mode has significant effects in the single-supplier case, decreasing
𝑒𝑠𝐶 by 32% on average. Compared to sets with multiple suppliers, the

improvement reduces to 2%. Interestingly, the availability of a backup
transportation mode increases the tendency for inventory investments
𝑤, as additional capacities might be required to grasp the savings from
operational re-routing fully. Overall, we see a significant drop in the
cost-competitiveness of inventory investments once multiple suppliers
are available.

6.3.2. Influence of disruption characteristics
Research in SCR literature has focused mostly on low-probability

high-impact events. Table 4 presents the average results for the single
and multi-supplier case when faced with different disruption charac-
teristics. Interestingly, we see a shift in the importance of inventory
investments. For low-probability but high-impact disruptions, signifi-
ant investments of 6.58 additional inventory capacity units for the
ingle-supplier case are needed, while they are reduced to nearly no
nvestments when multiple suppliers are available. For high-probability
isruptions, investments remain at least of some significance. While
he resilience costs 𝑅𝑒𝑠𝐶 are not directly comparable between the two
isruption probability characteristics, we see that the costs of the low-
robability but high-impact disruptions can be more efficiently reduced
hrough using multiple suppliers.
835
Table 4
Average optimal strategic resilience decisions and costs for different probability
characteristics.

Single-supplier case Multi-supplier case

ResC |𝑧| |𝑤| ResC |𝑧| |𝑤|

Low-probability/high-impact 9.80 1.00 6.58 2.62 2.00 0.08
High-probability/low-impact 12.31 1.00 2.92 5.01 2.00 0.69

6.3.3. Cost-competitiveness of near-shoring
Lastly, we study the effects of near-shoring, thus sourcing from

loser suppliers at higher transportation prices. We solve problem sets
5–P8 with 16 suppliers and set lead times from 4 to 34 days without
hanging the disruption-free transportation costs 𝑐𝑀𝑖𝑚 . Thus, transporta-
ion costs of the fastest supplier are 30% higher than the slowest for
he low delta on mode cost sets (60% for 𝛥 Mode: High). By only
llowing suppliers with high lead times, we obtain the optimal costs
nd decisions without near-shoring. Table 5 summarizes the results by

the delta on mode costs and the disruption characteristics. For our high
delta on mode costs, near-shoring is not a cost-competitive strategy as
no closer supplier is considered in any of the instances. This changes for
the low delta scenario. While near-shoring can reduce the 𝑅𝑒𝑠𝐶 slightly
for the low-probability and high-impact disruption situation (2.63%),
these costs can be reduced by 23.93% for a high disruption probability.

6.3.4. Influence of time for the backup transportation mode
We discuss the impact of lead time aspects for the backup trans-

portation mode on the optimal total resilience costs. So far, we have
assumed a backup transportation mode with a fixed lead time of 14
ays and a 130% cost increase compared to the lowest-cost sourcing
ption in the disruption-free state. While we have analyzed the impact
f multiple suppliers with shorter lead-times at higher costs, we want
o understand the interdependence between the backup transportation
ode costs and lead times in a single supplier setting. Fig. 4 summarizes

the results for three different costs of the backup transportation mode
̂𝑀𝑖𝑚 , a lead time from 4 to 34 days, and a main transportation mode

ith a lead time of 14 days that is prone to disruptions with costs of
.13 in the disruption-free state.

Three main insights are drawn. First, as past orders triggered lead
time periods prior to a disruption cannot be canceled, there is limited
value in lead times of a backup transportation modes that are shorter
than the incumbent main transportation mode lead time. In contrast,
we even observe negligible resilience cost increases due to inven-
tory effects in operational re-routing. However, secondly, if backup
transportation mode lead times increase above 14 days, the overall
resilience costs increase dramatically by up to 186% in the case of
̂𝑀𝑖𝑚 = 0.15. Lastly, this potential increase strongly depends on the
cost delta between the main transportation mode and the backup
transportation mode. While this 186% increases reduces to 19% for
̂𝑀𝑖𝑚 = 0.3, even these high backup transportation mode costs still can
lower the resilience costs.

6.3.5. General insights on cost-competitiveness of resilience strategies
We summarize the findings of the numerical study based on the

est instances P1–P8, which cover a variety of potential situations
ecision-makers will face in practice.
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Table 5
The effect of near-shoring on average resilience costs with different disruption characteristics.

Low-probability/high-impact High-probability/low-impact

𝛥 Mode costs: Low 𝛥 Mode costs: High 𝛥 Mode costs: Low 𝛥 Mode costs: High

ResC |𝑧| |𝑤| ResC |𝑧| |𝑤| ResC |𝑧| |𝑤| ResC |𝑧| |𝑤|

No near-shoring 2.63 2.00 0.00 2.72 2.00 0.00 4.85 2.00 0.67 5.09 1.67 2.67
W. near-shoring 2.56 2.00 0.00 2.72 2.00 0.00 3.91 2.00 0.33 5.09 1.67 2.67
Fig. 4. Relationship between backup transportation mode costs and lead time.
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• Especially in sourcing situations where only a single supplier is
available (e.g., highly specialized products to be sourced), there
is a high need to understand the possibilities of backup transporta-
tion modes in case the main transportation mode is disrupted.
Even if these backup transportation modes require significant
cost increases (e.g., more than 100%), they can still be valu-
able as long as they represent an improvement compared to the
maximum disruption surcharges. The same accounts for sourcing
situations in which multiple suppliers are generally available but
sourcing is limited to a specific region in which multiple suppliers
share the same transportation mode (e.g., ports, sea routes, inland
waterways, etc.).

• Disruption probabilities and impacts have a direct effect on the
cost-competitiveness of resilience strategies. Interestingly, there is
an inter-dependence between the various measures and the char-
acteristics of low-probability/high-impact and high-probability/
low-impact disruption scenarios. While in cases where only one
supplier is available, optimal inventory investments in the cost-
optimal state are higher, this characteristic changes in the multi-
supplier case.

• Near-shoring can be an efficient resilience strategy for disruptions
that occur often enough and in situations where the lead times of
the main transportation mode prone to disruptions can be signifi-
cantly reduced. While in the low-probability but high-impact dis-
ruption scenario both high and low 𝛥 mode costs are significantly
lower for the fastest supplier (60% and 120%), the resilience
costs can only be reduced on a modest level. At the same time,
significant savings can be achieved through near-shoring for the
high-probability/low-impact case.

7. Case study

A case study, motivated by a real-life example, assesses the cost-
competitiveness of resilience strategies based on actual disruption data.
Section 7.1 introduces the case in detail, while Section 7.2 presents
umerical results. Finally, managerial insights are drawn in Section 7.3.
836
7.1. Case introduction

This case is based on a real-life example from a chemical company
ocated on the border of the Rhine River, Germany. Typical for the
egion, more than 40% of the inbound supply is transported through
nland shipping via the Rhine River and transportation accounts for up
o 10% of sourcing costs. Within our analysis, we focus on one exem-
lary product whose transport costs account for 10% of the sourcing
osts, normalized at a value of 1. Inventory holding consist of capital,
andling, storage, and depreciation costs. We assume annual inventory
olding costs of 20% of the product value (𝑐𝐻 = 0.2). In the chemical
ndustry, material shortage costs typically exceed the sum of finished
ood lost margins and customer penalty costs as complex production
ystems need to be shut down and re-started. After a restart, it can
ake hours to days to produce again a quality sufficient for customer
equirements. Thus, we assume shortage costs that equal product value
𝑐𝑁 = 1).

Without disruptions, sourcing from Asia via ocean transport fol-
lowed by inland shipping is the most cost-efficient transportation mode
(𝑚 = 1). This mode has the longest lead time of 𝑙1 = 21 and,
without disruptions, the lowest transportation costs of 𝑐𝑀11 = 0.1 per
nit transported. However, this mode is prone to recurring disruptions
ue to water level changes that lead to surcharges depending on daily
ater levels as part of long-term contractual agreements between the

ransportation carriers and the case company. We focus on three trans-
ortation alternatives to highlight the influences of lead time and cost
ifferences. All are assumed to be free of disruptions. The product can
e air shipped (𝑚 = 2), however at very high transportation costs 𝑐𝑀22 =
.5 but in short lead time (𝑙2 = 7) by the main supplier (𝑖 = 1). Two
dditional near-shore suppliers (𝑖 = 2; 𝑖 = 3) are available to deliver the
roducts. From the closest supplier, products can be transported via
ruck (𝑚 = 3) in very short lead time (𝑙3 = 3) at a modest price increase
̂𝑀23 = 0.14. Even at lower costs 𝑐𝑀34 = 0.12, but with higher lead times
𝑙4 = 14), rail shipments (𝑚 = 4) from eastern Europe are possible.

Concerning the disruption uncertainty of the cheapest transporta-
tion mode, Fig. 5 shows the water level fluctuations on the river Rhine
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Fig. 5. Historical water levels at shipment critical point for river Rhine as main transportation mode (𝑚 = 1). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Table 6
Transportation costs per container transported depending on water level.

Water level [cm] <80 <90 <100 <110 <130 <150 <460 <640 ≥640

Costs [EUR] – 415 340 295 250 205 115 205 –

for the last eight years. As can be seen, transportation stops due to
ow water levels occurred in 2015, 2017, 2018, 2020, and 2022, while
igh tides caused transportation stops in 2018 and 2021. In addition,
ccurrences where low water levels force vessels to carry reduced
apacities and thus result in surcharges occur regularly. In addition,

Fig. 5 shows seasonal patterns as well. For example, high tides happen
xclusively in winter while low water levels are typically seen in late
ummer or autumn. Transportation surcharges for low and high water
evels are significant, as highlighted in Table 6. Overall, the contractual
urcharges range from a 78% to a 261% cost increase compared to

water levels between 150 and 460 cm, while on water levels less
than 80 cm and higher than 640 cm, no transportation is possible.
The orange line in Fig. 5 highlights water level thresholds for cost
increases and the red line indicates transportation stops. To ensure
that we cover the uncertainty of the problem entirely, we construct
additional scenarios beyond the eight years of history and surcharges
available (Contargo, 2023) by combining all quarters of each year
andomly. As a result, we obtain 92 additional scenarios where each
cenario occurs with a possibility of 𝜋𝑠 =

1
100

.

7.2. Numerical results

7.2.1. Cost-optimal decision with uncertainty
Fig. 6 summarizes the cost-effectiveness from risk-taking to the full

integrated decision model. Each delta (light blue bars) describes the
cost-impact for the decision maker to consider the resilience strate-
gies mentioned starting from the risk-taking strategy. The tactical bar
describes the total expected costs when only allowing second-stage
decisions. As a result, the following conclusions can be drawn. First,
ecision-makers need to invest in resilience as risk-taking results in
837

R

the highest total expected costs of 386 (123% cost increase compared
to the disruption-free costs). Second, there is a clear need for a joint
onsideration of resilience strategies. For example, allowing operational
e-routing as well as a tactical inventory decision without any strategic
easures improves the expected costs by 30% while the incorporation

of all resilience strategies improves the total expected costs by 50%. In
addition, the interdependence of the resilience strategies is highlighted
as the incorporation of multi-sourcing increases the optimal inventory
nvestment by 33% additional capacity. Lastly, still, the total expected

costs across the eight years are 10% higher than the disruption-free
ideal state. This shows that all strategies can only limit the disruption-
driven cost increase. However, significant cost savings can be achieved
compared to risk-taking.

Besides the optimal resilience strategies chosen, we are further
interested in the potential effects of seasonality. Fig. 7 shows the
average inventory across all scenarios and for the planning horizon of
one year. As can be seen, the average inventory level varies throughout.
Peak inventories can be seen in January (𝑡 = 0−10), May (𝑡 = 120−130,
and August (𝑡 = 230−240) while no inventory is held in parts of April
(𝑡 = 90−120) and July (𝑡 = 180−200). These peaks follow seasonal water
level fluctuations. Time periods with no disruptions are either used to
avoid inventory carrying, as in April, or increase inventory to peaks
just prior times of increased disruption uncertainty, as in August for
September. Thus, the tactical inventory decision is clearly influenced
by seasonal characteristics. As a result, this emphasizes the need to
evaluate potential disruption probability shifts during the planning
horizon.

7.2.2. Benefit of information window increase through disruption prediction
As defined in Section 3.2, the information window describes the

ime a disruption is known to the decision-maker in its length and
impact prior to the actual occurrence. To this end, all results are
btained taking no information window into account, i.e., assuming a
isruption is not known in advance. However, significant efforts have
een made to forecast disruptions, such as the water levels on the river
hine in Germany (e.g., Bazartseren et al., 2003; Toonen, 2015). Thus,
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Fig. 6. Impact of resilience strategies on total expected cost. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 7. Optimal average inventory for all scenarios across the planning horizon.
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we want to understand the impact of the ability to predict disruptions
hile varying the lead times of the alternative transportation modes.

We increase the information window from 0 to 21 days, represent-
ng a maximum ability to predict disruptions of three weeks. Further,
e analyze three different situations for the backup transportation
odes. First option I with very short lead times (𝑙3 = 1, 𝑙4 = 7), second

ption II with modest lead times (𝑙3 = 7, 𝑙4 = 14), and third option III
ith long lead times (𝑙3 = 14, 𝑙4 = 21). In practice, this represents three

ituations with varying geographical distances and available transporta-
ion modes of the backup suppliers. Fig. 8 highlights the results and
heir effects on the total resilience costs in %. The highest costs are
bserved for the last option with a time window of 0 days (set to
00% resilience costs). In comparison, without the ability to predict
he disruption, shorter lead times already lower the resilience costs by
ore than 17%. In addition, knowing disruptions up to three weeks

n advance can reduce resilience costs by up to 10%. Thus, the combi-
ation of shorter lead times and the ability to predict disruptions can
educe resilience costs by 27%. Generally, the resilience costs decrease
ith the information window, while the degree of reduction depends on

he specific lead times. Overall, backup transportation modes’ lead time
ignificantly impacts the resilience costs. Thus, considering a backup
ransport alternative with shorter lead times but higher transportation
osts could be more cost-competitive.

7.2.3. Limited operational re-routing capacities
So far, we have assumed unlimited operational re-routing capac-

ties. However, alternative suppliers or transportation modes might
nly offer limited capacities on the operational level depending on
he disruption characteristics or the product to be sourced. Thus, we
onduct a sensitivity analysis by limiting the second-stage additional
rder quantities �̂�𝑖𝑚𝑡𝑠 to a maximum of daily demand 𝑅𝑖𝑚 by adding
onstraints (38) to the model formulation. We increase 𝑅 from 0% to
838

𝑖𝑚
180% in steps of 20%. In addition, we vary the information window
rom 0 to 3 days.

̂ 𝑖𝑚𝑡𝑠 ≤ 𝑅𝑖𝑚 ∀𝑖 ∈ , 𝑚 ∈ , 𝑡 ∈ 𝑠, 𝑠 ∈  (38)

Table 7 summarizes the results. All information windows result in the
identical total expected costs for a re-routing capacity of 0%. Using
this as a baseline, we show the resilience cost improvements in %. The
highest reductions can already be achieved if only a share of the daily
demand can be operationally re-routed from alternative suppliers or
through alternative transportation modes. In the case example, a re-
outing capacity of 40% of the daily demand volume already achieves
ore than half of the full potential with unlimited re-routing. This

ffect can be explained through additional inventory requirements to
enefit from unlimited re-routing capacities fully. Whereas no inven-
ory investment 𝑤 is required for the low capacities, starting from 80%,

the benefits of re-routing require an inventory investment of 𝑤 = 1,
and in case of unlimited re-routing capacities, an investment of 𝑤 = 2.

he effects on the information window become increasingly relevant
the higher the overall operational re-routing capacity. Whereas an
information window of 1 day has only a minor cost effect for capacities
≤ 60%, the resilience costs are reduced by more than 10% for the
unlimited capacities case (see Section 7.2.2).

7.3. Managerial insights

To summarize, the following insights are drawn:

• For high-probability but low-impact disruption situations, near-
shoring can significantly reduce resilience costs even when trans-
portation costs are 30% higher in the disruption-free state.

• Disruption probability characteristics influence the cost-
competitiveness of inventory as SCR strategy. For equal prob-
abilities, as in our numerical study, inventory investments are
mainly competitive when backup transportation modes or al-
ternative suppliers are unavailable. In the case, however, the
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Fig. 8. Effect of disruption prediction on various lead-times of backup transportation modes.
Table 7
Potential of re-routing capacities on resilience cost reduction based on scenario without re-routing.

Information
window [days]

Maximum capacities for daily operational re-routing [% of daily demand]

0 20 40 60 80 100 120 140 160 180 ∞

0 – 9% 13% 16% 18% 20% 20% 20% 20% 20% 21%
1 – 9% 14% 17% 20% 21% 22% 22% 22% 23% 24%
2 – 10% 15% 18% 21% 22% 23% 23% 23% 24% 24%
3 – 10% 15% 19% 21% 23% 23% 24% 24% 24% 25%
o
t
d
n

f
o

seasonal disruption characteristics result in time-dependent in-
ventory build-ups along the planning horizon. Inventory build-ups
can be efficient in time periods with low disruption probability
prior to time periods with an increased disruption probability. In
comparison, equal disruption probabilities would demand high
inventory levels throughout the planning horizon, which lowers
the cost-competitiveness of inventory as SCR strategy.

• The possibility to predict disruptions in the short-term, i.e., days
in advance, can significantly lower resilience costs. Most notably,
the biggest reductions can already be achieved if a disruption is
known a day earlier, as operational re-routing can be triggered.
To benefit from this potential, sufficient operational re-routing
capacities must be available. Similar to the prediction ability,
the largest share of improvement potential is already achieved
if at least 60% of the daily demand can be re-routed on the
operational level. In addition, investing a premium in near-shore
backup suppliers, i.e., at higher transportation rates but lower
lead times, can be cost-competitive, particularly with the ability
to predict disruptions.

8. Conclusion and outlook

We have addressed disruption uncertainty in the integrated trans-
portation problem from the strategic to operational level within a
wo-stage decision process. To solve large problem instances efficiently,
e have proposed a BD algorithm enhanced through valid and lower-
ound-lifting inequalities, branch-and-benders-cut, and a warm-start
euristic. The computational results show that the BD algorithm finds

strong solutions for large problem instances, or even optimal ones,
where commercial solvers do not find feasible solutions. Through nu-
merical studies and a case from the chemical industry, we have shown
that disruption probability characteristics influence the choice of opti-
mal resilience strategies on strategic and tactical levels as well as costs.
Near-shoring, even at higher disruption-free costs, can help to signifi-
cantly lower costs when disruptions occur regularly. If sufficient daily
operational re-routing capacities are available, predicting disruptions
at least a day in advance can significantly lower resilience costs.

Although we have highlighted the benefits of our models and so-
ution approach, our study is not without limitations. We studied

a single-product SCND problem with a single echelon and demand
839
destination. Thus, the proposed model can set the stage for future
models that consider lead times for transporting multiple products
with multiple inventory storage points under disruption uncertainty to
understand the effects of various product characteristics on the optimal
SCR strategy mix. Further, it would be interesting to analyze the impact
f resilience strategy mixes for other industries with different cost struc-
ures. Another interesting research direction would be incorporating
ata-driven techniques to more adequately account for the stochastic
ature of the problem at hand.
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