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Abstract
This paper provides a characterization of when two expansive matrices yield the same
anisotropic local Hardy and inhomogeneous Triebel–Lizorkin spaces. The characterization
is in terms of the coarse equivalence of certain quasi-norms associated to the matrices. For
nondiagonal matrices, these conditions are strictly weaker than those classifying the coin-
cidence of the corresponding homogeneous function spaces. The obtained results complete
the classification of anisotropic Besov and Triebel–Lizorkin spaces associated to general
expansive matrices.
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1 Introduction

For an expansive matrix A ∈ GL(d, R), consider Schwartz functions ϕ,� ∈ S(Rd) whose
Fourier transforms ϕ̂,̂� satisfy the support conditions

supp ϕ̂ ⊆ (− 1
2 ,

1
2

)d \ {0} and supp ̂� ⊆ (− 1
2 ,

1
2

)d
,

and the positivity condition

sup
i∈N

max{|ϕ̂((A∗)−iξ)|, |̂�(ξ)|} > 0 for all ξ ∈ R
d .
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The associated inhomogeneous Triebel–Lizorkin space Fα
p,q(A) with α ∈ R, p ∈ (0,∞)

and q ∈ (0,∞] is defined as the space of all tempered distributions f ∈ S ′(Rd) such that

‖ f ∗ �‖L p +
∥

∥

∥

∥

( ∞
∑

i=1

(| det A|αi | f ∗ ϕA
i |)q

)1/q∥
∥

∥

∥

L p
< ∞, (1.1)

where ϕA
i := | det A|iϕ(Ai ·) for i ∈ N,with the usual modification for q = ∞. For a general

expansive matrix A, the spaces Fα
p,q(A) were first introduced in [5] and have been further

studied in, e.g., [1, 4, 7, 10]. The scale of Triebel–Lizorkin spaces Fα
p,q(A) includes, among

others, the Lebesgue spaces L p = F0
p,2(A) for p ∈ (1,∞), and the anisotropic local Hardy

spaces hp(A) = F0
p,2(A) for p ≤ 1; see Sect. 3.2 for its definition.

The aim of the present paper is to determine when two expansive matrices A, B ∈
GL(d, R) define the same inhomogeneous Triebel–Lizorkin space Fα

p,q(A) = Fα
p,q(B). For

diagonal matrices with positive anisotropy, the question of whether the associated Triebel–
Lizorkin space depends on the choice of such anisotropy was considered in [13] (see also
[14, Section 5.3]). For two such matrices A and B, it can be shown that the associated spaces
Fα

p,q(A) and Fα
p,q(B) coincide precisely if A = Bc for some c > 0; or if p ∈ (1,∞), q = 2,

and α = 0, so that L p = F0
p,2(A) = F0

p,2(B). The same question for function spaces associ-
ated to general expansive matrices is more delicate and was investigated first for anisotropic
Hardy spaces H p(A), p ∈ (0, 1] (see Sect. 3.2 for a definition): In [2, Chapter 1, Theo-
rem 10.5], it was shown that H p(A) = H p(B) for some (equivalently, all) p ∈ (0, 1] if, and
only if, two homogeneous quasi-norms ρA and ρB associated to A and B are equivalent, in
the usual sense of quasi-norms. Corresponding results for homogeneous anisotropic Besov
and Triebel–Lizorkin spaces were only more recently obtained in [6, 9], respectively.

In contrast to the case of homogeneous function spaces, the equivalence of two homoge-
neous quasi-norms ρA and ρB corresponding to general expansivematrices A and B turns out
to be not necessary in general for the coincidence of the associated inhomogeneous function
spaces. More precisely, in [6, Theorem 6.4], it is shown that two inhomogeneous anisotropic
Besov spaces defined by A and B coincide if and only if the quasi-norms ρA∗ and ρB∗ asso-
ciated to the adjoints A∗ and B∗ are coarsely equivalent, which can be understood as the
quasi-norms being merely equivalent at infinity (see Sect. 2.2). For simplicity, two expansive
matrices A and B are said to be (coarsely) equivalent if their associated quasi-norms ρA and
ρB are (coarsely) equivalent. We mention that various explicit and verifiable criteria for the
(coarse) equivalence of two matrices A and B in terms of spectral properties are contained
in [2, Chapter 1, Section 10] and [6, Section 7].

In the present paper, we provide a refinement of the approach towards the classification of
homogeneous spaces [9], and show that matrices yielding the same scale of inhomogeneous
Triebel–Lizorkin spaces are characterized by coarse equivalence. Our main result is the
following theorem, proven in Sect. 5.7:

Theorem 1.1 Let A, B ∈ GL(d, R) be expansive. The following assertions are equivalent:
(i) Fα

p,q(A) = Fα
p,q(B) for some (α, p, q) ∈ R × (0,∞) × (0,∞] with (α, p, q) /∈ {0} ×

(1,∞) × {2};
(ii) Fα

p,q(A) = Fα
p,q(B) for all α ∈ R, p ∈ (0,∞), and q ∈ (0,∞];

(iii) A∗ and B∗ are coarsely equivalent.

Theorem 1.1 complements the classification of homogeneous Triebel–Lizorkin spaces in
[9], and the classification of homogeneous and inhomogeneous Besov spaces in [6]. Com-
bined with these previous results, Theorem 1.1 completes the classification of all anisotropic
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Besov and Triebel–Lizorkin spaces introduced in [3, 5]. In the particular case α = 0,
p ∈ (0, 1] and q = 2, Theorem 1.1 provides also a new result for anisotropic local Hardy
spaces [1], and complements the classification of (nonlocal) anisotropic Hardy spaces in [2].

The proof method for establishing Theorem 1.1 follows the overall structure of the classi-
fication of homogeneous Triebel–Lizorkin spaces in [9]. The key ingredients for the sufficient
condition onmatrices are maximal inequalities involving a Peetre-type maximal function (cf.
Sect. 4), and the necessary condition proceeds by establishing norm estimates for auxiliary
functions and reduction to the case p = 2 using Khintchine’s inequality (cf. Sect. 5). Our
arguments for the case α = 0, p ∈ (0, 1] and q = 2 follow the overall proof structure of
[2, Chapter 1, Theorem 10.5], while adding a significant detail for the case p = 1 that was
missing in [2] (see Remark 5.11).

Despite the similarities in the overall proof structure, the arguments in the inhomogeneous
case are more subtle and need to be more refined than their counterparts for homogeneous
function spaces in [2, 9], for at least the following two reasons:

(1) The coarse equivalence of A and B does not imply their equivalence;
(2) The coarse equivalence of A and B is not equivalent to that of A∗ and B∗.
The equivalence of quasi-norms and the stability of equivalence under taking adjoints are
properties repeatedly used in [9]. Although the notions of equivalence and coarse equivalence
are equivalent for diagonal matrices, this is not necessarily the case for nondiagonal matrices
(see [6, Remark 7.10]). As such, various parts of the arguments in [2, 9] require nontrivial
changes and new ideas in the inhomogeneous case, which we point out throughout the text.

Lastly, we mention that as in the homogeneous case [9], it appears that the classification
of inhomogeneous Triebel–Lizorkin spaces cannot be deduced from the general framework
of Besov-type decomposition spaces [17], unlike the case of anisotropic Besov spaces [6].

The organization of the paper is as follows: Sects. 2 and 3 are devoted to backgroundmate-
rial on expansive matrices and inhomogeneous function spaces, respectively. The sufficient
condition for the classification of matrices is proven in Sect. 4, and the necessary condition
is proven in Sect. 5. Some technical results are postponed to the appendices.

Notation

For two functions f1, f2 : X → [0,∞) on a set X , we write f1 � f2 whenever there exists
a constant C > 0 such that f1(x) ≤ C f2(x) for all x ∈ X . The notation f1 
 f2 is used
to denote that f1 � f2 and f2 � f1. For a function f : X → C, we denote its (possibly
nonclosed) support by supp f := {x ∈ X : f (x) �= 0} and denote its closure by supp f .

The Euclidean norm of a vector x ∈ R
d is denoted by |x |, and we write B(x, r) for the

associated open Euclidean ball of radius r > 0 and center x ∈ R
d . The Lebesgue measure

of a measurable set � ⊆ R
d is denoted by m(�). We write N := {k ∈ Z : k ≥ 1} and

N0 := N ∪ {0}. For a multi-index σ ∈ N
d
0 , we define its length by |σ | := ∑d

j=1 σ j .

The Fourier transform of a function f ∈ L1(Rd) is defined as ̂f (ξ) =
∫

Rd f (x)e−2π i x ·ξ dx for ξ ∈ R
d , where x · ξ denotes the ordinary dot product. We also

use the notation F and F−1 for the Fourier transform and its inverse. Recall that the Fourier
transform restricts to a continuous linear map F : S(Rd) → S(Rd) on the space S(Rd) of
Schwartz functions, and by duality to a continuous linear map F : S ′(Rd) → S ′(Rd) on
the space S ′(Rd) of tempered distributions, given by ̂φ( f ) := φ(̂f ) for φ ∈ S ′(Rd) and
f ∈ S(Rd).

For f : R
d → C, we define f ∗ : R

d → C by f ∗(x) = f (−x). The translation and
modulation of a function f : R

d → C are defined as Ty f (x) = f (x − y) and Mξ f (x) =
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e2π i x ·ξ f (x) for x, y, ξ ∈ R
d . For p ∈ (0,∞) and a matrix M ∈ GL(d, R), we define the

associated dilation by D p
M f (x) = | det M |1/p f (Mx). For A ∈ R

d×d , we write A∗ := AT

for the transpose of A.

2 Expansivematrices, homogeneous quasi-norms and inhomogeneous
covers

This section provides background on expansivematrices and their associated spaces of homo-
geneous type. In addition, various properties of covers generated by powers of expansive
matrices are provided. References for the material in this section are, e.g., [2, 6].

2.1 Expansive dilations

Given a matrix A ∈ R
d×d , its spectrum is denoted by σ(A) ⊆ C. A matrix A ∈ GL(d, R)

is said to be expansive if |λ| > 1 for all λ ∈ σ(A).

Throughout, for an expansive matrix A, let λ−(A) and λ+(A) denote two fixed numbers
satisfying

1 < λ−(A) < min
λ∈σ(A)

|λ| and λ+(A) > max
λ∈σ(A)

|λ|,

and let ζ+(A) := ln λ+(A)/ ln | det A| and ζ−(A) := ln λ−(A)/ ln | det A|.
If A is an expansive matrix, then there exists an ellipsoid �A, that is, a set of the form

�A = {x ∈ R
d : |Px | < 1} for some P ∈ GL(d, R), and there exists some r > 1 such that

�A ⊆ r�A ⊆ A�A, (2.1)

and, additionally, m(�A) = 1, cf. [2, Chapter 1, Lemma 2.2]. The choice of an ellipsoid
satisfying (2.1) is not necessarily unique. For this reason, given an expansive matrix A, we
will fix one choice of ellipsoid �A associated to A.

2.2 Homogeneous quasi-norms

A homogeneous quasi-norm associated to an expansive matrix A is a measurable function
ρA : R

d → [0,∞) satisfying:

(q1) ρA(x) = 0 if and only if x = 0;
(q2) ρA(Ax) = | det A|ρA(x) for all x ∈ R

d ;
(q3) there exists C > 0 such that ρA(x + y) ≤ C(ρA(x) + ρA(y)) for all x, y ∈ R

d .

Two homogeneous quasi-norms ρA, ρB associated to expansive matrices A and B are said
to be equivalent if there exists C > 0 such that

1

C
ρA(x) ≤ ρB(x) ≤ CρA(x) for all x ∈ R

d . (2.2)

Similarly, two homogeneous quasi-norms ρA and ρB associated to A and B are said to be
coarsely equivalent if there exist constants C > 0 and R ≥ 0 such that

1

C
ρA(x) − R ≤ ρB(x) ≤ CρA(x) + R for all x ∈ R

d . (2.3)
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Clearly, any two equivalent quasi-norms are also coarsely equivalent, but the converse is not
true in general, cf. [6, Remark 7.10].

By [2, Chapter 1, Lemma 2.4], any two quasi-norms ρA, ρ′
A associated to a fixed matrix

A are equivalent. We will simply say that two expansive matrices A and B are equivalent
(resp. coarsely equivalent) if their associated quasi-norms are equivalent (resp. coarsely
equivalent).

In the sequel, we work with a specific choice of quasi-norm; namely, we will use the
so-called step homogeneous quasi-norm ρA associated to A, defined by

ρA(x) =
{

| det A|i , if x ∈ Ai+1�A \ Ai�A,

0, if x = 0,

where �A is the fixed ellipsoid from (2.1); see [2, Chapter 1, Definition 2.5]. For this quasi-
norm, it is easy to see that it is symmetric, in the sense that ρA(x) = ρA(−x) for all
x ∈ R

d .

Lastly, we state the following characterization of coarse equivalence of two matrices,
which we will use in the proof of the main theorem. See [6, Lemma 4.10] for a proof.

Lemma 2.1 ([6]) Let A, B ∈ GL(d, R) be expansive. Then A and B are coarsely equivalent
if and only if

sup
k∈N

∥

∥A−k B�εk�∥
∥ < ∞,

where ε = ε(A, B) := ln | det A|/ ln | det B|.

2.3 Inhomogeneous covers

Let A ∈ GL(d, R) be an expansive matrix and fix an open set Q ⊆ R
d with compact closure

Q ⊆ R
d \{0}.An inhomogeneous cover induced by A is a family (Q A

i )i∈N0 of sets Q A
i ⊆ R

d ,

where Q A
i = Ai Q for i ≥ 1, and Q A

0 ⊆ R
d is any relatively compact open set with the

property that
⋃

i∈N0
Q A

i = R
d .

For two inhomogeneous covers (Q A
i )i∈N0 and (P B

j ) j∈N0 induced by expansive matrices
A and B respectively, define, for fixed i, j ∈ N0, the index sets

Ji := {� ∈ N0 : Q A
i ∩ P B

� �= ∅} and I j := {� ∈ N0 : Q A
� ∩ P B

j �= ∅}. (2.4)

Moreover, given i ∈ N0 and n ∈ N0, define the index sets in∗ ⊆ N0 inductively as

i0∗ := {i} and i (n+1)∗ := { j ∈ N0 : Q A
k ∩ Q A

j �= ∅ for some k ∈ in∗}. (2.5)

We will also often simply write i∗ for i1∗. If we need to make clear whether the sets in∗ are
computed with respect to the cover (Q A

i )i∈N0 or the cover (P B
j ) j∈N0 , we write in∗A or in∗B .

Following the terminology of [17], the cover (Q A
i )i∈N0 is said to be almost subordinate

to (P B
j ) j∈N0 if there exists k ∈ N0 such that for every i ∈ N0 there exists ji ∈ N0 with

Q A
i ⊆ ⋃

j∈ j k∗
i

P B
j . In addition, the covers (Q A

i )i∈N0 and (P B
j ) j∈N0 are said to be equivalent

if (Q A
i )i∈N0 is almost subordinate to (P B

j ) j∈N0 , and vice versa.
The following result provides a characterization of the coarse equivalence of two matri-

ces in terms of geometric properties of their associated inhomogeneous covers; cf. [6,
Lemma 6.3]. These properties are the ones that will actually be used/verified in our proof of
Theorem 1.1.
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Lemma 2.2 ([6]) Let A, B ∈ GL(d, R) be expansive matrices and let (Q A
i )i∈N0 and

(P B
j ) j∈N0 be inhomogeneous covers induced by A and B, respectively. Then the following

assertions are equivalent:
(i) A and B are coarsely equivalent;
(ii) (Q A

i )i∈N0 and (P B
j ) j∈N0 are equivalent;

(iii) supi∈N0
|Ji | + sup j∈N0

|I j | < ∞.

In the remainder of this subsection, we collect several additional observations about the
index sets defined in Eqs. (2.4) and (2.5) that will be used later. We begin with the following
inclusion property for the sets defined in Eq. (2.5). Its proof is similar, but not identical, to
that of [6, Lemma 5.2].

Lemma 2.3 Let A ∈ GL(d, R) be expansive and let (Q A
i )i∈N0 be an inhomogeneous cover

induced by A. Then there exists M ∈ N such that, for all i ∈ N0,

i∗ ⊆ {� ∈ N0 : |� − i | ≤ M}.
Proof By definition of an inhomogeneous cover induced by A, there exists an open set
Q ⊂ R

d with compact closure Q ⊆ R
d \ {0} and such that Q A

j = A j Q for all j ∈ N.

Moreover, Q A
0 ⊆ R

d is open and relatively compact. Thus, we can choose R > 0 sufficiently
large such that

Q A
0 ⊆ B(0, R) and Q ⊂ CR := {x ∈ R

d : 1
R ≤ |x | ≤ R}.

By [2, Chapter 1, Section 2], there exists a constant c > 0 satisfying

1

c
λ

j
− |x | ≤ |A j x | ≤ c λ

j
+ |x | for all j ∈ N0 and x ∈ R

d ,

where λ± = λ±(A) > 1 are as in Sect. 2.1. Fix some M ∈ N so large that

M ≥ ln(cR2)/ ln(λ−).

The remainder of the proof is divided into two cases, which together easily imply the claim.

Case 1. We show that if i, � ∈ N satisfy Q A
i ∩ Q A

� �= ∅, then |i − �| ≤ M . By symmetry,
we can clearly assume that � ≥ i . Since ∅ �= Ai Q ∩ A�Q, and thus

∅ �= Q ∩ A�−i Q ⊆ CR ∩ A�−i CR,

there exists some x ∈ CR such that A�−i x ∈ CR as well. But this implies

R ≥ |A�−i x | ≥ 1

c
λ�−i− |x | ≥ 1

cR
λ�−i− ,

and this easily implies 0 ≤ � − i ≤ ln(cR2)/ ln(λ−) ≤ M, as desired.

Case 2. If Q A
0 ∩ Q A

i �= ∅ for some i ∈ N, then there exists x ∈ Q ⊆ CR satisfying
Ai x ∈ Q A

0 ⊆ B(0, R). Hence,

R ≥ |Ai x | ≥ 1

c
λi− |x | ≥ 1

cR
λi−,

which yields i ≤ ln(cR2)/ ln(λ−) ≤ M . ��
As a consequence of the previous two lemmata, we obtain the following corollary.
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Corollary 2.4 With notation as in Lemma 2.2, the following holds: If A and B are coarsely
equivalent, there exists a constant C > 0 such that whenever Q A

i ∩ P B
j �= ∅ for some

i, j ∈ N0, then

1

C
| det B| j ≤ | det A|i ≤ C | det B| j .

Proof For ease of notation, let us set P B
j := P0 for j ∈ Zwith j < 0. If A and B are coarsely

equivalent, then the covers (Q A
i )i∈N0 and (P B

j ) j∈N0 are equivalent by Lemma 2.2. Hence,

there exists k ∈ N such that for every i ∈ N0, there exists ji ∈ N0 with Q A
i ⊂ ⋃

�∈ j k∗B
i

P B
� .

As an easy consequence of Lemma 2.3, there exists M ∈ N such that j (2k+1)∗B ⊆ {� ∈ N0 :
|� − j | ≤ M} for all j ∈ N0.

Let i, j ∈ N0 be such that ∅ �= Q A
i ∩ P B

j ⊆ ⋃

�∈ j k∗B
i

(P B
� ∩ P B

j ). Then ∅ �= P B
� ∩ P B

j

for some � ∈ j k∗B
i , and hence ji ∈ �k∗B ⊆ j (k+1)∗B , which implies

j k∗B
i ⊆ j (2k+1)∗B ⊆ {� ∈ N0 : |� − j | ≤ M}.

Therefore,

Q A
i ⊆

⋃

�∈ j k∗B
i

P B
� ⊆

M
⋃

�=−M

P B
j+�, (2.6)

and thus

| det A|i � m(Q A
i ) �

M
∑

�=−M

m(P B
j+�) �

M
∑

�=−M

| det B| j+� � | det B| j .

The reverse inequality follows by exchanging the role of A and B. ��
Lastly, we state the following adaptation of a corresponding result for homogeneous

covers. Its proof is virtually identical to that of [9, Lemma 2.5], and hence omitted.

Lemma 2.5 Let A, B ∈ GL(d, R) be expansive matrices with associated induced inhomo-
geneous covers (Q A

i )i∈N0 and (P B
j ) j∈N0 , respectively. If there exists C > 0 satisfying

1

C
| det A|i ≤ | det B| j ≤ C | det A|i for all i, j ∈ N0 for which Q A

i ∩ P B
j �= ∅,

then there exists N ∈ N satisfying

Ji ⊆
{

j ∈ N0 : | j − �εi�| ≤ N

}

and I j ⊆
{

i ∈ N0 :
∣

∣

∣

∣

i −
⌊

j

ε

⌋∣

∣

∣

∣

≤ N

}

for all i, j ∈ N0, where ε := ln | det A|/ ln | det B| is as in Lemma 2.1.

3 Anisotropic inhomogeneous function spaces

This section provides various preliminary results on anisotropic local Hardy spaces and
inhomogeneous Triebel–Lizorkin spaces that are used in the proof of Theorem 1.1. For
further background and results on these spaces, see the papers [1, 5].
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3.1 Inhomogeneous Triebel–Lizorkin spaces

Let A ∈ GL(d, R) be an expansive matrix. A pair (ϕ,�) consisting of Schwartz functions
ϕ,� ∈ S(Rd) is said to be an A-analyzing pair if the Fourier transforms ϕ̂,̂� satisfy1

(c1) supp ϕ̂ ⊆ (− 1
2 ,

1
2 )

d \ {0} and supp ̂� ⊆ (− 1
2 ,

1
2 )

d ;
(c2) supi∈Nmax{|ϕ̂((A∗)−iξ)|, |̂�(ξ)|} > 0 for all ξ ∈ R

d .

There always exists an A-analyzing pair (ϕ,�) that in addition to conditions (c1) and (c2)
satisfies the additional condition

(c3) ̂�(ξ) + ∑

i∈N ϕ̂((A∗)−iξ) = 1 for all ξ ∈ R
d ;

see, e.g., [5, Section 3.3] and [6, Remark 2.3].
Following [5], given an A-analyzing pair (ϕ,�), α ∈ R, 0 < p < ∞ and 0 < q ≤ ∞,

the associated inhomogeneous anisotropic Triebel–Lizorkin spaceFα
p,q(A) = Fα

p,q(A;ϕ,�)

is defined as the collection of all tempered distributions f ∈ S ′(Rd) for which

‖ f ‖Fα
p,q (A) := ‖ f ‖Fα

p,q (A;ϕ,�) :=
∥

∥

∥

∥

(

∑

i∈N0

(| det A|αi | f ∗ ϕA
i |)q

)1/q∥
∥

∥

∥

L p
< ∞, (3.1)

where ϕA
0 := � and ϕA

i := | det A|iϕ(Ai ·) for i ≥ 1, and with the usual modification in
(3.1) for q = ∞. The quantity (3.1) is easily seen to be equivalent to the quasi-norm (1.1),
a fact that will often be used without further mention. The spaces Fα

p,q(A) are well-defined,
in the sense that they do not depend on the choice of the A-analyzing pair (ϕ,�), cf. [5,
Section 3.3].

In addition to the above properties, the spacesFα
p,q(A) are complete. This property appears

to be taken as self-evident in the literature, but is never explicitly stated. As this property is
used repeatedly in the proof of our main result, we provide a short proof in the appendix; see
Lemma A.2.

3.2 Local Hardy spaces

Let A ∈ GL(d, R) be an expansivematrix. Givenφ ∈ S(Rd)with
∫

φ dx �= 0, the associated
local radial maximal function of f ∈ S ′(Rd) is defined as

M0,loc
φ,A f (x) := sup

j∈N0

| det A| j
∣

∣( f ∗ (φ ◦ A j ))(x)
∣

∣, x ∈ R
d .

The anisotropic local Hardy space hp(A), with p ∈ (0,∞), is the space of all f ∈ S ′(Rd)

satisfying

‖ f ‖hp(A) := ∥

∥M0,loc
φ,A f

∥

∥

L p < ∞,

and is complete with respect to the quasi-norm ‖ · ‖hp(A). The definition of hp(A) is inde-
pendent of the choice of defining vector φ. If p ∈ (1,∞), then hp(A) = L p, and for p = 1
it holds that h1(A) ⊆ L1. See, e.g., [1, Section 2] for these claims.

In a similar manner, the (nonlocal) anisotropic Hardy space H p(A) is defined as the space
of all f ∈ S ′(Rd) such that

‖ f ‖H p(A) := ‖M0
φ,A f ‖L p < ∞, where M0

φ,A f (x) := sup
j∈Z

| det A| j | f ∗ (φ ◦ A j )(x)|.

1 In most other papers, including [5], the cube [−π, π ]d is used instead of (− 1
2 , 1

2 )d . The reason for this
seeming inconsistency is that [5] uses a different normalization of the Fourier transform than we do.
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Clearly, H p(A) ⊆ hp(A), with ‖ f ‖hp(A) ≤ ‖ f ‖H p(A) for all f ∈ S ′(Rd). For p ∈ (1,∞),

we have L p = H p(A); see [2, Chapter 1, Section 3].
The following Littlewood–Paley characterization identifies local Hardy spaces as special

inhomogeneous Triebel–Lizorkin spaces.

Proposition 3.1 Let ϕ ∈ S(Rd) be a function such that supp ϕ̂ ⊆ (− 1
2 ,

1
2 )

d \ {0} and
∑

i∈Z
ϕ̂((A∗)−i ξ) = 1, ξ ∈ R

d \ {0}.

Define � ∈ S(Rd) by ̂�(ξ) = ∑0
i=−∞ ϕ̂((A∗)−iξ) for ξ ∈ R

d \ {0} and ̂�(0) = 1. Then,

for every p ∈ (0,∞), the (quasi)-norm equivalence

‖ f ‖hp(A) 
 ‖ f ∗ �‖L p +
∥

∥

∥

∥

( ∞
∑

i=1

| f ∗ ϕA
i |2

)1/2∥
∥

∥

∥

L p

 ‖ f ‖F0p,2(A)

holds for all f ∈ S ′(Rd).

Proof For p ∈ (0, 1], the claim corresponds to [7, Theorem 1.2, Part (ii)]. For p ∈ (1,∞),

recall from above that hp(A) = L p = H p(A). Let f ∈ S ′(Rd). First, note that

‖ f ‖L p 
 ‖ f ‖H p(A) 

∥

∥

∥

∥

(

∑

i∈Z

(| det A|i | f ∗ (ϕ ◦ Ai )|)2
)1/2∥

∥

∥

∥

L p
,

by a combination of [4, Theorem 7.1] and [2, Chapter 1, Theorem 3.9]. It follows that

‖ f ‖F0p,2(A) � ‖ f ‖L p ‖�‖L1 +
∥

∥

∥

∥

(

∑

i∈Z

(| det A|i | f ∗ (ϕ ◦ Ai )|)2
)1/2∥

∥

∥

∥

L p
� ‖ f ‖L p


 ‖ f ‖hp(A). (3.2)

The reverse inequality is an adaptation of a standard argument from Littlewood–Paley
theory to the anisotropic setting. By [5, Section 3.3], there exists another A-analyzing pair
(ψ,�) such that

f = f ∗ � ∗ �∗ +
∑

i∈N
f ∗ ϕA

i ∗ (ψ∗)A
i

with convergence in S ′(Rd); this convergence follows from [5, Lemma 2.6] (see also [5,
Section 3.3]). Using this identity, it follows that

‖ f ‖h p(A) 
 ‖ f ‖L p ≤ ‖ f ∗ �‖L p ‖�∗‖L1 +
∥

∥

∥

∥

∑

i∈N
f ∗ ϕA

i ∗ (ψ∗)A
i

∥

∥

∥

∥

L p
. (3.3)

For estimating the second summand, we use the dual characterization of L p. Let 〈·, ·〉 denote
the sesquilinear dual pairing between S ′(Rd) and S(Rd), which is antilinear in the second
component, and let p′ ∈ (1,∞) denote the conjugate exponent for p. If h ∈ L p′ ∩ S(Rd),

then an application of themonotone convergence theoremand theCauchy-Schwarz inequality
gives
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∣

∣

∣

∣

〈
∑

i∈N
f ∗ ϕA

i ∗ (ψ∗)A
i , h

〉

∣

∣

∣

∣

≤
∑

i∈N

∣

∣

〈

f ∗ ϕA
i , h ∗ ψ A

i

〉∣

∣

≤
∫

Rd

(

∑

i∈N
| f ∗ ϕA

i (x)|2
) 1

2
(

∑

i∈N
|h ∗ ψ A

i (x)|2
) 1

2

dx

≤
∥

∥

∥

∥

(

∑

i∈N
| f ∗ ϕA

i |2
) 1

2
∥

∥

∥

∥

L p

∥

∥

∥

∥

(

∑

i∈N
|h ∗ ψ A

i |2
) 1

2
∥

∥

∥

∥

L p′

�
∥

∥

∥

∥

(

∑

i∈N
| f ∗ ϕA

i |2
) 1

2
∥

∥

∥

∥

L p
‖h‖L p′ ,

where the penultimate step used Hölder’s inequality and the last step used Eq. (3.2) (for ψ

instead of ϕ and p′ instead of p). Thus, by the dual characterization of L p, the tempered
distribution

∑

i∈N f ∗ ϕA
i ∗ (ψ∗)A

i satisfies

∥

∥

∥

∥

∑

i∈N
f ∗ ϕA

i ∗ (ψ∗)A
i

∥

∥

∥

∥

L p
= sup

h∈S(Rd )
‖h‖

L p′ ≤1

∣

∣

∣

∣

〈

∑

i∈N
f ∗ ϕA

i ∗ (ψ∗)A
i , h

〉∣

∣

∣

∣

�
∥

∥

∥

∥

(

∑

i∈N
| f ∗ ϕA

i |2
) 1

2
∥

∥

∥

∥

L p
.

In combination with Eqs. (3.2) and (3.3), this finishes the proof. ��

3.3 Local atoms

Let p ∈ (0, 1] and s ∈ N be such that s ≥ �( 1p −1)ζ−(A)−1�.A local (p, s)-atom associated

to A is a measurable function a : R
d → C such that there exist x0 ∈ R

d and j ∈ Z satisfying:

(a1) supp a ⊆ x0 + A j�A;
(a2) ‖a‖L∞ ≤ | det A|− j

p ;
(a3) If j < 0, then

∫

Rd a(x)xσ dx = 0 for all σ ∈ N
d
0 with |σ | ≤ s.

In addition, we call a measurable function a merely a (p, s)-atom associated to A if it
satisfies (a1), (a2) and

(a4)
∫

Rd a(x)xσ dx = 0 for all σ ∈ N
d
0 with |σ | ≤ s.

Clearly, any (p, s)-atom is a local (p, s)-atom.

Remark 3.2 A useful alternative definition of (local) atoms is as follows. Let p ∈ (0, 1] and
s ∈ N be such that s ≥ �( 1p −1)ζ−(A)−1�.An alternative local (p, s)-atom (resp. alternative

(p, s)-atom) associated to A, is a measurable function a : R
d → C such that there exist

x0 ∈ R
d and j ∈ Z satisfying:

(a1’) supp a ⊆ x0 + A jB(0, 1),

(a2’) ‖a‖L∞ ≤ m(A j (B(0, 1)))−
1
p ,

and (a3) (resp. (a4)). Any alternative (local) (p, s)-atom is a constant multiple of a (local)
(p, s)-atom and vice versa, with a constant only depending on p, A; see [2, Remark on
page 72].
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By [1, Proposition 2.2], the local Hardy space hp(A) is equal to the space of all tempered
distributions f of the form

f =
∑

n∈N
cnan (3.4)

for a sequence (an)n∈N of local (p, s)-atoms an associated to A and (cn)n∈N ∈ �p(N). In
addition, for every f ∈ hp(A), the quantity

‖ f ‖hp
s (A) := inf

{

‖c‖�p : f =
∑

n

cnan

}

,

where the infimum is taken over all atomic decompositions (3.4) in terms of local (p, s)-
atoms, is equivalent to ‖ f ‖hp(A).

4 Sufficient conditions for classification

This section is devoted to proving the sufficient condition of Theorem 1.1 for the equality of
anisotropic inhomogeneous Triebel–Lizorkin spaces. We prove this result as Proposition 4.2
below.

4.1 General notation

Throughout this section, let A, B ∈ GL(d, R) be expansive matrices and let (ϕ,�) and
(ψ,�) be pairs of analyzing vectors satisfying conditions (c1)–(c3) for A and B, respec-
tively. Define Q0 := supp̂� and Q := supp ϕ̂, and set P0 := supp̂� and P := supp ̂ψ.

Furthermore, define Q A∗
i := (A∗)i Q and P B∗

j := (B∗) j P for i, j ≥ 1 and Q A∗
i := Q0

and P B∗
j := P0 for i, j ≤ 0. Then the conditions (c1) and (c3) guarantee that the families

(Q A∗
i )i∈N0 and (P B∗

j ) j∈N0 are inhomogeneous covers induced by A∗ and B∗, respectively.
As in Sect. 2.3, we define

Ji := {� ∈ N0 : Q A∗
i ∩ P B∗

� �= ∅} and I j := {� ∈ N0 : Q A∗
� ∩ P B∗

j �= ∅},
for fixed i, j ∈ N0. Lastly, set ϕA

0 := � and ϕA
i := | det A|iϕ(Ai ·) for i ≥ 1, and define

ψ B
j for j ∈ N0 in a similar manner (using B instead of A). Note that supp̂ϕA

i = Q A∗
i and

supp̂ψ B
j = P B∗

j for i, j ∈ N0.

4.2 Peetre-type inequality

Throughout the remainder of this section, we assume that the adjoint matrices A∗ and B∗ are
coarsely equivalent, in the sense of Sect. 2.2.

Acentral ingredient in establishing the sufficient conditionofTheorem1.1 is an anisotropic
Peetre-type inequality involving the two dilation matrices A and B (cf. Lemma 4.1). For
stating this result, recall that the anisotropic Hardy–Littlewood maximal operator MρA h
applied to a measurable function h : R

d → C is defined by

MρA h(x) := sup
BA�x

1

m(BA)

∫

BA

|h(y)| dy, x ∈ R
d , (4.1)
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where the supremum is taken over all ρA-ballsBA = BρA (y, r) = {z ∈ R
d : ρA(z− y) < r}

that contain x .

The significance of the Peetre-type maximal function in the following lemma for our
purposes is that it involves amixture of thematrices A and B, in the sense that the convolution
f ∗ ψ B

j involves the matrix B, whereas the weight (1 + ρA(Ai z))η involves the matrix A.

Its proof exploits the coarse equivalence of A∗ and B∗ in a crucial manner.

Lemma 4.1 Suppose that A∗ and B∗ are coarsely equivalent. With notation as in Sect. 4.1,
for j ∈ N0, η > 0 and f ∈ S ′(Rd), define

Mψ
j,η f (x) := max

i∈I j
sup
z∈Rd

|( f ∗ ψ B
j )(x + z)|

(1 + ρA(Ai z))η
, x ∈ R

d .

Then there exists C > 0 (independent of j, x, f ) such that

Mψ
j,η f (x) ≤ C

(

MρA

[| f ∗ ψ B
j |1/η](x)

)η

, x ∈ R
d ,

where MρA denotes the Hardy–Littlewood maximal operator defined in Eq. (4.1).

Proof Let i ∈ I j ⊆ N0 be arbitrary. Since A∗ and B∗ are coarsely equivalent, the associated
covers (Q A∗

i )i∈N0 and (P B∗
j ) j∈N0 from Sect. 4.1 are equivalent by Lemma 2.2. Therefore,

we see as in the proof of Corollary 2.4 (see Eq. (2.6)) that there exists M ∈ N (independent

of i, j) such that supp̂ψ B
j = P B∗

j ⊆ ⋃M
�=−M Q A∗

i+�. Let

K :=
M
⋃

�=−M

Q A∗
� ∪

M
⋃

�=−M

(A∗)�Q and K ∗ :=
0
⋃

�=−∞
(A∗)�K .

Note that K ⊆ K ∗ and that K , K ∗ are compact in R
d and do not depend on i, j .

Define g := ( f ∗ψ B
j )◦ A−i .Denoting the bilinear dual pairing betweenS ′(Rd) andS(Rd)

by 〈·, ·〉, a direct calculation entails that, for γ ∈ S(Rd) with supp γ ⊆ R
d \ (A∗)−i P B∗

j ,

〈ĝ, γ 〉 = 〈 ̂f ∗ ψ B
j , γ ◦ (A∗)−i 〉 = 〈̂f ,̂ψ B

j · (γ ◦ (A∗)−i )〉 = 0,

and thus supp ĝ ⊆ (A∗)−i P B∗
j ⊆ ⋃M

�=−M (A∗)−i Q A∗
i+�. Note for −M ≤ � ≤ M that if

i + � ≤ M, then Q A∗
i+� ⊆ K and thus (A∗)−i Q A∗

i+� ⊆ K ∗. On the other hand, i + � > M for
−M ≤ � ≤ M implies i > 0 and

(A∗)−i Q A∗
i+� = (A∗)−i (A∗)i+�Q = (A∗)�Q ⊆ K ⊆ K ∗.

Overall, this shows that supp ĝ ⊆ K ∗. An application of the anisotropic Peetre inequality
(cf. [5, Lemma 3.4]) therefore yields a constant C = C(K ∗, η) > 0 such that

sup
z∈Rd

|g(x − z)|
(1 + ρA(z))η

≤ C[(MρA |g|1/η)(x)]η, x ∈ R
d . (4.2)

In view of the identity MρA [h ◦ Ak] = (MρA h) ◦ Ak for h : R
d → C and k ∈ Z (see, e.g.,

[8, Lemma 3.1]) and since ρA(−x) = ρA(x), this finally implies that
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sup
z∈Rd

|( f ∗ ψ B
j )(x + z)|

(1 + ρA(Ai z))η
= sup

z∈Rd

|g(Ai (x + z))|
(1 + ρA(Ai z))η

= sup
w∈Rd

|g(Ai x − w)|
(1 + ρA(w))η

≤ C
[(

MρA |g|1/η)(Ai x)
]η

= C
[(

MρA (|g|1/η ◦ Ai )
)

(x)
]η

= C
[(

MρA | f ∗ ψ B
j |1/η)(x)

]η
.

Since i ∈ I j was chosen arbitrarily, this completes the proof. ��

4.3 Sufficient condition

The following proposition is themain result of this section, and settles the sufficient condition
of Theorem 1.1.

Proposition 4.2 Suppose A∗ and B∗ are coarsely equivalent. Then Fα
p,q(A) = Fα

p,q(B) for
all α ∈ R, p ∈ (0,∞) and q ∈ (0,∞].

Proof We will use the notation introduced in Sect. 4.1. Let α ∈ R, p ∈ (0,∞), and q ∈
(0,∞]. We only show that ‖ · ‖Fα

p,q (A;ϕ,�) � ‖ · ‖Fα
p,q (B;ψ,�); the reverse inequality follows

by symmetry. Throughout, fix some η > max{1/p, 1/q} and let f ∈ S ′(Rd). Since A∗
and B∗ are coarsely equivalent, it follows that supi∈N0

|Ji | < ∞ and sup j∈N0
|I j | < ∞ by

Lemma 2.2.

Step 1. (Pointwise estimate.) Let i ∈ N0. Define ψ
(i)
B := ∑

j∈Ji
ψ B

j . Then ψ
(i)
B ∈ S(Rd),

and ψ
(i)
B ∗ ϕA

i = ϕA
i by condition (c3) for ψ,�. Therefore, for x ∈ R

d ,

|( f ∗ ϕA
i )(x)| = |( f ∗ (ψ

(i)
B ∗ ϕA

i ))(x)|
≤

∑

j∈Ji

|( f ∗ (ψ B
j ∗ ϕA

i ))(x)|

≤
∑

j∈Ji

∫

Rd

|( f ∗ ψ B
j )(x + y)|

(1 + ρA(Ai y))η

(

1 + ρA(Ai y)
)η|ϕA

i (−y)| dy

≤
∑

j∈Ji

Mψ
j,η f (x)

∫

Rd

(

1 + ρA(Ai y)
)η|ϕA

i (−y)| dy,

where Mψ
j,η f (x) is defined as in Lemma 4.1. For estimating the integral on the right-hand

side above, choose N > 1 + η. Then, since ϕ,� ∈ S(Rd), and in view of [2, Chapter 1,
Lemma 3.2], there existsC > 0 such that max{|�(·)|, |ϕ(·)|} ≤ C(1+ρA(·))−N . In addition,
since η−N < −1, an application of [8, Lemma 2.3] yields that

∫

Rd (1+ρA(x))η−N dx < ∞.

Therefore, if i = 0, the symmetry of ρA gives
∫

Rd

(

1 + ρA(Ai y)
)η|ϕA

i (−y)| dy ≤ C
∫

Rd

(

1 + ρA(y)
)η−N

dy < ∞.

Similarly, if i ∈ N, then the change-of-variable x = Ai y gives
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∫

Rd
(1 + ρA(Ai y))η|ϕA

i (−y)| dy =
∫

Rd
(1 + ρA(x))η|ϕ(−x)| dx

≤ C
∫

Rd
(1 + ρA(x))η−N dx < ∞,

where the right-hand side is independent of i . Therefore,

|( f ∗ ϕA
i )(x)| �

∑

j∈Ji

Mψ
j,η f (x), x ∈ R

d . (4.3)

Since A∗, B∗ are coarsely equivalent, Corollary 2.4 shows that

| det A|i = | det A∗|i 
 | det B∗| j = | det B| j

whenever i ∈ I j (equivalently, j ∈ Ji ). Hence, combining this with (4.3) gives

| det A|αi |( f ∗ ϕA
i )(x)| �

∑

j∈Ji

| det B|α j Mψ
j,η f (x) (4.4)

for x ∈ R
d , with implied constant independent of i ∈ N0.

Step 2. (Norm estimate for q < ∞.) This step establishes the desired (quasi)-norm estimate
for the case q < ∞. Since supi∈N0

|Ji | < ∞ and sup j∈N0
|I j | < ∞, it follows from Eq. (4.4)

that, for every x ∈ R
d ,

∑

i∈N0

(| det A|αi |( f ∗ ϕA
i )(x)|)q �

∑

i∈N0

(

∑

j∈Ji

| det B|α j Mψ
j,η f (x)

)q

�
∑

i∈N0

∑

j∈Ji

(| det B|α j Mψ
j,η f (x)

)q

=
∑

j∈N0

∑

i∈I j

(| det B|α j Mψ
j,η f (x)

)q

�
∑

j∈N0

(| det B|α j Mψ
j,η f (x)

)q

�
∑

j∈N0

(

MρA

[| det B| α j
η | f ∗ ψ B

j | 1η ](x)

)ηq

,

where the last inequality used Lemma 4.1. Since ηq, ηp > 1, the vector-valued Fefferman–
Stein inequality (see, e.g., [5, Theorem 2.5]) is applicable, and yields

‖ f ‖Fα
p,q (A;ϕ,�) =

∥

∥

∥

∥

(

∑

i∈N0

(| det A|αi | f ∗ ϕA
i |)q

)1/q∥
∥

∥

∥

L p

�
∥

∥

∥

∥

(

∑

j∈N0

(

MρA

[| det B| α j
η | f ∗ ψ B

j | 1η ]
)ηq) 1

ηq
∥

∥

∥

∥

η

Lηp

�
∥

∥

∥

∥

(

∑

j∈N0

(

| det B| α j
η | f ∗ ψ B

j | 1η
)ηq) 1

ηq
∥

∥

∥

∥

η

Lηp

= ‖ f ‖Fα
p,q (B;ψ,�),
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which completes the proof for the case q < ∞.

Step 3. (Norm estimate for q = ∞.) As in Step 2, combining Eq. (4.4) with
supi∈N0

|Ji |, sup j∈N0
|I j | < ∞ and Lemma 4.1, yields

sup
i∈N0

| det A|αi |( f ∗ ϕA
i )(x)| � sup

i∈N0

∑

j∈Ji

| det B|α j Mψ
j,η f (x)

� sup
j∈N0

| det B|α j Mψ
j,η f (x)

� sup
j∈N0

(

MρA

[| det B| α j
η | f ∗ ψ B

j | 1η ](x)

)η

for x ∈ R
d . Since ηp, q > 1, an application of the vector-valued Fefferman–Stein inequality

gives

‖ f ‖Fα
p,q (A;ϕ;�) �

∥

∥

∥

∥

(

sup
j∈N0

MρA

[| det B| α j
η | f ∗ ψ B

j | 1η ]
)η∥

∥

∥

∥

L p

=
∥

∥

∥

∥

sup
j∈N0

MρA

[| det B| α j
η | f ∗ ψ B

j | 1η ]
∥

∥

∥

∥

η

Lηp

�
∥

∥

∥

∥

sup
j∈N0

(

| det B| α j
η | f ∗ ψ B

j | 1η
)∥

∥

∥

∥

η

Lηp

=
∥

∥

∥

∥

sup
j∈N0

(

| det B| α j
η | f ∗ ψ B

j | 1η
)η∥

∥

∥

∥

L p

= ‖ f ‖Fα
p,q (B;ψ,�).

This completes the proof. ��

5 Necessary conditions for classification

In this section, we prove the necessary conditions of Theorem 1.1 for the equality of
inhomogeneous Triebel–Lizorkin spaces. Explicitly, we prove the following theorem.

Theorem 5.1 Let A, B ∈ GL(d, R) be expansive matrices. Suppose thatFα
p,q(A) = Fα

p,q(B)

for some α ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. Then at least one of the following two cases
hold:
(i) A∗ and B∗ are coarsely equivalent;
(ii) α = 0, p ∈ (1,∞) and q = 2.

Remark 5.2 In addition to Theorem 5.1, one can also show that if Fα
p1,q1(A) = Fβ

p2,q2(B)

for some α, β ∈ R, p1, p2 ∈ (0,∞) and q1, q2 ∈ (0,∞], then α = β, p1 = p2 and
q1 = q2. This follows without much modification from the corresponding arguments for the
homogeneous Triebel–Lizorkin spaces in [9, Section 5], together with their adaptations to
inhomogeneous function spaces that are proven in this section. As no new ideas are required,
we do not provide the details.
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5.1 General notation

Throughout all of this section, the same notation as in Sect. 4.1 will be used. In addition,
define the index sets

Ni (A∗) := {k ∈ N0 : Q A∗
i ∩ Q A∗

k �= ∅} and N j (B∗) := {k ∈ N0 : P B∗
k ∩ P B∗

j �= ∅}
for fixed i, j ∈ N0. Then a combination of Corollary 2.4 and Lemma 2.5 (applied to A = B)
implies the existence of a constant N ∈ N such that

Ni (A∗) ∪ Ni (B∗) ⊆ {k ∈ N0 : |k − i | ≤ N } for all i ∈ N0.

For i, j ∈ N0, define the functions ϕ
(i)
A , ψ

( j)
B ∈ S(Rd) by

ϕ
(i)
A :=

∑

k∈Ni (A∗)
ϕA

k and ψ
( j)
B :=

∑

k∈N j (B∗)
ψ B

k .

Then, by condition (c3), it follows that
̂

ϕ
(i)
A ≡ 1 on Q A∗

i , and
̂
ψ

( j)
B ≡ 1 on P B∗

j .

Lastly, we fix some χ ∈ S(Rd) \ {0} with the property that χ̂ ≥ 0 and supp χ̂ ⊆ B(0, 1).
For δ > 0, the associated (scalar) dilation of χ is defined by χδ := δdχ(δ ·).

5.2 Auxiliary results

This section contains two lemmata that are repeatedly in the remainder.

Lemma 5.3 Let α ∈ R, p ∈ (0,∞), and q ∈ (0,∞]. With ϕ
(i)
A , i ∈ N0 as in Sect. 5.1, there

exists a constant C = C(α, p, q, A, ϕ,�) > 0 satisfying
∥

∥

∥

∥

∥

∥

∥

(

| det A|αi | f ∗ ϕ
(i)
A |

)

i∈N0

∥

∥

∥

�q

∥

∥

∥

∥

L p
≤ C‖ f ‖Fα

p,q (A)

for all f ∈ S ′(Rd).

Proof We only provide the proof for q < ∞; the proof for q = ∞ is similar, but easier. With
N as in Sect. 5.1, it follows that for each i ∈ N0,we can write Ni (A∗) = {�(i)

1 , . . . , �
(i)
Mi

}with
Mi = |Ni (A∗)| ≤ 2N + 1. Thus, ϕ(i)

A = ∑2N+1
t=1 1t≤Mi ϕA

�
(i)
t

, with 1t≤Mi = 1 for t ≤ Mi

and 1t≤Mi = 0, otherwise. Hence, given f ∈ S ′(Rd),

| f ∗ ϕ
(i)
A | ≤

2N+1
∑

t=1

(

1t≤Mi · | f ∗ ϕA
�
(i)
t

|).

Furthermore, note because of |�(i)
t − i | ≤ N that | det A|αi � | det A|α�

(i)
t . Overall, this

implies

∑

i∈N0

(| det A|αi | f ∗ ϕ
(i)
A |)q �

∑

i∈N0

2N+1
∑

t=1

(

1t≤Mi · (| det A|αi | f ∗ ϕA
�
(i)
t

|)q
)

�
∑

i∈N0

2N+1
∑

t=1

(

1t≤Mi · (| det A|α�
(i)
t | f ∗ ϕA

�
(i)
t

|)q
)

.
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Fix � ∈ N0 for the moment, and note that if � = �
(i)
t for some i ∈ N0 and 1 ≤ t ≤ Mi , then

|� − i | = |�(i)
t − i | ≤ N . Since also Mi ≤ 2N + 1, this implies that

#{(i, t) : i ∈ N0, 1 ≤ t ≤ Mi and �
(i)
t = �} ≤ (2N + 1)2.

Thus, in combination with the above, it follows that

∑

i∈N0

(| det A|αi | f ∗ ϕ
(i)
A |)q �

∑

i∈N0

2N+1
∑

t=1

(

1t≤Mi · (| det A|α�
(i)
t | f ∗ ϕA

�
(i)
t

|)q
)

�
∑

�∈N0

(| det A|α�| f ∗ ϕA
� |)q

.

By definition of ‖ · ‖Fα
p,q (A), this easily implies the claim. ��

The following lemma is a consequence of the closed graph theorem. We provide its proof
for the sake of completeness.

Lemma 5.4 Let A, B ∈ GL(d, R) be expansive and let α ∈ R, p ∈ (0,∞), and q ∈ (0,∞].
If Fα

p,q(A) = Fα
p,q(B), then ‖ · ‖Fα

p,q (A) 
 ‖ · ‖Fα
p,q (B).

Proof Suppose that Fα
p,q(A) = Fα

p,q(B) as sets. Then the identity map

ι : Fα
p,q(A) → Fα

p,q(B), f �→ f

is well-defined and linear. Moreover, its graph is closed because if fn → f in Fα
p,q(A) and

fn → g in Fα
p,q(B), then Lemma A.2 shows for arbitrary φ ∈ F(C∞

c (Rd)) that

〈 f , φ〉 = lim
n→∞〈 fn, φ〉 = 〈g, φ〉.

Note that F(C∞
c (Rd)) ⊆ S(Rd) is dense by [12, Theorems 7.7 and 7.10]. Hence, since

f , g ∈ S ′(Rd), we get f = g, showing that ι has closed graph. Therefore, it follows
that ‖ f ‖Fα

p,q (B) � ‖ f ‖Fα
p,q (A) by an application of the closed graph theorem (see, e.g., [12,

Theorem 2.15]), which is applicable since Fα
p,q(A),Fα

p,q(B) are complete with respect to
the quasi-norms ‖ · ‖Fα

p,q (A) and ‖ · ‖Fα
p,q (B), which are r -norms for r := min{1, p, q},

cf. Lemma A.2. This implies that the topology on Fα
p,q(A) is induced by the complete,

translation-invariant metric d( f , g) := ‖ f − g‖r
Fα

p,q (A)
, and similarly for Fα

p,q(B); thus,

Fα
p,q(A),Fα

p,q(B) are both F-spaces in the terminology of [12, Section 1.8].
The estimate ‖ f ‖Fα

p,q (B) � ‖ f ‖Fα
p,q (A) follows by symmetry. ��

5.3 The case˛ �= 0

This section is devoted to proving the necessary condition of Theorem 1.1 for the case
α �= 0. A crucial ingredient in the proof of this result is the following proposition, which is
an adaptation of [9, Proposition 5.3] to the case of inhomogeneous function spaces.

Proposition 5.5 Let α ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. If f ∈ S(Rd) satisfies supp ̂f ⊆
Q A∗

i0
for some i0 ∈ N0, then

‖ f ‖Fα
p,q (A) 
 | det A|αi0‖ f ‖L p ,

with implicit constants independent of i0 and f .
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Proof Let f ∈ S(Rd) be such that supp ̂f ⊆ Q A∗
i0

for i0 ∈ N0. Then, using that supp̂ϕA
i =

Q A∗
i for i ∈ N0, we see that f ∗ ϕA

i = 0 whenever i /∈ Ni0(A∗). Therefore,

‖ f ‖Fα
p,q

=
∥

∥

∥

∥

(

∑

i∈Ni0 (A∗)

(| det A|αi | f ∗ ϕA
i |)q

)1/q∥
∥

∥

∥

L p

�p,q,N

∑

i∈Ni0 (A∗)
| det A|αi‖ f ∗ ϕA

i ‖L p , (5.1)

with the usual modification in case of q = ∞.

For further estimating the right-hand side above, note that an application of Young’s
inequality implies that ‖ f ∗ ϕA

i ‖L p �ϕ ‖ f ‖L p provided that p ∈ [1,∞). For the case
p ∈ (0, 1), note first that

supp ̂f , supp̂ϕA
i ⊆

N
⋃

�=−N

Q A∗
i0+� ⊆ (A∗)i0 K ∗, (5.2)

where K := ⋃N
�=−N (A∗)�(Q ∪ Q0) and K ∗ := ⋃0

�=−∞(A∗)�K are compact and indepen-
dent of i0, i . To show that the second inclusion in (5.2) is indeed true, we distinguish two
cases: In case of i0 + � ≤ N , we see because of i0 + � ≥ � ≥ −N that Q A∗

i0+� ⊂ K , and thus

Q A∗
i0+� = (A∗)i0(A∗)−i0 Q A∗

i0+� ⊂ (A∗)i0 K ∗. If i0 +� > N , then necessarily i0 > 0, and thus

Q A∗
i0+� = (A∗)i0+�Q = (A∗)i0(A∗)�Q ⊂ (A∗)i0 K ⊂ (A∗)i0 K ∗. In view of (5.2), choosing

R > 0 such that K ∗ ⊆ B(0, R), an application of the convolution relation [17, Theorem 3.4]
(see also [15, Section 1.5.1]) yields that

‖ f ∗ ϕA
i ‖L p ≤ [m((A∗)i0B(0, 2R))] 1

p −1‖ f ‖L p ‖ϕA
i ‖L p

�A,ϕ,�,N ,p | det A|(i0−i)
(

1
p −1

)

‖ f ‖L p

�A,N ,p ‖ f ‖L p .

Thus, ‖ f ∗ ϕA
i ‖L p � ‖ f ‖L p for all |i0 − i | ≤ N and all p ∈ (0,∞]. Using this estimate

in (5.1) gives

‖ f ‖Fα
p,q

�
∑

i∈Ni0 (A∗)
| det A|αi‖ f ∗ ϕA

i ‖L p � | det A|αi0‖ f ‖L p ,

with implicit constants independent of i0 and f .

For the reverse inequality, we use Lemma 5.3 and note that f = f ∗ ϕ
(i0)
A ; thus,

‖ f ‖Fα
p,q

� | det A|αi0‖ f ∗ ϕ
(i0)
A ‖L p = | det A|αi0‖ f ‖L p .

This completes the proof. ��
Using Proposition 5.5, we now prove the necessity in Theorem 1.1 for the case α �= 0.

Theorem 5.6 Suppose that Fα
p,q(A) = Fα

p,q(B) for some α ∈ R \ {0}, p ∈ (0,∞) and
q ∈ (0,∞]. Then A∗ and B∗ are coarsely equivalent.

Proof Let i, j ∈ N0 be arbitrary with Q A∗
i ∩ P B∗

j �= ∅. Choose ξ0 ∈ R
d and δ > 0 such that

B(ξ0, δ) ⊆ Q A∗
i ∩ P B∗

j , which is possible since Q A∗
i , P B∗

j are open. Define f (δ) := Mξ0χδ,
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where χ is as in Sect. 5.1. Then it follows that supp̂f (δ) ⊆ B(ξ0, δ) ⊆ Q A∗
i ∩ P B∗

j . Hence,

applying Proposition 5.5 to f (δ) (with A and B) gives

| det A|αiδ
d(1− 1

p ) 
 | det A|αi‖ f (δ)‖L p 
 ‖ f (δ)‖Fα
p,q (A) 
 ‖ f (δ)‖Fα

p,q (B)‖ 
 | det B|α jδ
d(1− 1

p )
,

wherewe also used Lemma 5.4. Note that the implicit constants are independent of i, j .Thus,
canceling the factor involving δ, we see that there exists a constant C > 0 (independent of
i, j) such that

1

C
| det A∗|αi ≤ | det B∗|α j ≤ C | det A∗|αi for all i, j ∈ N0 for which Q A∗

i ∩ P B∗
j �= ∅.

Since α �= 0, an application of Lemma 2.5 therefore yields a constant M ∈ N such that

Ji ⊆ {

j ∈ N0 : | j − �εi�| ≤ M
}

and I j ⊆
{

i ∈ N0 :
∣

∣

∣i −
⌊ j

ε

⌋∣

∣

∣ ≤ M
}

for all i, j ∈ N0,where ε := ln | det A|/ ln | det B|. In particular, this implies that |Ji |, |I j | �
1 with implicit constant independent of i, j ∈ N0. Thus, A∗ and B∗ are coarsely equivalent
by Lemma 2.2. ��

5.4 The case˛ = 0 and q �= 2

This subsection is concerned with proving the necessary condition for the case α = 0 and
q �= 2. For this, we need in addition to Proposition 5.5 the following more refined version.

Proposition 5.7 Let α ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. For K ∈ N, let (ik)
K
k=1 be a

sequence in N0 such that |ik − ik′ | > 2N for k �= k′, where N ∈ N is the constant fixed in
Sect. 5.1. Let χ be as in Sect. 5.1.

If there exist δ > 0 and points ξ1, . . . , ξK ∈ R
d such that

B(ξk, δ) ⊆ Q A∗
ik

, for all k = 1, . . . , K ,

then, for any c ∈ C
K , the function f := ∑K

k=1 ck Mξk χδ satisfies the norm estimate

‖ f ‖Fα
p,q (A) 
 δd(1−1/p)

∥

∥

∥

∥

(| det A|αik |ck |
)K

k=1

∥

∥

∥

∥

�q
, (5.3)

with implicit constants independent of K , c, δ, (ξk)
K
k=1 and (ik)

K
k=1.

Proof We only deal with the case q < ∞; the case q = ∞ follows by the usual modification.
The proof follows (parts of) the arguments proving [9, Proposition 5.5] closely.

Throughout, let δ, (ξk)
K
k=1, (ik)

K
k=1, and f be as in the statement of the proposition. Then,

since B(ξk, δ) ⊆ Q A∗
ik

, it follows that supp M̂ξk χδ = supp Tξk χ̂δ ⊆ Q A∗
ik

for k = 1, . . . , K .

On the other hand, supp̂ϕA
i = Q A∗

i for i ∈ N0. Therefore, Mξk χδ ∗ ϕA
i = 0 whenever

|i − ik | > N as then i /∈ Nik (A∗). Since, for fixed i ∈ N0, there can be at most one ik such
that |i − ik | ≤ N , it follows that

f ∗ ϕA
i =

K
∑

�=1

c� · (Mξ�
χδ ∗ ϕA

i ) =
{

ck · (Mξk χδ ∗ ϕA
i ), if |i − ik | ≤ N for some 1 ≤ k ≤ K

0, if |i − ik | > N for all 1 ≤ k ≤ K .

Therefore, if |i − ik | ≤ N , we can estimate

| f ∗ ϕA
i (x)| ≤ |ck | · (|χδ| ∗ |ϕA

i |)(x) �d,p,N ,ϕ,�,χ,A |ck |δd(1 + |δx |)− d
p −1

, (5.4)
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where the last inequality follows from an application2 of [9, Lemma A.3] (applied to the
bounded set Q ∪ Q0, � = ik and M = d/p + 1). This, together with | f ∗ ϕA

i (x)| = 0 for
|i − ik | > N , yields the estimate

(

∑

i∈N0

(| det A|αi | f ∗ ϕA
i (x)|)q

)1/q

≤
( K
∑

k=1

∑

i∈N0|i−ik |≤N

(| det A|αi | f ∗ ϕA
i (x)|)q

)1/q

�
( K
∑

k=1

(| det A|αik |ck |δd(1 + |δx |)− d
p −1)q

)1/q

= δd(1 + |δx |)− d
p −1

∥

∥

∥

∥

(| det A|αik |ck |
)K

k=1

∥

∥

∥

∥

�q
,

where the penultimate step uses Eq. (5.4) and Nik (A∗) �N 1 for k = 1, . . . , K . Hence,
taking the L p-(quasi)-norm yields

‖ f ‖Fα
p,q (A) �

(∫

Rd

(

δd(1 + |δx |)− d
p −1)p

dx

)1/p∥
∥

∥

∥

(| det A|αik |ck |
)K

k=1

∥

∥

∥

∥

�q

�d,p δd(1−1/p)

∥

∥

∥

∥

(| det A|αik |ck |
)K

k=1

∥

∥

∥

∥

�q
,

which establishes one of the inequalities in Eq. (5.3).
For the reverse inequality, note first for ϕ

(i)
A as in Sect. 5.1 that

supp
̂
ϕ

(ik )
A ⊆

N
⋃

�=−N

Q A∗
ik+� for all k = 1, . . . , K .

The assumption |ik′ − ik | > 2N for k �= k′, together with Ni (A∗) ⊆ { j ∈ N0 : |i − j | ≤ N }
for all i ∈ N0 (see Sect. 5.1), yields

Q A∗
ik

∩
N
⋃

�=−N

Q A∗
ik′+� = ∅, k �= k′,

and hence Mξk χδ ∗ ϕ
(ik′ )
A = 0 for k �= k′. Additionally, ̂ϕ(ik )

A ≡ 1 on Q A∗
ik

, and thus

f ∗ ϕ
(ik )
A = ck · Mξk χδ

for all k = 1, . . . , K . Using this identity, together with Lemma 5.3, a direct calculation
entails

‖ f ‖Fα
p,q (A) �

∥

∥

∥

∥

( K
∑

k=1

(| det A|αik | f ∗ ϕ
(ik )
A |)q

)1/q∥
∥

∥

∥

L p
≥ ‖χδ‖L p

∥

∥

∥

∥

(| det A|αik |ck |
)K

k=1

∥

∥

∥

∥

�q
.

Since ‖χδ‖L p = δd(1−1/p)‖χ‖L p , this finishes the proof. ��
Theorem 5.8 Let p ∈ (0,∞) and q ∈ (0,∞]. If F0

p,q(A) = F0
p,q(B) and A∗ and B∗ are

not coarsely equivalent, then q = 2.
Consequently, if F0

p,q(A) = F0
p,q(B) for some q �= 2, then A∗ and B∗ are coarsely

equivalent.

2 The statement of [9, LemmaA.3] assumes slightly different conditions on ϕ, but its proof is valid for general
Schwartz functions ϕ ∈ S(Rd ).
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Proof Suppose that F0
p,q(A) = F0

p,q(B) and that A∗ and B∗ are not coarsely equivalent. By
Lemma2.2, the latter condition is equivalent to supi∈N0

|Ji |+sup j∈N0
|I j | = ∞.Throughout,

we assume that sup j∈N0
|I j | = ∞, the other case being similar. We split the proof into two

steps.

Step 1. In this step, we show that, for arbitrary K ∈ N, there exist δ > 0 and j0 = j0(K ) ∈
N0, as well as sequences (ik)

K
k=1 ⊆ N0 and (ξk)

K
k=1 ⊆ R

d satisfying the assumptions of
Proposition 5.7 and furthermore B(ξk, δ) ⊆ Q A∗

ik
∩ P B∗

j0
.

Since sup j∈N0
|I j | = ∞, there exists j0 ∈ N0 for which |I j0 | ≥ (2N +1)K ,where N ∈ N

is the fixed constant from Sect. 5.1. For n = 0, . . . , 2N , set N
(n)
0 := n + (2N + 1)N0. Then

I j0 = ⋃2N
n=0(N

(n)
0 ∩ I j0), and hence there exists n ∈ {0, . . . , 2N } for which |I j0 ∩N

(n)
0 | ≥ K .

Thus, there exist pairwise distinct indices i1, . . . , iK ∈ I j0 ∩ N
(n)
0 , which then necessarily

satisfy |ik − ik′ | ≥ 2N + 1 for k �= k′. The intersections Q A∗
ik

∩ P B∗
j0

�= ∅ being open for

each k ∈ {1, . . . , K }, one can choose points ξ1, . . . , ξK ∈ R
d and a constant δ > 0 such that

B(ξk, δ) ⊆ Q A∗
ik

∩ P B∗
j0 , k = 1, . . . , K , (5.5)

as required.

Step 2. Let K ∈ N, and let δ > 0, j0 ∈ N0, as well as (ik)
K
k=1 and (ξk)

K
k=1 be as in Step 1,

and let c ∈ C
K be arbitrary. Given θ ∈ {−1,+1}K , define

fθ,c :=
K
∑

k=1

θk ck Mξk χδ ∈ S(Rd).

If θ is considered as a random vector which is uniformly distributed in {±1}K and denoting
the expectation with respect to θ by Eθ , then an application of Khintchine’s inequality (see,
e.g., [18, Proposition 4.5]) gives

Eθ‖ fθ,c‖p
L p = Eθ

∫

Rd
|χδ(x)|p

∣

∣

∣

∣

K
∑

k=1

θk ck e2π iξk ·x
∣

∣

∣

∣

p

dx

=
∫

Rd
|χδ(x)|p

Eθ

∣

∣

∣

∣

K
∑

k=1

θk ck e2π iξk ·x
∣

∣

∣

∣

p

dx



∫

Rd
|χδ(x)|p

( K
∑

k=1

|ck |2
)p/2

dx


 δd(p−1)‖c‖p
�2

, (5.6)

with implied constants only depending on p, d, χ.

We next apply Propositions 5.5 and 5.7 to fθ,c. First, since

supp f̂θ,c ⊆
K
⋃

k=1

B(ξk, δ) ⊆ P B∗
j0 ,

an application of Proposition 5.5 gives

‖ fθ,c‖F0p,q (B) 
 ‖ fθ,c‖L p .
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On the other hand, an application of Proposition 5.7 yields that

‖ fθ,c‖F0p,q (A) 
 δd(1−1/p)‖c‖�q .

Since ‖ f ‖F0p,q (A) 
 ‖ f ‖F0p,q (B) by Lemma 5.4, a combination of these estimates yields that

δd(1−1/p)‖c‖�q 
 ‖ fθ,c‖L p and hence

δd(p−1) ‖c‖p
�q 
 ‖ fθ,c‖p

L p .

Combining this in turn with Eq. (5.6) yields ‖c‖p
�q 
 ‖c‖p

�2
,with implicit constants indepen-

dent of c and K . Since K ∈ N and c ∈ C
K were chosen arbitrarily, this implies that q = 2.

��

5.5 The case˛ = 0 and q = 2

This final subsection treats the Triebel–Lizorkin spaces F0
p,2(A)with p ∈ (0,∞).By Propo-

sition 3.1, these spaces correspond to hp(A) = F0
p,2(A) for p ∈ (0, 1] and to L p = F0

p,2(A)

for p > 1. Hence, it remains to consider the case p ∈ (0, 1].
We start by introducing a family of functions that will be used in the proof of Theorem 5.10

below. Let A, B ∈ GL(d, R) be expansive matrices. Fix p ∈ (0, 1] and let

s ≥ max
{⌊(

1
p − 1

)

ζ−(A)−1
⌋

,
⌊(

1
p − 1

)

ζ−(B)−1
⌋}

. (5.7)

We will consider the following conditions on a measurable function f : R
d → C:

(f1) supp f ⊆ x0 + B j1 A j2B(0, 1) for some x0 ∈ R
d and j1 ∈ N0 and j2 ∈ Z;

(f2) ‖ f ‖L∞ ≤ | det B|− j1/p| det A|− j2/p;
(f3)

∫

Rd f (x)xσ dx = 0 for all σ ∈ N
d
0 satisfying |σ | ≤ s.

An essential property of functions satisfying (f1)–(f3) is given by the following lemma.
Its proof is more refined than corresponding results for (nonlocal) anisotropic Hardy spaces
(see, e.g., the proof of [2, Chapter 1, Theorem 10.5]) due to the fact that dilations D p

A do
generally not act isometrically on local Hardy spaces hp(A). In addition, we need to consider
j1 ≥ 0 in condition (f1).

Lemma 5.9 Suppose hp(A) = hp(B) for some p ∈ (0, 1]. Then there exists a constant
C > 0 such that ‖ f ‖hp(A), ‖ f ‖hp(B) ≤ C for all functions f satisfying conditions (f1)–(f3).

Proof Recall that since hp(A) = hp(B), it follows that ‖·‖hp(A) 
 ‖·‖hp(B) by a combination
of Proposition 3.1 and Lemma 5.4.

Let f satisfy (f1)–(f3). Then the support of D p
B j1

f is B− j1 supp f ⊆ B− j1x0+A j2B(0, 1).

Moreover, D p
B j1

f satisfies the norm estimate

‖D p
B j1

f ‖L∞ = | det B| j1/p‖ f ‖L∞ ≤ | det A|− j2/p.

Finally,
∫

Rd D p
B j1

f (x)xσ dx = 0 for all |σ | ≤ s. Thus, by Remark 3.2, the function

D p
B j1

f is (a constant multiple of) a (p, s)-atom associated to A. Therefore, by [2, Chap-

ter 1, Theorem 4.2], it follows that ‖D p
B j1

f ‖H p(A) � 1, with a constant independent of j1
and f .

123



Classification of anisotropic local Hardy spaces. . . Page 23 of 30 55

In view of the above and the assumption ‖ · ‖hp(A) 
 ‖ · ‖hp(B), it remains to prove the
estimate ‖ f ‖hp(B) � ‖D p

B j1
f ‖H p(A). For this, note first that, for any measurable function

h : R
d → C and any x ∈ R

d ,

M0,loc
φ,B [D p

Bh](x) = sup
j∈N0

| det B| j |((D p
Bh) ∗ (φ ◦ B j ))(x)|

= sup
j∈N0

| det B|1/p| det B| j−1|(h ∗ (φ ◦ B j−1))(Bx)|

≥ | det B|1/p sup
�∈N0

| det B|�|(h ∗ (φ ◦ B�))(Bx)|

= | det B|1/p(M0,loc
φ,B h)(Bx).

Hence,

‖h‖hp(B) = ‖M0,loc
φ,B h‖L p = | det B|1/p ‖(M0,loc

φ,B h)(B·)‖L p ≤ ‖M0,loc
φ,B [D p

Bh]‖L p = ‖D p
Bh‖hp(B),

which implies, in particular, that ‖ f ‖hp(B) ≤ ‖D p
B j1

f ‖hp(B) since j1 ≥ 0. Second, by
definition, it holds that H p(A) ↪→ hp(A). All in all, this gives

‖ f ‖hp(B) ≤ ‖D p
B j1

f ‖hp(B) � ‖D p
B j1

f ‖hp(A) � ‖D p
B j1

f ‖H p(A) � 1,

where the second inequality follows from ‖ · ‖hp(A) 
 ‖ · ‖hp(B). ��
The following theorem provides the desired necessary condition for the equality of

anisotropic local Hardy spaces associated to different expansive matrices A, B. Its proof
structure is analogous to the classification of anisotropic (nonlocal) Hardy spaces in [2], with
various essential modifications; see also Remark 5.11.

Theorem 5.10 If hp(A) = hp(B) for some p ∈ (0, 1], then A∗ and B∗ are coarsely
equivalent.

Proof Arguing by contradiction, assume that A∗ and B∗ are not coarsely equivalent. Then,
by Lemma 2.1, it follows for ε = ln | det A∗|/ ln | det B∗| = ln | det A|/ ln | det B| that

sup
k∈N

‖B�εk� A−k‖ = sup
k∈N

‖(A∗)−k(B∗)�εk�‖ = ∞.

Hence, by passing to a subsequence if necessary, it may be assumed that

lim
k→∞ ‖B�εk� A−k‖ = ∞.

Let d(k) ∈ Z be minimal with the property that ‖B�εk� A−k−d(k)‖ ≤ 1. Then, as in [2,
Chapter 1, Theorem 10.5], it follows that 1 < ‖B�εk� A−k−(d(k)−1)‖ ≤ ‖B�εk� A−k−d(k)‖ ·
‖A‖, and hence

1 ≥ c(k) := ‖B�εk� A−k−d(k)‖ ≥ ‖A‖−1. (5.8)

Moreover, we have d(k) → ∞ as k → ∞, which follows by recalling that
‖B�εk� A−k−d(k)‖ ≤ 1, and hence

‖A‖d(k) ≥ ‖Ad(k)‖ ≥ ‖B�εk� A−k−d(k)‖ · ‖Ad(k)‖ ≥ ‖B�εk� A−k‖ → ∞
as k → ∞.

In order to simplify notation, denote

Qk := B�εk� A−k−d(k)
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and let zk ∈ R
d be such that

|zk | = 1 and |Qk zk | = ‖Qk‖ = c(k).

In addition, let Uk ∈ R
d×d be an orthogonal matrix satisfying Uke1 = zk, where e1 denotes

the first element of the canonical basis for R
d . Using the matrices Qk and Uk for k ∈ N, we

define the sequence of functions

fk := D p

Q−1
k

D p

U−1
k

f0,

where f0 : R
d → C is a bounded measurable function satisfying

f0(x) =
{

δ0 > 0, if x ∈ B ( 3
4e1,

1
4

)

0, if x /∈ B (

0, 1
2

) ∪ B ( 3
4e1,

1
4

) (5.9)

and such that conditions (f1)–(f3) hold with x0 = 0 and j1 = j2 = 0. The existence of such
a function is guaranteed by Lemma A.1. It is then not hard to see that also each function fk,

k ∈ N, satisfies conditions (f1)–(f3) with x0 = 0, j1 = �εk� and j2 = −k − d(k).

The remainder of the proof is split into two steps, which consider the cases p < 1 and
p = 1 separately.

Step 1. (Case p < 1). In this step, we show that ‖ fk‖hp(B) → ∞ as k → ∞. Since
‖ fk‖hp(B) � 1 by Lemma 5.9, this will provide the desired contradiction.

Since QkUkB(0, 1
2 ) ⊆ B(0, c(k)

2 ) and QkUkB( 34e1,
1
4 ) = QkB( 34 zk,

1
4 ) ⊆ B( 34 Qk zk,

1
4 ),

it follows by the definition of fk and (5.9) that if fk(x) �= 0 for x ∈ R
d \ B(0, c(k)

2 ), then

fk(x) = δ0| det B|− �εk�
p | det A| k+d(k)

p =: δk, and x ∈ QkB
( 3
4 zk,

1
4

)

. (5.10)

Let φ ∈ S(Rd) be a fixed nonnegative Schwartz function satisfying φ ≡ 1 on B(0, 1
8‖A‖−1)

and φ ≡ 0 outside of B(0, 3
16‖A‖−1). Then, for z ∈ R

d ,

M0,loc
φ,B fk(z) ≥ | fk ∗ φ(z)| =

∣

∣

∣

∣

∫

Rd
fk(x)φ(z − x) dx

∣

∣

∣

∣

. (5.11)

Fix z ∈ B( 34 Qk zk,
c(k)
16 ‖A‖−1) ⊂ B( 34 Qk zk,

1
16‖A‖−1) for the moment. Then φ(z − x) �= 0

implies that

x = −(z − x) + z ∈ B(0, 3
16‖A‖−1) + B( 34 Qk zk,

1
16‖A‖−1) ⊆ B( 34 Qk zk,

1
4‖A‖−1),

so that Eq. (5.8) implies

|x | ≥ 3

4
|Qk zk | − 1

4
‖A‖−1 ≥ 3

4
c(k) − 1

4
c(k) = c(k)

2
,

and hence x ∈ R
d \ B(0, c(k)

2 ). Using Eq. (5.10), it follows therefore that

M0,loc
φ,B fk(z) ≥ δk

∫

Rd
1QkB(3/4zk ,1/4)(x)φ(z − x) dx

≥ δkm
(B (

z, 1
8‖A‖−1) ∩ QkB

( 3
4 zk,

1
4

))

.

Now, an application of [2, Chapter 1, Lemma 10.6] (with r = 1
2‖A‖−1 ≤ 1/2 and P = 1

4 Qk)

yields because of ‖P‖r = 1
4 ‖Qk‖
2‖A‖ ≤ 1

8‖A‖−1 and because of z − 3
4 Qk zk ∈ B(0, ‖P‖ r

2 ) that
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m
(B (

z, 1
8‖A‖−1) ∩ QkB

( 3
4 zk,

1
4

)) = m
(B (

z − 3
4 Qk zk,

1
8‖A‖−1) ∩ 1

4 QkB(0, 1)
)

≥ m
(B (

z − 3
4 Qk zk, ‖P‖ · r

) ∩ PB(0, 1)
)

≥
( r

2

)d · m(PB(0, 1)
)

= (16‖A‖)−d · | det Qk | · m(B(0, 1)
)

,

so that

δk · m (B (

z, 1
8‖A‖−1) ∩ QkB

( 3
4 zk,

1
4

)) ≥ | det Qk | · m(B(0, 1)) · δk · (16‖A‖)−d .

Since

| det Qk | · δk = δ0 · | det B|�εk� · | det A|−k−d(k) · | det B|− �εk�
p · | det A| k+d(k)

p

≥ δ0 · | det B|εk
(

1− 1
p

)

· | det A|(k+d(k))
(

1
p −1

)

� | det A|k
(

1− 1
p

)

| det A|(k+d(k))
(

1
p −1

)

= | det A|d(k)
(

1
p −1

)

,

by definition of δk in Eq. (5.10) and because ε = ln | det A|/ ln | det B|, a combination of the
above inequalities gives

δk · m (B (

z, 1
8‖A‖−1) ∩ QkB

( 3
4 zk,

1
4

))

� | det A|d(k)(1/p−1).

Recall that z ∈ B( 34 Qk zk,
c(k)
16 ‖A‖−1) was arbitrary. Thus, combining the estimates

obtained above and recalling from Eq. (5.8) that c(k) ≥ ‖A‖−1 gives

‖ fk‖p
hp(B) =

∫

Rd

(

M0,loc
φ,B fk(z)

)p
dz ≥

∫

B
(

3
4 Qk zk ,

c(k)
16 ‖A‖−1

)

(

M0,loc
φ,B fk(z)

)p
dz

� | det A|d(k)(1−p),

which shows that ‖ fk‖hp(B) → ∞ as k → ∞, since d(k) → ∞ and p < 1, as well as
| det A| > 1. As noted at the beginning of this step, this completes the proof for the case
p < 1.

Step 2. (Case p = 1). Since ‖A‖−1 ≤ c(k) = ‖Qk‖ ≤ 1 and |zk | = 1, by passing to a
subsequence if necessary, we can assume that Qk → Q, as well asUk → U and zk → z∗ for
a matrix Q ∈ R

d×d satisfying ‖A‖−1 ≤ ‖Q‖ ≤ 1, a vector z∗ ∈ R
d satisfying |z∗| = 1, and

an orthogonal matrix U ∈ R
d×d . Note because of ε = ln | det A|/ ln | det B| and d(k) → ∞

that

| det Qk | = | det B|�εk�| det A|−k−d(k) ≤ | det B|εk | det A|−k−d(k)

= | det A|k | det A|−k−d(k) = | det A|−d(k) → 0,

so that | det Q| = 0, meaning that Q is not invertible.
Next, for an arbitrary bounded, continuous function g ∈ Cb(R

d), we have
∫

Rd
fk(x)g(x) dx =

∫

Rd
| det Q−1

k | · (D1
U−1

k
f0)(Q−1

k x) · g(Qk Q−1
k x) dx

=
∫

Rd
(D1

U−1
k

f0)(y)g(Qk y) dy
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=
∫

Rd
| detU−1

k | f0(U
−1
k y)g(QkUkU−1

k y) dy

=
∫

Rd
f0(z)g(QkUk z) dz

→
∫

Rd
f0(z)g(QU z) dz =:

∫

Rd
g(x) dμ(x),

for a uniquely determined regular, real-valued (finite) Borel measure μ on R
d . The conver-

gence above follows from the dominated convergence theorem, since f0 and g are bounded,
with f0 of compact support, and since g(QkUk z) → g(QU z) by continuity of g. Note that
suppμ ⊆ range(QU ), which is a proper subspace of R

d , since Q ∈ R
d×d is not invertible

and thus not surjective. Hence, μ is mutually singular with respect to the Lebesgue measure.
Note furthermore that the above implies fk → μ in the sense of tempered distributions.

To show that μ �= 0, choose 0 < c < 1
4‖A‖−1, and note

|QUe1| = lim
k

|QkUke1| = lim
k

|Qk zk | = lim
k

‖Qk‖ = ‖Q‖,

which implies for any z ∈ B(0, 1
2 ) that

∣

∣QU z − 3
4 QUe1

∣

∣ ≥ 3
4 |QUe1| − |QU z| ≥ 3

4‖Q‖ − ‖Q‖ · |U z|
≥ 3

4‖Q‖ − 1
2‖Q‖ = 1

4‖Q‖ ≥ 1
4‖A‖−1 > c.

Choose a nonnegative, continuous function g ∈ C(Rd) satisfying supp g ⊆ B( 34 QUe1, c)
and g( 34 QUe1) = 1.Bywhat we just showed, we then have g(QU z) = 0 for all z ∈ B(0, 1

2 ).

By the properties of f0 (see Eq. (5.9)), we then see
∫

Rd
g(x) dμ(x) =

∫

Rd
f0(z)g(QU z) dz

=
∫

B
(

0, 12

) f0(z)g(QU z) dz + δ0

∫

B
(

0, 14

) g
(

QU
( 3
4e1 + z

))

dz

= δ0

∫

B
(

0, 14

) g
(

QU
( 3
4e1 + z

))

dz > 0,

since the domain of integration is open and the integrand is continuous, nonnegative, and
strictly positive at z = 0.

We will now show that the tempered distribution μ satisfies μ ∈ h1(B) ⊆ L1, which
will yield the desired contradiction. For this, fix a nonnegative, nonzero Schwartz function
φ. Then an application of Fatou’s lemma yields

‖μ‖h1(B) 

∫

Rd
M0,loc

φ,B μ(x) dx ≤ lim inf
k→∞

∫

Rd
M0,loc

φ,B fk(x) dx 
 lim inf
k→∞ ‖ fk‖h1(B).

Since ‖ fk‖hp(B) � 1 for all k ∈ N by Lemma 5.9, this shows that μ ∈ h1(B) ⊆ L1, which
is a contradiction, since μ �= 0 is mutually singular with respect to the Lebesgue measure. ��
Remark 5.11 While being based on the same general ideas, the proof for the case p = 1
above adds a significant detail that was missing in the proof of [2, Chapter 1, Theorem 10.5].
The reason is that one of the claims used in [2] appears not correct as stated: In [2], it is
effectively claimed that if ( fn)n∈N is a sequence in L1 with uniformly bounded supports
that converges in the sense of tempered distributions to some real-valued Borel measure μ,
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and such that m(supp fn) → 0 as n → ∞, then μ is mutually singular with respect to the
Lebesgue measure.

To see that this claim is not correct in general, let fn : R → [0,∞), n ∈ N, be defined
by

fn(x) = 1

n

n
∑

i=1

n2

2
1 i

n +[−n−2,n−2].

Then ‖ fn‖L1 = 1, and m(supp fn) ≤ 2
n , so that m(supp fn) → 0 as n → ∞., However,

it follows by standard arguments hat fn → 1[0,1] in the weak-∗-topology of M(R) =
(C0(R))∗, so that limn fn ∈ L1 is not singular with respect to the Lebesgue measure m.

5.6 Proof of Theorem 5.1

Combining the results from the previous subsections, we can prove Theorem 5.1.

Proof of Theorem 5.1 If Fα
p,q(A) = Fα

p,q(B) for some α �= 0, then case (i) follows by Theo-

rem 5.6. If F0
p,q(A) = F0

p,q(B) for some p ∈ (0,∞) and q �= 2, then case (i) follows from

Theorem 5.8. Lastly, if F0
p,q(A) = F0

p,q(B) for p ∈ (0, 1] and q = 2, then case (i) follows
from Theorem 5.10, combined with Proposition 3.1. In the remaining case, we have α = 0,
q = 2, and p ∈ (1,∞), so that case (ii) of Theorem 5.1 holds. ��

5.7 Proof of Theorem 1.1

Theorem 5.1 shows that (i) implies (iii), whereas Proposition 4.2 shows that (iii) implies (ii).
The remaining implication is immediate.

Appendix A: Postponed proofs

Lemma A.1 Let s, d ∈ N, and let e1 = (1, 0, . . . , 0) ∈ R
d denote the first standard basis

vector. There exists a bounded measurable function f : R
d → C satisfying

f (x) =
{

1, if x ∈ B ( 3
4e1,

1
4

)

0, if x /∈ B (

0, 1
2

) ∪ B ( 3
4e1,

1
4

)

and
∫

Rd f (x)xσ dx = 0 for all σ ∈ N
d
0 with |σ | ≤ s.

Proof Define ns := |{σ ∈ N
d
0 : |σ | ≤ s}| and v ∈ R

ns by vσ := − ∫

B( 34 e1,
1
4 )

xσ dx . Then,
the linear function

θ : L∞(B(0, 1/2)) → R
ns , h �→

(∫

B(0, 12 )

h(x)xσ dx

)

|σ |≤s

is surjective. Indeed, if this was not the case, since range(θ) is finite-dimensional, there would
exist c ∈ R

ns with c �= 0 but c ⊥ range(θ), which then implies for the nonzero polynomial
p(x) := ∑

|σ |≤s cσ xσ that 0 = ∫

B(0, 12 )
h(x)p(x) dx for all h ∈ L∞(B(0, 1

2 )), which is
absurd.
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Hence, there exists h ∈ L∞(B(0, 1/2)) such that θ(h) = v. Define f : R
d → C by

f (x) =

⎧

⎪

⎨

⎪

⎩

h(x) if x ∈ B (

0, 1
2

)

,

1 if x ∈ B ( 3
4e1,

1
4

)

,

0 if x /∈ B (

0, 1
2

) ∪ B ( 3
4e1,

1
4

)

.

Then, given σ ∈ N
d
0 with |σ | ≤ s, we have

∫

Rd
f (x)xσ dx =

∫

B(0, 12 )

h(x)xσ dx +
∫

B( 34 e1,
1
4 )

xσ dx = 0,

as desired. ��
The next lemma is part of the folklore. However, since we could not locate a reference

and since the properties derived in the lemma are crucial for our arguments (see Lemma 5.4),
we provide a short proof.

Lemma A.2 Let A ∈ GL(d, R) be expansive and let α ∈ R, p ∈ (0,∞), and q ∈ (0,∞].
Then the following assertions hold:
(i) The quasi-norm ‖ · ‖Fα

p,q (A) is an r-norm for r := min{1, p, q}, that is,

‖ f1 + f2‖r
Fα

p,q (A) ≤ ‖ f1‖r
Fα

p,q (A) + ‖ f2‖r
Fα

p,q (A)

for all f1, f2 ∈ Fα
p,q(A);

(ii) The space Fα
p,q(A) is complete with respect to the quasi-norm ‖ · ‖Fα

p,q (A);
(iii) If ( fn)n∈N is a sequence in Fα

p,q(A) satisfying fn → f0 with convergence in Fα
p,q(A),

then 〈 fn, φ〉→〈 f0, φ〉 for all φ ∈ F(C∞
c (Rd)).

Proof (i) Let r := min{1, p, q}. To ease notation, define C f (x) := (| det A|αi | f ∗
ϕA

i (x)|)i∈N0 for f ∈ S ′ and x ∈ R
d . Then

‖ f ‖r
Fα

p,q
= ∥

∥‖C f (·)‖�q
∥

∥

r
L p = ∥

∥

∥

∥

(

C f (·)
)r∥
∥

1/r
�q/r

∥

∥

r
L p = ∥

∥

∥

∥

(

C f (·)
)r∥
∥

�q/r

∥

∥

L p/r .

Since r ≤ 1, we have Cr
f1+ f2

≤ Cr
f1

+ Cr
f2
. Since moreover q/r , p/r ≥ 1, applications of

the triangle inequality yield

‖ f1 + f2‖r
Fα

p,q
≤ ∥

∥

∥

∥

(

C f1(·)
)r∥
∥

�q/r

∥

∥

L p/r + ∥

∥

∥

∥

(

C f2(·)
)r∥
∥

�q/r

∥

∥

L p/r = ‖ f1‖r
Fα

p,q
+ ‖ f2‖r

Fα
p,q

,

as required.
(ii) Let D := {D = A j ([0, 1]d + k) : j ∈ Z, k ∈ Z

d} and D0 := {D ∈ D : m(D) ≤ 1}. For
a complex-valued sequence c = (cD)D∈D0 , define

‖c‖fαp,q (A) :=
∥

∥

∥

∥

(

∑

D∈D0

(

m(D)−α−1/2|cD|1D
)q
)1/q∥

∥

∥

∥

L p
∈ [0,∞],

and set fαp,q(A) := {c ∈ C
D0 : ‖c‖fαp,q (A) < ∞}. Then it is easily verified that fαp,q(A), with

respect to the quasi-norm ‖ · ‖fαp,q (A), is a (solid) quasi-normed function space on D0, in the
sense of [16, Section 2.2] and [11, Section 2]. Moreover, fαp,q(A) satisfies the Fatou property,
and hence it is complete, see, e.g., [16, Lemma 2.2.15] and [11, Proposition 2.2] (combined
with [11, Remark 2.1]).

By [5, Section 3.3], there exist two bounded linear maps S : Fα
p,q(A) → fαp,q(A) and

T : fαp,q(A) → Fα
p,q(A) satisfying T ◦ S = idFα

p,q (A). Hence, if ( fn)n∈N is a Cauchy
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sequence in Fα
p,q(A), then the sequence (c(n))n∈N given by c(n) = S fn ∈ fαp,q(A) is Cauchy

in fαp,q(A), and thus converges to some c ∈ fαp,q(A). Since T is bounded, this easily implies

that fn = T (S fn) = T (c(n)) → T c ∈ Fα
p,q(A), which shows that Fα

p,q(A) is complete.
(iii) Choose an A-analyzing pair (ϕ,�) that satisfies properties (c1)–(c3). Let ( fn)n∈N be a
sequence in Fα

p,q(A) that converges in Fα
p,q(A) to some f0 ∈ Fα

p,q(A). Let φ ∈ F(C∞
c (Rd))

and note by elementary properties of the Fourier transform (see [12, Theorem 7.19]) and

because of
∑

i∈N0
̂ϕA

i ≡ 1 (see property (c3)) that

〈 fn, φ〉 = 〈̂fn,F−1φ〉 =
∑

i∈N0

〈̂fn, ̂ϕA
i · F−1φ〉 =

∑

i∈N0

〈 fn ∗ ϕA
i , φ〉

for any n ∈ N0. Moreover, there exists a finite set Iφ ⊆ N0 independent of n, such that
〈 fn ∗ ϕA

i , φ〉 = 0 for all n ∈ N0 and all i ∈ N0 \ Iφ. Thus, it remains to show

〈 fn ∗ ϕA
i , φ〉 → 〈 f0 ∗ ϕA

i , φ〉
as n → ∞, for all i ∈ N0. To see this, we will use [3, Corollary 3.2], which yields a constant
C > 0 and some N ∈ N such that

sup
x∈Rd

|h(x)|
(1 + |x |)N

≤ Ci+1‖h‖L p for all h ∈ S ′(Rd) with supp̂h ⊆ supp ̂ϕA
i .

Hence, in particular,

sup
x∈Rd

|( f0 ∗ ϕA
i − fn ∗ ϕA

i )(x)|
(1 + |x |)N

≤ Ci+1‖ f0 ∗ ϕA
i − fn ∗ ϕA

i ‖L p

≤ Ci+1| det A|−αi‖ f0 − fn‖Fα
p,q (A),

which easily implies that fn ∗ ϕA
i → f0 ∗ ϕA

i in S ′(Rd), as n → ∞. Thus, we see that
〈 fn ∗ ϕA

i , φ〉 → 〈 f0 ∗ ϕA
i , φ〉, as desired. ��
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