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Abstract

This paper develops methods based on coarse geometry for the comparison of wavelet
coorbit spaces defined by different dilation groups, with emphasis on establishing a
unified approach to both irreducible and reducible quasi-regular representations. We
show that the use of reducible representations is essential to include a variety of exam-
ples, such as anisotropic Besov spaces defined by general expansive matrices, in a
common framework. The obtained criteria yield, among others, a simple characteriza-
tion of subgroups of a dilation group yielding the same coorbit spaces. They also allow
to clarify which anisotropic Besov spaces have an alternative description as coorbit
spaces associated to irreducible quasi-regular representations.
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1 Introduction

The theory of coorbit spaces was initially developed by Feichtinger and Grochenig
[15-17, 33] as a group-theoretic framework that allows to view various classical func-
tion spaces in complex and harmonic analysis, such as Bergman, Bargmann—Fock
and Besov—Triebel-Lizorkin spaces, under a unified perspective. These initial papers
have resulted in an extensive body of literature, studying generalizations in various
directions, and demonstrating the applicability of the coorbit method in a large variety
of settings, see, e.g., the papers [8, 9, 12, 19, 37, 43, 44, 50] and the references therein.

A particularly rich source of examples within the original setting of coorbit spaces
that have been studied extensively in the past few years are function spaces on
Euclidean space that are invariant under translations and certain matrix dilations. To
be explicit, we let H < GL(d, R) be a closed subgroup and consider the semidirect
product group G = R? x H. The quasi-regular representation = of G is the unitary
representation on L2(R?) defined by

7Ce, h) f(t) = |deth| ™2 f(h™'(t — x)), 1€ R (1.1)

In case 7 is irreducible and square-integrable, the associated coorbit spaces are defined
by imposing norm conditions on the wavelet transform Wy f = (f, 7 (-)¥) of a
function/distribution f and an adequate fixed function . For example, given 1 <
p < 2, the coorbit space Co(L”(G)) is the Banach space of functions f € L?(R?)
satisfying

£ 0oy :=/G|<f,n(x,h>w>|"duc(x,m < 0, (1.2)

where 11 denotes the left Haar measure on G. For the similitude group H = R -
SO(d), the coorbit spaces Co(L?” (R? x H)) correspond to classical (homogeneous)
Besov spaces [20, 42] on RY (see, e.g., [15, 32, 33]), and the general coorbit theory
[15-17, 33] revealed that the classical atomic decompositions of such spaces can be
obtained as consequences of the action of the group on these spaces. Just like the
classical Besov space ]'3(])‘1 (Rd ) is (in a certain sense) the minimal Banach space being

invariant under translations and dilations (cf. [21]), the coorbit space Co(L!(G)) can
be shown to be the minimal Banach space that is invariant under the action of the
quasi-regular representation (1.1). As such, for other adequate dilation groups H, the
spaces Co(L” (R4 % H)) can be shown to yield new classes of function spaces, which
have been studied intensively in, e.g., [6, 24, 26, 28, 29, 31].

The present paper is concerned with two questions related to coorbit spaces defined
by the quasi-regular representations (1.1) that can be traced back to the very begin-
nings of coorbit space theory, namely the possibility of using reducible quasi-regular
representations to define coorbit spaces and the question of when two different dilation
groups yield the same coorbit space.
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1.1 Previous Work

Before describing the content of the present paper in more detail, we describe the
relevant context and some recent developments.

First, although the original coorbit space theory assumed the group representation
to be irreducible, that is, {0} and L?(R¢) are the only closed 7 -invariant subspaces of
L%(R%), it was already realized from early on that an integrable reproducing kernel
(rather than irreducibility) is the essential assumption guaranteeing most properties of
coorbit spaces, see, e.g., [33, Remark 6.6]. This was one of the key motivations for the
study of a large class of dilation groups, the so-called integrably admissible dilation
groups (cf. Sect.2.1), that guarantee an integrable quasi-regular representation; see
[11]. Various concrete aspects of the coorbit spaces associated with such dilation
groups were studied in [30], and allowed to incorporate further scales of function
spaces, such as anisotropic Besov spaces [3], into a common framework with the
already established coorbit spaces defined by irreducible, square-integrable quasi-
regular representations studied in, e.g., [24, 26, 31].

Second, as already outlined above, it was realized early in the development of
coorbit space theory that the scale of (homogeneous, isotropic) Besov spaces in arbi-
trary dimensions could be understood as coorbit spaces associated to the irreducible
quasi-regular representation of the similitude group H; = R™ - SO(d). However, it
was also understood early on that with suitable choices of analyzing wavelets, the
full similitude group H; could be replaced by the one-parameter group Hy = R* - [
and yield the same coorbit space, see, e.g., [32, Remark (ii)]. This led naturally to the
question of which dilation groups yield different scales of coorbit spaces. For dilation
groups that act irreducibly, the paper [26] provided a coarse geometric approach to this
question, and showed that whether two dilation groups H;, H» yield the same coorbit
space can be decided by investigating whether a suitable map between H; and H> is
a quasi-isometry.

1.2 Aims and Contributions

The main purpose of the present paper is to extend the methods based on coarse
geometry for the comparison of coorbit spaces developed in [26] to the general setting
of integrably admissible dilation groups [30], and thus obtain far-reaching criteria for
the characterization of coorbit spaces and their symmetries. In doing so, we resolve
an open question on the uniqueness of a dual orbit or essential frequency support
of an integrably admissible dilation group (cf. [30, Section 2.1]). As an application
and illustration of our results, we show that the inclusion of reducible integrably
admissible dilation groups is necessary for coorbit space theory to cover anisotropic
Besov spaces [3]: It was already known that these spaces are coorbit spaces with
respect to one-parameter dilation groups [30], which necessarily act reducibly. Our
Theorem 5.2 provides a complement to that observation by stating that these spaces
do not have a characterization using an irreducibly acting dilation group.
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1.3 Technical Overview

As in [26], our approach towards the comparison of coorbit spaces hinges on the
description of such a space as a Besov-type space defined by decomposition methods
[47-49], also called a Besov-type decomposition space [ 14, 51]. In contrast to the usual
coorbit space norm (see, e.g., Eq. (1.2)), the Besov-type spaces are defined by means
of a discrete Littlewood—Paley-type norm. For example, for 1 < p < 2, the coorbit
space Co(L?(G)) can alternatively be described as those f € L*(RY) satisfying a
norm condition of the form

S (et =7 - £ ] ,)" < o0,

iel

where (¢;);c; is such that the family of Fourier transforms (¢;);<; forms a suitable
partition of unity adapted to a frequency cover Q = (Q;);¢; of the form Q; = h; T 0
for some discrete family (h;);c; of points h; € H. The realization of a coorbit space
as a Besov-type space has been shown for irreducibly acting dilation groups in [31],
and for general integrably admissible dilation groups in [30]. This identification is an
essential ingredient in our approach.

The significance of Besov-type spaces for our purposes is that a comparison of
these spaces in terms of geometric properties of associated frequency covers has
been obtained in [51]. More precisely, the classification results in [S1] show that
the coincidence of a scale of Besov-type spaces (hence, wavelet-type coorbit spaces)
is equivalent to the weak equivalence (cf. Definition 3.9) of the frequency covers defin-
ing the spaces. The paper [26] showed in turn that the weak equivalence of two covers
is equivalent to the ambient spaces being quasi-isometric relative to two so-called
cover-induced metrics (see Theorem 3.10). This latter condition allows, in the case of
covers induced by dilation groups, to characterize when two dilation groups H; and
H; induce the same coorbit spaces in terms of a quasi-isometry between H; x C; and
Hj x C; for certain compact sets C; € R?\ {0} and C> € R?\ {0} (see Theorem 4.4).

In comparison to coorbit spaces associated to irreducibly admissible dilation groups
in [26], there are several additional difficulties that arise in the general setting of inte-
grably admissible dilation groups treated in the present paper. First of all, in contrast to
an irreducibly acting dilation group, it is a priori not clear that an integrably admissible
dilation group admits a unique associated essential frequency support (see Sect.2.1).
This question is, however, of fundamental importance for our approach towards com-
paring coorbit spaces, because the essential frequency support enters crucially in the
description of a coorbit space as a Besov-type space. We show the uniqueness of the
essential frequency support in Sect. 2.2. Second, the essential frequency support is in
general not singly generated (i.e., the action (h, £) — h’ £ on the essential frequency
support is in general not transitive), in contrast to the special case of an irreducible
admissible dilation group. As in [30], the fact that the frequency support is possibly
generated by an arbitrary compact set leads to various technicalities (e.g., uniformity
of certain estimates), as we point out throughout the text.
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1.4 Organization

The paper is organized as follows: Sect. 2 recalls various properties of integrably admis-
sible dilation groups that will be used throughout the text. In addition, the uniqueness
of a frequency support of such a group is shown in Sect.2.2. Section 3 is devoted to
showing that the full orbit map

p:HxC— 0O, (hé)rhTg,

with C € O compact and O = H T, forms a quasi-isometry, under suitable (mild)
technical assumptions, and using suitable natural metrics on H and O. Before proving
this in Sect. 3.6, all requisite background and notions are recalled in the prior subsec-
tions. The results from Sects. 2 and 3 are combined in Sect. 4 to characterize when two
dilation groups yield the same coorbit space. Lastly, the results of Sect. 4 are applied
in Sect. 5 to study anisotropic Besov spaces [3] inside the framework of coorbit space
theory. The appendices contain some postponed proofs and auxiliary results used in
the main text.

Notation

The set of natural numbers (excluding 0) is denoted by N. For two functions fi, f> :
X — [0, 00) on a set X, we write f] < f if there exists C > 0 such that fj(x) <
Cfr(x) for all x € X. We use the notation f; =< f» whenever f; < f» and fo < fi.

2 The Essential Frequency Support of Integrably Admissible Dilation
Groups

This section recalls the class of integrably admissible dilation groups studied in [11,
30]. For such groups, we show that there exists at most one associated essential
frequency support, which plays a key role in establishing our main results on the
classification of coorbit spaces.

2.1 Integrably Admissible Dilation Groups

Following [11, 30], we say that a closed subgroup H < GL(d, R) is integrably
admissible, if there exists a set O C R? satisfying the following conditions:

(al) Theset O C R is open and of full measure (i.e., O¢ is a null-set);
(a2) there exists a compact set C € O such that O = H Tc.
(a3) for each compact set K € O, the closed set

[K1:={(h,§) e Hx O: (W£,6) e K x K} S HxO
is compact.
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Every set O C R4 satisfying the conditions (al), (a2) and (a3) is referred to as an
(essential) frequency support associated to the dilation group H.

The significance of the class of integrably admissible dilation groups for our
purposes is that it guarantees that the quasi-regular representation (1.1) admits an
admissible vector with an integrable matrix coefficient; see Proposition 4.1. Both
properties are used in the coorbit theory developed in Sect.4.

For two sets U, V C RY, we define the set

(U, V) :={heH:hTUNV + 2). .1

The following characterization of integrably admissible dilation groups is often used
in the remainder. See [11, Proposition 2.9] for its proof (and also see [11, Definition
2.2]).

Lemma 2.1 [11] Let H < GL(d, R) be a closed subgroup and let O C RY be an
open set that is H” -invariant and of full measure. Then the following assertions are
equivalent:

(i) H is integrably admissible with essential frequency support O;
(ii) There exists some open, relatively compactset C € OwithC € Oand HT C = O,
and for any such set C, the set ((C, C)) is relatively compact in H.

We collect the following consequences of Lemma 2.1; see [11, Lemma 2.4] and
[11, Lemma 2.5].

Corollary 2.2 [11] Let H < GL(d, R) be integrably admissible with essential fre-
quency support O. Then the following assertions hold:

(i) For each & € O, the stabilizer subgroup Hg := {h € H : hT& = &} is compact.
(ii) For arbitrary compact sets C1, Co € O, the set ((Cy, C2)) is compact.

In the following example, two classes of integrably admissible dilation groups are
listed that have been studied in the literature before, see, e.g., [5, 11, 23, 34, 38].

Example 2.3 (Integrably admissible dilation groups) Let H < GL(d, R) be closed.

(1) H is called an irreducible admissible dilation group if there exists an open singly
generated orbit O := HT& € R? of full measure for some & € R? for which
the isotropy group Hg, is compact. The irreducibly admissible dilation groups are
precisely those for which the quasi-regular representation on is irreducible, cf. [23,
Corollary 21]. Any irreducibly admissible dilation group is integrably admissible.

(2) A one-parameter subgroup H = exp(RA) is integrably admissible if and only if
the real parts of all eigenvalues of A are either strictly negative or strictly positive;
see [34, Theorem 1.1] and [30, Proposition 6.3].

2.2 Essential Frequency Support
The aim of this section is to prove that there exists at most one essential frequency
support for an integrably admissible dilation group. This question was discussed, but

left open, in [30, Section 2].
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We first prove a lemma that allows us to reduce the general question to the case
where different frequency supports fulfill a containment relation.

Lemma24 Let H < GL(d, R) be integrably admissible with associated essential
frequency supports O, Oy. Then O := Oy U O, is an essential frequency support
associated to H.

Proof Clearly, O C RY is open and of full measure. By definition, we have O; =
HTC; with C; € O; compact. Hence, setting C := C; U C», it follows that C € O
is compact and satisfies © = HTC, showing defining condition (a2). Lastly, let
K C O be compact. For each x € K, there exist iy € {1,2} and a compact set
K, C O, satistying x € K;. By compactness of K, there exist N € N and points
X1,...,xy € K satisfying K C U,ﬂ\;l K3, < U?’:l K,.Since [Ky,] € H x Ky, C
H x Oiw C H x O is compact for each ¢, it follows that [K] € H x O is a closed

set satisfying [K] € U?]:] [Ky, ], sothat [K] € H x O is compact. O

In addition to Lemma 2.4, we will use two additional lemmata for proving the
uniqueness of the frequency support. For this, given an integrably admissible dilation
group H and a compact set K € R?, we define

Mg gf:H—[0,00), h> sup f(h'§)
EeK

for any continuous function f : RY — [0, co). The function M k.H f is lower semi-
continuous (as a supremum of continuous functions), and hence Borel measurable.

Lemma 2.5 Let H < GL(d, R) be integrably admissible with Haar measure |4y, and
let © € R? be an essential frequency support associated to H. Let K € O be compact
and let f € C.(O) with f > 0. Then

fH M f () dpesg () < oo,

Proof Define the compact set K:=KU supp f < O. Note that if Mg p f(h) # 0,
then there exists £ € K C K satisfying hT & e supp f C K, and hence (h,&) e (K],
which is compact by defining condition (a3). Therefore, using the projection 7y :
H xR? — H, (h,&) > h, it follows that supp(My x f) € Ko := 71 ([K]). Since

0 < Mu kf < IIf|lsup, this implies fH My x f(h)ydug(h) < || fllsup - nE(Ko) <
00, as claimed. 0O

Lemma2.6 Let H < GL(d, R) be integrably admissible with Haar measure Ly,
and let © = HTC with a compact set C € O be an essential frequency support
associated to H. Let f : R? — [0, 00) be continuous. Suppose that there exists

&y € 00 satisfying f(&y) # 0. Then

/H Mc. u f(h)dun(h) =

Birkhauser
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Proof Since & € 0, there exists a sequence (&,),en in O = HTC satisfying
&, —> & asn — oo. Write §, = h,fcn for some h, € H andc¢, € C.Let Q C H be
a compact unit neighborhood. The remainder of the proof is split into two steps.
Step 1 In this step, we show that for each N € N there exists M = M(N) € N such
that

N
huQN| Jhe0 = 2.

=1

Arguing by contradiction, assume there exists N € Nsuch that /iy, QN Ué\,: 1 heQ #92

and hence hy € )., heQQ~" =: Q' forevery M € N. Then ((hmscan)) yyoy 15 @
sequence in the compact set Q' x C, so that there exists a subsequence (My)xen and
(h,c) € Q' x C satisfying (hy,, cp,) — (h, ¢) as k — oo. This implies

g = lim &y, = lim hyem, =h'ce H'C=0=0°
—00 — 00

which contradicts the assumption &) € 90.
Step 2 By use of Step 1, we easily obtain a subsequence (/,,)¢cn such that (A, Q) ¢en
is pairwise disjoint. By definition of M¢ g f, it follows that

o0 o0
| Mensmannm =Y [ Meusmduntn =Y [ 6T en)duhy
H o=17hn Q =17 Q
o0 o
=) f @ mhen)dun@) =" / F@ &) dup ().
=179 =172

Since € := f(&p) > 0and f is continuous, there exists an open set Qg € Q and some
8 > 0 satisfying f(qT&) > £ forall g € Qg and all £ € R with ||€ — & < 8. In
addition, since &,, — &, there exists £ € N satisfying [|£,, — &o|| < & forall £ > £,.
Overall, this implies that

| Mt dun i = Y-

=Ly

/Q F@ 60 dnn(@) = Y nu(Qo)3 = oo
0

=Ly
which finishes the proof. O

For irreducibly admissible dilation groups (see Example 2.3), a special case of
Lemma 2.6 (with C being a singleton) was obtained by A. Burtscheidt and the third
named author; see Proposition 5.4.1 in the thesis [6].

A combination of the preceding lemmas gives the desired uniqueness result.

Theorem 2.7 Let H < GL(d, R) be integrably admissible. Then the essential fre-
quency support O C RY associated to H is unique.

Birkhauser
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Proof By Lemma 2.4, it suffices to show that there cannot be two frequency supports
Oy, O € RY satisfying Oy C O,.

Arguing towards a contradiction, assume that such frequency supports O; and O,
do exist. Write O; = HT C; with C; € O; compact and choose & € O,\O;. Fix
f € Cq(Oy) satisfying f > 0 and f(&y) > 0. Since O; C RY is open and of full
measure with & ¢ Oy, it follows that &y € dO;. Hence, an application of Lemma 2.6
implies

fHMcl,Hf(h)dMH(h) = 00.

On the other hand, since C; € O; C O, is compact, it follows by Lemma 2.5 that

fH Me, 1 f () dprs (h) < oo,

which is the required contradiction. O

3 Quasi-isometry Between H x C and the Essential Frequency Support

This section is devoted to establishing a quasi-isometry between the product H x C and
O, where H is an integrably admissible dilation group satisfying some mild additional
conditions, and O = HTC its essential frequency support, where we assume that
C C O is connected and compact (see Definition 3.3).

More precisely, we will show that the full orbit map

pHxC— 0O, (h& v hTg, (3.1

forms a quasi-isometry relative to suitable metrics on H x C and O. This property
will be used in Sect. 4 to characterize when two dilation groups yield the same coorbit
space.

The first few subsections of this section are concerned with the construction of
relevant objects and recalling the requisite background. The fact that the full orbit
map p is a quasi-isometry from H x C into the essential frequency support O of H
is proven in Sect. 3.6.

3.1 Quasi-isometries

This subsection reviews the notions of a quasi-isometry and a quasi-inverse. As we
need these notions and results in various contexts, we introduce them in the general
setting of metric spaces. Standard references! on coarse geometry are, e.g., [10, 41,
45], and we refer to these references for further details.

! The terminology is not uniform throughout the literature, see, e.g., [ 10, Remark 3.A.4] for some overview.
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Throughout this subsection, we let (X, dx) and (Y, dy) be arbitrary metric spaces.
A map f : X — Y is said to be a quasi-isometry if it satisfies the following two
conditions:

(ql) There exist constants Ry, R> > 0 such that
Ry 'dx(x,x') = Ry < dy(f(x), f(x)) < Ridx(x.x) + R

forall x, x" € X;
(q2) There exists Rz > 0 such that, for every y € Y, there exists x € X, such that
dy(f(x),y) < Rs.

The composition of two quasi-isometries is again a quasi-isometry. Hence the existence
of a quasi-isometry between X and Y defines a transitive relation between metric
spaces (and this relation is clearly also reflexive). This relation is also symmetric, i.e.,
for every quasi-isometry from X into Y there exists an associated quasi-isometry in
the converse direction. This observation will be useful for us in the following, and is
therefore spelled out in somewhat more detail in the following paragraph.

A map f> : Y — Xiscalled a quasi-inverse of amap f; : X — Y if

supdy (f1(f2(y)),y) < o0
yeY

Every quasi-isometry f has a quasi-inverse: By assumption (q2), the axiom of choice
provides a map f> : ¥ — X satisfying

supdy (f1(f2(»)),y) < Rs.
yey

The following result is folklore. For reasons of self-containment, we provide a proof
in Appendix B.

Lemma 3.1 Let (X, dx) and (Y, dy) be metric spaces.

(i) Any quasi-inverse of a quasi-isometry f1 : X — Y is a quasi-isometry.
(ii) Let f1 : X — Y denote a quasi-isometry, and f> a quasi-inverse of f1. Then fi is
a quasi-inverse of f.

3.2 Connectivity-Respecting Dilation Groups

Let H < GL(d, R) be an integrably admissible dilation group with essential frequency
support O = HT C. In order to show the quasi-isometry property of the full orbit map
p: H x C — O defined in Eq. (3.1), we will construct adequate metrics on H x C
and O in the following subsections. For these constructions, we will impose some
mild additional assumptions on the group H and its frequency support O in Definition
3.3.

In order to prepare for Definition 3.3, we make the observation that the dual action
of H on O induces a permutation action on the connected components of . More
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precisely, let
I':={0p C O : Ogis aconnected component of O}.

Then for Oy € T and h € H, we see that 17Oy C O is connected and hence
hT oy Oy, for some O € T'. Then h_TO(’) is connected with Oy C h_T(’)6 and
thus Oy = h_TO(’), meaning h7 Oy = Oy € I, so that the map

HxT =T, (h,Oy)r—hTO, (3.2)

is well-defined. It is straightforward to check that this map is a group action.

Lemma 3.2 Let H < GL(d, R) be an integrably admissible dilation group with essen-

tial frequency support O. Then, given any connected component O of O, the stabilizer
Hy of Oo,

Ho:Z{hGH: hTO():(’)O}gH

is a closed subgroup.

Proof Let (h,),en be a sequence in Hy with , — h for some h € H. Fix & € Oy,
and let (’)6 := hT ©®y, and note that (’)(’) and Oy are both connected components of O;
see the discussion around Eq. (3.2). Then (J;) is a neighborhood of hT&, and we have
h,{éj — hT& asn — o0. As such, there exists ng € N such that h,{é € (96 for all
n > ng, which then implies 1T & € KT OpN Of = OgN Q. Since the two components
Op and Oy, have a nontrivial intersection, it follows that 2" Op = O = Oy, and hence
h € Hy. |

The following definition introduces the additional assumptions on an integrably
admissible dilation group that will be needed in the remainder.

Definition 3.3 An integrably admissible dilation group H < GL(d, R) with essen-
tial frequency support O is called connectivity-respecting if it satisfies the following
additional assumptions:

(c1) There exists a compact, connected set C € O satisfying O = H C;
(c2) The stabilizer group Hy := {h € H : WOy = Op} of the connected component
Op of O containing C is compactly generated.

In principle, condition (c2) is a nontrivial restriction, since there do exist closed
matrix groups that are not compactly generated, see [46, Appendix A]. However, we
currently do not know of an example where such groups arise as stabilizer groups Hy
obtained in the sense of (c2) from an integrably admissible matrix groups.

The following simple observation will be used repeatedly.

Lemma3.4 IfH < GL(d, R) is connectivity-respecting, then the stabilizer Hy of each
connected component Oy of O is compactly generated.
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Proof By the discussion around Eq. (3.2), the group H acts on the set I" of connected
components of @ by (h, Og) — h~T . Clearly, the set Hy is the stabilizer group of
Oy € I' with respect to this action.

Furthermore, denoting by C € Qg the connected sets from (c1) of Definition 3.3,
the fact that © = HTC = HT (O implies that the action of H on T is transitive.
Hence, all fixed groups are conjugate to Hp, and if Hy is compactly generated, the
same applies to the remaining fixed groups. O

We next discuss the connectivity-respecting property for the classes of integrably
admissible dilation groups mentioned in Example 2.3.

Example 3.5 (Connectivity-respecting dilation groups) Let H < GL(d, R) be closed.

(1) If H is integrably admissible and connected, then H is connectivity-respecting if
and only if O is connected.

For this, first note that @ = HT C is connected whenever H and C are connected.
For the converse implication, the assumption that H is integrably admissible fur-
nishes a compact set Co € O with O = H T Cy. Then, since O is connected,
Lemma A.2 yields a compact connected set C € O with C 2 Cp, so that
O =HTCy < HTC C O. Since any connected locally compact group is com-
pactly generated, all conditions are satisfied for Hy := H.

This observation shows that in particular all integrably admissible one-parameter
groups in dimension d > 1 are connectivity-respecting. The frequency support
associated to any of these groups is @ = R?\ {0}, cf. [30, Proposition 6.3].

(2) Assume that H is irreducibly admissible, i.e., that O is a single orbit. Then condi-
tion (c1) of Definition 3.3 can be guaranteed by any singleton set C = {§} € O.
The other condition is also fulfilled: Let H; denote the connected component of
the identity id € H of H. Then it is clear that any orbit stabilizer Hy in the sense
of Definition 3.3 contains H;. By [22, Remark 4], H; has finite index in H, and
therefore in Hy. Being connected, H; is generated by any compact symmetric
neighborhood of unity V' € Hj, and then Hp is generated by V together with
finitely many coset representatives of Hy/H.

Hence the following results are applicable to all irreducibly admissible groups,
without imposing further technical conditions. This stands in contrast to the pre-
cursor paper [26], which uses the standing assumption that the dual (single point)
stabilizers

Hg:{heH:hTézé}, £eco,

are contained in H.
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3.3 Word Metrics on Dilation Groups

Let H < GL(d, R) be a closed subgroup. For a nonempty symmetric set W € H,
define the map dw : H x H — Ny U {oo} by

infm e N:x"ly e wn}, ifx #y;
dwix. =10 v ifxfi (3.3)

where we setinf @ = oo. Itis well-known that dy is a metric on H (with the exception
that it can attain the value co) and that dy is left-invariant, i.e., dw (x, y) = dw (zx, zYy)
forall x, y, z € H; see, e.g., [26, Lemma 4.2].

In the remainder, we will choose W to be an open, precompact symmetric generating
set of a subgroup Hy < H. The next (elementary) lemma shows that the resulting
metrics for different choices of W are coarsely equivalent, so that the precise choice
is immaterial for our purposes. The proof is deferred to Appendix B.

Lemma 3.6 Let H be a locally compact group, let Hy < H be closed, and let W,V C
Hy be nonempty, open, precompact, symmetric generating sets for H.
Then the identity map h +— h is a quasi-isometry from (H, dw) onto (H, dy).

3.4 Covers of the Frequency Support

For showing that the full orbit map (3.1) is a quasi-isometry, we need to construct an
adequate metric on the frequency support O of a dilation group H. Following an early
observation in [14], we will define such a metric by first constructing an adequate
cover of O.

We will construct covers of the essential frequency support that are induced by the
dual action of the dilation group. General covers of this type were already constructed
in [30, Section 4.1], but for the purpose of the present paper it is essential to have covers
consisting of open connected sets. In order to show the existence of such covers, we
will use defining condition (c1) of Definition 3.3.

For the construction of the induced cover Q, we need some basic properties of
well-spread families, which we recall next. A family (%;);e7 in H is called uniformly
discrete if there exists an open set U C H containing the identity element such that
hiU Nh;jU = & holds for all i, j € I withi # j. Itis called uniformly dense or
V-dense if there exists a relatively compact set V. C H such that H = | J;.; hiV. A
family is called well-spread if it is the finite union of uniformly discrete sets and is
uniformly dense.

A fact that we will be using repeatedly is the following lemma; see [30, Lemma
4.2].

Lemma 3.7 Let K|, Ko € O be compact and let (h;)ie; € H be uniformly discrete.
Forh € H, let

(K1, Ky) = {i el TKiNhTK, # @} .
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Then there exists R > 0 such that #1, (K1, K») < R forallh € H.

The following result shows that any connectivity-respecting dilation group admits
an adequate connected cover of its frequency support. More precisely, the cover is
connected, admissible, and structured, in the sense of [51, Definition 2.5].

Lemma 3.8 Let H < GL(d, R) be connectivity-respecting and let C C O be a con-
nected, compact set such that O = HT C.

There exists an open, connected, bounded set Q C O with @ COand Q 2 C,
an open set P C Q with PC Q, and a well-spread family (hi)ic; in H such that the
Sfamily Q = (hi_T Q)ic1 has the following properties:

(i) 0= Uielhi_TP = Uier hi_TQ;
(i) sup;e;#j el :h; QN hJTTQ # @) < 00;

—T\—13,—-T
(ii) SUPG jyerx T 0T 042 (h; ) 1hj | < oo.

Proof Let B.(C) :={n € R?: dist(n, C) < ¢}, where ¢ > 0 is chosen so small that
B.(C) € O, which is possible since C € O with C compact and O open. Lemma
A.1 shows that B, (C) is connected. Let U € H be an open, connected, precompact
unit neighborhood, and let V' C U be an open unit neighborhood with V' C U. The
sets

0:=UTB.(C) = U uTB.(C) and P :=V TB.p(C)
uelU

are open as unions of open sets, and Q is connected as the image of the connected set
U x B,(C) under the continuous map (h, £) — h~! &. Furthermore, we have

0cU '"CcHTO=HTHTC=HTC =0,

meaning that § C O is compact. Moreover, PC V_TBS/Q(C) cUTB,(C)= 0.
Lastly, let (h;);c; be a well-spread family in H thatis V-dense, i.e., H = Uie, h; V,;
see, e.g., [25, Lemma 3.3] for the existence of such a sequence.

We next verify that Q := (hi_T 0)ie1 has the properties (i)—(iii). For (i), note that

-T
o2Jn oo\ Jn"P=Jn v TCr = (Uh,-V) c*2H Tc=0.
iel iel iel iel
For properties (ii) and (iii), we consider the sets
I = [je[ : h;Tth;TQ;é@}, iel
An application of Lemma 3.7 yields R > 0 such that

sup#l; < R,

iel
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which shows (ii). o
Lastly, the fact that h;lh,- € ((Q, Q)) whenever j € I; (equivalently i € I;), with

((Q, Q)) C H being compact by Corollary 2.2, gives because of ||(h;T)’1h;T|| =
Inf h5 T = 1A | that

sup [ ") 0T < oo
(el xI:h; T th;T 0#D

This completes the proof. O

A cover (th Q)icr of O as constructed in Lemma 3.8 will be referred to as an
induced cover. A notion that is of crucial importance in the remainder of the paper is
that of the weak equivalence of two such covers. This is the condition that will actually
be used to determine whether two scales of coorbit spaces are distinct. The following
definition is [51, Definition 3.3.1].

Definition 3.9 Two covers (Q;);es and (P}) jes of O are said to be weakly equivalent
if

sup#{jeJ: QNP #T)+sup#liel: Q;NP; #T} <o0. 3.4
iel jeJ

In the next subsection, a characterization of weak equivalence in terms of quasi-
isometries will be given.

3.5 Metrics Induced by Covers

Following [14], we define a metric on an open set @ C R¢ by means of a cover
Q = (Qi)ies of O.

A sequence of sets Q;,, ..., Q;,, € Q is said to be a Q-chain (of length m) from
xeGtoyeGifxe Q;,ye Q;,and Q;, NQj,,, #forallk =1,...,m— L.
We write Q,,(x, y) for the set of all Q-chains of length m from x to y. The Q-chain
distance is the map dg : O x O — Ny U {00} defined by

inf{m e N: Q,(x,y) #a}, ifx #y,
do(x,y) = .
0, if x = y;
where we set inf @ = oo. The map dg defines a metric on O (with the exception that
it can attain the value 00).
The significance of a Q-chain distance for our purposes is that it allows to charac-
terize the weak equivalence of two covers. The following result is [26, Theorem 3.22]
(see also [2, Proposition 2.7]) stated for the special covers considered in the present

paper.

Theorem 3.10 Let Hy, H be integrably admissible dilation groups with associated
essential frequency supports Oy = O = Os. Let (hj)ie; € Hy and (gj)jes S Hp be
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well-spread, let Q, P € O be open, connected sets with compact closures Q, P € O,
and assume that the families Q = (h;T Q)ier and P = (g;T P) ey are covers of O.
Then the following statements are equivalent:

(i) The covers Q and P are weakly equivalent.

(ii) The map id : (O, dg) — (O, dp), & — £ is a quasi-isometry.

It will often be useful for us to work with a conveniently chosen P instead of a fixed
given cover Q. The following lemma shows that we can do this essentially without
loss of generality.

Lemma3.11 Let Q, P C O be open, connected and bounded with 0, P C Oand
let (hi)ier and (g;)jej be well-spread in H. Define Q = (hl._T Q)icr and P =
(gj_T P) jey and assume that Q, P both cover O.

Then the identity map

id: (0,dg) — (0,dp), & &

is a quasi-isometry.

Proof By Theorem 3.10, it is enough to show that the covers Q, P are weakly equiv-
alent. To see this, note that Lemma 3.7 yields a constant R < oo such that for each
j € J, we have
#licl: nyTong"P £ol<#licl: g;"PNhT0#0]
=#1y,(P, Q) < R.

By symmetry, this easily shows that Q, P are weakly equivalent. O

3.6 Orbit Maps

In this subsection, we will prove the main result of this section, namely the quasi-
isometry property of the full orbit p defined in Eq. (3.1). Throughout, we fix the
following notation:

Notation 3.12 Let H < GL(d, R) be a connectivity-respecting dilation group with
essential frequency support O.

(A1) The set C € O is compact, connected such that O = HTC,and W C Hpisa
nonempty, open, precompact, symmetric generating set for the stabilizer

Ho:{hGH : hTO()ZO()}

of the connected component Oy of O containing C.
(A2) lhe set @ € O is an open, bounded, connected set satisfying C € Q and
0 C O, and (h;);e; is a well-spread family in H for which Q = (h; " Q);e;

is an induced cover (cf. Lemma 3.8).
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(A3) The metricon H x C is

drxc((h,€), (g, m) :=dw(h, g) +dc(&, ),

where dy is the word metric on H determined by the set W and d¢ is abounded
metric on C (e.g., the usual Euclidean metric).
(A4) The metric on O is the cover-induced metric dg associated to the cover Q.

Remark In (Al), the assumption that W C Hy is a generating set for the stabilizer
Hy of H differs slightly from the assumption in [26], where W is assumed to be
a unit neighborhood for the connected component of H. This subtle difference is
ultimately responsible for the fact that we can establish a quasi-isometry between
dilation group and the set O for our setting (see Corollary 3.17 below), whereas the
analogous statement in the setting of [26] requires an additional, somewhat artificial
assumption; see Corollary 4.9 therein.

We start with the following proposition, which is a crucial ingredient in establishing
one of the estimates in the definition of a quasi-isometry.

Proposition 3.13 If h1, hy € H are such that hy" Oy N hy " Oy # @, then hy 'hy €
Hy. In particular, we have Hz :== {h € H : h—T& = &) C Hy forall & € Oy.

Proof Let hy, hy € H with h; " Oy N hy T Oy # @, which implies that
Op N h{hz_TO() =0y N (/’lz_lhl)TO()

is nonempty. As noted in the discussion around Eq. (3.2), both Op and (h; lhl)T(’)o
are connected components of O. Hence, (h; lhl)T(’)o = Oy, so that b5 lhl € Hy.
For the remaining part, note that if & € Op and h € Hg, then

Eehn Mg Nid g S hT O Nid T Oy,

so that the first part shows h = id~'h e Hy. Since this holds for all & € H, it follows
that Hg C Hy, as required. O

Using Proposition 3.13, we can now show the first of the two estimates that are
needed to prove that the full orbit map forms a quasi-isometry.

Theorem 3.14 With notation as in Notation 3.12, define
pe t H— O, hi— h~Tg,
for & € O. Then there exists R € N such that
dw(g.h) < R-dg(pe (). py(h)) + R 3.5)

forall g,h € Hand&,n € Q.
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Proof As a preparation, we note that Q € ‘0 C 0. Indeed, theset Q € O being con-
nected with C C Q, it follows that O C Oy, because Oy is the connected component
of O containing C. Since connected components are closed subsets of the ambient
space, it follows that Oy is closed in O. Since Q € O (cf. Notation 3.12), this entails
0 < Oy.

We define a suitable R € N, and then show the estimate (3.5). By Corollary 2.2,
the set

((0,0)={heH:h"ONQ # 2}

is compact. Since Hy € H is closed by Lemma 3.2, it follows that also the set
((Q, Q)) N Hy is compact. The set W being symmetric with Hy = (W), we have
(0, Q) N HyUse_; W™, and thus ((Q, Q)) N Hy € WX for some R € N, because
K C Hpis compact and W C Hj is open.

For showing the estimate (3.5), we fix £&,n € Q and g, h € H, and distinguish
three cases:
Case 1 If dg (pg (&), py (h)) = 00, then the desired estimate is trivial.
Case 2 If dQ(pg(g), p,,(h)) =0, then g7T¢ = pe(g) = pyh) = h~Ty. Since
EneQC Opitholdsthat @ # g TQNhTQ € g7 TOyNh~TOy. On the
one hand, by Proposition 3.13, this implies that g"h € Hj. On the other hand, this
implies that

g#£0nh"g"o=0nE 'n 0.

In combination, this shows that g~'h € Hy N ((Q, Q)) € WX, and therefore
dw (g, h) < R, as desired.

Case 31f 0 < dg(pe(g), py(h)) < oo, then we set m := dg(pe(g). py(h)) € N.
By definition of the Q-chain distance dg, there exist indices iy, ..., i, € I satisfying
pe(g) € h; " Q and py(h) € h; T Q, and

-T -7
hij 0 ﬂhiw Q#0
forl <j<m-—1.

First, note that since &, n € Q, the properties pg(g) € hlflTQ and py(h) € hl.;TQ
imply that g=7'Q N hl_lTa #@and h~TQON h;f@ # &, respectively. Likewise,
hl_/Taﬂhl_:l@ *forl <j<m-—1. Since@ C Oy, an application of Proposition
3.13 therefore shows that

¢ 'hi, hijlh hi'h € H.

ij+1 )
Second, note that, for x, y € H, we have x~!y € ((Q, Q)) ifand only if x~7'Q N
yTo#a.
A combination of these observations shows that

g iy b iy b Thoe ((Q,Q)) N Ho € WE
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forall 1 < j < m — 1. Therefore,

m—1

dw(g.h) <dw(g.hiy) + Y dw(hi, hi,,,) +dw(hi,. h)
Jj=1

<(m+ DR
= R-dg(ps (). ps(h)) + R,

which completes the proof. O
The following theorem provides the converse estimate to Theorem 3.14.

Theorem 3.15 With notation as in Notation 3.12, define
pe H— O, h|—>h*T§,
for & € O. Then there exists R > 0 such that
dg(pe(8). py(h)) < R-dw(g.h) + R (3.6)

forall g,h € Hand&,n € Q.

Proof We split the proof into two steps.
Step 1 In this step, we show that there exists R > 0 such that

do(ps(g), py(h)) < R (3.7)
forallé,n € Q and all g, h € H with dw (g, h) < 1. For this, we fix £, 7 € Q and
g, h € Hwithdwy(g,h) <1,sothath € gW._ o

As in the proof of Theorem 3.14, the set Q < Oy is compact. Since W C H is
compact with W C Hy, and since Hy € H is closed (cf. Lemma 3.2), this implies
that

Ki:=W '0c¢ Hy "0y € H Og = Oy

is compact. Thus, Lemma A.2 yields a connected compact set K> S Oy satisfying
K| € K>. Finally, set K3 := Q. Defining

I(Ky, K3):={iel: g "Kanh;TK;3 # 2},

an application of Lemma 3.7 yields a constant R > 0 (independent of g, &, &, n) such
that

#1,(K2, K3) < R.

For proving the claim (3.7), we will show that do(x,z) < R for all x,z €
K := g~ TK,. Note that this indeed yields (3.7) as ps(g) = g T&é e g7 TWTg C
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¢ 'Ky € g7TK, = K and, similarly, p,(h) € K. Hence, dgo(ps(g), py(h)) < R,
as claimed.

For showing that dg(x,z) < R forall x, z € K, let x € K be arbitrary and define
C, to be the subset of K consisting of those z € K for which there exists m < R and
(O € Qu(x,z) with QY NK # @ for 1 < ¢ < m and such that the (Q©)7"_,
are pairwise distinct. We will show that C, = K, which then yields dg(x, z) < R for
allz € K.

First, note that C, is relatively open in K. Indeed, if z € Cy, as established by a
suitable Q-chain (Q(Z))Z"zl, thenz’ € Cy forallz € Q" N K, and Q™ is a set of
the form Q" = h~T Q, which is open since Q is.

Second, we show that Cy is also relatively closed in K. For this purpose, let z be an
element of the closure Cy of Cy in K. Since Q = (Q,)ie; is a cover of @ D K, there
issomei € I withz; € Q;. Theset K N Q; being a relatively open neighborhood of z;
in K, this implies the existence of some z € (K N Q;) N C,. Hence, there is a Q-chain
Q}...., Q,, of length m < R that connects x and z and such that Q) N K # @ for all
1 < ¢ < m and such that the (Q})?:l are pairwise distinct. We will now distinguish
two cases and show that in both cases we have z; € Cy, thereby showing that C, is
relatively closed in K.

Case 1 Q’j = Q; for some j € {1, ..., m}. In this case, 0/, ..., Q’j is a Q-chain of
length j < R consisting of pairwise distinct sets that connects x and z; and such that
O,NK #foralll <r < j.Hence,z; € Cy.

Case 2 Q’j # Q; forall j € {1,...,m}. In this case, the sequence Q7, ..., Q,, Qi

is contained in Q = (h; T 0)ier and each of these sets has nonempty intersection
with K = g~ T K. By choice of R, this entails m + 1 < R. Thus, the sequence

’1, e, Q;n, Q; is a Q-chain of length at most R consisting of pairwise distinct sets
that all have nonempty intersection with K and connecting x and z;. Hence also in
this case, z1 € Cx.

Since K is connected, the fact that C, is both relatively closed and relatively open

in K (and nonempty, since x € C,) implies that Cy = K, and hence completes Step
1.
Step 2 Using Step 1, we now prove the general statement of the theorem. Let g, h € H.
Note that the statement is immediate whenever dw (g, h) = co. Moreover, note that if
dw (g, h) =0, thendw (g, h) < 1 and hence Step 1 implies that dg(ps(g), py(h)) <
R=R-dw(g,h)+ R.

It remains to consider the case that dw (g, h) € N. Define k := dyw (g, h), and write
g 'h = l'[f.‘zlwi for suitable w; € W. Setting g := gand h; := g - H{zlwi for
J=1,... k, itfollows that dw(h;, hj1) < 1 forall 0 < j < k. An application of
the triangle inequality for dg therefore yields

dg(pe(8), py(h)) < do(pe(8), pe(h) +do(pe(h), py(h))
k-1

<R+ Y do(ps(h)). ps(hji1)) < R+kR=R - dw(g. h)+R.
j=0
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where the second inequality used inequality (3.7), observing that R is independent of
the choice of the pair (&, n). m]

We can now state and prove the main result of this section.

Theorem 3.16 With notation as in Notation 3.12, the full orbit map
p:(H x C.duxc) > (0.dg), (h.&)— h7"E,

is a surjective quasi-isometry.

Proof By Theorems 3.14 and 3.15, it follows that, for (k, &), (g,n) € H x C,

duxc((h,§), (g, m) =dw(h,g)+dc(,n)
=dw(h,g) +1
=< dg(pe(h), py(g)) +1
=dg(p(h,§), p(g. ) + 1,

where the second step used that d¢ is bounded. This implies that p satisfies Condi-

tion (ql).
Moreover, since p(H x C) = H™TC = HT C = O, the map p is surjective. This
easily implies that Condition (q2) is satisfied as well. O

The following consequence of Theorem 3.16 is what actually will be used in most
of our applications.

Corollary 3.17 With notation as in Notation 3.12, the orbit map
ps 1 (H.dw) > (0.dg), §r>h7'§,

is a quasi-isometry for each & € O.

Proof First, let £ € C and note that the inclusionmap ¢ : H - H x C, h+— (h, &)
is a quasi-isometry. Since the full orbit map p : (H x C,duyxc) — (O,dg) is a
quasi-isometry by Theorem 3.16, it follows that ps = p o is a quasi-isometry as the
composition of quasi-isometries. Since & was arbitrary, this proves the claim for all
EeC.

Second, let & € Op. Using Lemma A.2, we can choose a compact, connected set
C: C Osatistying {£}UC C Cg.Since O = HTC € HTC: € HT O = O, itfollows
thatalso O = H TCS. Moreover, Cs is also contained in the connected component O
of O containing C, and as such the stabilizer subgroup of its connected component is
compactly generated. This shows that C¢ satisfies condition (A1) of Notation 3.12. In
addition, using Lemma 3.8, there exists an open, bounded, connected set Q¢ satisfying
C C Cg € Q¢ and Q_g C O together with a well-spread family (g;)jes in H such
that Q' = (gjQ¢) jey is an induced cover of O. This shows that C¢ also satisfies the
remaining conditions of Notation 3.12. Hence, by the previous paragraph, it follows
that pg : (H, dw) — (O, dg) is aquasi-isometry. Since the identity between (O, dg)
and (O, dg) forms a quasi-isometry by Lemma 3.11, this implies the claim for all
& e Oo. O
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4 Coorbit Spaces Associated to Different Dilation Groups

This section exploits the coarse geometric results obtained in the previous sections to
compare coorbit spaces associated with different dilation groups. We start by recalling
the central notions on wavelet coorbit spaces.

4.1 Wavelet Transforms

Let H < GL(d, R) be a closed subgroup with Haar measure n 7 and modular function
Ap. The semidirect product group G = RY x H is the set RY x H equipped with
the group law (x1, h1)(x2, h2) = (x1 + hyx2, h1h2). A direct verification shows that
a left Haar measure (g on G is given by diug (x, h) = | deth|~'dxdug (h), and that
the modular function Ag on G is given by Ag(x, h) = | deth|_1 Ag(h).

The quasi-regular representation of G on L>(R?) is given by

(e, h) F1() = |deth|™2 F(R(t —x)), teRY.

For a nonzero ¢ € L2*(RY), its associated wavelet transform is the map Wy
L*(R?) — L*°(G) defined by

Wy £, h) = (f, m(x, DY), (x,h) eRY x H,

for f € L*(R%). A function ¥ € L*(R?) is said to be admissible if Wy is an isometry
from L*(R?) into L*(G). Equivalently, a function ¢ € L*(R?) is admissible if and
only if its Fourier transform v satisfies

/Hlaﬁ(h%s)l2 dup(h) =1

forae. & € R, see, e.g., [27, Theorem 1] and [38, Theorem 1.1].

The significance of integrably admissible dilation groups for wavelet and coorbit
theory is that they guarantee the existence of admissible vectors with convenient addi-
tional properties. The following result is [11, Proposition 2.7] (see also [30, Theorem
2.10]).

Proposition4.1 [11] Let H < GL(d, R) be integrably admissible with frequency
support O. Then there exists an admissible vector € L*(R) with Fourier transform
Y e CX(0).

4.2 Coorbit Spaces

For defining wavelet coorbit spaces defined by integrably admissible dilation groups,
we follow the concrete approach in [30]; see also [50] for an abstract approach for
general (possibly reducible) integrable group representations.

Let H < GL(d,R) be integrably admissible with essential frequency sup-
port O. Denoting by F~! the inverse Fourier transform, define the space Sp =
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F~H(CX(0)), and equip it with the topology making F~! : C2(0) — Sp into a
homeomorphism, with respect to the usual topology on C2°(O). The anti-dual space of
Sp, that is, the space of all conjugate-linear continuous functionals on Sp, is denoted
by &%, and equipped with the weak*-topology. We write (-, -) for the sesquilinear
pairing between S¢, and Sp, thatis, (f, @) := f(p) for f € S, and ¢ € Sp. To be
consistent with [30], we define the Fourier transform fof feShas

flp):=(f.7) forp e CXO).

Note that fforms a continuous linear functional on CZ°(0) as Fo =FF g =
© € C>(0), and thus € Sp for ¢ € CX(0).

To define the coorbit spaces, fix an admissible vector ¥ € Sp (see Proposition
4.1). Then also 7w (x, h)y € Sp for (x, h) € R4 x H (see [30, Lemma 2.9]). As such,
we can define the (extended) wavelet transform of f € Si, as Wy f = (f, w()¥).
We note that Wy, f : R? x H — C is (Borel) measurable.

For p,q € [1, oo], we define the coorbit space Co(L?'9(G)) as the space of all
f € 8¢, satistying

dup ()"
1 lcowray = Wy fllLra) = / Wy £ ]9,
p | det /]
for p € [1,00], g € [1, o0), and

| fllcoroeGy = Wy fliLreo) = eShS sup [|Wy f (-, h)HL,"
€H

The spaces Co(L?4(G)) are Banach spaces that are independent of the chosen admis-
sible defining vector ¥ € Sp, cf. [30, Proposition 3.3]. For p = ¢ = 2, we have
Co(LP-4(G)) = L3(R%), up to canonical identifications, which can be deduced from
a combination of [30, Proposition 2.19] and [50, Lemma 4.13]. In particular, by using
[50, Theorem 7.4], this implies that

Co(LP1(G)) = {f € L*R?) : Wy fllLraG) < oo}, (4.1)

up to canonical identifications, for 1 < p, g < 2. See [26, Remark 2.11] for further
details.

The coorbit space Co(L?9(G)) can alternatively be described by a Besov-type
norm. To be more explicit, by [30, Theorem 5.5], the coorbit space norm || - ||co(Lr-4 (G))
is equivalent to the Besov-type norm

(“i ) Hj:_l(‘pi ’ f)HLI’)

”f”’D(Q,Lp,g?) = ‘ } for f € S(*Q,
g i€l || pq

where Q = (hi_T Q)icy is an induced cover of O, (¢;);cs is an adequate associated

1 1
partition of unity, and u; = |det(h;)|2" 7 fori € I.
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4.3 Equivalence of Dilation Groups

The following definition is the central notion for the comparison of coorbit spaces.
This definition is a natural extension of [26, Definition 2.16].

Definition 4.2 Let H,, H, < GL(d, R) denote integrably admissible matrix groups.
We call Hy, Hy coorbit equivalent if, forall 1 < p,q < oo and for all f € L2(Rd),
the norm equivalence

||f||co(Lp,q(Rd>4H1)) = ”f”Co(LPv‘i(Rdx]Hz))

holds. Here the norm equivalence is understood in the generalized sense that one side
is infinite if and only if the other side is.

We then immediately get the following analog of results from [26, Theorem 2.18].
Note that the condition O = O, emphasizes the importance of Theorem 2.7, stating
that there is at most one essential frequency support for a given dilation group.

Theorem 4.3 Let H|, H» < GL(d, R) denote integrably admissible matrix groups,
and let O1, Oy denote the associated essential frequency supports. Then the following
are equivalent:

(i) Hy and Hjp are coorbit equivalent in the sense of Definition 4.2.
(ii) Co(LP4(R? % Hy)) = Co(LP4(RY x H»)) as subspaces of L>(R), for all
l<pqg=2;
(iii) Co(LP9(RY x Hy)) = Co(LP9(RY x H»)) as subspaces of L*(R%), for some
1 < p.qg =2with(p,q) # (2,2);
(iv) Oy = Oy, and the covers induced by H| and Hy on the common essential frequency
support are weakly equivalent.

Proof The proof is essentially the same as that of [26, Theorem 2.18], and hence we
only sketch it and provide the relevant references for integrably admissible dilation
groups.

The fact that (i) implies (ii) follows directly by the identification in Eq. (4.1). That
(i1) implies (iii) is trivial.

Assume assertion (iii) holds. Then, by [30, Theorem 5.5], also the Besov-type
decomposition spaces D(Q, L?, 1y and D(P, LP, EZ,) associated to the two covers

Q0 = (hl._T Q)ier and P = (gj_TP)jEJ induced by, respectively, H; and H», and

with weights u; = | det(hi)l%fé and u’j = | det(g;)] %7%, coincide. In particular, this
implies that the two norms associated to the decomposition spaces are equivalent on
CX(O1NOy).

Since Oy, O, are both of full measure and hence dense in R9 it follows that also
01N O, C RY is dense, and hence unbounded. Now, if the condition O} N 9O, # &
or the condition O, N 00| # @ was satisfied, then, since we know from above that
the norms on the two decomposition spaces from above are equivalent, [51, Theorem
6.9 %] would imply p = g = 2 and thus provide a contradiction. Hence, we get that
0O1Nd0; = Fand O, NIO; = &. Note that 00; = ]Rd\O,-, since O; C R is open
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and dense. Therefore, we conclude that O; € O, and O, € O and hence O = O3,
as claimed. The fact that the covers Q and P are weakly equivalent follows from
[51, Theorem 6.9] since D(Q, L, ¢y = D(P, L?, EZ,) for some (p, q) # (2,2).In
combination, this shows that (iv) holds.

Lastly, assume that O; = O, and that the covers Q = (h; T Q)ier and P =
(gj_TP) jes induced by, respectively, H; and H are weakly equivalent. Then an
application of [26, Lemma 2.8] implies that |det(h,-)|_l = |det(gj)|_l foralli e I
and j € J satisfying hl._TQ N gj_TP # . In turn, this implies that the weights
ui = |det(h)|>77 and ', := |det(g;)| 27 satisfy u; = u foralli € I and j € J
satisfying hi_TQ N gj_TP # . Together with the fact that Q and P are weakly
equivalent, this shows that the hypotheses of [51, Lemma 6.11] are satisfied, which
then implies that D(Q, L7, EZ) = D(P, L?, EZ,) for all 1 < p, g < oo. Hence, by
[30, Theorem 55], it follows that || . ”CO(LP"I(RdXIH])) = ” . ”CO(Lp’q (R9 % Hy)) O

We can now formulate our general criterion for coorbit equivalence of dilation
groups. The next theorem is the main result of this section.

Theorem 4.4 Let Hy, Hy < GL(d, R) be connectivity-respecting dilation groups with
essential frequency supports O1 = HITC 1 and Oy = HzT C». With notation as in
Notation 3.12, let

pV: (Hy x C1,dpyxc,) = (O1,dg), (h,&) > h~T¢
and
p? : (Hy x Ca,dpyxcy) — (O2,dp), (g.1) > g ',

be full orbit maps and let p,(kz) : Oy — Hy x C3 be a right inverse for p®.
Then the following assertions are equivalent:

(i) Hy and Hjp are coorbit equivalent;
(ii) O := O = Oy, and the map

p@ o pW s (Hy x C1,dp,xc,) = (Ha x Ca.dp,xcy)

is a quasi-isometry.

Proof Suppose that (i) holds. Since H; and H, are coorbit equivalent, an application
of Theorem 4.3 shows that we have O; = O, =: O and that the covers Q associated
to H; and P associated to H> (chosen as in Notation 3.12) are weakly equivalent.
Therefore, Theorem 3.10 shows that the identity map idp : (O, dg) — (O, dp) is
a quasi-isometry. Next, Theorem 3.16 shows that the full orbit maps p" and p®
from the statement of the current theorem are quasi-isometries. Since piz) is a right
inverse to p(z), it is easy to see that it is also a quasi-inverse (see Sect.3.1), and thus

Lemma 3.1 shows that pf) 1 (0,dp) — (Hy x Ca,dH,xc,) 18 a quasi-isometry as
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well. Since compositions of quasi-isometries are again quasi-isometries, this finally
implies that

@ 0 pV = p@ oidg o p

is a quasi-isometry, as required.

Conversely, suppose that (ii) holds. Theorem 3.16 shows that the full orbit maps p!)
and p® from the statement of the current theorem are quasi-isometries. Since pf) is
aright inverse to p(z), it is easy to see that it is also a quasi-inverse (see Sect.3.1), and
thus Lemma 3.1 shows that piz) : (0, dp) — (HyxC2,dp, x C2) is aquasi-isometry
as well.

Similarly, letting pfkl) : O — Hj x Cy be any right inverse to p'1, we also see that
pi]) :(0,dg) — (Hi x Cy1,dm,xc,) is a quasi-isometry.

Since compositions of quasi-isometries are again quasi-isometries, we thus see that
the identity map idp : (O, dg) — (O, dp) is a quasi-isometry, since

ido = p® o (p? o pMyo pll.

Hence, Theorem 3.10 shows that the covers Q, P are weakly equivalent, so that The-
orem 4.3 implies that H; and H» are coorbit equivalent. O

The following necessary condition of coorbit equivalence is what actually will be
used in most of our applications. Its proof is similar to the first part of the proof of
Theorem 4.4 (using Corollary 3.17 instead of Theorem 3.16), and hence we skip it.

Corollary 4.5 Let Hy, H, < GL(d, R) be connectivity-respecting with essential fre-
quency supports O = HlT Ciand Oy = H2T C, for compact, connected sets C; € Oy
and Cy € Os. Let (O1)g and (O2)q be the connected components containing C| and
C», respectively.

With notation as in Notation 3.12, if H| and H, are coorbit equivalent, then O :=
O = Oy and, for each & € (O1)g and n € (O2)o, the transition map

(PP)eo plt: (Hy, dw,) — (Ha. dw,)

is a quasi-isometry, where (pf;{z)* is a quasi-inverse for p,?z : (Hp, dw,) — (O, dp).

The necessary condition for coorbit equivalent dilation groups provided by
Corollary 4.5 resembles the characterization of coorbit equivalence for irreducibly
admissible dilation groups proven in [26]. More precisely, [26, Theorem 4.17] shows
that coorbit equivalence of irreducibly admissible dilation groups can be character-
ized through the quasi-isometry property of a single transition map. For reducible
dilation groups, the quasi-isometry property of a single transition map does, however,
not characterize coorbit equivalence; see Example 5.3 below.
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4.4 Equivalence of Subgroups

In this subsection, we apply the results from the previous subsection to study the
coorbit equivalence of matrix groups H; € H;. We start with the following statement,
which is contained in [30, Lemma 6.4].

Lemma 4.6 Let Hy < H> be two closed matrix groups such that H,/Hy is compact.
Assume that Hy is integrably admissible with essential frequency support O. Then H;
is integrably admissible with frequency support O, and coorbit equivalent to H,.

A converse can now be provided via Corollary 4.5, resulting in the following char-
acterization:

Corollary4.7 Let H) < H, < GL(d, R) denote two connectivity-respecting inte-
grably admissible dilation groups and such that Hy C H,. Then H| and Hj are
coorbit equivalent if and only if Hy/H) is compact.

Proof The “if”-direction holds by Lemma 4.6. For the converse, we assume that H; C
Hj; are coorbit equivalent. Then, we get that O = O, =: O by Corollary 4.5, where
O1=H 1T Ciand O; = H2T C3 denote the essential frequency supports of H; and H,
respectively. Since Hy C H», we have O = H/ C; € HI C, € H%TO =0, so we
may fix a single compact, connected set C € O such that O = H; C = HZT C. By
Lemma 3.4, the stabilizer subgroups (Hj)o and (H2)o of the connected component
Op of O containing C is compactly generated. For i = 1, 2, fix word metrics dw, on
H; with W; C H; fulfilling the conditions of Notation 3.12.

Fix any § € C and let p? : Hi — O denote the orbit map, for i = 1,2. By

Corollary 3.17, pg'

H H
pe . Let (pé 2)

map <p§12)* ) pg‘ : (H1,dw,) — (Ha,dyw,) is a quasi-isometry. Condition (q2) of

: (Hy,dw,) = (O, dp) is a quasi-isometry, and similarly for

: O — H; denote a quasi-inverse of pg 2. By Corollary 4.5, the
%

the quasi-isometry property provides a finite constant R; > 0 such that

sup inf dy, ((p?) opf] (h1), h2> <Ri. 4.2)
haeHy hieH; *

Combining the definition of the orbit maps with the inclusion H; € H», one obtains
that

(pf) opliny = (pf%) 776) = (pf%) o pl=tn). hie Hi.
This observation yields via Lemma 3.1(ii) that

sup dy, (I, (pf2) o pl') = ke 4.3)
h1eH; i *

for a suitable finite constant R, > 0.
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Note that Eq. (4.3) implies for arbitrary i € Hj and hy € H, that

dw, (h1, h2) < dw, (h1, (p£?), 0 pi™ (A1) + dw, ((p£?), 0 pE™ (h1). ha)
< Kz +dw,((p£?), 0 pg" (), ha).

Taking the infimum over 41 € Hj on both sides, Eq. (4.2) then implies
inf dy,(h1, hy) < Ko+ inf d Yo pt(hy), hy) < R+ R
ot wy (1, ho) < 2+h11r€1H1 Wz((Pg ) opg (h1) ) SR+ R

for arbitrary hy € H». In other words, we have shown

sup inf dw,(h1, h2) < R + R;.
hQEHQ h]EH]

Hence, if B € H, denotes the dy,-ball with radius Ry + R», then for arbitrary sy € H»
there exists #; € Hj such that b := hflhgl € B and thus hy = b’]hfl, whence
hoHy = b—! Hy. This shows that

H,/H| = {b_lHl : be E},
which is compact, since B C H, is compact. O

4.5 Equivalence of Conjugate Subgroups

As an application of Theorem 4.4, we show that the property of coorbit equivalence
is preserved under conjugation. We remark that this could in principle also be proven
directly from the definition, but the proof gets quite tedious.

Corollary 4.8 Fora closed subgroup H < GL(d, R) and A € GL(d, R), the following
assertions hold:

(i) If H is integrably admissible, then so is A”YHA. If O is the essential frequency
support of H, then O := AT O is the essential frequency support of A~ HA.
(ii) If H is connectivity-respecting, then so is A~V HA.
(iii) If Hy,Hy < GL(d,R) are such that Hy, Hy are integrably admissible,
connectivity-respecting, and coorbit equivalent, then the same holds for A~ Hy A
and A~ H> A.

Proof Throughout the proof, we simply write H' = A~ HA.
(i) Let H be integrably admissible with essential frequency support @ C R?, say

O = HTC with C € O compact. Then, note for C’ := AT C that O’ := ATO c R¢
is open and of full measure, and

(HNY'C'=ATHTATTATc=ATHTC=ATO =0
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Lastly, if K’ € O’ is a compact set, then also K := A~T K’ € O is compact, and,
moreover,

[K']

[, &YeH xO : (W) e &)e Kk xK'}
{(A7'hA, ATE) : (h,§) e Hx Oand (h'£,8) € K x K}
H x O

N

is compact. In combination, this shows that H’ is integrably admissible.

(i) Let H be connectivity-respecting. Then there exists a compact, connected set
C C O with O = HTC and such that Hy := {h € H : hT Oy = Oy} is compactly
generated, where Og € O is the connected component of O containing C. Let C' :=
ATC and @' := ATO. Then C' € O’ is compact and connected, and, similarly as
in the proof of part (i), it follows that (H")TC’ = ©’. Moreover, O = ATOy is
the connected component of O’ containing C’, and we see that H) = A~V HpA is
compactly generated, since Hy is. Hence, H' is connectivity-respecting.

(iii) With notation as in Theorem 4.4, we see that O = O, =: O, and with

pLH xCi— O,(h,E—hTeg and pr:HyxCy— O, (h, &) h~T¢

that p5 o p1 : (Hy x C1,du xc;) = (Hy x C3,du,xc,) is a quasi-isometry, where
p3 is aright-inverse for py. Set H/ := A~ H; A and C] := AT C;, as well as O] :=
ATO; and W/ := A='W; A fori = 1,2. Then O} =0}, = ATO, and dy (g, ') =
dw,(Ag'A™', Ah’A="Y) for g, ' € H!, so that the maps

T Hy x C; — H x Cl, (h,&) — (A"'hA, AT¢)

are bijective (quasi)-isometries fori = 1, 2.

Finally, for the orbit maps p} : H] x C| — O and p), : P%z’ x Cy — O, itis easy
to see that the map (p5)* : 0" — Hj x C, n+— 7;(p5(A~" 1)) is a right-inverse to
p5. Moreover,

(PY* o pD(H' &) = (o pi)(A~T ()&
= (nopsop)(AWAT, A7TE)
=[no(piop)or '1H, &),

so that (p5)* o p| = 120 (p5 o p1)o tl_l is a quasi-isometry as a composition of
quasi-isometries. Hence, Theorem 4.4 shows that Hl’ and H2’ are coorbit equivalent.
O
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5 Anisotropic Besov Spaces and One-Parameter Groups

In this section, the results from the previous sections will be used to investigate the
relation between coorbit spaces associated to one-parameter dilation groups and Besov
spaces associated to (possibly anisotropic) matrix dilations introduced in [3].

Let A € GL(d, R) be an expansive matrix, i.e., all eigenvalues are strictly greater
than one in modulus. Following [3], for p,q € [1,00] and ¢ € R, the associated
anisotropic Besov space Bg, 4(A) is defined as the space

B;’,’,q(A) = {f e S®Y/P | (1det A1V | f % @j”Ll’)jeZ”eq < oo}, (5.1)

where ¢; = |det Al @(A7-) for some suitable ¢ € S(R?) and where P denotes
the space of all (d-variate) polynomials; see [3] for further details. The coorbit space
Co(LP9 (R4 x (A))) associated with the cyclic group (A) := {A/ : j € Z} can be
identified with an anisotropic Besov space Bg, q(A) for some o« = a(p, q) € R, see,
e.g., [30, Example 6.2].

We start out by characterizing the matrix groups whose coorbit spaces coincide
with the isotropic Besov spaces [20], that is, the Besov spaces Bg 4(A) associated to
A =2 ;. It was already observed in [32, 33] that these spaces can be understood as
coorbit spaces associated to the (irreducibly admissible) group R - SO (d), or to the
(integrably admissible) one-parameter group R - I;. The following theorem extends
this observation by characterizing all potential candidates.

Theorem 5.1 Let H < GL(d, R) be integrably admissible.

(i) Suppose that H = exp(RX) for some X € RI%4 Then H = exp(RX) is coorbit
equivalent to R" - I, if and only if X = s - I; + Y, with s # 0 and such that
exp(RY) is relatively compact in GL(d, R).

(ii) Suppose that H is connected. Then H is coorbit equivalent to R™ - 1, if and only
if H is conjugate to a noncompact closed subgroup of R* - SO(d).

Proof The claim is trivial for d = 1, so that we can (and will) assume d > 1 for what
follows.

For the proof of part (i), assume that H = exp(RX). By [30, Proposition 6.3],
the group H = exp(RX) is integrably admissible if and only if all real parts of
eigenvalues of X are either strictly positive or strictly negative. In either case, we
find that 5 := % # 0, and after replacing X by a nonzero scalar multiple, we
may assume s = 1. By Example 3.5, the group H is connectivity-respecting, since
H = exp(RX) is connected and since [30, Proposition 6.3] shows that the essential
frequency support is O = R?\ {0}, which is connected, since d > 1.

Define Y := X — s - I, so that in particular trace(Y) = 0. In addition, let A :=
exp(X) and B := e - I;. Then, by Lemma 4.6, the one-parameter group exp(RX)
is coorbit equivalent to the cyclic group (A) generated by A, and R - I; is coorbit
equivalent to the cyclic group (B) generated by B. Note that Lemma 4.6 also implies
that (A) and ( B) are integrably admissible. The coorbit spaces associated to these cyclic
groups can be canonically identified with homogeneous Besov spaces Bg) q(A) and
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- . _ 1 1 . . . .
Bg, q (B) witha = 5 — grseeeg, [30, Example 6.2]. By our choice of normalizations

and since det(exp(M)) = "M we see

_ In(ldet(A)))

€ = €(A, B) — ln(ldet(B)l) T

b

and thus it follows frqm 7, Corollary 6.5, Definition 4.5, Remark 4.9, and Lemma
4.8] that the equality B;‘j’ q (A) = B;‘j’ p (B) holds if and only if

sup [|A*BLH|| < o0o.
keZ

Since A*Blékl = exp(—kY) for k € 7Z, the latter condition is equivalent to the cyclic
group (exp(Y)) having compact closure in GL(d, R). Since (exp(Y)) = exp(ZY)
is cocompact in exp RY, relative compactness of (exp(Y)) is equivalent to relative
compactness of exp RY in GL(d, R), which completes the proof of assertion (i).

For the proof of assertion (ii), assume first that H is connected and coorbit equivalent
to the one-parameter group R - I;. Then, by Corollary 4.5, the group H is quasi-
isometric to R. Proposition C.4 entails therefore the existence of a cocompact closed
noncompact one-parameter group exp(RX) € H.Lemma4.6 yields that this subgroup
is coorbit equivalent to H, and hence to R - I;. Assertion (i) entails that (possibly after
renormalization) X = I;+Y and thatexp(RY) is relatively compactin GL(d, R). This
implies in particular that the set {det(exp(zY)) : t € R} = {exp(trace(tY)) : t € R} is
relatively compact in R \ {0}, and thus trace Y = 0.

We next show that H can be written as the semidirect product H = K x exp(X),
where K is the closed normal subgroup K := {h € H : det(h) = 1}. Moreover, we
show that K is compact and connected. For this, first note that since H is connected,
det(h) > O for all A € H. By normalization of X, for any & € H we have

det(exp(s X)) = exp(trace(s X)) = det(h), withs = @. 5.2)

This shows that k := exp(—sX)h € K, and we obtain the unique factorization
h =exp(sX)k, ke K, (5.3)

and hence H = K x exp(RX).

For the compactness of K, let (k,),en be a sequence in K. Since H/ exp(RX) is
compact, it follows from [18, Lemma (2.46)] that there exists a compact set C € H
such that H = C exp(RX). By compactness, we have 0 < o < det(c) < 8 < oo for
all ¢ € C and suitable «, 8. We can hence write k;,, = ¢, exp(#, X) for suitable ¢, € C
and 1, € R. Note that

1 = det(k,,) = det(c,) det(exp(t, X)) = det(c,) exp(trace(t, X)),
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and thus % <exp(t,d) < é Therefore, (,),cN 1s bounded, so that for a subsequence
th, - t € Rand ¢,, — ¢ € C. In turn, this implies k,, = ¢, exp(t;, X) —
cexp(tX) =: k,withk € K, since K C H is closed. Thus, K is a compact subgroup.

To show that K is connected, we note that the map H — K, h — k explicitly
determined in (5.2) and (5.3) is clearly continuous, and equals the identity on K. In
particular this map is onto, and hence K is the continuous image of the connected
group H, and therefore itself connected.

Since H = K x exp(RX), it follows, in particular, that exp(RX) normalizes K,
that is, exp(t X) K exp(—tX) C K for all t € R. Now, since Y = X — I; and since
X and I; commute, we have exp(tY) = exp(t - (X — Iy)) = exp(tX) exp(—tly) =
e Texp(tX) = exp(tX)e™" for all 1 € R. In view of this identity, it follows that
also exp(RY) normalizes K, and the same then holds for the closure exp(RY) of
exp(RY) in GL(d, R). In combination with the fact that K is compact and connected,
it follows that exp(RY) - K < GL(d, R) is a compact connected subgroup. Since
any compact subgroup of GL(d, R) is conjugate to a subgroup of O(d) (see, e.g.,
[1, Proposition 6.3.6]) it follows that exp(RY) - K is conjugate to a subgroup of
0O(d), and (by connectedness) even to a subgroup of SO(d). In turn, using again that
exp(tX) = e’ exp(tY), this implies that H = K xexp(RX) is conjugate to a subgroup
of RT - §O(d), and it is clearly noncompact.

For the converse implication, note first that it suffices to show that a connected closed
noncompact subgroup H of Rt - SO(d) is coorbit equivalent to R* - I, because then,
by Corollary 4.8, also any conjugate A~! H A is coorbit equivalentto A~ (Rt I;) A =
R* .1, for A € GL(d, R). Hence, let H be a connected closed noncompact subgroup
H of RT - SO(d). Note that the group R - SO(d) is isomorphic to RT x SO(d)
via the map (r, h) — rh, and hence it follows by elementary Lie theory that the
Lie group of R* - SO(d) is the sum of span{I;} and the Lie algebra so(d) of SO(d).
Since H is not contained in SO(d) and since it is generated by the image of the
exponential map (because H is connected), this image must contain a one-parameter
group exp(RX) € H which is not contained in SO(d). We may then normalize the
infinitesimal generator to obtain X = Iy + Y, where Y € so(d). As in the proof of the
converse direction, for every h € H, we have

h=exp(sX)k, ke K
where s is given by (5.2), and
K ={h € H : det(h) =1} .
The assumptions on H then entail that K is a closed subgroup of SO(d), in particular
compact. This establishes that exp(RX) € H is cocompact, so that Lemma 4.6 shows

that H and exp(R X) are coorbit equivalent. Coorbit equivalence to R™ - I; then follows
by part (i). O

The next theorem clarifies the coorbit equivalence of two somewhat extreme sub-
classes of dilation groups: Irreducibly admissible dilation groups on the one hand, and
one-parameter subgroups on the other. In particular, it implies that the use of reducibly
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acting dilation groups is essential for treating the full scale of anisotropic Besov spaces
within the setting of coorbit spaces. The uniqueness of the essential frequency support,
noted in Theorem 2.7, is an essential ingredient of the following proof.

Theorem 5.2 Let Hy < GL(d, R) be a one-parameter integrably admissible dilation
group, and let Hy < GL(d,R) be an irreducibly admissible dilation group (see
Example 2.3). If H| and Hj are coorbit equivalent, then Hy is coorbit equivalent
to RT - 1.

Proof LetY € R?*? denote the infinitesimal generator of Hy,i.e., H; = exp(RY). By
[30, Proposition 6.3], the group H; = exp(RY) is integrably admissible if and only
if all real parts of eigenvalues of Y are either strictly positive or strictly negative. We
may therefore assume that they all have positive real part, which yields that the matrix
A = exp(Y) is expansive, in the sense that all its eigenvalues are strictly greater than
one in modulus.

By Lemma 4.6, Hy = exp(RY) is coorbit equivalent to the cocompact cyclic
subgroup (A) = exp(ZY), and the latter is integrably admissible. For proving the
claim, it suffices therefore to show that (A) is coorbit equivalent to R* - 1. For this,
recall that the coorbit spaces Co(L"1(R? x (A))) associated to (A) can be identified
with anisotropic Besov spaces B‘l){l(A) for a suitable o € R; see, e.g., [30, Example
6.2]. Define the matrix group

Sy, = {c € GLWd,R) : B{ ;(CT'AC) = .f"l(A)}.

Using [7, Lemmata 7.7 and 7.8] (see also [7, Remark 7.11]), there exists an expan-
sive matrix B such that Bg,q (A) = B‘f,q(B) for all p,q € [1,00] and B8 € R, and, in
addition, B is in expansive normal form, that is, B has only positive eigenvalues, with
det(B) = 2. In view of the identification of the coorbit spaces Co(L?9 (R? % (A)))
and Co(LP-9(R? x (B))) with the homogeneous Besov spaces Bg,q(A) and Bp,q(B)
with a certain 8 = B(p, q¢) € R (see [30, Example 6.2]), this implies that (A) and (B)
are coorbit equivalent. For further use below, we note at this point that the identifica-
tion of anisotropic Besov spaces with suitable coorbit spaces also allows to derive the
alternative description

Sy, ={C e GLd,R) : C~'H,C is coorbit equivalent to H}. 5.4

By [7, Corollary 6.5], the fact that B, (A) = Bf (B) implies that A and B
are equivalent in the sense of [7, Corollary 6.5]. Since also C~'AC and C~'BC

are equivalent in the same sense for every C € GL(d, R), this implies by another
application of [7, Corollary 6.5] that also B‘l’fl (ctAac) = B‘f"l (C~'BC). Hence,

Sy, = {C € GL(,R) : BY,(C™'BC) = B‘;{I(B)} .
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Since both B and C~! BC are in expansive normal form, for every invertible matrix
C, an application of [7, Theorem 7.9] implies that

Sy, = {C € GL(d,R) : C"'BC = B} = Z(B),

where Z(B) C GL(d, R) denotes the centralizer of B.

Suppose now that H, is an irreducibly admissible matrix group that is coorbit
equivalent to H;. By Theorem 4.3, H, has the same frequency support as H;, which
is

0 =R\ {0}

cf. [30, Example 6.2].

We now prove that H, C Sp,. For this, let & € Hp. Then h™ ' Hyh is trivially
coorbit equivalent to H», and therefore also to Hj. On the other hand, h~VHoh is
coorbit equivalent to 2~ Hih by Corollary 4.8 (iii); observe that both groups are
connectivity respecting by Examples 3.5 (1) and (2). In combination, this yields that
Hy and h~' Hyh are coorbit equivalent, for all & € H,, and thus Eq. (5.4) yields

H, € Sp, =Z(B).

Arguing by contradiction, assume that the group (A) is not coorbit equivalent to
R* - I,. Since A and B are coorbit equivalent, this is precisely the case if {B) is not
coorbit equivalent to R* - I;. The expansive normal form matrix associated to the
latter group is given by 2!/¢ . I;. Hence, B # 2!/¢I, by [7, Theorem 7.9]. Now the
fact that B # 2174 . I forces, for any eigenvalue A of BT with associated eigenspace
E; that E; C R?; otherwise, BT and hence B would be a multiple of the identity and
thus B = 21/4]; since det B = 2. The definition of Z (A) then immediately entails
CTE, CE,, forallC e Z(A). As a consequence, one gets

Z(B)TE, C E,.

In particular, the dual action of Z(B) on O = Rd\{O} cannot be transitive, which
implies that the dual action of the subgroup Hy € Z(B) is also not transitive. This
yields the desired contradiction, and completes the proof. O

Lastly, we provide the example mentioned in the discussion below Corollary 4.5,
which shows the difference of coorbit equivalence between irreducible and reducible

dilation groups.

Example 5.3 Define

300 200
A=1020 and B=1020
002 003
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as well as
In3) O 0 In2) O 0
Ay = 0 In2) O and By= 0 In2) O
0 0 In(2) 0 0 In(3)

Furthermore, let H; := exp(RAop) and H> := exp(RBy) and note that if we define

300 2000
A)=]10270 and B@):=[02"0
002 003

then A : R — H|,t — A(t) and B : R — Hj,t + B(t) are isomorphisms of
topological groups. In particular, H; = {A(¢t) : t € R} and H, = {B(t) : t € R}.
Since the real parts of all eigenvalues of Ag, By are strictly positive, [30, Proposition
6.3] shows that the groups Hj, H; are integrably admissible with associated frequency
support O = R3 \ {0}. In addition, since H;, H and O are connected, it follows by
Example 3.5(a) that H, H, are connectivity-respecting, and the stabilizer subgroups
of Hy and H; of the connected components of O are H; and Hy, respectively. As such,
they are compactly generated, and open, precompact, symmetric generating sets for H
and Hjp are givenby W := {A(t) : —1 <t < 1}and Wr :={B(t) : —1 <t < 1},
respectively.

We first show that H; and H, are not coorbit equivalent. Let p,q € [1, oo].
By [30, Corollary 6.7], the coorbit space Co(Lp’q (R? % H))) coincides with the
anisotropic, homogeneous Besov space Ba(p q)(A) for a certain @ (p, ¢g) € R. Simi-

larly, Co(LP(R>® x Hy)) coincides with Bg(j7 o (B) for acertain B(p, q) € R. Since
A, B are expansive matrices with det A = det B, but A # B, it follows by [7, Theo-
rem 7.9(a)] that A, B are not equivalent in the terminology of [7]. By [7, Lemma 6.2],
this means that the homogeneous covers Q, P associated to A and B are not weakly
equivalent. In turn, this yields (with a similar proof as in [7, Theorem 6.4]) that the
homogeneous, anisotropic Besov spaces B”‘ (A) and B ».q (B) never coincide (except
perhaps for (p,q) = (2,2)). All in all, thlS shows that H; and H, are not coorbit
equivalent.

We now finally show that for a specific choice of § € O, an associated transition
map is a quasi-isometry. Choose & := (0, 1,0)7 € O. Then the orbit maps are given
by

0
Pl Hi— 0, AW A0 s = (27
0
and
0
plt Hy—> 0. B~ B TE= (2
0
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Let Q and P be the covers associated to H; and H; according to part (A2) of Notation
3.12. By Corollary 3.17, it follows that pé'lz : (Ha,dw,) — (O,dp) is a quasi-
isometry. As seen in Sect. 3.1, this implies that there exists a quasi-inverse py : O —
H; to pf 2. We now define a modified quasi-inverse through

x .
B(—log,(y)), ifx=z=0andy >0,

(pEHZ)* . O Hy, |y 2> )’T ' y

z p«((x,y,2)"), otherwise.
Then, for y > 0,

0 0
P2 ((pf),0. v, 0) = pf2(B(—logy(»)) = [ 27w | = |y |,

0 0

and this easily implies that ( pgz)* is indeed a quasi-inverse for pgz.

Finally, note for ¢ := (péfz)* o pEHl that

$(AM) = ("), (0,27,0)7) = B(~logy2™") = B(1),

which implies that ¢ : H} — H; is an isomorphism, and this easily shows that it is a
quasi-isometry as amap ¢ : (Hy, dw,) — (Ha, dw,).

Appendix A: Auxiliary Results

This section provides various auxiliary results that are used in the main text and
appendices. As we could not locate a convenient reference in the literature, we provide
their short proofs.

LemmaA.1 Let X be a topological space, let C C X be connected, and for each
ceC,letU. C X be connected with ¢ € U.. Then Ucec U, is connected.

In particular, if X is a normed vector space and C C X is a connected set, then the
e-neighborhood

B.(C) = {x € X : dist(x,C) < ¢} = U B:(c)
ceC

is connected as well.

Proof Let Y = Ucec U;, co € C arbitrary, and let A € Y denote the connected
component of cg in Y. Then connectedness of C implies C € A, and A is also the
connected component of any ¢ € C. Connectedness of U, then entails U, C A. In
summary

Birkhauser



Journal of Fourier Analysis and Applications (2024) 30:74 Page370f43 74

Y_AQUUC:Y,
ceC

which shows connectedness of Y. O

LemmaA.2 Let U € R? be open and connected. Then, for each compact set C C U,
there exists a compact, connected set K € U with C C K.

Proof For each x € C C U, since U is open, there exists a radius ry > 0 satisfying
E,x (x) € U. Then (B,X (x))x cC is an open cover of C, so that by compactness there
exist finitely many xp, ..., x, € C such that C C (J/_, By, (x;), where r; 1= ry,.

Since U is open and connected and hence path connected, there exists for each
i €{l,...,n}acontinuousmapy; : [0, 1] — U satisfying y;(0) = xj and y; (1) = x;.
Define

K :=JB, ) uJwo. 1.
i=1

i=1

Then K C U is compact and satisfies K O C. Moreover, by construction of K, the
path component of xj in K contains xi, ..., x,, and then also each B, (x;). Hence it
contains all of K, which means that K is connected. O

In the following lemma and its proof, all claims on quotient groups are with respect
to the usual quotient topology.

Lemma A.3 Let G be a locally compact Hausdorff group. Suppose that L, H < G are
closed subgroups satisfying L C H and such that G /L is compact. Then also H /L
is compact.

Proof First, since the projection 7 : G — G/L is a continuous open map, it follows
that the subspace topology on H/L as a subspace of G/L agrees with the quotient
topology on H/L, see, e.g., [13, Chapter VI, Theorem 2.1]

For proving the claim, we first show that 7(G\H) N n(H) = @. Arguing by
contradiction, suppose there exist g € G\H and h € H with gL = n(g) = w(h) =
hL. Then, since L C H, it follows that g € hL € H, in contradiction to g € G\ H.
Since 7 : G — G/L is surjective, the fact that 7 (G\H) N 7 (H) = & implies that
the complement of H/L in G/L is given by

(H/L)" = n(G \ H).

Since G \ H € G is open and 7 is an open map, this implies that (H /L) is open in
G/L, sothat H/L is closed in the compact set G/L, and hence compact as well. O

LemmaA.4 Let G be a first countable locally compact Hausdorff group and let y :
R — G be a continuous homomorphism.

Then either the closure y (R) is compact, ory (R) € G is closedandy : R — y(R)
is a homeomorphism.
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Proof Suppose that the closure y (R) is not compact. Then, by [36, Chapter XVI,
Proposition 2.3], the map y : R — y(R) is a homeomorphism, and thus it remains
to show that y (R) € G is closed. For this, let (h,),en € ¥ (R) be a sequence with
h, — gforsome g € G.Since G is first countable, it is enough to show that g € y (R).
For proving this, note that since y is a homeomorphism onto its range, there exists an
open set V C G with y((—1, 1)) = V N y(R). This implies that y (0) = eg € V, so
that V is a unit neighborhood. Thus, there exists a compact unit neighborhood U € G
withU = U~ and UU C V. By assumption, &, — g, and hence there exists ng € N
such that h,, € gU for all n > ng. Hence,

hodhw e U 'glgU=U"'U cV Cy(—1,1]) forall m > no.

Since y([—1, 1]) is closed, letting m — oo, it follows that h;olg e y(—1,1]) <
y(R). As hy,, € y(R), this also yields that g € y (R), which completes the proof. O

Appendix B: Postponed Proofs

This section consists of two proofs of results stated in Sect. 3.

Proof of Lemma 3.1 Assume that

supdy (f1(f2(y).y) =M < oo,
yeY

and let Ry, R», R3 denote the constants provided by assumptions (g;) and (g2) on f7.
Then, fory, y’ € Y,

dx (f2(3), L") < Ridy (fi(H(0), fi(/2()) + RiR>

< Ry (dy (fi(f20), y)+dy (v, Y)+dy (Y, f1(f2(3") +RiR>
< Ridy(y,y") +2R\M + R R>.

An analogous computation establishes
dx (£, () = Ry 'dy (v, Y) =2R'M = R{ 'Ry,

and thus (g) is verified for f>. For the verification of (g2) we once again invoke (g1)
for f1 and get for all x € X that

dx (x, f2(f1(x))) < Ri -dy (f1(x), fi(f2(f1(x))) + RiR2 < RiM + R RyB.1)

This implies that (g2) holds for f, and thus finishes the proof of (i). Part (ii) also
follows directly from (B.1). O

Proof of Lemma 3.6 Property (q2) is clearly satisfied, since the identity is surjective.
We only prove one direction of the estimate in condition (q1); the other part follows
by symmetry.
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Since V is a symmetric generating set for Hy, we have Hy = [ J;~, V". Hence, by
compactness of W C Hj, there exists some N € N such that W < V¥, For proving
the claim, let x, y € H be arbitrary and set m := dw(x,y) € Np U {oo}. Note that
trivially dy (x, y) < N - dw(x, y) whenever m = 0 or m = 00, and thus it remains to
consider the case m € N. In this case, x_ly e Wn C (VN)’" C V™N and hence

dy(x,y) =mN = Ndw(x, y),

which completes the proof. O

Appendix C: Connected Lie Groups Quasi-isometric to R

This section is devoted to characterizing connected Lie groups that are quasi-isometric
to the real line R. We expect these results to be folklore, but were unable to locate
a convenient reference for them. In the interest of a self-contained presentation we
provide proofs, relying on various sources, most notably [39, 40]. To make the proof
accessible also to readers with limited background in Lie theory, we provide more
detail than is perhaps necessary for specialists.

We start by introducing the notion of growth on locally compact groups. Throughout
this section, we will concentrate on connected Lie groups.

Definition C.1 Let G be a connected Lie group. For a relatively compact, symmetric
open unit neighborhood U C G, let dy be the associated word metric, and write

U ={geG:d(g ez)<r}=U") for r>0.
The growth function associated to U and G is defined by

vy.g: (0,00) = [0,00), vy,c(r):=pucU).

Given two nondecreasing functions v, v : (0, co) — [0, 00), following [10, Defi-
nition 3.D.3], we write v < V if there exist constants a, b > 0, ¢ > 0 such that for all
r € (0, 00)

v(r) <av(br +c¢)+c.

We write v > v if both v < v and v < v. Clearly, this defines an equivalence relation
on the set of nondecreasing functions from (0, co) to [0, 00). It is easily checked that
vu,G ~ Vv, for any two relatively compact, open neighborhoods of unity contained
in connected Lie groups. Since we are only interested in equivalence classes, we will
therefore write vG = vy g, for a suitably chosen neighborhood U'.

A group is called of polynomial growth if vg(r) < r" for a suitable exponent
n € [0, 00). We call G of linear growth if vg (r) =~ r holds. The relevance of growth
for our arguments comes from the fact that it is a quasi-isometric invariant:
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Lemma C.2 Let G, H denote two connected Lie groups that are quasi-isometric. Then
VG = VH.

Proof Fix a symmetric, relatively compact neighborhood U € G of unity, and denote
by dy the associated word metric. By [10, Propositions 3.D.23 and 3.D.29], there
exists a growth function B¢ (cf. [10, Definition 3.D.2]) that is (up to equivalence)
defined purely in terms of dg and satisfies B ~ vg. The same reasoning applies
to H. Hence, since G and H are quasi-isometric, an application of [10, Proposition
3.D.23] yields that 8 >~ By, which then implies vg ~ vy. ]

We first give a characterization of nilpotent Lie groups with linear growth.

Lemma C.3 Let G be a connected, simply connected nilpotent Lie group with linear
growth. Then G = R.

Proof Since G is simply connected and nilpotent, it follows from [4, Corollary 2.9]
that it has strict polynomial growth, in the sense that vg () ~ 4@ for some d(G) >
dim(G). On the other hand, the assumption of linear growth implies d(G) = 1. Since
G is nontrivial, we get dim(G) = 1, and the desired conclusion follows. O

The following result is the main result of this section.

Proposition C.4 Let G denote a connected Lie group. Then the following assertions
are equivalent:

(i) G is quasi-isometric to R.
(ii) G has linear growth.
(iii) G contains a closed cocompact, noncompact one-parameter subgroup.

Proof The implication (i) = (i7) is due to Proposition C.2.

The proof of (ii) = (iii) relies on results from [39, 40]. Since G is of polynomial
growth, an application of [39, Proposition 1] yields the existence of a maximal compact
normal subgroup K of G, and shows that G/K is a Lie group. By [10, Proposition
4.C.12], the quotient map G — G/K| must be a quasi-isometry (if both G and
G /K are equipped with the word metric associated to a compact generating set).
Therefore, by Lemma C.2, H := G /K is aconnected Lie group of linear (in particular
polynomial) growth without nontrivial compact normal subgroups.

By [40, Theorem 2], there exists a topological embedding ¢ : H — N X K>,
where N is a simply connected, connected nilpotent Lie group and K> is a compact
group, and such that p(H) € N x K> is closed and cocompact. By definition of a
(topological) semidirect product, the map

Y :NxKy,— Ky, g=nkr—k wherene N,keK>

is a continuous homomorphism. Given that H is connected, the image ¥ (¢(H)) € K>
is contained in the connected component K of the unit element of K5. Thus, by
replacing K> with K 3‘, we can assume that K5 is connected. Note that for this, we use
that (N % K3)/@(H) is compact by Lemma Lemma A.3, because ¢(H) € N x K} C
N x K> are closed subgroups in N x K> and (N x K»)/@(H) is compact.
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Since (N x K3)/@(H) is compact, the inclusion map ¢(H) < N X K3 is a quasi-
isometry by [10, Proposition 4.C.11] (again, with respect to suitable word metrics).
The same reasoning applies to the inclusion map N < N x K;. Combining these
observations yields that G and N are quasi-isometric. As such, it follows therefore
from Lemma C.2 that N has linear growth, and thus N = R by Lemma C.3. Hence, the
automorphism group of N is isomorphic to R*, which contains no nontrivial connected
compact subgroup. Since the compact group K» acts continuously on N, this action
must then be trivial. Hence, N x K, = N x Kj.

For constructing the one-parameter subgroup, let 7y : N x K — N denote the
canonical projection. Since ¢ (H) is cocompactin N x K> and N = R is not compact,
@(H) is not contained in {ey} x K. Since the image of the exponential map expy
generates H, this entails the existence of an element X of the Lie algebra of H such
that (ry o ¢)(expy (RX)) is nontrivial and connected. Since N = R does not have
any nontrivial connected subgroups, it follows that 7y (¢(expy (RX))) = N. This
entails that p(expy (RX)) € ¢(H) € N x K3 is cocompact in N x K». Next, note
that p(expy (RX)) € N x K3 is closed by Lemma A.4, since its closure cannot be
compact, because ¢(expy (RX)) is cocompact in the noncompact group N x K». By
Lemma A.3, it follows therefore that ¢ (expy (RX)) is also cocompact in ¢ (H) Since
@ is atopological embedding, it follows that exp ; (R X) must be cocompact and closed
in H.

It remains therefore to lift the one-parameter subgroup to G. To do this, let g :
G — H denote the quotient map, and dq : g — b the differential map between the
respective Lie algebras. Since ¢ is an open Lie group homomorphism, dq is a surjective
Lie algebra homomorphism, see, e.g., [35, Proposition 9.2.13]). In particular, there
exists ¥ € g with dq(Y) = X, and g(exp;(tY)) = expgy (tX) holds for all t € R,
see, e.g., [35, Proposition 9.2.10]. In particular, since expy (RX) is noncompact and
closed, exps (RY) does not have compact closure. But then it is closed (by Lemma
A.4) and noncompact, as well. For showing that exps (RY) € G is cocompact, note
that since expy (RX) € H is cocompact, there exists a compact set @ C H with
H = Oexpy (RX), cf. [18, Lemma 2.46]. Similarly, there exists a compactset 2 € G
with ® = ¢(€2). Given g € G, we can write g(g) = 6 - expg (¢ X) for certain 6 € ©
and ¢t € R. Writing 0 = q(w) with w € 2, we then see g(g) = g(wexps(tY)), and
thus g € wexps(tY)K| = wK| expg (1Y), which shows that G = QK exps (RY),
so that G/ exps (RY) is compact. Thus, exp; (RY) C G is cocompact, which shows
(iii).

The implication (iii) = (i) follows again by [10, Proposition 4.C.11]. O
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