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Abstract
This paper develops methods based on coarse geometry for the comparison of wavelet
coorbit spaces defined by different dilation groups, with emphasis on establishing a
unified approach to both irreducible and reducible quasi-regular representations. We
show that the use of reducible representations is essential to include a variety of exam-
ples, such as anisotropic Besov spaces defined by general expansive matrices, in a
common framework. The obtained criteria yield, among others, a simple characteriza-
tion of subgroups of a dilation group yielding the same coorbit spaces. They also allow
to clarify which anisotropic Besov spaces have an alternative description as coorbit
spaces associated to irreducible quasi-regular representations.
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1 Introduction

The theory of coorbit spaces was initially developed by Feichtinger and Gröchenig
[15–17, 33] as a group-theoretic framework that allows to view various classical func-
tion spaces in complex and harmonic analysis, such as Bergman, Bargmann–Fock
and Besov–Triebel–Lizorkin spaces, under a unified perspective. These initial papers
have resulted in an extensive body of literature, studying generalizations in various
directions, and demonstrating the applicability of the coorbit method in a large variety
of settings, see, e.g., the papers [8, 9, 12, 19, 37, 43, 44, 50] and the references therein.

A particularly rich source of examples within the original setting of coorbit spaces
that have been studied extensively in the past few years are function spaces on
Euclidean space that are invariant under translations and certain matrix dilations. To
be explicit, we let H ≤ GL(d, R) be a closed subgroup and consider the semidirect
product group G = R

d
� H . The quasi-regular representation π of G is the unitary

representation on L2(Rd) defined by

π(x, h) f (t) = | det h|− 1
2 f (h−1(t − x)), t ∈ R

d . (1.1)

In caseπ is irreducible and square-integrable, the associated coorbit spaces are defined
by imposing norm conditions on the wavelet transform Wψ f = 〈 f , π(·)ψ〉 of a
function/distribution f and an adequate fixed function ψ . For example, given 1 ≤
p ≤ 2, the coorbit space Co(L p(G)) is the Banach space of functions f ∈ L2(Rd)

satisfying

‖ f ‖p
Co(L p) :=

∫
G

|〈 f , π(x, h)ψ〉|p dμG(x, h) < ∞, (1.2)

where μG denotes the left Haar measure on G. For the similitude group H = R
+ ·

SO(d), the coorbit spaces Co(L p(Rd
� H)) correspond to classical (homogeneous)

Besov spaces [20, 42] on R
d (see, e.g., [15, 32, 33]), and the general coorbit theory

[15–17, 33] revealed that the classical atomic decompositions of such spaces can be
obtained as consequences of the action of the group on these spaces. Just like the
classical Besov space Ḃ0

1,1(R
d) is (in a certain sense) the minimal Banach space being

invariant under translations and dilations (cf. [21]), the coorbit space Co(L1(G)) can
be shown to be the minimal Banach space that is invariant under the action of the
quasi-regular representation (1.1). As such, for other adequate dilation groups H , the
spaces Co(L p(Rd

� H)) can be shown to yield new classes of function spaces, which
have been studied intensively in, e.g., [6, 24, 26, 28, 29, 31].

The present paper is concerned with two questions related to coorbit spaces defined
by the quasi-regular representations (1.1) that can be traced back to the very begin-
nings of coorbit space theory, namely the possibility of using reducible quasi-regular
representations to define coorbit spaces and the question of when two different dilation
groups yield the same coorbit space.
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1.1 PreviousWork

Before describing the content of the present paper in more detail, we describe the
relevant context and some recent developments.

First, although the original coorbit space theory assumed the group representation
to be irreducible, that is, {0} and L2(Rd) are the only closed π -invariant subspaces of
L2(Rd), it was already realized from early on that an integrable reproducing kernel
(rather than irreducibility) is the essential assumption guaranteeing most properties of
coorbit spaces, see, e.g., [33, Remark 6.6]. This was one of the key motivations for the
study of a large class of dilation groups, the so-called integrably admissible dilation
groups (cf. Sect. 2.1), that guarantee an integrable quasi-regular representation; see
[11]. Various concrete aspects of the coorbit spaces associated with such dilation
groups were studied in [30], and allowed to incorporate further scales of function
spaces, such as anisotropic Besov spaces [3], into a common framework with the
already established coorbit spaces defined by irreducible, square-integrable quasi-
regular representations studied in, e.g., [24, 26, 31].

Second, as already outlined above, it was realized early in the development of
coorbit space theory that the scale of (homogeneous, isotropic) Besov spaces in arbi-
trary dimensions could be understood as coorbit spaces associated to the irreducible
quasi-regular representation of the similitude group H1 = R

+ · SO(d). However, it
was also understood early on that with suitable choices of analyzing wavelets, the
full similitude group H1 could be replaced by the one-parameter group H2 = R

+ · I
and yield the same coorbit space, see, e.g., [32, Remark (ii)]. This led naturally to the
question of which dilation groups yield different scales of coorbit spaces. For dilation
groups that act irreducibly, the paper [26] provided a coarse geometric approach to this
question, and showed that whether two dilation groups H1, H2 yield the same coorbit
space can be decided by investigating whether a suitable map between H1 and H2 is
a quasi-isometry.

1.2 Aims and Contributions

The main purpose of the present paper is to extend the methods based on coarse
geometry for the comparison of coorbit spaces developed in [26] to the general setting
of integrably admissible dilation groups [30], and thus obtain far-reaching criteria for
the characterization of coorbit spaces and their symmetries. In doing so, we resolve
an open question on the uniqueness of a dual orbit or essential frequency support
of an integrably admissible dilation group (cf. [30, Section 2.1]). As an application
and illustration of our results, we show that the inclusion of reducible integrably
admissible dilation groups is necessary for coorbit space theory to cover anisotropic
Besov spaces [3]: It was already known that these spaces are coorbit spaces with
respect to one-parameter dilation groups [30], which necessarily act reducibly. Our
Theorem 5.2 provides a complement to that observation by stating that these spaces
do not have a characterization using an irreducibly acting dilation group.
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1.3 Technical Overview

As in [26], our approach towards the comparison of coorbit spaces hinges on the
description of such a space as a Besov-type space defined by decomposition methods
[47–49], also called aBesov-type decomposition space [14, 51]. In contrast to the usual
coorbit space norm (see, e.g., Eq. (1.2)), the Besov-type spaces are defined by means
of a discrete Littlewood–Paley-type norm. For example, for 1 ≤ p ≤ 2, the coorbit
space Co(L p(G)) can alternatively be described as those f ∈ L2(Rd) satisfying a
norm condition of the form

∑
i∈I

(
| det(hi )|

1
2− 1

p · ∥∥ f ∗ ϕi
∥∥
L p

)p
< ∞,

where (ϕi )i∈I is such that the family of Fourier transforms (ϕ̂i )i∈I forms a suitable
partition of unity adapted to a frequency coverQ = (Qi )i∈I of the form Qi = h−T

i Q
for some discrete family (hi )i∈I of points hi ∈ H . The realization of a coorbit space
as a Besov-type space has been shown for irreducibly acting dilation groups in [31],
and for general integrably admissible dilation groups in [30]. This identification is an
essential ingredient in our approach.

The significance of Besov-type spaces for our purposes is that a comparison of
these spaces in terms of geometric properties of associated frequency covers has
been obtained in [51]. More precisely, the classification results in [51] show that
the coincidence of a scale of Besov-type spaces (hence, wavelet-type coorbit spaces)
is equivalent to theweak equivalence (cf. Definition 3.9) of the frequency covers defin-
ing the spaces. The paper [26] showed in turn that the weak equivalence of two covers
is equivalent to the ambient spaces being quasi-isometric relative to two so-called
cover-induced metrics (see Theorem 3.10). This latter condition allows, in the case of
covers induced by dilation groups, to characterize when two dilation groups H1 and
H2 induce the same coorbit spaces in terms of a quasi-isometry between H1 ×C1 and
H2 ×C2 for certain compact sets C1 ⊆ R

d \ {0} and C2 ⊆ R
d\{0} (see Theorem 4.4).

In comparison to coorbit spaces associated to irreducibly admissible dilation groups
in [26], there are several additional difficulties that arise in the general setting of inte-
grably admissible dilation groups treated in the present paper. First of all, in contrast to
an irreducibly acting dilation group, it is a priori not clear that an integrably admissible
dilation group admits a unique associated essential frequency support (see Sect. 2.1).
This question is, however, of fundamental importance for our approach towards com-
paring coorbit spaces, because the essential frequency support enters crucially in the
description of a coorbit space as a Besov-type space. We show the uniqueness of the
essential frequency support in Sect. 2.2. Second, the essential frequency support is in
general not singly generated (i.e., the action (h, ξ) 
→ hT ξ on the essential frequency
support is in general not transitive), in contrast to the special case of an irreducible
admissible dilation group. As in [30], the fact that the frequency support is possibly
generated by an arbitrary compact set leads to various technicalities (e.g., uniformity
of certain estimates), as we point out throughout the text.
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1.4 Organization

Thepaper is organized as follows: Sect. 2 recalls various properties of integrably admis-
sible dilation groups that will be used throughout the text. In addition, the uniqueness
of a frequency support of such a group is shown in Sect. 2.2. Section3 is devoted to
showing that the full orbit map

p : H × C → O, (h, ξ) 
→ h−T ξ,

with C ⊆ O compact and O = HTC , forms a quasi-isometry, under suitable (mild)
technical assumptions, and using suitable natural metrics on H andO. Before proving
this in Sect. 3.6, all requisite background and notions are recalled in the prior subsec-
tions. The results from Sects. 2 and 3 are combined in Sect. 4 to characterize when two
dilation groups yield the same coorbit space. Lastly, the results of Sect. 4 are applied
in Sect. 5 to study anisotropic Besov spaces [3] inside the framework of coorbit space
theory. The appendices contain some postponed proofs and auxiliary results used in
the main text.

Notation

The set of natural numbers (excluding 0) is denoted by N. For two functions f1, f2 :
X → [0,∞) on a set X , we write f1 � f2 if there exists C > 0 such that f1(x) ≤
C f2(x) for all x ∈ X . We use the notation f1 � f2 whenever f1 � f2 and f2 � f1.

2 The Essential Frequency Support of Integrably Admissible Dilation
Groups

This section recalls the class of integrably admissible dilation groups studied in [11,
30]. For such groups, we show that there exists at most one associated essential
frequency support, which plays a key role in establishing our main results on the
classification of coorbit spaces.

2.1 Integrably Admissible Dilation Groups

Following [11, 30], we say that a closed subgroup H ≤ GL(d, R) is integrably
admissible, if there exists a set O ⊆ R

d satisfying the following conditions:

(a1) The set O ⊆ R
d is open and of full measure (i.e., Oc is a null-set);

(a2) there exists a compact set C ⊆ O such that O = HTC ;
(a3) for each compact set K ⊆ O, the closed set

[K ] := {
(h, ξ) ∈ H × O : (hT ξ, ξ) ∈ K × K

} ⊆ H × O

is compact.
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Every set O ⊆ R
d satisfying the conditions (a1), (a2) and (a3) is referred to as an

(essential) frequency support associated to the dilation group H .
The significance of the class of integrably admissible dilation groups for our

purposes is that it guarantees that the quasi-regular representation (1.1) admits an
admissible vector with an integrable matrix coefficient; see Proposition 4.1. Both
properties are used in the coorbit theory developed in Sect. 4.

For two sets U , V ⊆ R
d , we define the set

((U , V )) := {h ∈ H : hTU ∩ V �= ∅}. (2.1)

The following characterization of integrably admissible dilation groups is often used
in the remainder. See [11, Proposition 2.9] for its proof (and also see [11, Definition
2.2]).

Lemma 2.1 [11] Let H ≤ GL(d, R) be a closed subgroup and let O ⊆ R
d be an

open set that is HT -invariant and of full measure. Then the following assertions are
equivalent:

(i) H is integrably admissible with essential frequency support O;
(ii) There exists someopen, relatively compact setC ⊆ OwithC ⊆ O and HTC = O,

and for any such set C, the set ((C,C)) is relatively compact in H.

We collect the following consequences of Lemma 2.1; see [11, Lemma 2.4] and
[11, Lemma 2.5].

Corollary 2.2 [11] Let H ≤ GL(d, R) be integrably admissible with essential fre-
quency support O. Then the following assertions hold:

(i) For each ξ ∈ O, the stabilizer subgroup Hξ := {h ∈ H : hT ξ = ξ} is compact.
(ii) For arbitrary compact sets C1,C2 ⊆ O, the set ((C1,C2)) is compact.

In the following example, two classes of integrably admissible dilation groups are
listed that have been studied in the literature before, see, e.g., [5, 11, 23, 34, 38].

Example 2.3 (Integrably admissible dilation groups) Let H ≤ GL(d, R) be closed.

(1) H is called an irreducible admissible dilation group if there exists an open singly
generated orbit O := HT ξ0 ⊆ R

d of full measure for some ξ0 ∈ R
d for which

the isotropy group Hξ0 is compact. The irreducibly admissible dilation groups are
precisely those for which the quasi-regular representation on is irreducible, cf. [23,
Corollary 21]. Any irreducibly admissible dilation group is integrably admissible.

(2) A one-parameter subgroup H = exp(RA) is integrably admissible if and only if
the real parts of all eigenvalues of A are either strictly negative or strictly positive;
see [34, Theorem 1.1] and [30, Proposition 6.3].

2.2 Essential Frequency Support

The aim of this section is to prove that there exists at most one essential frequency
support for an integrably admissible dilation group. This question was discussed, but
left open, in [30, Section 2].
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We first prove a lemma that allows us to reduce the general question to the case
where different frequency supports fulfill a containment relation.

Lemma 2.4 Let H ≤ GL(d, R) be integrably admissible with associated essential
frequency supports O1,O2. Then O := O1 ∪ O2 is an essential frequency support
associated to H.

Proof Clearly, O ⊆ R
d is open and of full measure. By definition, we have Oi =

HTCi with Ci ⊆ Oi compact. Hence, setting C := C1 ∪ C2, it follows that C ⊆ O
is compact and satisfies O = HTC , showing defining condition (a2). Lastly, let
K ⊆ O be compact. For each x ∈ K , there exist ix ∈ {1, 2} and a compact set
Kx ⊆ Oix satisfying x ∈ K ◦

x . By compactness of K , there exist N ∈ N and points
x1, . . . , xN ∈ K satisfying K ⊆ ⋃N

�=1 K
◦
x�

⊆ ⋃N
�=1 Kx�

. Since [Kx�
] ⊆ H × Kx�

⊆
H × Oix�

⊆ H × O is compact for each �, it follows that [K ] ⊆ H × O is a closed

set satisfying [K ] ⊆ ⋃N
�=1[Kx�

], so that [K ] ⊆ H × O is compact. ��
In addition to Lemma 2.4, we will use two additional lemmata for proving the

uniqueness of the frequency support. For this, given an integrably admissible dilation
group H and a compact set K ⊆ R

d , we define

MK ,H f : H → [0,∞), h 
→ sup
ξ∈K

f (hT ξ)

for any continuous function f : R
d → [0,∞). The function MK ,H f is lower semi-

continuous (as a supremum of continuous functions), and hence Borel measurable.

Lemma 2.5 Let H ≤ GL(d, R) be integrably admissible with Haar measure μH , and
letO ⊆ R

d be an essential frequency support associated to H. Let K ⊆ O be compact
and let f ∈ Cc(O) with f ≥ 0. Then

∫
H
MK ,H f (h) dμH (h) < ∞.

Proof Define the compact set K̃ := K ∪ supp f ⊆ O. Note that if MK ,H f (h) �= 0,
then there exists ξ ∈ K ⊆ K̃ satisfying hT ξ ∈ supp f ⊆ K̃ , and hence (h, ξ) ∈ [K̃ ],
which is compact by defining condition (a3). Therefore, using the projection π1 :
H × R

d → H , (h, ξ) 
→ h, it follows that supp(MH ,K f ) ⊆ K0 := π1([K̃ ]). Since
0 ≤ MH ,K f ≤ ‖ f ‖sup, this implies

∫
H MH ,K f (h) dμH (h) ≤ ‖ f ‖sup · μH (K0) <

∞, as claimed. ��
Lemma 2.6 Let H ≤ GL(d, R) be integrably admissible with Haar measure μH ,
and let O = HTC with a compact set C ⊆ O be an essential frequency support
associated to H. Let f : R

d → [0,∞) be continuous. Suppose that there exists
ξ0 ∈ ∂O satisfying f (ξ0) �= 0. Then

∫
H
MC,H f (h) dμH (h) = ∞.
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Proof Since ξ0 ∈ ∂O, there exists a sequence (ξn)n∈N in O = HTC satisfying
ξn → ξ0 as n → ∞. Write ξn = hTn cn for some hn ∈ H and cn ∈ C . Let Q ⊆ H be
a compact unit neighborhood. The remainder of the proof is split into two steps.
Step 1 In this step, we show that for each N ∈ N there exists M = M(N ) ∈ N such
that

hMQ ∩
N⋃

�=1

h�Q = ∅.

Arguing by contradiction, assume there exists N ∈ N such that hMQ∩⋃N
�=1 h�Q �= ∅

and hence hM ∈ ⋃N
�=1 h�QQ−1 =: Q′ for every M ∈ N. Then

(
(hM , cM )

)
M∈N

is a
sequence in the compact set Q′ × C , so that there exists a subsequence (Mk)k∈N and
(h, c) ∈ Q′ × C satisfying (hMk , cMk ) → (h, c) as k → ∞. This implies

ξ0 = lim
k→∞ ξMk = lim

k→∞ hTMk
cMk = hT c ∈ HTC = O = O◦,

which contradicts the assumption ξ0 ∈ ∂O.
Step 2By use of Step 1, we easily obtain a subsequence (hn�

)�∈N such that (hn�
Q)�∈N

is pairwise disjoint. By definition of MC,H f , it follows that

∫
H
MC,H f (h) dμH (h) ≥

∞∑
�=1

∫
hn�

Q
MC,H f (h) dμH (h) ≥

∞∑
�=1

∫
hn�

Q
f (hT cn� ) dμH (h)

=
∞∑

�=1

∫
Q

f (qT hTn�
cn� ) dμH (q) =

∞∑
�=1

∫
Q

f (qT ξn� ) dμH (q).

Since ε := f (ξ0) > 0 and f is continuous, there exists an open set Q0 ⊆ Q and some
δ > 0 satisfying f (qT ξ) ≥ ε

2 for all q ∈ Q0 and all ξ ∈ R
d with ‖ξ − ξ0‖ ≤ δ. In

addition, since ξn�
→ ξ0, there exists �0 ∈ N satisfying ‖ξn�

− ξ0‖ ≤ δ for all � ≥ �0.
Overall, this implies that

∫
H
MC,H f (h) dμH (h) ≥

∞∑
�=�0

∫
Q0

f (qT ξn�
) dμH (q) ≥

∞∑
�=�0

μH (Q0)
ε

2
= ∞,

which finishes the proof. ��
For irreducibly admissible dilation groups (see Example 2.3), a special case of

Lemma 2.6 (with C being a singleton) was obtained by A. Burtscheidt and the third
named author; see Proposition 5.4.1 in the thesis [6].

A combination of the preceding lemmas gives the desired uniqueness result.

Theorem 2.7 Let H ≤ GL(d, R) be integrably admissible. Then the essential fre-
quency support O ⊆ R

d associated to H is unique.
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Proof By Lemma 2.4, it suffices to show that there cannot be two frequency supports
O1,O2 ⊆ R

d satisfying O1 � O2.
Arguing towards a contradiction, assume that such frequency supports O1 and O2

do exist. Write Oi = HTCi with Ci ⊆ Oi compact and choose ξ0 ∈ O2\O1. Fix
f ∈ Cc(O2) satisfying f ≥ 0 and f (ξ0) > 0. Since O1 ⊆ R

d is open and of full
measure with ξ0 /∈ O1, it follows that ξ0 ∈ ∂O1. Hence, an application of Lemma 2.6
implies

∫
H
MC1,H f (h) dμH (h) = ∞.

On the other hand, since C1 ⊆ O1 � O2 is compact, it follows by Lemma 2.5 that

∫
H
MC1,H f (h) dμH (h) < ∞,

which is the required contradiction. ��

3 Quasi-isometry BetweenH×C and the Essential Frequency Support

This section is devoted to establishing a quasi-isometry between the product H×C and
O, where H is an integrably admissible dilation group satisfying somemild additional
conditions, and O = HTC its essential frequency support, where we assume that
C ⊆ O is connected and compact (see Definition 3.3).

More precisely, we will show that the full orbit map

p : H × C → O, (h, ξ) 
→ h−T ξ, (3.1)

forms a quasi-isometry relative to suitable metrics on H × C and O. This property
will be used in Sect. 4 to characterize when two dilation groups yield the same coorbit
space.

The first few subsections of this section are concerned with the construction of
relevant objects and recalling the requisite background. The fact that the full orbit
map p is a quasi-isometry from H × C into the essential frequency support O of H
is proven in Sect. 3.6.

3.1 Quasi-isometries

This subsection reviews the notions of a quasi-isometry and a quasi-inverse. As we
need these notions and results in various contexts, we introduce them in the general
setting of metric spaces. Standard references1 on coarse geometry are, e.g., [10, 41,
45], and we refer to these references for further details.

1 The terminology is not uniform throughout the literature, see, e.g., [10, Remark 3.A.4] for some overview.
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Throughout this subsection, we let (X , dX ) and (Y , dY ) be arbitrary metric spaces.
A map f : X → Y is said to be a quasi-isometry if it satisfies the following two
conditions:

(q1) There exist constants R1, R2 > 0 such that

R−1
1 dX (x, x ′) − R2 ≤ dY

(
f (x), f (x ′)

) ≤ R1dX (x, x ′) + R2

for all x, x ′ ∈ X ;
(q2) There exists R3 > 0 such that, for every y ∈ Y , there exists x ∈ X , such that

dY
(
f (x), y

) ≤ R3.

The composition of twoquasi-isometries is again a quasi-isometry.Hence the existence
of a quasi-isometry between X and Y defines a transitive relation between metric
spaces (and this relation is clearly also reflexive). This relation is also symmetric, i.e.,
for every quasi-isometry from X into Y there exists an associated quasi-isometry in
the converse direction. This observation will be useful for us in the following, and is
therefore spelled out in somewhat more detail in the following paragraph.

A map f2 : Y → X is called a quasi-inverse of a map f1 : X → Y if

sup
y∈Y

dY
(
f1( f2(y)), y

)
< ∞ .

Every quasi-isometry f1 has a quasi-inverse: By assumption (q2), the axiom of choice
provides a map f2 : Y → X satisfying

sup
y∈Y

dY
(
f1( f2(y)), y

) ≤ R3.

The following result is folklore. For reasons of self-containment, we provide a proof
in Appendix B.

Lemma 3.1 Let (X , dX ) and (Y , dY ) be metric spaces.

(i) Any quasi-inverse of a quasi-isometry f1 : X → Y is a quasi-isometry.
(ii) Let f1 : X → Y denote a quasi-isometry, and f2 a quasi-inverse of f1. Then f1 is

a quasi-inverse of f2.

3.2 Connectivity-Respecting Dilation Groups

Let H ≤ GL(d, R) be an integrably admissible dilation groupwith essential frequency
supportO = HTC . In order to show the quasi-isometry property of the full orbit map
p : H × C → O defined in Eq. (3.1), we will construct adequate metrics on H × C
and O in the following subsections. For these constructions, we will impose some
mild additional assumptions on the group H and its frequency supportO in Definition
3.3.

In order to prepare for Definition 3.3, we make the observation that the dual action
of H on O induces a permutation action on the connected components of O. More
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precisely, let


 := {O0 ⊆ O : O0 is a connected component of O}.

Then for O0 ∈ 
 and h ∈ H , we see that hTO0 ⊆ O is connected and hence
hTO0 ⊆ O′

0 for some O′
0 ∈ 
. Then h−TO′

0 is connected with O0 ⊆ h−TO′
0 and

thus O0 = h−TO′
0, meaning hTO0 = O′

0 ∈ 
, so that the map

H × 
 → 
, (h,O0) 
→ h−TO0 (3.2)

is well-defined. It is straightforward to check that this map is a group action.

Lemma 3.2 Let H ≤ GL(d, R) be an integrably admissible dilation group with essen-
tial frequency supportO. Then, given any connected componentO0 ofO, the stabilizer
H0 of O0,

H0 :=
{
h ∈ H : hTO0 = O0

}
⊆ H

is a closed subgroup.

Proof Let (hn)n∈N be a sequence in H0 with hn → h for some h ∈ H . Fix ξ ∈ O0,
and let O′

0 := hTO0, and note that O′
0 and O0 are both connected components of O;

see the discussion around Eq. (3.2). Then O′
0 is a neighborhood of h

T ξ , and we have
hTn ξ → hT ξ as n → ∞. As such, there exists n0 ∈ N such that hTn ξ ∈ O′

0 for all
n ≥ n0, which then implies hTn ξ ∈ hTn O0∩O′

0 = O0∩O′
0. Since the two components

O0 andO′
0 have a nontrivial intersection, it follows that h

TO0 = O′
0 = O0, and hence

h ∈ H0. ��
The following definition introduces the additional assumptions on an integrably

admissible dilation group that will be needed in the remainder.

Definition 3.3 An integrably admissible dilation group H ≤ GL(d, R) with essen-
tial frequency support O is called connectivity-respecting if it satisfies the following
additional assumptions:

(c1) There exists a compact, connected set C ⊆ O satisfying O = HTC ;
(c2) The stabilizer group H0 := {h ∈ H : hTO0 = O0} of the connected component

O0 of O containing C is compactly generated.

In principle, condition (c2) is a nontrivial restriction, since there do exist closed
matrix groups that are not compactly generated, see [46, Appendix A]. However, we
currently do not know of an example where such groups arise as stabilizer groups H0
obtained in the sense of (c2) from an integrably admissible matrix groups.

The following simple observation will be used repeatedly.

Lemma 3.4 If H ≤ GL(d, R) is connectivity-respecting, then the stabilizer H0 of each
connected component O0 of O is compactly generated.
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Proof By the discussion around Eq. (3.2), the group H acts on the set 
 of connected
components ofO by (h,O0) 
→ h−TO0. Clearly, the set H0 is the stabilizer group of
O0 ∈ 
 with respect to this action.

Furthermore, denoting by C ⊆ O0 the connected sets from (c1) of Definition 3.3,
the fact that O = HTC = HTO0 implies that the action of H on 
 is transitive.
Hence, all fixed groups are conjugate to H0, and if H0 is compactly generated, the
same applies to the remaining fixed groups. ��

We next discuss the connectivity-respecting property for the classes of integrably
admissible dilation groups mentioned in Example 2.3.

Example 3.5 (Connectivity-respecting dilation groups) Let H ≤ GL(d, R) be closed.

(1) If H is integrably admissible and connected, then H is connectivity-respecting if
and only if O is connected.

For this, first note thatO = HTC is connectedwhenever H andC are connected.
For the converse implication, the assumption that H is integrably admissible fur-
nishes a compact set C0 ⊆ O with O = HTC0. Then, since O is connected,
Lemma A.2 yields a compact connected set C ⊆ O with C ⊇ C0, so that
O = HTC0 ⊆ HTC ⊆ O. Since any connected locally compact group is com-
pactly generated, all conditions are satisfied for H0 := H .

This observation shows that in particular all integrably admissible one-parameter
groups in dimension d > 1 are connectivity-respecting. The frequency support
associated to any of these groups is O = R

d\{0}, cf. [30, Proposition 6.3].
(2) Assume that H is irreducibly admissible, i.e., thatO is a single orbit. Then condi-

tion (c1) of Definition 3.3 can be guaranteed by any singleton set C = {ξ} ⊆ O.
The other condition is also fulfilled: Let H1 denote the connected component of
the identity id ∈ H of H . Then it is clear that any orbit stabilizer H0 in the sense
of Definition 3.3 contains H1. By [22, Remark 4], H1 has finite index in H , and
therefore in H0. Being connected, H1 is generated by any compact symmetric
neighborhood of unity V ⊆ H1, and then H0 is generated by V together with
finitely many coset representatives of H0/H1.

Hence the following results are applicable to all irreducibly admissible groups,
without imposing further technical conditions. This stands in contrast to the pre-
cursor paper [26], which uses the standing assumption that the dual (single point)
stabilizers

Hξ =
{
h ∈ H : hT ξ = ξ

}
, ξ ∈ O,

are contained in H1.
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3.3 WordMetrics on Dilation Groups

Let H ≤ GL(d, R) be a closed subgroup. For a nonempty symmetric set W ⊆ H ,
define the map dW : H × H → N0 ∪ {∞} by

dW (x, y) =
{
inf{m ∈ N : x−1y ∈ Wm}, if x �= y;
0 if x = y,

(3.3)

where we set inf ∅ = ∞. It is well-known that dW is ametric on H (with the exception
that it can attain the value∞) and that dW is left-invariant, i.e., dW (x, y) = dW (zx, zy)
for all x, y, z ∈ H ; see, e.g., [26, Lemma 4.2].

In the remainder,wewill chooseW to be an open, precompact symmetric generating
set of a subgroup H0 ≤ H . The next (elementary) lemma shows that the resulting
metrics for different choices of W are coarsely equivalent, so that the precise choice
is immaterial for our purposes. The proof is deferred to Appendix B.

Lemma 3.6 Let H be a locally compact group, let H0 ≤ H be closed, and let W , V ⊆
H0 be nonempty, open, precompact, symmetric generating sets for H0.

Then the identity map h 
→ h is a quasi-isometry from (H , dW ) onto (H , dV ).

3.4 Covers of the Frequency Support

For showing that the full orbit map (3.1) is a quasi-isometry, we need to construct an
adequate metric on the frequency supportO of a dilation group H . Following an early
observation in [14], we will define such a metric by first constructing an adequate
cover of O.

We will construct covers of the essential frequency support that are induced by the
dual action of the dilation group. General covers of this type were already constructed
in [30, Section 4.1], but for the purpose of the present paper it is essential to have covers
consisting of open connected sets. In order to show the existence of such covers, we
will use defining condition (c1) of Definition 3.3.

For the construction of the induced cover Q, we need some basic properties of
well-spread families, which we recall next. A family (hi )i∈I in H is called uniformly
discrete if there exists an open set U ⊆ H containing the identity element such that
hiU ∩ h jU = ∅ holds for all i, j ∈ I with i �= j . It is called uniformly dense or
V -dense if there exists a relatively compact set V ⊆ H such that H = ⋃

i∈I hi V . A
family is called well-spread if it is the finite union of uniformly discrete sets and is
uniformly dense.

A fact that we will be using repeatedly is the following lemma; see [30, Lemma
4.2].

Lemma 3.7 Let K1, K2 ⊆ O be compact and let (hi )i∈I ⊆ H be uniformly discrete.
For h ∈ H, let

Ih(K1, K2) :=
{
i ∈ I : h−T K1 ∩ h−T

i K2 �= ∅

}
.
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Then there exists R > 0 such that #Ih(K1, K2) ≤ R for all h ∈ H.

The following result shows that any connectivity-respecting dilation group admits
an adequate connected cover of its frequency support. More precisely, the cover is
connected, admissible, and structured, in the sense of [51, Definition 2.5].

Lemma 3.8 Let H ≤ GL(d, R) be connectivity-respecting and let C ⊆ O be a con-
nected, compact set such that O = HTC.

There exists an open, connected, bounded set Q ⊆ O with Q ⊆ O and Q ⊇ C,
an open set P ⊆ Q with P ⊆ Q, and a well-spread family (hi )i∈I in H such that the
family Q = (h−T

i Q)i∈I has the following properties:

(i) O = ⋃
i∈I h

−T
i P = ⋃

i∈I h
−T
i Q;

(ii) supi∈I #{ j ∈ I : h−T
i Q ∩ h−T

j Q �= ∅} < ∞;

(iii) sup
(i, j)∈I×I :h−T

i Q∩h−T
j Q �=∅

‖(h−T
i )−1h−T

j ‖ < ∞.

Proof Let Bε(C) := {η ∈ R
d : dist(η,C) < ε}, where ε > 0 is chosen so small that

Bε(C) ⊆ O, which is possible since C ⊆ O with C compact and O open. Lemma
A.1 shows that Bε(C) is connected. Let U ⊆ H be an open, connected, precompact
unit neighborhood, and let V ⊆ U be an open unit neighborhood with V ⊆ U . The
sets

Q := U−T Bε(C) =
⋃
u∈U

u−T Bε(C) and P := V−T Bε/2(C)

are open as unions of open sets, and Q is connected as the image of the connected set
U × Bε(C) under the continuous map (h, ξ) 
→ h−T ξ . Furthermore, we have

Q ⊆ U
−T

C̃ ⊆ HTO = HT HTC = HTC = O,

meaning that Q ⊆ O is compact. Moreover, P ⊆ V
−T

Bε/2(C) ⊆ U−T Bε(C) = Q.
Lastly, let (hi )i∈I be a well-spread family in H that is V -dense, i.e., H = ⋃

i∈I hi V ;
see, e.g., [25, Lemma 3.3] for the existence of such a sequence.

We next verify that Q := (h−T
i Q)i∈I has the properties (i)–(iii). For (i), note that

O ⊇
⋃
i∈I

h−T
i Q ⊇

⋃
i∈I

h−T
i P =

⋃
i∈I

h−T
i V−TC∗ =

(⋃
i∈I

hi V

)−T

C∗ ⊇ H−TC = O.

For properties (ii) and (iii), we consider the sets

Ii :=
{
j ∈ I : h−T

i Q ∩ h−T
j Q �= ∅

}
, i ∈ I .

An application of Lemma 3.7 yields R > 0 such that

sup
i∈I

#Ii ≤ R,
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which shows (ii).
Lastly, the fact that h−1

j hi ∈ ((Q, Q)) whenever j ∈ Ii (equivalently i ∈ I j ), with

((Q, Q)) ⊆ H being compact by Corollary 2.2, gives because of ‖(h−T
i )−1h−T

j ‖ =
‖hTi h−T

j ‖ = ‖h−1
j hi‖ that

sup
(i, j)∈I×I :h−T

i Q∩h−T
j Q �=∅

∥∥(
h−T
i

)−1
h−T
j

∥∥ < ∞.

This completes the proof. ��
A cover (h−T

i Q)i∈I of O as constructed in Lemma 3.8 will be referred to as an
induced cover. A notion that is of crucial importance in the remainder of the paper is
that of theweak equivalence of two such covers. This is the condition that will actually
be used to determine whether two scales of coorbit spaces are distinct. The following
definition is [51, Definition 3.3.1].

Definition 3.9 Two covers (Qi )i∈I and (Pj ) j∈J ofO are said to be weakly equivalent
if

sup
i∈I

#{ j ∈ J : Qi ∩ Pj �= ∅} + sup
j∈J

#{i ∈ I : Qi ∩ Pj �= ∅} < ∞. (3.4)

In the next subsection, a characterization of weak equivalence in terms of quasi-
isometries will be given.

3.5 Metrics Induced by Covers

Following [14], we define a metric on an open set O ⊆ R
d by means of a cover

Q = (Qi )i∈I of O.
A sequence of sets Qi1, ..., Qim ∈ Q is said to be a Q-chain (of length m) from

x ∈ G to y ∈ G if x ∈ Qi1 , y ∈ Qim and Qik ∩ Qik+1 �= ∅ for all k = 1, ...,m − 1.
We write Qm(x, y) for the set of all Q-chains of length m from x to y. The Q-chain
distance is the map dQ : O × O → N0 ∪ {∞} defined by

dQ(x, y) =
{
inf{m ∈ N : Qm(x, y) �= ∅}, if x �= y,

0, if x = y;

where we set inf ∅ = ∞. The map dQ defines a metric onO (with the exception that
it can attain the value ∞).

The significance of aQ-chain distance for our purposes is that it allows to charac-
terize the weak equivalence of two covers. The following result is [26, Theorem 3.22]
(see also [2, Proposition 2.7]) stated for the special covers considered in the present
paper.

Theorem 3.10 Let H1, H2 be integrably admissible dilation groups with associated
essential frequency supports O1 = O = O2. Let (hi )i∈I ⊆ H1 and (g j ) j∈J ⊆ H2 be
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well-spread, let Q, P ⊆ O be open, connected sets with compact closures Q, P ⊆ O,
and assume that the families Q = (h−T

i Q)i∈I and P = (g−T
j P) j∈J are covers of O.

Then the following statements are equivalent:

(i) The covers Q and P are weakly equivalent.
(ii) The map id : (O, dQ) → (O, dP ), ξ 
→ ξ is a quasi-isometry.

It will often be useful for us to work with a conveniently chosenP instead of a fixed
given cover Q. The following lemma shows that we can do this essentially without
loss of generality.

Lemma 3.11 Let Q, P ⊆ O be open, connected and bounded with Q, P ⊆ O and
let (hi )i∈I and (g j ) j∈J be well-spread in H. Define Q = (h−T

i Q)i∈I and P =
(g−T

j P) j∈J and assume that Q,P both cover O.
Then the identity map

id : (O, dQ) → (O, dP ), ξ 
→ ξ

is a quasi-isometry.

Proof By Theorem 3.10, it is enough to show that the coversQ,P are weakly equiv-
alent. To see this, note that Lemma 3.7 yields a constant R < ∞ such that for each
j ∈ J , we have

#
{
i ∈ I : h−T

i Q ∩ g−T
j P �= ∅

} ≤ #
{
i ∈ I : g−T

j P ∩ h−T
i Q �= ∅

}
= #Ig j (P, Q) ≤ R.

By symmetry, this easily shows that Q,P are weakly equivalent. ��

3.6 Orbit Maps

In this subsection, we will prove the main result of this section, namely the quasi-
isometry property of the full orbit p defined in Eq. (3.1). Throughout, we fix the
following notation:

Notation 3.12 Let H ≤ GL(d, R) be a connectivity-respecting dilation group with
essential frequency support O.

(A1) The set C ⊆ O is compact, connected such thatO = HTC , and W ⊆ H0 is a
nonempty, open, precompact, symmetric generating set for the stabilizer

H0 =
{
h ∈ H : hTO0 = O0

}

of the connected component O0 of O containing C .
(A2) The set Q ⊆ O is an open, bounded, connected set satisfying C ⊆ Q and

Q ⊆ O, and (hi )i∈I is a well-spread family in H for which Q = (h−T
i Q)i∈I

is an induced cover (cf. Lemma 3.8).
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(A3) The metric on H × C is

dH×C
(
(h, ξ), (g, η)

) := dW (h, g) + dC (ξ, η),

where dW is thewordmetric on H determined by the setW and dC is a bounded
metric on C (e.g., the usual Euclidean metric).

(A4) The metric on O is the cover-induced metric dQ associated to the cover Q.

Remark In (A1), the assumption that W ⊆ H0 is a generating set for the stabilizer
H0 of H differs slightly from the assumption in [26], where W is assumed to be
a unit neighborhood for the connected component of H . This subtle difference is
ultimately responsible for the fact that we can establish a quasi-isometry between
dilation group and the set O for our setting (see Corollary 3.17 below), whereas the
analogous statement in the setting of [26] requires an additional, somewhat artificial
assumption; see Corollary 4.9 therein.

We start with the following proposition, which is a crucial ingredient in establishing
one of the estimates in the definition of a quasi-isometry.

Proposition 3.13 If h1, h2 ∈ H are such that h−T
1 O0 ∩ h−T

2 O0 �= ∅, then h−1
2 h1 ∈

H0. In particular, we have Hξ := {h ∈ H : h−T ξ = ξ} ⊆ H0 for all ξ ∈ O0.

Proof Let h1, h2 ∈ H with h−T
1 O0 ∩ h−T

2 O0 �= ∅, which implies that

O0 ∩ hT1 h
−T
2 O0 = O0 ∩ (h−1

2 h1)
TO0

is nonempty. As noted in the discussion around Eq. (3.2), both O0 and (h−1
2 h1)TO0

are connected components of O. Hence, (h−1
2 h1)TO0 = O0, so that h

−1
2 h1 ∈ H0.

For the remaining part, note that if ξ ∈ O0 and h ∈ Hξ , then

ξ ∈ h−T {ξ} ∩ id−T {ξ} ⊆ h−TO0 ∩ id−TO0,

so that the first part shows h = id−1h ∈ H0. Since this holds for all h ∈ Hξ , it follows
that Hξ ⊆ H0, as required. ��

Using Proposition 3.13, we can now show the first of the two estimates that are
needed to prove that the full orbit map forms a quasi-isometry.

Theorem 3.14 With notation as in Notation 3.12, define

pξ : H → O, h 
→ h−T ξ,

for ξ ∈ O. Then there exists R ∈ N such that

dW (g, h) ≤ R · dQ
(
pξ (g), pη(h)

) + R (3.5)

for all g, h ∈ H and ξ, η ∈ Q.
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Proof As a preparation, we note that Q ⊆ Q ⊆ O0. Indeed, the set Q ⊆ O being con-
nected with C ⊆ Q, it follows that Q ⊆ O0, becauseO0 is the connected component
of O containing C . Since connected components are closed subsets of the ambient
space, it follows thatO0 is closed inO. Since Q ⊆ O (cf. Notation 3.12), this entails
Q ⊆ O0.

We define a suitable R ∈ N, and then show the estimate (3.5). By Corollary 2.2,
the set

((
Q, Q

)) = {
h ∈ H : hT Q ∩ Q �= ∅

}

is compact. Since H0 ⊆ H is closed by Lemma 3.2, it follows that also the set
((Q, Q)) ∩ H0 is compact. The set W being symmetric with H0 = 〈W 〉, we have
((Q, Q)) ∩ H0

⋃∞
m=1 W

m , and thus ((Q, Q)) ∩ H0 ⊆ WR for some R ∈ N, because
K ⊆ H0 is compact and W ⊆ H0 is open.

For showing the estimate (3.5), we fix ξ, η ∈ Q and g, h ∈ H , and distinguish
three cases:
Case 1 If dQ

(
pξ (g), pη(h)

) = ∞, then the desired estimate is trivial.
Case 2 If dQ

(
pξ (g), pη(h)

) = 0, then g−T ξ = pξ (g) = pη(h) = h−T η. Since
ξ, η ∈ Q ⊆ O0, it holds that ∅ �= g−T Q ∩ h−T Q ⊆ g−TO0 ∩ h−TO0. On the
one hand, by Proposition 3.13, this implies that g−1h ∈ H0. On the other hand, this
implies that

∅ �= Q ∩ hT g−T Q = Q ∩ (g−1h)T Q.

In combination, this shows that g−1h ∈ H0 ∩ ((Q, Q)) ⊆ WR , and therefore
dW (g, h) ≤ R, as desired.
Case 3 If 0 < dQ

(
pξ (g), pη(h)

)
< ∞, then we set m := dQ

(
pξ (g), pη(h)

) ∈ N.
By definition of theQ-chain distance dQ, there exist indices i1, . . . , im ∈ I satisfying
pξ (g) ∈ h−T

i1
Q and pη(h) ∈ h−T

im
Q, and

h−T
i j

Q ∩ h−T
i j+1

Q �= ∅

for 1 ≤ j ≤ m − 1.
First, note that since ξ, η ∈ Q, the properties pξ (g) ∈ h−T

i1
Q and pη(h) ∈ h−T

im
Q

imply that g−T Q ∩ h−T
i1

Q �= ∅ and h−T Q ∩ h−T
im

Q �= ∅, respectively. Likewise,

h−T
i j

Q∩h−T
i j+1

Q �= ∅ for 1 ≤ j ≤ m−1. Since Q ⊆ O0, an application of Proposition
3.13 therefore shows that

g−1hi1, h
−1
i j

hi j+1 , h
−1
im

h ∈ H0.

Second, note that, for x, y ∈ H , we have x−1y ∈ ((Q, Q)) if and only if x−T Q ∩
y−T Q �= ∅.

A combination of these observations shows that

g−1hi1, h
−1
i j

hi j+1 , h
−1
im

h ∈ ((Q, Q)) ∩ H0 ⊆ WR
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for all 1 ≤ j ≤ m − 1. Therefore,

dW (g, h) ≤ dW (g, hi1) +
m−1∑
j=1

dW (hi j , hi j+1) + dW (him , h)

≤ (m + 1)R

= R · dQ
(
pξ (g), pξ (h)

) + R,

which completes the proof. ��
The following theorem provides the converse estimate to Theorem 3.14.

Theorem 3.15 With notation as in Notation 3.12, define

pξ : H → O, h 
→ h−T ξ,

for ξ ∈ O. Then there exists R > 0 such that

dQ
(
pξ (g), pη(h)

) ≤ R · dW (g, h) + R (3.6)

for all g, h ∈ H and ξ, η ∈ Q.

Proof We split the proof into two steps.
Step 1 In this step, we show that there exists R > 0 such that

dQ
(
pξ (g), pη(h)

) ≤ R (3.7)

for all ξ, η ∈ Q and all g, h ∈ H with dW (g, h) ≤ 1. For this, we fix ξ, η ∈ Q and
g, h ∈ H with dW (g, h) ≤ 1, so that h ∈ gW .

As in the proof of Theorem 3.14, the set Q ⊆ O0 is compact. Since W ⊆ H is
compact with W ⊆ H0, and since H0 ⊆ H is closed (cf. Lemma 3.2), this implies
that

K1 := W
−T

Q ⊆ H−T
0 O0 ⊆ HT

0 O0 = O0

is compact. Thus, Lemma A.2 yields a connected compact set K2 ⊆ O0 satisfying
K1 ⊆ K2. Finally, set K3 := Q. Defining

Ig(K2, K3) := {
i ∈ I : g−T K2 ∩ h−T

i K3 �= ∅
}
,

an application of Lemma 3.7 yields a constant R > 0 (independent of g, h, ξ, η) such
that

#Ig(K2, K3) ≤ R.

For proving the claim (3.7), we will show that dQ(x, z) ≤ R for all x, z ∈
K := g−T K2. Note that this indeed yields (3.7) as pξ (g) = g−T ξ ∈ g−T W−T ξ ⊆
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g−T K1 ⊆ g−T K2 = K and, similarly, pη(h) ∈ K . Hence, dQ(pξ (g), pη(h)) ≤ R,
as claimed.

For showing that dQ(x, z) ≤ R for all x, z ∈ K , let x ∈ K be arbitrary and define
Cx to be the subset of K consisting of those z ∈ K for which there exists m ≤ R and
(Q(�))m�=1 ∈ Qm(x, z) with Q(�) ∩ K �= ∅ for 1 ≤ � ≤ m and such that the (Q(�))m�=1
are pairwise distinct. We will show that Cx = K , which then yields dQ(x, z) ≤ R for
all z ∈ K .

First, note that Cx is relatively open in K . Indeed, if z ∈ Cx , as established by a
suitable Q-chain (Q(�))m�=1, then z′ ∈ Cx for all z′ ∈ Q(m) ∩ K , and Q(m) is a set of
the form Q(m) = h−T Q, which is open since Q is.

Second, we show thatCx is also relatively closed in K . For this purpose, let z1 be an
element of the closure Cx of Cx in K . SinceQ = (Qi )i∈I is a cover ofO ⊇ K , there
is some i ∈ I with z1 ∈ Qi . The set K ∩Qi being a relatively open neighborhood of z1
in K , this implies the existence of some z ∈ (K ∩ Qi )∩Cx . Hence, there is aQ-chain
Q′

1, . . . , Q
′
m of lengthm ≤ R that connects x and z and such that Q′

� ∩ K �= ∅ for all
1 ≤ � ≤ m and such that the (Q′

�)
m
�=1 are pairwise distinct. We will now distinguish

two cases and show that in both cases we have z1 ∈ Cx , thereby showing that Cx is
relatively closed in K .
Case 1 Q′

j = Qi for some j ∈ {1, . . . ,m}. In this case, Q′
1, . . . , Q

′
j is a Q-chain of

length j ≤ R consisting of pairwise distinct sets that connects x and z1 and such that
Q′

t ∩ K �= ∅ for all 1 ≤ t ≤ j . Hence, z1 ∈ Cx .
Case 2 Q′

j �= Qi for all j ∈ {1, . . . ,m}. In this case, the sequence Q′
1, . . . , Q

′
m, Qi

is contained in Q = (h−T
i Q)i∈I and each of these sets has nonempty intersection

with K = g−T K2. By choice of R, this entails m + 1 ≤ R. Thus, the sequence
Q′

1, . . . , Q
′
m, Qi is a Q-chain of length at most R consisting of pairwise distinct sets

that all have nonempty intersection with K and connecting x and z1. Hence also in
this case, z1 ∈ Cx .

Since K is connected, the fact that Cx is both relatively closed and relatively open
in K (and nonempty, since x ∈ Cx ) implies that Cx = K , and hence completes Step
1.
Step 2Using Step 1, we now prove the general statement of the theorem. Let g, h ∈ H .
Note that the statement is immediate whenever dW (g, h) = ∞. Moreover, note that if
dW (g, h) = 0, then dW (g, h) ≤ 1 and hence Step 1 implies that dQ(pξ (g), pη(h)) ≤
R = R · dW (g, h) + R.

It remains to consider the case that dW (g, h) ∈ N. Define k := dW (g, h), and write
g−1h = �k

i=1wi for suitable wi ∈ W . Setting h0 := g and h j := g · �
j
i=1wi for

j = 1, . . . , k, it follows that dW (h j , h j+1) ≤ 1 for all 0 ≤ j < k. An application of
the triangle inequality for dQ therefore yields

dQ
(
pξ (g), pη(h)

) ≤ dQ(pξ (g), pξ (h)) + dQ(pξ (h), pη(h))

≤ R +
k−1∑
j=0

dQ
(
pξ (h j ), pξ (h j+1)

) ≤ R+kR=R · dW (g, h)+R,
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where the second inequality used inequality (3.7), observing that R is independent of
the choice of the pair (ξ, η). ��

We can now state and prove the main result of this section.

Theorem 3.16 With notation as in Notation 3.12, the full orbit map

p : (H × C, dH×C ) → (O, dQ), (h, ξ) 
→ h−T ξ,

is a surjective quasi-isometry.

Proof By Theorems 3.14 and 3.15, it follows that, for (h, ξ), (g, η) ∈ H × C ,

dH×C ((h, ξ), (g, η)) = dW (h, g) + dC (ξ, η)

� dW (h, g) + 1

� dQ(pξ (h), pη(g)) + 1

= dQ(p(h, ξ), p(g, η)) + 1,

where the second step used that dC is bounded. This implies that p satisfies Condi-
tion (q1).

Moreover, since p(H × C) = H−TC = HTC = O, the map p is surjective. This
easily implies that Condition (q2) is satisfied as well. ��

The following consequence of Theorem 3.16 is what actually will be used in most
of our applications.

Corollary 3.17 With notation as in Notation 3.12, the orbit map

pξ : (H , dW ) → (O, dQ), ξ 
→ h−T ξ,

is a quasi-isometry for each ξ ∈ O0.

Proof First, let ξ ∈ C and note that the inclusion map ι : H → H × C, h 
→ (h, ξ)

is a quasi-isometry. Since the full orbit map p : (H × C, dH×C ) → (O, dQ) is a
quasi-isometry by Theorem 3.16, it follows that pξ = p ◦ ι is a quasi-isometry as the
composition of quasi-isometries. Since ξ was arbitrary, this proves the claim for all
ξ ∈ C .

Second, let ξ ∈ O0. Using Lemma A.2, we can choose a compact, connected set
Cξ ⊆ O satisfying {ξ}∪C ⊆ Cξ . SinceO = HTC ⊆ HTCξ ⊆ HTO = O, it follows
that alsoO = HTCξ . Moreover, Cξ is also contained in the connected componentO0
ofO containing C , and as such the stabilizer subgroup of its connected component is
compactly generated. This shows that Cξ satisfies condition (A1) of Notation 3.12. In
addition, using Lemma 3.8, there exists an open, bounded, connected set Qξ satisfying
C ⊆ Cξ ⊆ Qξ and Qξ ⊆ O together with a well-spread family (g j ) j∈J in H such
that Q′ = (g j Qξ ) j∈J is an induced cover of O. This shows that Cξ also satisfies the
remaining conditions of Notation 3.12. Hence, by the previous paragraph, it follows
that pξ : (H , dW ) → (O, dQ′) is a quasi-isometry. Since the identity between (O, dQ)

and (O, dQ′) forms a quasi-isometry by Lemma 3.11, this implies the claim for all
ξ ∈ O0. ��
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4 Coorbit Spaces Associated to Different Dilation Groups

This section exploits the coarse geometric results obtained in the previous sections to
compare coorbit spaces associated with different dilation groups.We start by recalling
the central notions on wavelet coorbit spaces.

4.1 Wavelet Transforms

Let H ≤ GL(d, R) be a closed subgroup with Haar measureμH andmodular function
�H . The semidirect product group G = R

d
� H is the set R

d × H equipped with
the group law (x1, h1)(x2, h2) = (x1 + h1x2, h1h2). A direct verification shows that
a left Haar measure μG on G is given by dμG(x, h) = | det h|−1dxdμH (h), and that
the modular function �G on G is given by �G(x, h) = | det h|−1�H (h).

The quasi-regular representation of G on L2(Rd) is given by

[π(x, h) f ](t) = | det h|− 1
2 f (h−1(t − x)), t ∈ R

d .

For a nonzero ψ ∈ L2(Rd), its associated wavelet transform is the map Wψ :
L2(Rd) → L∞(G) defined by

Wψ f (x, h) = 〈 f , π(x, h)ψ〉, (x, h) ∈ R
d × H ,

for f ∈ L2(Rd). A functionψ ∈ L2(Rd) is said to be admissible ifWψ is an isometry
from L2(Rd) into L2(G). Equivalently, a function ψ ∈ L2(Rd) is admissible if and
only if its Fourier transform ψ̂ satisfies

∫
H

∣∣ψ̂(
hT ξ

)∣∣2 dμH (h) = 1

for a.e. ξ ∈ R
d ; see, e.g., [27, Theorem 1] and [38, Theorem 1.1].

The significance of integrably admissible dilation groups for wavelet and coorbit
theory is that they guarantee the existence of admissible vectors with convenient addi-
tional properties. The following result is [11, Proposition 2.7] (see also [30, Theorem
2.10]).

Proposition 4.1 [11] Let H ≤ GL(d, R) be integrably admissible with frequency
supportO. Then there exists an admissible vectorψ ∈ L2(Rd)with Fourier transform
ψ̂ ∈ C∞

c (O).

4.2 Coorbit Spaces

For defining wavelet coorbit spaces defined by integrably admissible dilation groups,
we follow the concrete approach in [30]; see also [50] for an abstract approach for
general (possibly reducible) integrable group representations.

Let H ≤ GL(d, R) be integrably admissible with essential frequency sup-
port O. Denoting by F−1 the inverse Fourier transform, define the space SO :=
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F−1(C∞
c (O)), and equip it with the topology making F−1 : C∞

c (O) → SO into a
homeomorphism,with respect to the usual topology onC∞

c (O). The anti-dual space of
SO, that is, the space of all conjugate-linear continuous functionals on SO, is denoted
by S∗

O, and equipped with the weak∗-topology. We write 〈·, ·〉 for the sesquilinear
pairing between S∗

O and SO, that is, 〈 f , ϕ〉 := f (ϕ) for f ∈ S∗
O and ϕ ∈ SO. To be

consistent with [30], we define the Fourier transform f̂ of f ∈ S∗
O as

f̂ (ϕ) := 〈
f , ϕ̂

〉
for ϕ ∈ C∞

c (O).

Note that f̂ forms a continuous linear functional on C∞
c (O) as F ϕ̂ = FF−1ϕ =

ϕ ∈ C∞
c (O), and thus ϕ̂ ∈ SO for ϕ ∈ C∞

c (O).
To define the coorbit spaces, fix an admissible vector ψ ∈ SO (see Proposition

4.1). Then also π(x, h)ψ ∈ SO for (x, h) ∈ R
d

� H (see [30, Lemma 2.9]). As such,
we can define the (extended) wavelet transform of f ∈ S∗

O as Wψ f = 〈 f , π(·)ψ〉.
We note that Wψ f : R

d
� H → C is (Borel) measurable.

For p, q ∈ [1,∞], we define the coorbit space Co(L p,q(G)) as the space of all
f ∈ S∗

O satisfying

‖ f ‖Co(L p,q (G)) := ‖Wψ f ‖L p,q (G) :=
(∫

H

∥∥Wψ f (·, h)
∥∥q
L p

dμH (h)

| det h|
)1/q

< ∞

for p ∈ [1,∞], q ∈ [1,∞), and

‖ f ‖Co(L p,∞(G)) := ‖Wψ f ‖L p,∞(G) := ess sup
h∈H

‖Wψ f (·, h)
∥∥
L p .

The spaces Co(L p,q(G)) are Banach spaces that are independent of the chosen admis-
sible defining vector ψ ∈ SO, cf. [30, Proposition 3.3]. For p = q = 2, we have
Co(L p,q(G)) = L2(Rd), up to canonical identifications, which can be deduced from
a combination of [30, Proposition 2.19] and [50, Lemma 4.13]. In particular, by using
[50, Theorem 7.4], this implies that

Co(L p,q(G)) = {
f ∈ L2(Rd) : ‖Wψ f ‖L p,q (G) < ∞}

, (4.1)

up to canonical identifications, for 1 ≤ p, q ≤ 2. See [26, Remark 2.11] for further
details.

The coorbit space Co(L p,q(G)) can alternatively be described by a Besov-type
norm. To bemore explicit, by [30, Theorem 5.5], the coorbit space norm ‖·‖Co(L p,q (G))

is equivalent to the Besov-type norm

‖ f ‖D(Q,L p,�
q
u ) :=

∥∥∥∥
(
ui · ∥∥F−1(ϕi · f̂

)∥∥
L p

)
i∈I

∥∥∥∥
�q

for f ∈ S∗
O,

where Q = (h−T
i Q)i∈I is an induced cover of O, (ϕi )i∈I is an adequate associated

partition of unity, and ui = | det(hi )|
1
2− 1

p for i ∈ I .
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4.3 Equivalence of Dilation Groups

The following definition is the central notion for the comparison of coorbit spaces.
This definition is a natural extension of [26, Definition 2.16].

Definition 4.2 Let H1, H2 ≤ GL(d, R) denote integrably admissible matrix groups.
We call H1, H2 coorbit equivalent if, for all 1 ≤ p, q ≤ ∞ and for all f ∈ L2(Rd),
the norm equivalence

‖ f ‖Co(L p,q (Rd�H1))
� ‖ f ‖Co(L p,q (Rd�H2))

holds. Here the norm equivalence is understood in the generalized sense that one side
is infinite if and only if the other side is.

We then immediately get the following analog of results from [26, Theorem 2.18].
Note that the condition O1 = O2 emphasizes the importance of Theorem 2.7, stating
that there is at most one essential frequency support for a given dilation group.

Theorem 4.3 Let H1, H2 ≤ GL(d, R) denote integrably admissible matrix groups,
and letO1,O2 denote the associated essential frequency supports. Then the following
are equivalent:

(i) H1 and H2 are coorbit equivalent in the sense of Definition 4.2.
(ii) Co(L p,q(Rd

� H1)) = Co(L p,q(Rd
� H2)) as subspaces of L2(Rd), for all

1 ≤ p, q ≤ 2;
(iii) Co(L p,q(Rd

� H1)) = Co(L p,q(Rd
� H2)) as subspaces of L2(Rd), for some

1 ≤ p, q ≤ 2 with (p, q) �= (2, 2);
(iv) O1 = O2, and the covers induced by H1 and H2 on the common essential frequency

support are weakly equivalent.

Proof The proof is essentially the same as that of [26, Theorem 2.18], and hence we
only sketch it and provide the relevant references for integrably admissible dilation
groups.

The fact that (i) implies (ii) follows directly by the identification in Eq. (4.1). That
(ii) implies (iii) is trivial.

Assume assertion (iii) holds. Then, by [30, Theorem 5.5], also the Besov-type
decomposition spaces D(Q, L p, �

q
u) and D(P, L p, �

q
u′) associated to the two covers

Q = (h−T
i Q)i∈I and P = (g−T

j P) j∈J induced by, respectively, H1 and H2, and

with weights ui = | det(hi )|
1
2− 1

p and u′
j = | det(g j )|

1
2− 1

p , coincide. In particular, this
implies that the two norms associated to the decomposition spaces are equivalent on
C∞
c (O1 ∩ O2).
Since O1,O2 are both of full measure and hence dense in R

d , it follows that also
O1 ∩O2 ⊆ R

d is dense, and hence unbounded. Now, if the conditionO1 ∩ ∂O2 �= ∅

or the condition O2 ∩ ∂O1 �= ∅ was satisfied, then, since we know from above that
the norms on the two decomposition spaces from above are equivalent, [51, Theorem
6.9 1

2 ] would imply p = q = 2 and thus provide a contradiction. Hence, we get that
O1 ∩ ∂O2 = ∅ andO2 ∩ ∂O1 = ∅. Note that ∂Oi = R

d\Oi , sinceOi ⊆ R
d is open
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and dense. Therefore, we conclude thatO1 ⊆ O2 andO2 ⊆ O1 and henceO1 = O2,
as claimed. The fact that the covers Q and P are weakly equivalent follows from
[51, Theorem 6.9] since D(Q, L p, �

q
u) = D(P, L p, �

q
u′) for some (p, q) �= (2, 2). In

combination, this shows that (iv) holds.
Lastly, assume that O1 = O2 and that the covers Q = (h−T

i Q)i∈I and P =
(g−T

j P) j∈J induced by, respectively, H1 and H2 are weakly equivalent. Then an

application of [26, Lemma 2.8] implies that | det(hi )|−1 � | det(g j )|−1 for all i ∈ I
and j ∈ J satisfying h−T

i Q ∩ g−T
j P �= ∅. In turn, this implies that the weights

ui := | det(hi )|
1
2− 1

p and u′
j := | det(g j )|

1
2− 1

p satisfy ui � u′
j for all i ∈ I and j ∈ J

satisfying h−T
i Q ∩ g−T

j P �= ∅. Together with the fact that Q and P are weakly
equivalent, this shows that the hypotheses of [51, Lemma 6.11] are satisfied, which
then implies that D(Q, L p, �

q
u) = D(P, L p, �

q
u′) for all 1 ≤ p, q ≤ ∞. Hence, by

[30, Theorem 5.5], it follows that ‖ · ‖Co(L p,q (Rd�H1))
� ‖ · ‖Co(L p,q (Rd�H2))

. ��
We can now formulate our general criterion for coorbit equivalence of dilation

groups. The next theorem is the main result of this section.

Theorem 4.4 Let H1, H2 ≤ GL(d, R) be connectivity-respecting dilation groups with
essential frequency supports O1 = HT

1 C1 and O2 = HT
2 C2. With notation as in

Notation 3.12, let

p(1) : (H1 × C1, dH1×C1) → (O1, dQ), (h, ξ) 
→ h−T ξ

and

p(2) : (H2 × C2, dH2×C2) → (O2, dP ), (g, η) 
→ g−T η,

be full orbit maps and let p(2)∗ : O2 → H2 × C2 be a right inverse for p(2).
Then the following assertions are equivalent:

(i) H1 and H2 are coorbit equivalent;
(ii) O := O1 = O2, and the map

p(2)∗ ◦ p(1) : (H1 × C1, dH1×C1) → (H2 × C2, dH2×C2)

is a quasi-isometry.

Proof Suppose that (i) holds. Since H1 and H2 are coorbit equivalent, an application
of Theorem 4.3 shows that we have O1 = O2 =: O and that the covers Q associated
to H1 and P associated to H2 (chosen as in Notation 3.12) are weakly equivalent.
Therefore, Theorem 3.10 shows that the identity map idO : (O, dQ) → (O, dP ) is
a quasi-isometry. Next, Theorem 3.16 shows that the full orbit maps p(1) and p(2)

from the statement of the current theorem are quasi-isometries. Since p(2)∗ is a right
inverse to p(2), it is easy to see that it is also a quasi-inverse (see Sect. 3.1), and thus
Lemma 3.1 shows that p(2)∗ : (O, dP ) → (H2 × C2, dH2×C2) is a quasi-isometry as
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well. Since compositions of quasi-isometries are again quasi-isometries, this finally
implies that

p(2)∗ ◦ p(1) = p(2)∗ ◦ idO ◦ p(1)

is a quasi-isometry, as required.
Conversely, suppose that (ii) holds. Theorem3.16 shows that the full orbitmaps p(1)

and p(2) from the statement of the current theorem are quasi-isometries. Since p(2)∗ is
a right inverse to p(2), it is easy to see that it is also a quasi-inverse (see Sect. 3.1), and
thus Lemma 3.1 shows that p(2)∗ : (O, dP ) → (H2×C2, dH2 ×C2) is a quasi-isometry
as well.

Similarly, letting p(1)∗ : O → H1 ×C1 be any right inverse to p(1), we also see that
p(1)∗ : (O, dQ) → (H1 × C1, dH1×C1) is a quasi-isometry.

Since compositions of quasi-isometries are again quasi-isometries, we thus see that
the identity map idO : (O, dQ) → (O, dP ) is a quasi-isometry, since

idO = p(2) ◦ (p(2)∗ ◦ p(1)) ◦ p(1)∗ .

Hence, Theorem 3.10 shows that the coversQ,P are weakly equivalent, so that The-
orem 4.3 implies that H1 and H2 are coorbit equivalent. ��

The following necessary condition of coorbit equivalence is what actually will be
used in most of our applications. Its proof is similar to the first part of the proof of
Theorem 4.4 (using Corollary 3.17 instead of Theorem 3.16), and hence we skip it.

Corollary 4.5 Let H1, H2 ≤ GL(d, R) be connectivity-respecting with essential fre-
quency supportsO1 = HT

1 C1 andO2 = HT
2 C2 for compact, connected sets C1 ⊆ O1

and C2 ⊆ O2. Let (O1)0 and (O2)0 be the connected components containing C1 and
C2, respectively.

With notation as in Notation 3.12, if H1 and H2 are coorbit equivalent, then O :=
O1 = O2 and, for each ξ ∈ (O1)0 and η ∈ (O2)0, the transition map

(pH2
η )∗ ◦ pH1

ξ : (H1, dW1) → (H2, dW2)

is a quasi-isometry, where (pH2
η )∗ is a quasi-inverse for pH2

η : (H2, dW2) → (O, dP ).

The necessary condition for coorbit equivalent dilation groups provided by
Corollary 4.5 resembles the characterization of coorbit equivalence for irreducibly
admissible dilation groups proven in [26]. More precisely, [26, Theorem 4.17] shows
that coorbit equivalence of irreducibly admissible dilation groups can be character-
ized through the quasi-isometry property of a single transition map. For reducible
dilation groups, the quasi-isometry property of a single transition map does, however,
not characterize coorbit equivalence; see Example 5.3 below.
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4.4 Equivalence of Subgroups

In this subsection, we apply the results from the previous subsection to study the
coorbit equivalence of matrix groups H1 ⊆ H2. We start with the following statement,
which is contained in [30, Lemma 6.4].

Lemma 4.6 Let H1 ≤ H2 be two closed matrix groups such that H2/H1 is compact.
Assume that H2 is integrably admissible with essential frequency supportO. Then H1
is integrably admissible with frequency support O, and coorbit equivalent to H2.

A converse can now be provided via Corollary 4.5, resulting in the following char-
acterization:

Corollary 4.7 Let H1 ≤ H2 ≤ GL(d, R) denote two connectivity-respecting inte-
grably admissible dilation groups and such that H1 ⊆ H2. Then H1 and H2 are
coorbit equivalent if and only if H2/H1 is compact.

Proof The “if”-direction holds by Lemma 4.6. For the converse, we assume that H1 ⊆
H2 are coorbit equivalent. Then, we get that O1 = O2 =: O by Corollary 4.5, where
O1 = HT

1 C1 andO2 = HT
2 C2 denote the essential frequency supports of H1 and H2,

respectively. Since H1 ⊆ H2, we have O = HT
1 C1 ⊆ HT

2 C1 ⊆ HT
2 O = O, so we

may fix a single compact, connected set C ⊆ O such that O = HT
1 C = HT

2 C . By
Lemma 3.4, the stabilizer subgroups (H1)0 and (H2)0 of the connected component
O0 of O containing C is compactly generated. For i = 1, 2, fix word metrics dWi on
Hi with Wi ⊆ Hi fulfilling the conditions of Notation 3.12.

Fix any ξ ∈ C and let pHi
ξ : Hi → O denote the orbit map, for i = 1, 2. By

Corollary 3.17, pH1
ξ : (H1, dW1) → (O, dQ) is a quasi-isometry, and similarly for

pH2
ξ . Let

(
pH2
ξ

)
∗ : O → H2 denote a quasi-inverse of pH2

ξ . By Corollary 4.5, the

map
(
pH2
ξ

)
∗ ◦ pH1

ξ : (H1, dW1) → (H2, dW2) is a quasi-isometry. Condition (q2) of

the quasi-isometry property provides a finite constant R1 > 0 such that

sup
h2∈H2

inf
h1∈H1

dW2

((
pH2
ξ

)
∗ ◦ pH1

ξ (h1), h2
)

≤ R1. (4.2)

Combining the definition of the orbit maps with the inclusion H1 ⊆ H2, one obtains
that

(
pH2
ξ

)
∗ ◦ pH1

ξ (h1) =
(
pH2
ξ

)
∗ (h−T

1 ξ) =
(
pH2
ξ

)
∗ ◦ pH2

ξ (h1), h1 ∈ H1.

This observation yields via Lemma 3.1(ii) that

sup
h1∈H1

dW2

(
h1,

(
pH2
ξ

)
∗ ◦ pH1

ξ (h1)
)

≤ R2 (4.3)

for a suitable finite constant R2 > 0.
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Note that Eq. (4.3) implies for arbitrary h1 ∈ H1 and h2 ∈ H2 that

dW2(h1, h2) ≤ dW2

(
h1,

(
pH2
ξ

)
∗ ◦ pH1

ξ (h1)
) + dW2

((
pH2
ξ

)
∗ ◦ pH1

ξ (h1), h2
)

≤ K2 + dW2

((
pH2
ξ

)
∗ ◦ pH1

ξ (h1), h2
)
.

Taking the infimum over h1 ∈ H1 on both sides, Eq. (4.2) then implies

inf
h1∈H1

dW2(h1, h2) ≤ K2 + inf
h1∈H1

dW2

((
pH2
ξ

)∗ ◦ pH1
ξ (h1), h2

) ≤ R1 + R2

for arbitrary h2 ∈ H2. In other words, we have shown

sup
h2∈H2

inf
h1∈H1

dW2(h1, h2) ≤ R1 + R2.

Hence, if B ⊆ H2 denotes the dW2 -ball with radius R1+R2, then for arbitrary h2 ∈ H2

there exists h1 ∈ H1 such that b := h−1
1 h−1

2 ∈ B and thus h2 = b−1h−1
1 , whence

h2H1 = b−1H1. This shows that

H2/H1 = {b−1H1 : b ∈ B},

which is compact, since B ⊆ H2 is compact. ��

4.5 Equivalence of Conjugate Subgroups

As an application of Theorem 4.4, we show that the property of coorbit equivalence
is preserved under conjugation. We remark that this could in principle also be proven
directly from the definition, but the proof gets quite tedious.

Corollary 4.8 For a closed subgroup H ≤ GL(d, R) and A ∈ GL(d, R), the following
assertions hold:

(i) If H is integrably admissible, then so is A−1H A. If O is the essential frequency
support of H, then O′ := ATO is the essential frequency support of A−1H A.

(ii) If H is connectivity-respecting, then so is A−1H A.
(iii) If H1, H2 ≤ GL(d, R) are such that H1, H2 are integrably admissible,

connectivity-respecting, and coorbit equivalent, then the same holds for A−1H1A
and A−1H2A.

Proof Throughout the proof, we simply write H ′ = A−1H A.
(i) Let H be integrably admissible with essential frequency support O ⊆ R

d , say
O = HTC with C ⊆ O compact. Then, note for C ′ := ATC that O′ := ATO ⊆ R

d

is open and of full measure, and

(H ′)TC ′ = AT HT A−T ATC = AT HTC = ATO = O′.
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Lastly, if K ′ ⊆ O′ is a compact set, then also K := A−T K ′ ⊆ O is compact, and,
moreover,

[K ′] = {
(h′, ξ ′) ∈ H ′ × O′ : ((h′)−T ξ ′, ξ ′) ∈ K ′ × K ′}

= {
(A−1hA, AT ξ) : (h, ξ) ∈ H × O and (hT ξ, ξ) ∈ K × K

}
⊆ H ′ × O′

is compact. In combination, this shows that H ′ is integrably admissible.
(ii) Let H be connectivity-respecting. Then there exists a compact, connected set
C ⊆ O with O = HTC and such that H0 := {h ∈ H : hTO0 = O0} is compactly
generated, where O0 ⊆ O is the connected component of O containing C . Let C ′ :=
ATC and O′ := ATO. Then C ′ ⊆ O′ is compact and connected, and, similarly as
in the proof of part (i), it follows that (H ′)TC ′ = O′. Moreover, O′

0 := ATO0 is
the connected component of O′ containing C ′, and we see that H ′

0 = A−1H0A is
compactly generated, since H0 is. Hence, H ′ is connectivity-respecting.
(iii) With notation as in Theorem 4.4, we see that O1 = O2 =: O, and with

p1 : H1 × C1 → O, (h, ξ) 
→ h−T ξ and p2 : H2 × C2 → O, (h, ξ) 
→ h−T ξ

that p∗
2 ◦ p1 : (H1 × C1, dH1×C1) → (H2 × C2, dH2×C2) is a quasi-isometry, where

p∗
2 is a right-inverse for p2. Set H ′

i := A−1Hi A and C ′
i := ATCi , as well as O′

i :=
ATOi and W ′

i := A−1Wi A for i = 1, 2. Then O′
1 =O′

2 = ATO, and dW ′
i
(g′, h′) =

dWi (Ag
′A−1, Ah′A−1) for g′, h′ ∈ H ′

i , so that the maps

τi : Hi × Ci → H ′
i × C ′

i , (h, ξ) 
→ (A−1hA, AT ξ)

are bijective (quasi)-isometries for i = 1, 2.
Finally, for the orbit maps p′

1 : H ′
1 ×C ′

1 → O′ and p′
2 : H ′

2 ×C ′
2 → O′, it is easy

to see that the map (p′
2)

∗ : O′ → H ′
2 × C ′

2, η 
→ τi (p∗
2(A

−T η)) is a right-inverse to
p′
2. Moreover,

((p′
2)

∗ ◦ p′
1)(h

′, ξ ′) = (τ2 ◦ p∗
2)(A

−T (h′)−T ξ ′)
= (τ2 ◦ p∗

2 ◦ p1)(Ah
′A−1, A−T ξ ′)

= [τ2 ◦ (p∗
2 ◦ p1) ◦ τ−1

1 ](h′, ξ ′),

so that (p′
2)

∗ ◦ p′
1 = τ2 ◦ (p∗

2 ◦ p1) ◦ τ−1
1 is a quasi-isometry as a composition of

quasi-isometries. Hence, Theorem 4.4 shows that H ′
1 and H ′

2 are coorbit equivalent.��
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5 Anisotropic Besov Spaces and One-Parameter Groups

In this section, the results from the previous sections will be used to investigate the
relation between coorbit spaces associated to one-parameter dilation groups andBesov
spaces associated to (possibly anisotropic) matrix dilations introduced in [3].

Let A ∈ GL(d, R) be an expansive matrix, i.e., all eigenvalues are strictly greater
than one in modulus. Following [3], for p, q ∈ [1,∞] and α ∈ R, the associated
anisotropic Besov space Ḃα

p,q(A) is defined as the space

Ḃα
p,q(A) =

{
f ∈ S ′(Rd)/P : ∥∥(| det A|α j‖ f ∗ ϕ j‖L p

)
j∈Z

∥∥
�q

< ∞
}
, (5.1)

where ϕ j := | det A| jϕ(A j ·) for some suitable ϕ ∈ S(Rd) and where P denotes
the space of all (d-variate) polynomials; see [3] for further details. The coorbit space
Co(L p,q(Rd

� 〈A〉)) associated with the cyclic group 〈A〉 := {A j : j ∈ Z} can be
identified with an anisotropic Besov space Ḃα

p,q(A) for some α = α(p, q) ∈ R, see,
e.g., [30, Example 6.2].

We start out by characterizing the matrix groups whose coorbit spaces coincide
with the isotropic Besov spaces [20], that is, the Besov spaces Ḃα

p,q(A) associated to
A = 2 · Id . It was already observed in [32, 33] that these spaces can be understood as
coorbit spaces associated to the (irreducibly admissible) group R

+ · SO(d), or to the
(integrably admissible) one-parameter group R

+ · Id . The following theorem extends
this observation by characterizing all potential candidates.

Theorem 5.1 Let H ≤ GL(d, R) be integrably admissible.

(i) Suppose that H = exp(RX) for some X ∈ R
d×d . Then H = exp(RX) is coorbit

equivalent to R
+ · Id if and only if X = s · Id + Y , with s �= 0 and such that

exp(RY ) is relatively compact in GL(d, R).
(ii) Suppose that H is connected. Then H is coorbit equivalent to R

+ · Id if and only
if H is conjugate to a noncompact closed subgroup of R

+ · SO(d).

Proof The claim is trivial for d = 1, so that we can (and will) assume d > 1 for what
follows.

For the proof of part (i), assume that H = exp(RX). By [30, Proposition 6.3],
the group H = exp(RX) is integrably admissible if and only if all real parts of
eigenvalues of X are either strictly positive or strictly negative. In either case, we
find that s := trace(X)

d �= 0, and after replacing X by a nonzero scalar multiple, we
may assume s = 1. By Example 3.5, the group H is connectivity-respecting, since
H = exp(RX) is connected and since [30, Proposition 6.3] shows that the essential
frequency support is O = R

d\{0}, which is connected, since d > 1.
Define Y := X − s · Id , so that in particular trace(Y ) = 0. In addition, let A :=

exp(X) and B := e · Id . Then, by Lemma 4.6, the one-parameter group exp(RX)

is coorbit equivalent to the cyclic group 〈A〉 generated by A, and R
+ · Id is coorbit

equivalent to the cyclic group 〈B〉 generated by B. Note that Lemma 4.6 also implies
that 〈A〉 and 〈B〉 are integrably admissible. The coorbit spaces associated to these cyclic
groups can be canonically identified with homogeneous Besov spaces Ḃα

p,q(A) and
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Ḃα
p,q(B)with α = 1

2 − 1
q ; see, e.g., [30, Example 6.2]. By our choice of normalizations

and since det(exp(M)) = etrace(M), we see

ε := ε(A, B) := ln(| det(A)|)
ln(| det(B)|) = s = 1,

and thus it follows from [7, Corollary 6.5, Definition 4.5, Remark 4.9, and Lemma
4.8] that the equality Ḃα

p,q(A) = Ḃα
p,q(B) holds if and only if

sup
k∈Z

‖A−k B�εk�‖ < ∞.

Since A−k B�εk� = exp(−kY ) for k ∈ Z, the latter condition is equivalent to the cyclic
group 〈exp(Y )〉 having compact closure in GL(d, R). Since 〈exp(Y )〉 = exp(ZY )

is cocompact in expRY , relative compactness of 〈exp(Y )〉 is equivalent to relative
compactness of expRY in GL(d, R), which completes the proof of assertion (i).

For the proof of assertion (ii), assumefirst that H is connected and coorbit equivalent
to the one-parameter group R

+ · Id . Then, by Corollary 4.5, the group H is quasi-
isometric to R. Proposition C.4 entails therefore the existence of a cocompact closed
noncompact one-parameter group exp(RX) ⊆ H . Lemma4.6 yields that this subgroup
is coorbit equivalent to H , and hence toR

+· Id . Assertion (i) entails that (possibly after
renormalization) X = Id+Y and that exp(RY ) is relatively compact inGL(d, R). This
implies in particular that the set {det(exp(tY )) : t ∈ R} = {exp(trace(tY )) : t ∈ R} is
relatively compact in R \ {0}, and thus trace Y = 0.

We next show that H can be written as the semidirect product H = K � exp(X),
where K is the closed normal subgroup K := {h ∈ H : det(h) = 1}. Moreover, we
show that K is compact and connected. For this, first note that since H is connected,
det(h) > 0 for all h ∈ H . By normalization of X , for any h ∈ H we have

det(exp(sX)) = exp(trace(sX)) = det(h), with s = ln(det(h))

d
. (5.2)

This shows that k := exp(−sX)h ∈ K , and we obtain the unique factorization

h = exp(sX)k, k ∈ K , (5.3)

and hence H = K � exp(RX).
For the compactness of K , let (kn)n∈N be a sequence in K . Since H/ exp(RX) is

compact, it follows from [18, Lemma (2.46)] that there exists a compact set C ⊆ H
such that H = C exp(RX). By compactness, we have 0 < α ≤ det(c) ≤ β < ∞ for
all c ∈ C and suitable α, β. We can hence write kn = cn exp(tn X) for suitable cn ∈ C
and tn ∈ R. Note that

1 = det(kn) = det(cn) det(exp(tn X)) = det(cn) exp(trace(tn X)),
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and thus 1
β

≤ exp(tnd) ≤ 1
α
. Therefore, (tn)n∈N is bounded, so that for a subsequence

tn�
→ t ∈ R and cn�

→ c ∈ C . In turn, this implies kn�
= cn�

exp(tn�
X) →

c exp(t X) =: k, with k ∈ K , since K ⊆ H is closed. Thus, K is a compact subgroup.
To show that K is connected, we note that the map H → K , h 
→ k explicitly

determined in (5.2) and (5.3) is clearly continuous, and equals the identity on K . In
particular this map is onto, and hence K is the continuous image of the connected
group H , and therefore itself connected.

Since H = K � exp(RX), it follows, in particular, that exp(RX) normalizes K ,
that is, exp(t X)K exp(−t X) ⊆ K for all t ∈ R. Now, since Y = X − Id and since
X and Id commute, we have exp(tY ) = exp(t · (X − Id)) = exp(t X) exp(−t Id) =
e−t exp(t X) = exp(t X)e−t for all t ∈ R. In view of this identity, it follows that
also exp(RY ) normalizes K , and the same then holds for the closure exp(RY ) of
exp(RY ) in GL(d, R). In combination with the fact that K is compact and connected,
it follows that exp(RY ) · K ≤ GL(d, R) is a compact connected subgroup. Since
any compact subgroup of GL(d, R) is conjugate to a subgroup of O(d) (see, e.g.,
[1, Proposition 6.3.6]) it follows that exp(RY ) · K is conjugate to a subgroup of
O(d), and (by connectedness) even to a subgroup of SO(d). In turn, using again that
exp(t X) = et exp(tY ), this implies that H = K �exp(RX) is conjugate to a subgroup
of R

+ · SO(d), and it is clearly noncompact.
For the converse implication, note first that it suffices to show that a connected closed

noncompact subgroup H of R
+ ·SO(d) is coorbit equivalent to R

+ · Id , because then,
by Corollary 4.8, also any conjugate A−1H A is coorbit equivalent to A−1(R+· Id)A =
R

+ · Id for A ∈ GL(d, R). Hence, let H be a connected closed noncompact subgroup
H of R

+ · SO(d). Note that the group R
+ · SO(d) is isomorphic to R

+ × SO(d)

via the map (r , h) 
→ rh, and hence it follows by elementary Lie theory that the
Lie group of R

+ · SO(d) is the sum of span{Id} and the Lie algebra so(d) of SO(d).
Since H is not contained in SO(d) and since it is generated by the image of the
exponential map (because H is connected), this image must contain a one-parameter
group exp(RX) ⊆ H which is not contained in SO(d). We may then normalize the
infinitesimal generator to obtain X = Id +Y , where Y ∈ so(d). As in the proof of the
converse direction, for every h ∈ H , we have

h = exp(sX)k, k ∈ K

where s is given by (5.2), and

K = {h ∈ H : det(h) = 1} .

The assumptions on H then entail that K is a closed subgroup of SO(d), in particular
compact. This establishes that exp(RX) ⊆ H is cocompact, so that Lemma 4.6 shows
that H and exp(RX) are coorbit equivalent. Coorbit equivalence toR

+· Id then follows
by part (i). ��

The next theorem clarifies the coorbit equivalence of two somewhat extreme sub-
classes of dilation groups: Irreducibly admissible dilation groups on the one hand, and
one-parameter subgroups on the other. In particular, it implies that the use of reducibly



Journal of Fourier Analysis and Applications (2024) 30 :74 Page 33 of 43 74

acting dilation groups is essential for treating the full scale of anisotropic Besov spaces
within the setting of coorbit spaces. The uniqueness of the essential frequency support,
noted in Theorem 2.7, is an essential ingredient of the following proof.

Theorem 5.2 Let H1 ≤ GL(d, R) be a one-parameter integrably admissible dilation
group, and let H2 ≤ GL(d, R) be an irreducibly admissible dilation group (see
Example 2.3). If H1 and H2 are coorbit equivalent, then H1 is coorbit equivalent
to R

+ · Id .

Proof Let Y ∈ R
d×d denote the infinitesimal generator of H1, i.e., H1 = exp(RY ). By

[30, Proposition 6.3], the group H1 = exp(RY ) is integrably admissible if and only
if all real parts of eigenvalues of Y are either strictly positive or strictly negative. We
may therefore assume that they all have positive real part, which yields that the matrix
A := exp(Y ) is expansive, in the sense that all its eigenvalues are strictly greater than
one in modulus.

By Lemma 4.6, H1 = exp(RY ) is coorbit equivalent to the cocompact cyclic
subgroup 〈A〉 = exp(ZY ), and the latter is integrably admissible. For proving the
claim, it suffices therefore to show that 〈A〉 is coorbit equivalent to R

+ · Id . For this,
recall that the coorbit spaces Co(L1,1(Rd

� 〈A〉)) associated to 〈A〉 can be identified
with anisotropic Besov spaces Ḃα

1,1(A) for a suitable α ∈ R; see, e.g., [30, Example
6.2]. Define the matrix group

SH1 :=
{
C ∈ GL(d, R) : Ḃα

1,1(C
−1AC) = Ḃα

1,1(A)
}

.

Using [7, Lemmata 7.7 and 7.8] (see also [7, Remark 7.11]), there exists an expan-
sive matrix B such that Ḃβ

p,q(A) = Ḃβ
p,q(B) for all p, q ∈ [1,∞] and β ∈ R, and, in

addition, B is in expansive normal form, that is, B has only positive eigenvalues, with
det(B) = 2. In view of the identification of the coorbit spaces Co(L p,q(Rd

� 〈A〉))
and Co(L p,q(Rd

� 〈B〉)) with the homogeneous Besov spaces Ḃβ
p,q(A) and Ḃβ

p,q(B)

with a certain β = β(p, q) ∈ R (see [30, Example 6.2]), this implies that 〈A〉 and 〈B〉
are coorbit equivalent. For further use below, we note at this point that the identifica-
tion of anisotropic Besov spaces with suitable coorbit spaces also allows to derive the
alternative description

SH1 = {C ∈ GL(d, R) : C−1H1C is coorbit equivalent to H1}. (5.4)

By [7, Corollary 6.5], the fact that Ḃα
1,1(A) = Ḃα

1,1(B) implies that A and B

are equivalent in the sense of [7, Corollary 6.5]. Since also C−1AC and C−1BC
are equivalent in the same sense for every C ∈ GL(d, R), this implies by another
application of [7, Corollary 6.5] that also Ḃα

1,1(C
−1AC) = Ḃα

1,1(C
−1BC). Hence,

SH1 =
{
C ∈ GL(d, R) : Ḃα

1,1(C
−1BC) = Ḃα

1,1(B)
}

.
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Since both B and C−1BC are in expansive normal form, for every invertible matrix
C , an application of [7, Theorem 7.9] implies that

SH1 = {C ∈ GL(d, R) : C−1BC = B} = Z(B),

where Z(B) ⊆ GL(d, R) denotes the centralizer of B.
Suppose now that H2 is an irreducibly admissible matrix group that is coorbit

equivalent to H1. By Theorem 4.3, H2 has the same frequency support as H1, which
is

O = R
d \ {0}

cf. [30, Example 6.2].
We now prove that H2 ⊆ SH1 . For this, let h ∈ H2. Then h−1H2h is trivially

coorbit equivalent to H2, and therefore also to H1. On the other hand, h−1H2h is
coorbit equivalent to h−1H1h by Corollary 4.8 (iii); observe that both groups are
connectivity respecting by Examples 3.5 (1) and (2). In combination, this yields that
H1 and h−1H1h are coorbit equivalent, for all h ∈ H2, and thus Eq. (5.4) yields

H2 ⊆ SH1 = Z(B) .

Arguing by contradiction, assume that the group 〈A〉 is not coorbit equivalent to
R

+ · Id . Since A and B are coorbit equivalent, this is precisely the case if 〈B〉 is not
coorbit equivalent to R

+ · Id . The expansive normal form matrix associated to the
latter group is given by 21/d · Id . Hence, B �= 21/d Id by [7, Theorem 7.9]. Now the
fact that B �= 21/d · Id forces, for any eigenvalue λ of BT with associated eigenspace
Eλ that Eλ � R

d ; otherwise, BT and hence B would be a multiple of the identity and
thus B = 21/d Id since det B = 2. The definition of Z(A) then immediately entails
CT Eλ ⊆ Eλ, for all C ∈ Z(A). As a consequence, one gets

Z(B)T Eλ ⊆ Eλ.

In particular, the dual action of Z(B) on O = R
d\{0} cannot be transitive, which

implies that the dual action of the subgroup H2 ⊆ Z(B) is also not transitive. This
yields the desired contradiction, and completes the proof. ��

Lastly, we provide the example mentioned in the discussion below Corollary 4.5,
which shows the difference of coorbit equivalence between irreducible and reducible
dilation groups.

Example 5.3 Define

A =
⎛
⎝3 0 0
0 2 0
0 0 2

⎞
⎠ and B =

⎛
⎝2 0 0
0 2 0
0 0 3

⎞
⎠
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as well as

A0 =
⎛
⎝ln(3) 0 0

0 ln(2) 0
0 0 ln(2)

⎞
⎠ and B0 =

⎛
⎝ln(2) 0 0

0 ln(2) 0
0 0 ln(3)

⎞
⎠ .

Furthermore, let H1 := exp(RA0) and H2 := exp(RB0) and note that if we define

A(t) :=
⎛
⎝3t 0 0
0 2t 0
0 0 2t

⎞
⎠ and B(t) :=

⎛
⎝2t 0 0
0 2t 0
0 0 3t

⎞
⎠

then A : R → H1, t 
→ A(t) and B : R → H2, t 
→ B(t) are isomorphisms of
topological groups. In particular, H1 = {A(t) : t ∈ R} and H2 = {B(t) : t ∈ R}.
Since the real parts of all eigenvalues of A0, B0 are strictly positive, [30, Proposition
6.3] shows that the groups H1, H2 are integrably admissible with associated frequency
support O = R

3 \ {0}. In addition, since H1, H2 and O are connected, it follows by
Example 3.5(a) that H1, H2 are connectivity-respecting, and the stabilizer subgroups
of H1 and H2 of the connected components ofO are H1 and H2, respectively. As such,
they are compactly generated, and open, precompact, symmetric generating sets for H1
and H2 are given byW1 := {A(t) : −1 < t < 1} andW2 := {B(t) : −1 < t < 1},
respectively.

We first show that H1 and H2 are not coorbit equivalent. Let p, q ∈ [1,∞].
By [30, Corollary 6.7], the coorbit space Co(L p,q(R3

� H1)) coincides with the
anisotropic, homogeneous Besov space Ḃ p,q

α(p,q)(A) for a certain α(p, q) ∈ R. Simi-

larly, Co(L p,q(R3
� H2)) coincides with Ḃ p,q

β(p,q)(B) for a certain β(p, q) ∈ R. Since
A, B are expansive matrices with det A = det B, but A �= B, it follows by [7, Theo-
rem 7.9(a)] that A, B are not equivalent in the terminology of [7]. By [7, Lemma 6.2],
this means that the homogeneous covers Q,P associated to A and B are not weakly
equivalent. In turn, this yields (with a similar proof as in [7, Theorem 6.4]) that the
homogeneous, anisotropic Besov spaces Ḃα

p,q(A) and Ḃβ
p,q(B) never coincide (except

perhaps for (p, q) = (2, 2)). All in all, this shows that H1 and H2 are not coorbit
equivalent.

We now finally show that for a specific choice of ξ ∈ O, an associated transition
map is a quasi-isometry. Choose ξ := (0, 1, 0)T ∈ O. Then the orbit maps are given
by

pH1
ξ : H1 → O, A(t) 
→ [A(t)]−T ξ =

⎛
⎝ 0
2−t

0

⎞
⎠

and

pH2
ξ : H2 → O, B(t) 
→ [B(t)]−T ξ =

⎛
⎝ 0
2−t

0

⎞
⎠ .
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LetQ andP be the covers associated to H1 and H2 according to part (A2) of Notation
3.12. By Corollary 3.17, it follows that pH2

ξ : (H2, dW2) → (O, dP ) is a quasi-
isometry. As seen in Sect. 3.1, this implies that there exists a quasi-inverse p∗ : O →
H2 to pH2

ξ . We now define a modified quasi-inverse through

(
pH2
ξ

)
∗ : O → H2,

⎛
⎝x
y
z

⎞
⎠ 
→

{
B(− log2(y)), if x = z = 0 and y > 0,

p∗((x, y, z)T ), otherwise.

Then, for y > 0,

pH2
ξ

((
pH2
ξ

)
∗(0, y, 0)

) = pH2
ξ (B(− log2(y))) =

⎛
⎝ 0
2−(− log2(y))

0

⎞
⎠ =

⎛
⎝0
y
0

⎞
⎠ ,

and this easily implies that (pH2
ξ )∗ is indeed a quasi-inverse for pH2

ξ .

Finally, note for φ := (pH2
ξ )∗ ◦ pH1

ξ that

φ(A(t)) = (
pH2
ξ

)
∗
(
(0, 2−t , 0)T

) = B(− log2(2
−t )) = B(t),

which implies that φ : H1 → H2 is an isomorphism, and this easily shows that it is a
quasi-isometry as a map φ : (H1, dW1) → (H2, dW2).

Appendix A: Auxiliary Results

This section provides various auxiliary results that are used in the main text and
appendices. As we could not locate a convenient reference in the literature, we provide
their short proofs.

Lemma A.1 Let X be a topological space, let C ⊆ X be connected, and for each
c ∈ C, let Uc ⊆ X be connected with c ∈ Uc. Then

⋃
c∈C Uc is connected.

In particular, if X is a normed vector space and C ⊆ X is a connected set, then the
ε-neighborhood

Bε(C) = {
x ∈ X : dist(x,C) < ε

} =
⋃
c∈C

Bε(c)

is connected as well.

Proof Let Y = ⋃
c∈C Uc, c0 ∈ C arbitrary, and let A ⊆ Y denote the connected

component of c0 in Y . Then connectedness of C implies C ⊆ A, and A is also the
connected component of any c ∈ C . Connectedness of Uc then entails Uc ⊆ A. In
summary
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Y ⊇ A ⊇
⋃
c∈C

Uc = Y ,

which shows connectedness of Y . ��
Lemma A.2 Let U ⊆ R

d be open and connected. Then, for each compact set C ⊆ U,
there exists a compact, connected set K ⊆ U with C ⊆ K.

Proof For each x ∈ C ⊆ U , since U is open, there exists a radius rx > 0 satisfying
Brx (x) ⊆ U . Then

(
Brx (x)

)
x∈C is an open cover of C , so that by compactness there

exist finitely many x1, . . . , xn ∈ C such that C ⊆ ⋃n
i=1 Bri (xi ), where ri := rxi .

Since U is open and connected and hence path connected, there exists for each
i ∈ {1, . . . , n} a continuousmapγi : [0, 1] → U satisfyingγi (0) = x1 andγi (1) = xi .
Define

K :=
n⋃

i=1

Bri (xi ) ∪
n⋃

i=1

γi ([0, 1]).

Then K ⊆ U is compact and satisfies K ⊇ C . Moreover, by construction of K , the
path component of x1 in K contains x1, . . . , xn , and then also each Bri (xi ). Hence it
contains all of K , which means that K is connected. ��

In the following lemma and its proof, all claims on quotient groups are with respect
to the usual quotient topology.

Lemma A.3 Let G be a locally compact Hausdorff group. Suppose that L, H ≤ G are
closed subgroups satisfying L ⊆ H and such that G/L is compact. Then also H/L
is compact.

Proof First, since the projection π : G → G/L is a continuous open map, it follows
that the subspace topology on H/L as a subspace of G/L agrees with the quotient
topology on H/L , see, e.g., [13, Chapter VI, Theorem 2.1]

For proving the claim, we first show that π(G\H) ∩ π(H) = ∅. Arguing by
contradiction, suppose there exist g ∈ G\H and h ∈ H with gL = π(g) = π(h) =
hL . Then, since L ⊆ H , it follows that g ∈ hL ⊆ H , in contradiction to g ∈ G\H .
Since π : G → G/L is surjective, the fact that π(G\H) ∩ π(H) = ∅ implies that
the complement of H/L in G/L is given by

(H/L)c = π(G \ H).

Since G \ H ⊆ G is open and π is an open map, this implies that (H/L)c is open in
G/L , so that H/L is closed in the compact set G/L , and hence compact as well. ��
Lemma A.4 Let G be a first countable locally compact Hausdorff group and let γ :
R → G be a continuous homomorphism.

Then either the closure γ (R) is compact, or γ (R) ⊆ G is closed and γ : R → γ (R)

is a homeomorphism.
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Proof Suppose that the closure γ (R) is not compact. Then, by [36, Chapter XVI,
Proposition 2.3], the map γ : R → γ (R) is a homeomorphism, and thus it remains
to show that γ (R) ⊆ G is closed. For this, let (hn)n∈N ⊆ γ (R) be a sequence with
hn → g for some g ∈ G. SinceG is first countable, it is enough to show that g ∈ γ (R).
For proving this, note that since γ is a homeomorphism onto its range, there exists an
open set V ⊆ G with γ ((−1, 1)) = V ∩ γ (R). This implies that γ (0) = eG ∈ V , so
that V is a unit neighborhood. Thus, there exists a compact unit neighborhoodU ⊆ G
withU = U−1 andUU ⊆ V . By assumption, hn → g, and hence there exists n0 ∈ N

such that hn ∈ gU for all n ≥ n0. Hence,

h−1
n0 hm ∈ U−1g−1gU = U−1U ⊆ V ⊆ γ ([−1, 1]) for all m ≥ n0.

Since γ ([−1, 1]) is closed, letting m → ∞, it follows that h−1
n0 g ∈ γ ([−1, 1]) ⊆

γ (R). As hn0 ∈ γ (R), this also yields that g ∈ γ (R), which completes the proof. ��

Appendix B: Postponed Proofs

This section consists of two proofs of results stated in Sect. 3.

Proof of Lemma 3.1 Assume that

sup
y∈Y

dY
(
f1( f2(y)), y

) = M < ∞,

and let R1, R2, R3 denote the constants provided by assumptions (q1) and (q2) on f1.
Then, for y, y′ ∈ Y ,

dX ( f2(y), f2(y
′)) ≤ R1dY

(
f1( f2(y)), f1( f2(y

′))
) + R1R2

≤ R1
(
dY ( f1( f2(y)), y)+dY (y, y′)+dY (y′, f1( f2(y

′)))
)+R1R2

≤ R1dY (y, y′) + 2R1M + R1R2.

An analogous computation establishes

dX ( f2(y), f2(y
′)) ≥ R−1

1 dY (y, y′) − 2R−1
1 M − R−1

1 R2,

and thus (q1) is verified for f2. For the verification of (q2) we once again invoke (q1)
for f1 and get for all x ∈ X that

dX (x, f2( f1(x))) ≤ R1 · dY
(
f1(x), f1( f2( f1(x)))

) + R1R2 ≤ R1M + R1R2.(B.1)

This implies that (q2) holds for f2, and thus finishes the proof of (i). Part (ii) also
follows directly from (B.1). ��
Proof of Lemma 3.6 Property (q2) is clearly satisfied, since the identity is surjective.
We only prove one direction of the estimate in condition (q1); the other part follows
by symmetry.
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Since V is a symmetric generating set for H0, we have H0 = ⋃∞
n=1 V

n . Hence, by
compactness of W ⊆ H0, there exists some N ∈ N such that W ⊆ V N . For proving
the claim, let x, y ∈ H be arbitrary and set m := dW (x, y) ∈ N0 ∪ {∞}. Note that
trivially dV (x, y) ≤ N · dW (x, y) whenever m = 0 or m = ∞, and thus it remains to
consider the case m ∈ N. In this case, x−1y ∈ Wm ⊆ (V N )m ⊆ VmN and hence

dV (x, y) ≤ mN = NdW (x, y),

which completes the proof. ��

Appendix C: Connected Lie Groups Quasi-isometric to R

This section is devoted to characterizing connected Lie groups that are quasi-isometric
to the real line R. We expect these results to be folklore, but were unable to locate
a convenient reference for them. In the interest of a self-contained presentation we
provide proofs, relying on various sources, most notably [39, 40]. To make the proof
accessible also to readers with limited background in Lie theory, we provide more
detail than is perhaps necessary for specialists.

We start by introducing the notion of growth on locally compact groups. Throughout
this section, we will concentrate on connected Lie groups.

Definition C.1 Let G be a connected Lie group. For a relatively compact, symmetric
open unit neighborhood U ⊆ G, let dU be the associated word metric, and write

Ur := {g ∈ G : d(g, eG) ≤ r} = U �r� for r > 0.

The growth function associated to U and G is defined by

νU ,G : (0,∞) → [0,∞), νU ,G(r) := μG(Ur ).

Given two nondecreasing functions ν, ν̃ : (0,∞) → [0,∞), following [10, Defi-
nition 3.D.3], we write ν � ν̃ if there exist constants a, b > 0, c ≥ 0 such that for all
r ∈ (0,∞)

ν(r) ≤ aν̃(br + c) + c .

We write ν � ν̃ if both ν � ν̃ and ν̃ � ν. Clearly, this defines an equivalence relation
on the set of nondecreasing functions from (0,∞) to [0,∞). It is easily checked that
νU ,G ∼ νV ,G for any two relatively compact, open neighborhoods of unity contained
in connected Lie groups. Since we are only interested in equivalence classes, we will
therefore write νG = νU ,G , for a suitably chosen neighborhood U .

A group is called of polynomial growth if νG(r) � rn for a suitable exponent
n ∈ [0,∞). We call G of linear growth if νG(r) � r holds. The relevance of growth
for our arguments comes from the fact that it is a quasi-isometric invariant:
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Lemma C.2 Let G, H denote two connected Lie groups that are quasi-isometric. Then
νG � νH .

Proof Fix a symmetric, relatively compact neighborhoodU ⊆ G of unity, and denote
by dU the associated word metric. By [10, Propositions 3.D.23 and 3.D.29], there
exists a growth function βG (cf. [10, Definition 3.D.2]) that is (up to equivalence)
defined purely in terms of dG and satisfies βG ∼ νG . The same reasoning applies
to H . Hence, since G and H are quasi-isometric, an application of [10, Proposition
3.D.23] yields that βG � βH , which then implies νG � νH . ��

We first give a characterization of nilpotent Lie groups with linear growth.

Lemma C.3 Let G be a connected, simply connected nilpotent Lie group with linear
growth. Then G ∼= R.

Proof Since G is simply connected and nilpotent, it follows from [4, Corollary 2.9]
that it has strict polynomial growth, in the sense that νG(r) � rd(G) for some d(G) ≥
dim(G). On the other hand, the assumption of linear growth implies d(G) = 1. Since
G is nontrivial, we get dim(G) = 1, and the desired conclusion follows. ��

The following result is the main result of this section.

Proposition C.4 Let G denote a connected Lie group. Then the following assertions
are equivalent:

(i) G is quasi-isometric to R.
(ii) G has linear growth.
(iii) G contains a closed cocompact, noncompact one-parameter subgroup.

Proof The implication (i) ⇒ (i i) is due to Proposition C.2.
The proof of (i i) ⇒ (i i i) relies on results from [39, 40]. Since G is of polynomial

growth, an application of [39, Proposition 1] yields the existence of amaximal compact
normal subgroup K1 of G, and shows that G/K1 is a Lie group. By [10, Proposition
4.C.12], the quotient map G → G/K1 must be a quasi-isometry (if both G and
G/K1 are equipped with the word metric associated to a compact generating set).
Therefore, byLemmaC.2, H := G/K1 is a connectedLie group of linear (in particular
polynomial) growth without nontrivial compact normal subgroups.

By [40, Theorem 2], there exists a topological embedding ϕ : H → N � K2,
where N is a simply connected, connected nilpotent Lie group and K2 is a compact
group, and such that ϕ(H) ⊆ N � K2 is closed and cocompact. By definition of a
(topological) semidirect product, the map

ψ : N � K2 → K2, g = nk 
→ k where n ∈ N , k ∈ K2

is a continuous homomorphism. Given that H is connected, the imageψ(ϕ(H)) ⊆ K2
is contained in the connected component K ∗

2 of the unit element of K2. Thus, by
replacing K2 with K ∗

2 , we can assume that K2 is connected. Note that for this, we use
that (N �K ∗

2 )/ϕ(H) is compact by Lemma Lemma A.3, because ϕ(H) ⊆ N �K ∗
2 ⊆

N � K2 are closed subgroups in N � K2 and (N � K2)/ϕ(H) is compact.
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Since (N � K2)/ϕ(H) is compact, the inclusion map ϕ(H) ↪→ N � K2 is a quasi-
isometry by [10, Proposition 4.C.11] (again, with respect to suitable word metrics).
The same reasoning applies to the inclusion map N ↪→ N � K2. Combining these
observations yields that G and N are quasi-isometric. As such, it follows therefore
fromLemmaC.2 that N has linear growth, and thus N ∼= R by LemmaC.3. Hence, the
automorphism group of N is isomorphic toR

∗, which contains no nontrivial connected
compact subgroup. Since the compact group K2 acts continuously on N , this action
must then be trivial. Hence, N � K2 = N × K2.

For constructing the one-parameter subgroup, let πN : N × K2 → N denote the
canonical projection. Since ϕ(H) is cocompact in N ×K2 and N ∼= R is not compact,
ϕ(H) is not contained in {eN } × K2. Since the image of the exponential map expH
generates H , this entails the existence of an element X of the Lie algebra of H such
that (πN ◦ ϕ)(expH (RX)) is nontrivial and connected. Since N ∼= R does not have
any nontrivial connected subgroups, it follows that πN (ϕ(expH (RX))) = N . This
entails that ϕ(expH (RX)) ⊆ ϕ(H) ⊆ N × K2 is cocompact in N × K2. Next, note
that ϕ(expH (RX)) ⊆ N × K2 is closed by Lemma A.4, since its closure cannot be
compact, because ϕ(expH (RX)) is cocompact in the noncompact group N × K2. By
Lemma A.3, it follows therefore that ϕ(expH (RX)) is also cocompact in ϕ(H) Since
ϕ is a topological embedding, it follows that expH (RX)must be cocompact and closed
in H .

It remains therefore to lift the one-parameter subgroup to G. To do this, let q :
G → H denote the quotient map, and dq : g → h the differential map between the
respective Lie algebras. Since q is an openLie group homomorphism, dq is a surjective
Lie algebra homomorphism, see, e.g., [35, Proposition 9.2.13]). In particular, there
exists Y ∈ g with dq(Y ) = X , and q(expG(tY )) = expH (t X) holds for all t ∈ R,
see, e.g., [35, Proposition 9.2.10]. In particular, since expH (RX) is noncompact and
closed, expG(RY ) does not have compact closure. But then it is closed (by Lemma
A.4) and noncompact, as well. For showing that expG(RY ) ⊆ G is cocompact, note
that since expH (RX) ⊆ H is cocompact, there exists a compact set � ⊆ H with
H = � expH (RX), cf. [18, Lemma 2.46]. Similarly, there exists a compact set� ⊆ G
with � = q(�). Given g ∈ G, we can write q(g) = θ · expH (t X) for certain θ ∈ �

and t ∈ R. Writing θ = q(ω) with ω ∈ �, we then see q(g) = q(ω expG(tY )), and
thus g ∈ ω expG(tY )K1 = ωK1 expG(tY ), which shows that G = �K1 expG(RY ),
so that G/ expG(RY ) is compact. Thus, expG(RY ) ⊆ G is cocompact, which shows
(iii).

The implication (i i i) ⇒ (i) follows again by [10, Proposition 4.C.11]. ��
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