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Abstract
Generalized Cesàro operators Ct , for t ∈ [0, 1), are investigated when they act on
the disc algebra A(D) and on the Hardy spaces H p, for 1 ≤ p ≤ ∞. We study the
continuity, compactness, spectrum and point spectrum of Ct as well as their linear
dynamics and mean ergodicity on these spaces.
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1 Introduction and preliminaries

The (discrete) generalized Cesàro operators Ct , for t ∈ [0, 1], were first investigated
by Rhaly [18, 19]. The action of Ct from the sequence space ω := C

N0 into itself,
with N0 := {0, 1, 2, . . .}, is given by

Ct x :=
(
tnx0 + tn−1x1 + · · · + xn

n + 1

)
n∈N0

, x = (xn)n∈N0 ∈ ω. (1.1)
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For t = 0 and with ϕ := ( 1
n+1 )n∈N0 note that C0 is the diagonal operator

Dϕx :=
(

xn
n + 1

)
n∈N0

, x = (xn)n∈N0 ∈ ω, (1.2)

and, for t = 1, that C1 is the classical Cesàro averaging operator

C1x :=
(
x0 + x1 + · · · + xn

n + 1

)
n∈N0

, x = (xn)n∈N0 ∈ ω. (1.3)

The behaviour of Ct on certain sequence spaces is well understood; see [1, 8, 22],
and the references therein.

By H(D)we denote the space of all holomorphic functions onD := {z ∈ C : |z| <

1}, which is equipped with the topology τc of uniform convergence on the compact
subsets of D. According to [16, §27.3(3)] the space H(D) is a Fréchet-Montel space.
A family of norms generating τc is given, for each 0 < r < 1, by

qr ( f ) := sup
|z|≤r

| f (z)|, f ∈ H(D). (1.4)

We identify a function f ∈ H(D) with its sequence of Taylor coefficients f̂ :=
( f̂ (n))n∈N0 (i.e., f̂ (n) := f (n)(0)

n! , for n ∈ N0), so that f (z) = ∑∞
n=0 f̂ (n)zn , for

z ∈ D. The operator Ct : H(D) → H(D), for t ∈ [0, 1), given by (Ct f )(0) := f (0)
and

(Ct f )(z) := 1

z

∫ z

0

f (ξ)

1 − tξ
dξ, z ∈ D \ {0}, (1.5)

for every f ∈ H(D), was investigated in [2]. For f (z) = ∑∞
n=0 f̂ (n)zn in H(D), we

also have that

(Ct f )(z) =
∞∑
n=0

(
tn f̂ (0) + tn−1 f̂ (1) + . . . + f̂ (n)

n + 1

)
zn . (1.6)

Note that the coefficients in (1.6) are as in (1.1).
The discrete generalized Cesàro operator acting in ω (cf. (1.1)) is denoted by Cω

t ,
whereas the notation Ct will be used for the operator (1.5) acting in H(D). Note that
Cω
0 = Dϕ (see (1.2)). Moreover, for t = 0 observe that the operator (C0 f )(z) =

1
z

∫ z
0 f (ξ) dξ for z �= 0 and (C0 f )(0) = f (0) is the traditional Hardy operator in

H(D).
The generalized Cesàro operators Ct , for t ∈ [0, 1], are investigated in [2], where

they act on the Fréchet space H(D) and on the weighted Banach spaces H∞
v and H0

v

endowed with with their sup-norms. The operator Ct is actually continuous on H(D),
[2, Proposition 2.1]. In this article we study the operators Ct when they act on the disc
algebra A(D) and on the Hardy spaces H p over D, for 1 ≤ p ≤ ∞.

Section 2 establishes the continuity and compactness of Ct acting on the spaces
A(D) and H∞ and determines their spectrum. It is also shown that each Ct , for
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t ∈ [0, 1), is power bounded and uniformly mean ergodic in these spaces but, it
fails to be supercyclic. In Sect. 3 the continuity, compactness and spectrum of Ct are
investigated when they act in the Hardy spaces H p for 1 ≤ p < ∞. Estimates for the
operator norm ‖Ct‖H p→H p are also provided. To establish the compactness of Ct in
H p it is necessary to invoke properties of the forward and backward shift operators
acting in H p as well as properties of certain Volterra type operators. An important
point is that each Ct , for t ∈ (0, 1), belongs to the class of Volterra operators being
considered. It is also established that Ct maps H∞ into A(D). The spectrum and point
spectrum of Ct (acting on H p) are completely determined. As in the case when Ct

acts in A(D) or H∞, it turns out that Ct is again power bounded and uniformly mean
ergodic when acting in H p, 1 ≤ p < ∞, but fails to be supercyclic.

Let us briefly recall the definition of the spaces involved; see [10, 24] for more
details. The space H∞ is a Banach space when it is endowed with the norm

‖ f ‖∞ := sup
z∈D

| f (z)|, f ∈ H∞. (1.7)

The disc algebra A(D) consists of all holomorphic functions on D that extend to a
continuous function on the closureD ofD. That is, f ∈ A(D) if and only if there exists
f̃ ∈ C(D), necessarily unique, such that f (z) = f̃ (z) for all z ∈ D. In particular,
f ∈ H∞. Endowed with the norm ‖ · ‖∞ the space A(D) is a commutative Banach
algebra with respect to multiplication of functions. It is routine to verify that A(D) is
a closed subalgebra of H∞.

For 0 < p < ∞ the Hardy space H p consists of all functions f ∈ H(D) satisfying

‖ f ‖p := sup
0≤r<1

(
1

2π

∫ 2π

0
| f (reiθ )|p dθ

)1/p

< ∞. (1.8)

For p = ∞, a function f ∈ H(D) belongs to H∞ if

sup
0≤r<1

(
sup

θ∈[0,2π ]
| f (reiθ )|

)
< ∞. (1.9)

Of course, the expression in (1.9) equals ‖ f ‖∞; see (1.7). With this quasi-norm, H p

is a metrizable, complete, topological vector space. For 1 ≤ p < ∞, it turns out that
‖ · ‖p is actually a norm for which H p is a Banach space.

We are mainly interested in the setting when 1 ≤ p < ∞. In this case, for all
1 ≤ p ≤ q ≤ ∞, it turns out that Hq ⊆ H p with a continuous inclusion. Moreover,
the norm ‖ · ‖p is increasing with p. Given 1 ≤ p < ∞ and f ∈ H p, there is a
standard notation for the terms in (1.8), namely

Mp(r , f ) :=
(

1

2π

∫ 2π

0
| f (reiθ )|p dθ

)1/p

, r ∈ [0, 1),
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which increase with 0 ≤ r ↑ 1. Accordingly, for every r ∈ [0, 1), we have

Mp(r , f ) ≤ ‖ f ‖p = sup
0≤r<1

Mp(r , f ) = lim
r→1− Mp(r , f ). (1.10)

The same is true for p = ∞ if we define

M∞(r , f ) := sup
θ∈[0,2π ]

| f (reiθ )|, r ∈ [0, 1).

It is known, for each z ∈ D, that the evaluation functional δz : f 
→ f (z), for f ∈ H p,
is continuous, that is, δz ∈ (H p)′; see the Lemma on p.36 of [10] for 1 ≤ p < ∞. For
p = ∞, fix z ∈ D and let r := |z|. Then the inequality

|δz( f )| = | f (z)| ≤ M∞(r , f ) ≤ ‖ f ‖∞, f ∈ H∞,

shows that δz ∈ (H∞)′.
We end this section by recalling a few definitions and some notation concerning

Fréchet spaces (always locally convex) and operators between them. For further details
about functional analysis and operator theory relevant to this paper see, for example,
[11, 15, 16, 21].

Given Fréchet spaces X ,Y , denote by L(X ,Y ) the space of all linear operators
from X into Y which are continuous. If X = Y , then we simply write L(X) for
L(X , X). If both X , Y are Banach spaces then, for the operator norm ‖T ‖X→Y :=
sup‖x‖X≤1 ‖T x‖Y , with T ∈ L(X ,Y ), the spaceL(X ,Y ) is a Banach space. Equipped
with the topology of pointwise convergence on a Fréchet space X (i.e., the strong
operator topology τs) the quasi-complete locally convex Hausdorff space L(X) is
denoted by Ls(X). The range T (X) := {T x : x ∈ X} of T ∈ L(X) is also denoted
by Im(T ). Moreover, Ker(T ) := {x ∈ X : T x = 0}.

Let X be a Fréchet space. The identity operator on X is written as I . The transpose
operator of T ∈ L(X) is denoted by T ′; it acts from the topological dual space
X ′ := L(X , C) of X into itself. Denote by X ′

σ (resp., by X ′
β ) the space X ′ equipped

with the weak* topology σ(X ′, X) (resp., with the strong dual topology β(X ′, X)). It
is known that X ′

σ is quasicomplete, that T ′ ∈ L(X ′
σ ) and also that T ′ ∈ L(X ′

β), [15,
p.134]. The bi-transpose operator (T ′)′ of T is denoted simply by T ′′ and belongs to
L((X ′

β)′β). In the event that X is a Banach space, both X ′
β (denoted simply by X ′) and

(X ′
β)′β (denoted simply by X ′′) are again Banach spaces. The dual norm in X ′ is given

‖x ′‖ := sup‖x‖≤1 |〈x, x ′〉|, for x ′ ∈ X ′.
The following result, [1, Theorem 6.4], which is stated below for Banach spaces,

will be needed in the sequel. Given δ > 0, we introduce the notation B(0, δ) :=
{z ∈ C : |z| < δ} and B(0, δ) for its closure in C. Denote the unit circle in C by
T := {z ∈ C : |z| = 1}. Of course, B(0, 1) = D and T is the boundary of D. For the
definition of power bounded and uniformly mean ergodic operators see Sect. 2.

Theorem 1.1 Let X be a Banach space and let T ∈ L(X) be a compact operator such
that σ(T ; X) ⊆ D and σ(T ; X) ∩ T = {1} and which satisfies Ker(I − T ) ∩ Im(I −
T ) = {0}. Then T is power bounded and uniformly mean ergodic.
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Remark 1.2 The conditions in Theorem 1.1 concerning σ(T ; X) are equivalent to
1 ∈ σ(T ; X) and σ(T ; X)\{1} ⊆ B(0, δ), for some δ ∈ (0, 1).

2 Continuity, compactness and spectrum of Ct in H∞ and in A(D)

For t = 1 it is clear that C1 fails to act from H∞ into itself; consider C11, where 1 is
the constant function z 
→ 1 for z ∈ D. For a study of C1 acting on H∞ see [9] and,
for Ct acting on H∞, for t ∈ [0, 1), see [2, Proposition 2.3].

The following result establishes thatCt ∈ L(A(D)) and identifies its operator norm
precisely.

Proposition 2.1 For each t ∈ [0, 1) the operator Ct : A(D) → A(D) is continuous.
Moreover, the operator norms are given by ‖C0‖A(D)→A(D) = 1 and

‖Ct‖A(D)→A(D) = − log(1 − t)

t
, t ∈ (0, 1).

Proof Fix t ∈ [0, 1). We first show that Ct (A(D)) ⊆ A(D). Recall, for f ∈ H(D),
that we have (Ct f )(0) = f (0) and, via the parametrization ξ := sz, for s ∈ [0, 1],
that

(Ct f )(z) = 1

z

∫ z

0

f (ξ)

1 − tξ
dξ =

∫ 1

0

f (sz)

1 − st z
ds, z ∈ D \ {0}. (2.1)

Moreover, if f ∈ H∞ then Ct f ∈ H∞, [2, Proposition 2.3]. Accordingly, for a fixed
function f ∈ A(D) ⊆ H∞, it follows that Ct f ∈ H∞. The claim is that Ct f is the
restriction to D of an element of C(D). Indeed, let f̃ ∈ C(D) agree with f on D. Then

it is routine to verify that the function z 
→ ∫ 1
0

f̃ (sz)
1−stz ds, for z ∈ D, is continuous on

D and agrees with Ct f on D. Accordingly, Ct f ∈ A(D).
Since Ct (A(D)) ⊆ A(D), for t ∈ [0, 1), and A(D) is a Banach space, by a closed

graph argument we can conclude that Ct ∈ L(A(D)). Indeed, let fn → 0 in A(D) and
Ct fn → g in A(D) for n → ∞. Since A(D) ⊆ H(D) continuously, also fn → 0 in
H(D) and Ct fn → g in H(D) for n → ∞. The continuity of Ct ∈ L(H(D)) yields
that Ct fn → 0 in H(D) for n → ∞ and so g = 0.

We now compute the norm of Ct ∈ L(A(D)) for t ∈ [0, 1).
Consider first t = 0. Let f ∈ A(D) be fixed. Then f ∈ H∞ and so, by [2,

Proposition 2.3], we can conclude that ‖C0 f ‖∞ ≤ ‖ f ‖∞. Since A(D) is a closed
subspace of H∞, this implies that ‖C0‖A(D)→A(D) ≤ 1.On the other hand, the function
h0(z) := 1, for z ∈ D, belongs to A(D) and satisfies both ‖h0‖∞ = 1 and C0h0 = h0.
It follows that ‖C0‖A(D)→A(D) = 1.

Now let t ∈ (0, 1). Again by [2, Proposition 2.3], for each f ∈ A(D) ⊆ H∞ we
have that

‖Ct f ‖∞ ≤ − log(1 − t)

t
‖ f ‖∞,

which implies that ‖Ct‖A(D)→A(D) ≤ − log(1−t)
t . But, ‖Cth0‖∞ = − log(1−t)

t and so

‖Ct‖A(D)→A(D) = − log(1−t)
t . ��



5 Page 6 of 19 A. A. Albanese et al.

Recall that a linearmap T : X → Y , with X and Y Banach spaces, is called compact
if T (BX ) is a relatively compact set in Y , where BX denotes the closed unit ball of X .
It is routine to show that necessarily T ∈ L(X ,Y ). For the spectral theory of compact
operators see [11, 14, 21], for example.

The proof of the next result, which establishes the compactness of Ct on both A(D)

and H∞, proceeds along the lines of the proof of [2, Proposition 2.7].

Proposition 2.2 For each t ∈ [0, 1), both of the operators Ct : H∞ → H∞ and
Ct : A(D) → A(D) are compact.

Proof Fix t ∈ [0, 1). Since A(D) is a closed subspace of H∞ and Ct (A(D)) ⊆ A(D)

(cf. Proposition 2.1), it suffices to show that Ct : H∞ → H∞ is compact.
First we establish the following Claim:

(�) Let a sequence ( fn)n∈N ⊂ H∞ satisfy ‖ fn‖∞ ≤ 1 for every n ∈ N and
fn → 0 in (H(D), τc) for n → ∞. Then Ct fn → 0 in H∞.

To prove the Claim, let ( fn)n∈N ⊂ H∞ be a sequence as in (�). Fix ε > 0 and select
δ ∈ (0, β), where β := min{1, ε(1−t)

2 }. Since B(0, 1 − δ) is a compact subset of D,
there exists n0 ∈ N such that

max|ξ |≤1−δ
| fn(ξ)| < δ, n ≥ n0.

Recall that (Ct fn)(0) = fn(0) for every n ∈ N. Therefore, (Ct fn)(0) → 0 as n → ∞.
For z ∈ D \ {0} we have, via (2.1), that

|(Ct fn)(z)| =
∣∣∣∣
∫ 1

0

fn(sz)

1 − st z
ds

∣∣∣∣ ≤
∫ 1−δ

0

| fn(sz)|
|1 − st z|ds +

∫ 1

1−δ

| fn(sz)|
|1 − st z|ds.

Denote the first (resp., second) summand in the right-side of the previous inequality
by (An) (resp., by (Bn)). Since |1 − st z| ≥ 1 − st |z| ≥ max{1 − s, 1 − t, 1 − |z|},
for all s, t ∈ [0, 1) and z ∈ D, it follows, for every n ≥ n0, that

∫ 1−δ

0 | fn(sz)| ds ≤
(1 − δ)max|ξ |≤(1−δ) | fn(ξ)| (as |sz| ≤ (1 − δ) for all s ∈ [0, 1 − δ]) and hence, that

(An) ≤ (1 − δ)

1 − t
max|ξ |≤1−δ

| fn(ξ)| <
ε

2
.

On the other hand, for every n ≥ n0, observe that

(Bn) =
∫ 1

1−δ

| fn(sz)|
|1 − st z| ds ≤

∫ 1

1−δ

‖ fn‖∞
1 − t

ds ≤ δ

1 − t
<

ε

2
.

It follows that ‖Ct fn‖∞ < ε for every n ≥ n0. That is, Ct fn → 0 in H∞ for n → ∞
and so (�) is proved.

Concerning the compactness of Ct ∈ L(H∞), let ( fn)n∈N ⊂ H∞ be any bounded
sequence. There is no loss of generality in assuming that ‖ fn‖∞ ≤ 1 for all n ∈ N.
To establish the compactness of Ct ∈ L(H∞) we need to show that (Ct fn)n∈N has
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a convergent subsequence in H∞. This follows routinely from the fact that ( fn)n∈N
is also bounded in the Fréchet-Montel space H(D), as H∞ ⊆ H(D) continuously,
together with condition (�). ��

Given a Fréchet space X and T ∈ L(X), the resolvent set ρ(T ; X) of T consists of
all λ ∈ C such that the inverse operator R(λ, T ) := (λI−T )−1 exists inL(X). The set
σ(T ; X) := C \ ρ(T ; X) is called the spectrum of T . The point spectrum σpt (T ; X)

of T consists of all λ ∈ C (also called an eigenvalue of T ) such that (λI − T ) is
not injective. In the event that X is a Banach space, the residual spectrum σr (T ; X)

(resp. continuous spectrum σc(T ; X)) of T consists of all λ ∈ C such that λI − T is
injective and Im(λI − T ) is not dense (resp. is proper and dense) in X . This provides
the pairwise disjoint decomposition

σ(T ; X) = σpt (T ; X) ∪ σr (T ; X) ∪ σc(T ; X).

Proposition 2.3 For each t ∈ [0, 1) the spectra of Ct ∈ L(H∞) and of Ct ∈ L(A(D))

are given by

σpt (Ct ; H∞) = σpt (Ct ; A(D)) =
{

1

m + 1
: m ∈ N0

}
, (2.2)

and

σ(Ct ; H∞) = σ(Ct ; A(D)) =
{

1

m + 1
: m ∈ N0

}
∪ {0}. (2.3)

Proof Let t ∈ [0, 1) be fixed. By [8, Lemma 3.6] the point spectrum of the operator
Cω
t ∈ L(ω) is given by σpt (Cω

t ;ω) = { 1
m+1 : m ∈ N0} and, for each m ∈ N0, the

corresponding eigenspace Ker( 1
m+1 I − Cω

t ) is 1-dimensional and is generated by an

eigenvector x [m] = (x [m]
n )n∈N0 ∈ �1. Since A(D) ⊆ H∞ ⊆ H(D) with continuous

inclusions and the map � : H(D) → ω given by f 
→ ( f̂ (n))n∈N0 , is a continu-
ous embedding (see Sect. 1 of [2]), we have that σpt (Ct ; A(D)) ⊆ σpt (Ct ; H∞) ⊆
{ 1
m+1 : m ∈ N0}. Indeed, let f ∈ H(D)\{0} and λ ∈ C satisfy Ct f = λ f .

Then λ f (z) = ∑∞
n=0 (̂λ f )(n)zn = ∑∞

n=0 λ f̂ (n)zn and, by (1.6), we have that
(Ct f )(z) = ∑∞

n=0(C
ω
t f̂ )nzn . It follows that Cω

t f̂ = λ f̂ in ω with f̂ �= 0 and
so λ ∈ σpt (Cω

t ;ω) = { 1
m+1 m ∈ N0}.

To conclude the proof, it remains to show that { 1
m+1 : m ∈ N0} ⊆ σpt (Ct ; A(D)).

To establish this recall, for each m ∈ N0, that the eigenvector x [m] corresponding to
1

m+1 belongs to �1 and hence, the function gm(z) := ∑∞
n=0 x

[m]
n zn belongs to A(D).

Then (1.5) and (1.6) imply, for each z ∈ D, that

(Ctgm)(z) =
∞∑
n=0

(Cω
t x

[m])nzn = 1

m + 1

∞∑
n=0

x [m]
n zn = 1

m + 1
gm(z). (2.4)

Thus gm is an eigenvector of Ct ∈ L(A(D)) corresponding to the eigenvalue 1
m+1 .



5 Page 8 of 19 A. A. Albanese et al.

Finally, σ(Ct ; A(D)) = σ(Ct ; H∞) = { 1
m+1 : m ∈ N0} ∪ {0} follows from the

fact that Ct is a compact operator on both A(D) and H∞. ��
An operator T ∈ L(X), with X a Banach space, is called power bounded if

supn∈N0
‖T n‖X→X < ∞. Given T ∈ L(X), define its Cesàro means by

T[n] := 1

n

n∑
m=1

Tm, n ∈ N.

Then T is said to be mean ergodic (resp., uniformly mean ergodic) if (T[n])n∈N is a
convergent sequence in Ls(X) (resp., a convergent sequence for the operator norm
in L(X)). It is routine to check that T n

n = T[n] − n−1
n T[n−1], for n ≥ 2, and hence,

τs-limn→∞ T n

n = 0 whenever T is mean ergodic. An operator T ∈ L(X) is said to be
supercyclic if, for some z ∈ X , the projective orbit {λT nz : λ ∈ C, n ∈ N0} is dense
in X . Since the closure of the linear span of a projective orbit is separable, whenever
any supercyclic operator in L(X) exists, then X is necessarily separable.

For the linear dynamics of T we refer to [5, 13] and for mean ergodic operators to
[17], for example.

As a consequence of the previous proposition, combined with Theorem 1.1, we
have the following result.

Proposition 2.4 For each t ∈ [0, 1) both of the operators Ct ∈ L(H∞) and Ct ∈
L(A(D)) are power bounded, uniformly mean ergodic but, fail to be supercyclic.

Proof Fix t ∈ [0, 1). Since H∞ is non-separable,Ct ∈ L(H∞) cannot be supercyclic.
The operator Ct is compact on both H∞ and on A(D) (cf. Proposition 2.2). There-

fore, the compact transpose operators C ′
t ∈ L((H∞)′) and C ′

t ∈ L((A(D))′) have the
same non-zero eigenvalues asCt (see, e.g., [11, Theorem9.10-2(2)]). In viewof Propo-
sition 2.3 it follows that σpt (C ′

t ; (H∞)′) = σpt (C ′
t ; (A(D))′) = { 1

m+1 : m ∈ N0}.We
can apply [5, Proposition 1.26] to conclude that Ct is not supercyclic on the separable
space A(D).

By Proposition 2.3 and its proof (as x [0] = (tn)n∈N0 ) we have that Ker(I − Ct ) =
span{ht }, with ht (z) := ∑∞

n=0 t
nzn = 1

1−t z , for z ∈ B(0, 1
t ) (with 1

t > 1). Note

that D ⊆ B(0, 1
t ). The function ht ∈ A(D) is the eigenvector denoted by g0 in

the proof of Proposition 2.3 corresponding to the eigenvalue 1. On the other hand,
Im(I − Ct ) is a closed subspace of H∞ (resp., of A(D)), as Ct is compact in H∞
(resp., in A(D))). Also, Im(I − Ct ) ⊆ {g ∈ H∞ : g(0) = 0} (resp., Im(I − Ct ) ⊆
{g ∈ A(D) : g(0) = 0}), because (Ct f )(0) = f (0) for each f ∈ H∞ (resp., for
each f ∈ A(D)). Moreover, [11, Theorem 9.10.1] implies that codim Im(I − Ct ) =
dimKer(I − Ct ) = 1 regarded as subspaces of H∞ (resp., of A(D)). Accordingly,
both Im(I −Ct ) and {g ∈ H∞ : g(0) = 0} = Ker(δ0) are hyperplanes of H∞ (resp.,
of A(D)). It follows that necessarily Im(I − Ct ) = {g ∈ H∞ : g(0) = 0} (resp.,
Im(I − Ct ) = {g ∈ A(D) : g(0) = 0}).

Let u ∈ Im(I − Ct ) ∩ Ker(I − Ct ). Then u(0) = 0 and there exists λ ∈ C

such that u = λht . This yields that 0 = u(0) = λht (0) = λ. Hence, u = 0. So,
Im(I − Ct ) ∩ Ker(I − Ct ) = {0}.
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Proposition 2.3 implies that 1 ∈ σ(Ct ; H∞) = σ(Ct ; A(D)) = { 1
m+1 ; m ∈

N0} ∪ {0}. Consequently, for δ = 1
2 , all the assumptions of Theorem 1.1 (see also

Remark 1.2) are satisfied. So, we can conclude thatCt is power bounded and uniformly
mean ergodic both on H∞ and on A(D). ��

3 Continuity, compactness and spectrum of Ct acting in Hp

In this section we investigate various properties of the operators Ct when they act in
the family of Hardy spaces H p, 1 ≤ p < ∞, as well as some related Volterra type
operators. We recall a known fact which follows easily from Jensen’s inequality for
R-valued functions, [20].

Lemma 3.1 Let h : [0, 1] → C be an integrable function. For each p ≥ 1 we have

∣∣∣∣
∫ 1

0
h(s) ds

∣∣∣∣
p

≤
∫ 1

0
|h(s)|pds.

It follows from [4, Theorem 1], by substituting for g there the particular function
g(z) = z, for z ∈ D, that the Hardy operator C0 is bounded in H p for all 1 ≤ p < ∞.
We include a simple and direct proof of this fact based on Lemma 3.1.

Proposition 3.2 Let 1 ≤ p < ∞. The Hardy operator C0 : H p → H p is continuous
with operator norm ‖C0‖H p→H p = 1.

Proof Recall from (2.1) that the Hardy operator C0 : H(D) → H(D) is given by
(C0 f )(0) = f (0) for z = 0 and, for z ∈ D \ {0}, by

(C0 f )(z) = 1

z

∫ z

0
f (ξ) dξ =

∫ 1

0
f (sz) ds. (3.1)

For z ∈ D fixed, s 
→ f (sz) is continuous on [0, 1] and hence, integrable. For every
f ∈ H p and r ∈ [0, 1), Lemma 3.1 and Fubini’s theorem imply that

Mp(r ,C0 f )
p = 1

2π

∫ 2π

0
|(C0 f )(re

iθ )|p dθ = 1

2π

∫ 2π

0

∣∣∣∣
∫ 1

0
f (sreiθ ) ds

∣∣∣∣
p

dθ

≤ 1

2π

∫ 2π

0

(∫ 1

0
| f (sreiθ )|p ds

)
dθ =

∫ 1

0

(
1

2π

∫ 2π

0
| f (sreiθ )|p dθ

)
ds

=
∫ 1

0
Mp(sr , f )pds ≤ Mp(r , f )p ≤ ‖ f ‖p

p.

This implies that C0 f ∈ H p and ‖C0 f ‖p ≤ ‖ f ‖p for every f ∈ H p. So, C0 ∈
L(H p) and ‖C0‖H p→H p ≤ 1. Since h0 := 1 ∈ H p with ‖h0‖p = ‖1‖p = 1 and
C0h0 = 1 = h0, it follows that ‖C0‖H p→H p = 1. ��
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Proposition 3.3 Let 1 ≤ p < ∞. For each t ∈ (0, 1) the operator Ct : H p → H p is
continuous and its operator norm satisfies

1 ≤ ‖Ct‖H p→H p ≤ 1

1 − t
, t ∈ (0, 1). (3.2)

Actually, for p = 1, it is the case that

‖Ct‖H1→H1 ≤ − log(1 − t)

t
, (3.3)

and for 1 < p < ∞, it is the case that

‖Ct‖H p→H p ≤
[

1

t(p − 1)

(
1

(1 − t)p−1 − 1

)]1/p
. (3.4)

Proof Fix p ≥ 1 and t ∈ (0, 1). The function ht (z) = 1
1−t z , for z ∈ D, belongs to

A(D) ⊆ H∞ (see the proof of Proposition 2.4) and satisfies ‖ht‖∞ = 1
1−t , because

|ht (z)| ≤ 1
1−t and limz→1− ht (z) = 1

1−t . Since ht ∈ H∞, the multiplication operator
Mt : H p → H p defined by

Mt f := ht f , f ∈ H p,

is continuous with ‖Mt‖H p→H p ≤ ‖ht‖∞ = 1
1−t , as is well known (and routine to

verify).
Since Ct = C0 ◦ Mt (cf. (2.1) and (3.1)), it follows from Proposition 3.2 that

Ct ∈ L(H p) and that ‖Ct‖H p→H p ≤ ‖C0‖H p→H p · ‖Mt‖H p→H p = 1
1−t .

On the other hand, the function ht belongs to H p and satisfies Ctht = ht . This
yields that 1 ≤ ‖Ct‖H p→H p . Hence, (3.2) has been established.

Concerning (3.3) let p = 1. Then, for every f ∈ H1 and r ∈ [0, 1), by (1.10) and
Fubini’s theorem we obtain

M1(r ,Ct f ) = 1

2π

∫ 2π

0

∣∣∣∣
∫ 1

0

f (sreiθ )

1 − sr teiθ
ds

∣∣∣∣ dθ ≤ 1

2π

∫ 2π

0

(∫ 1

0

| f (sreiθ )|
1 − ts

ds

)
dθ

=
∫ 1

0

1

1 − ts

(
1

2π

∫ 2π

0
| f (sreiθ )|dθ

)
ds =

(− log(1 − t)

t

)
M1(r , f )

≤
(− log(1 − t)

t

)
‖ f ‖1.

Again via (1.10) it follows that ‖Ct f ‖1 ≤
(− log(1−t)

t

)
‖ f ‖1, for every f ∈ H1.

Hence, ‖Ct‖H1→H1 ≤ − log(1−t)
t which is (3.3).

Let 1 < p < ∞. Then, for every f ∈ H p and r ∈ [0, 1), by Fubini’s theorem and
Lemma 3.1 (because s 
→ f (sz)

1−stz is integrable over [0, 1] for each z ∈ D) we obtain
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via (1.10) that

Mp(r ,Ct f )
p = 1

2π

∫ 2π

0

∣∣∣∣
∫ 1

0

f (sreiθ )

1 − sr teiθ
ds

∣∣∣∣
p

dθ

≤
∫ 1

0

1

(1 − ts)p

(
1

2π

∫ 2π

0
| f (sreiθ )|pdθ

)
ds

=
∫ 1

0

1

(1 − ts)p
Mp(rs, f )pds ≤

(∫ 1

0

1

(1 − ts)p
ds

)
‖ f ‖p

p

= 1

t(p − 1)

(
1

(1 − t)p−1 − 1

)
‖ f ‖p

p.

It follows that

‖Ct‖p ≤
[

1

t(p − 1)

(
1

(1 − t)p−1 − 1

)]1/p
‖ f ‖p, f ∈ H p,

from which (3.4) follows. ��
Remark 3.4 For each 1 ≤ p < ∞ and t ∈ (0, 1) the estimate of ‖Ct‖H p→H p given in
(3.3) and (3.4) is better than the upper estimate given in (3.2). Indeed, for p = 1 we
have − log(1−t)

t < 1
1−t for every t ∈ (0, 1), as was shown in [2, Example 2.2]. For a

fixed 1 < p < ∞, observe that

[
1

t(p − 1)

(
1

(1 − t)p−1 − 1

)]1/p
<

1

1 − t
, t ∈ (0, 1), (3.5)

if and only if

1

t(p − 1)

(
1

(1 − t)p−1 − 1

)
<

1

(1 − t)p
, t ∈ (0, 1).

Therefore, the inequality (3.5) is satisfied if and only if

1 − (1 − t)p−1

t(p − 1)
· 1

(1 − t)p−1 <
1

(1 − t)p
, t ∈ (0, 1),

that is, if and only if

1 − (1 − t)p−1

t(p − 1)
<

1

1 − t
, t ∈ (0, 1). (3.6)

To show the validity of (3.6) it suffices to establish, for each α > 0, that

1 − (1 − t)α

αt
<

1

1 − t
, t ∈ (0, 1). (3.7)
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So, fix α ≥ 0 and define γ (t) = [1 − (1 − t)α](1 − t) − αt , for t ∈ [0, 1]. The
function γ is continuous in [0, 1] and differentiable in (0, 1). Furthermore, γ (0) = 0
and γ (1) = −α < 0. On the other hand, for each t ∈ (0, 1), we have

γ ′(t) = α(1 − t)α−1(1 − t) − [1 − (1 − t)α] − α

= α(1 − t)α − 1 + (1 − t)α − α

= (α + 1)[(1 − t)α − 1].

Since α > 0 and 0 < (1 − t)α < 1 for t ∈ (0, 1), it follows that (1 − t)α − 1 < 0 for
t ∈ (0, 1). Accordingly, γ ′(t) < 0 for every t ∈ (0, 1). This means that the function
γ is decreasing in [0, 1] and hence, γ (t) < γ (0) = 0 for every t ∈ (0, 1). So, we can
conclude that

γ (t) = [1 − (1 − t)α](1 − t) − αt < 0, t ∈ (0, 1),

that is,

[1 − (1 − t)α](1 − t) < αt, t ∈ (0, 1).

The previous inequality implies that (3.7) is valid. This completes the proof that (3.6)
is valid. Hence, also (3.5) is valid.

In order to establish the compactness of the operators Ct ∈ L(H p) we need to
introduce some additional operators and preliminaries.

For each 1 ≤ p ≤ ∞, define

H p
0 := { f ∈ H p : f (0) = 0}.

Accordingly, H p
0 = Ker(δ0) is a closed 1-codimensional subspace of H p. Moreover,

A0(D) := { f ∈ A(D) : f (0) = 0} is a closed 1-codimensional subspace of A(D).
Consider now the operator S : H(D) → H(D) defined by

(S f )(z) := z f (z), f ∈ H(D), z ∈ D,

which belongs to L(H(D)) and is called the forward shift. The following Lemma
3.5 concerning the forward and backward shift operators is certainly known. Observe
that the operator S−1 in the proof of Lemma 3.5 below is the restriction to the closed
subspace H p

0 of H p of the backward shift operator given by (B f )(z) := ( f (z) −
f (0))/z, for z ∈ D. This operator and its invariant subspaces on Hardy spaces have
been thoroughly investigated in [6]. We present a formulation of Lemma 3.5 which is
useful for our purposes; a proof is included for the sake of completeness.

Lemma 3.5 Let 1 ≤ p ≤ ∞. Then S ∈ L(H p) with ‖S‖H p→H p = 1 and S(H p) =
H p
0 . Moreover, the operator S is injective with the inverse operator S−1 : S(H p) →

H p continuous and satisfying ‖S−1‖S(H p)→H p = 1.
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The operator S ∈ L(A(D)) with operator norm ‖S‖A(D)→A(D) = 1 and
range S(A(D)) = A0(D). Moreover, S is injective with the inverse operator
S−1 : S(A(D)) → A(D) continuous and satisfying ‖S−1‖S(A(D))→A(D) = 1.

Proof Consider first the case 1 ≤ p < ∞. Given f ∈ H p and r ∈ [0, 1) we have

Mp(r , S f )
p = 1

2π

∫ 2π

0
|reiθ f (reiθ )|p dθ ≤ 1

2π

∫ 2π

0
| f (reiθ )|p dθ = Mp(r , f )p.

Accordingly, ‖S f ‖p ≤ ‖ f ‖p, which implies that S ∈ L(H p) and ‖S‖H p→H p ≤ 1.
Moreover, for every n ∈ N, observe that

‖zn‖p = sup
0≤r<1

Mp(r , z
n) = sup

0≤r<1

(
1

2π

∫ 2π

0
|(reiθ )n|p dθ

)1/p

= sup
0≤r<1

rn = 1

and that S(zn) = zn+1, from which we can conclude that ‖S‖H p→H p = 1.
Clearly, S is injective and satisfies S(H p) ⊆ H p

0 .
To show that S(H p) = H p

0 and that the inverse operator S−1 : S(H p) → H p is
continuous, we proceed as follows.

Given g ∈ H p
0 , let f (z) := g(z)

z = g(z)−g(0)
z−0 , for z ∈ D. Clearly f ∈ H(D) as

z = 0 is a removable singularity of f by setting f (0) := g′(0). On the other hand, for
every r ∈ (0, 1), we have

Mp(r , f )p = 1

2π

∫ 2π

0
| f (reiθ )|p dθ = 1

2π

∫ 2π

0

|g(reiθ )|p
r p

dθ = 1

r p
Mp(r , g)

p

It follows from (1.10) that f ∈ H p with g = S f and ‖ f ‖p ≤ ‖g‖p. Hence, S(H p) =
H p
0 (in particular S(H p) is closed in H p) and the inverse operator S−1 : S(H p) → H p

is continuous. Moreover, ‖S−1‖S(H p)→H p = 1 because ‖S−1g‖p = ‖ f ‖p ≤ ‖g‖p

and the function g0(z) := z, for z ∈ D, belongs to H p
0 and satisfies ‖g0‖p = 1 with

S−1g0 = 1.
The case p = ∞ follows along the same lines. We only observe that

‖S f ‖∞ = sup
z∈D

|z f (z)| ≤ sup
z∈D

| f (z)| = ‖ f ‖∞, f ∈ H∞,

and that ‖S1‖∞ = ‖g0‖∞ = 1. So, S ∈ L(H∞) and ‖S‖H∞→H∞ = 1.
Moreover, if g ∈ H∞

0 , then the function f (z) := g(z)
z , for z ∈ D\{0}, and f (0) :=

g′(0) belongs to H∞ (see above) and satisfies, for each k ∈ N and r ∈ ( k
k+1 , 1), the

inequality

M∞(r , f ) = max|z|=r

∣∣∣∣g(z)z

∣∣∣∣ ≤ k + 1

k
M∞(r , g).

It follows that ‖ f ‖∞ ≤ k+1
k ‖g‖∞ for every k ∈ N. This implies that f ∈ H∞ with

g = S f and ‖ f ‖∞ ≤ ‖g‖∞. Now proceed as for H p with 1 ≤ p < ∞.
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Concerning A(D), note that it is a closed, invariant subspace of S : H∞ → H∞
and so S ∈ L(A(D)) with ‖S‖A(D)→A(D) ≤ 1. Since 1 ∈ A(D) satisfies ‖S1‖∞ =
‖g0‖∞ = 1, it follows that ‖S‖A(D)→A(D) = 1, Clearly S(A(D)) ⊆ A0(D). As
for H∞ it can be verified that S(A(D)) = A0(D), that S is injective and that
‖S−1‖S(A(D))→A(D) = 1. ��
Remark 3.6 It follows from ‖S‖H p→H p = 1, for each 1 ≤ p ≤ ∞, that the operator
S : H p → H p

0 also satisfies ‖S‖H p→H p
0

= 1.

We now investigate a further class of operators. For a fixed g ∈ H(D), let us
consider the operators Vg : H(D) → H(D) and Tg : H(D) → H(D) defined by

(Vg f )(0) := f (0), (Vg f )(z) := 1

z

∫ z

0
f (ξ)g′(ξ) dξ, f ∈ H(D), z ∈ D \ {0},

(3.8)
and

(Tg f )(z) :=
∫ z

0
f (ξ)g′(ξ) dξ, f ∈ H(D), z ∈ D. (3.9)

Note that (Tg f )(0) = 0 for each f ∈ H(D). The operators Vg and Tg are called
Volterra-type operators. Both operators Vg and Tg act continuously in H(D). They
have been investigated on different spaces of holomorphic functions by many authors.
We refer to [7, 23] and the references therein.

The important connection to this paper is that the generalized Cesàro operators
Ct ∈ L(H(D)), for t ∈ (0, 1), are Volterra type operators of the kind Vg for suitable
functions g. Indeed, fix t ∈ (0, 1). Given f ∈ H(D), by (1.5) we have that (Ct f )(0) =
f (0) and

(Ct f )(z) = 1

z

∫ z

0

f (ξ)

1 − tξ
dξ = 1

z

∫ z

0
f (ξ)

1

1 − tξ
dξ

= 1

z

∫ z

0
f (ξ)

(− log(1 − tξ)

t

)′
dξ, z ∈ D \ {0},

where the function

gt (z) := − log(1 − t z)

t
=

∞∑
n=0

tn

n + 1
zn (3.10)

is holomorphic on B(0, 1/t) with 1/t > 1. Since D ⊆ B(0, 1/t), we can conclude
that gt ∈ A(D) ⊆ H(D). Accordingly,

Ct f = Vgt f , f ∈ H(D). (3.11)

Topological properties such as continuity and (weak) compactness of the operators
Vg and Tg , for g ∈ H(D), when acting in H p are related to each other as the following
result shows.
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Lemma 3.7 Let g ∈ H(D) and 1 ≤ p ≤ ∞. Then Vg : H p → H p is continuous (resp.
compact, resp. weakly compact) if and only if Tg : H p → H p is continuous (resp.
compact, resp. weakly compact). In the case of continuity we have ‖Tg‖H p→H p =
‖Vg‖H p→H p .

Proof Fix1 ≤ p ≤ ∞.Assumefirst thatVg ∈ L(H p). ByLemma3.5 the forward shift
operator S ∈ L(H p) and so also Tg = S ◦Vg belongs to L(H p). Conversely, suppose
that Tg : H p → H p is continuous. Clearly, Tg(H p) ⊆ H p

0 and Tg : H p → H p
0 is

also continuous. Since the inverse operator S−1 : H p
0 → H p exists and is continuous,

the operator Vg = S−1 ◦ Tg belongs to L(H p). The proof for the compactness (resp.
weak compactness) follows along the same lines.

From the fact that ‖S‖H p→H p
0

= ‖S−1‖H p
0 →H p = 1 (cf. Lemma 3.5 and Remark

3.6), together with Tg = S ◦ Vg and Vg = S−1 ◦ Tg , it follows that ‖Tg‖H p→H p =
‖Vg‖H p→H p . ��

The following definitions play an important role; see [24] for more details. The
space BMOA consists of all functions f ∈ H2 such that

| f (0)| + sup
a∈D

‖ f ◦ φa − f (a)‖2 < ∞,

where φa , for a ∈ D, is the family of Möbius automorphisms of D given by φa(z) :=
z−a
1−az , for z ∈ D. The space V MOA consists of all functions f ∈ BMOA satisfying

lim|a|→1
‖ f ◦ φa − f (a)‖2 = 0.

The space V MOA is the closure of the polynomials in BMOA, [12, Theorem 5.5].
In particular, H∞ ⊆ BMOA and A(D) ⊆ V MOA, [12, Theorem 5.5 and Remark
5.2].

The following result collects together various facts concerning the operators Tg
when they act in the H p-spaces.

Theorem 3.8 Let 1 ≤ p < ∞.

(i) The operator Tg : H p → H p is compact if and only if g ∈ V MOA. In particular,
if g ∈ A(D), then both Tg : H p → H p and Vg = S−1 ◦ Tg : H p → H p are
compact.

(ii) Let t ∈ (0, 1). The generalized Cesàro operator Ct : H p → H p is compact.
Hence, also the operator St := Tgt = S ◦Ct : H p → H p is compact, where gt is
given by (3.10).

For part (i) of Theorem 3.8 we refer to [4] and, for all p > 0, to [3]; see also
[23, Corollary 4.2]. Part (ii) of Theorem 3.8 follows from part (i) after recalling (see
(3.11)), for each t ∈ [0, 1), that Ct = Vgt with gt ∈ A(D).

Compactness criteria for the operators Tg on both H∞ and on A(D) are formulated
in the following result.

Theorem 3.9 (i) Let g ∈ H(D) and Tg : H∞ → H∞ be weakly compact. Then
g ∈ A(D).
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(ii) For g ∈ H(D) the following statements are equivalent.

(a) Tg : H∞ → H∞ is compact.
(b) Tg : A(D) → A(D) is compact.
(c) Tg : H∞ → A(D) is compact.
(d) Tg : A(D) → H∞ is compact.

If either one of (a)–(d) holds, then necessarily g ∈ A(D).

We point out that parts (i) and (ii) of Theorem 3.9 are, respectively, Theorem 1.4
and Theorem 1.7 in [7]. The statement in part (ii) that g ∈ A(D) follows from part (i).

Proposition 3.10 Let t ∈ [0, 1). Then Ct (H∞) ⊆ A(D).

Proof Fix t ∈ [0, 1). By Proposition 2.2 the operator Ct = Vgt : H∞ → H∞ is
compact and hence, by Lemma 3.7 the operator Tgt : H∞ → H∞ is compact, where
gt is given in (3.10). So, Theorem 3.9(ii) ensures that the operator Tgt : A(D) →
A(D) is also compact and satisfies Tgt (H

∞) ⊆ A(D). Since (Tgt f )(0) = 0, for
every f ∈ H(D), actually Tgt (A(D)) ⊆ A0(D). Moreover, Lemma 3.5 shows that
S−1 : A0(D) → A(D) continuously. Hence, Ct = Vgt = S−1 ◦ Tgt : A(D) → A(D)

is compact and Ct (H∞) = Vgt (H
∞) = S−1(Tgt (H

∞)) ⊆ A(D).

We are now able to calculate the spectrum of the generalized Cesàro operator Ct

and of the operator St = S ◦ Ct , for t ∈ [0, 1), when they act in H p.

Proposition 3.11 Let 1 ≤ p < ∞. For each t ∈ [0, 1) the spectra of Ct ∈ L(H p) are
given by

σpt (Ct ; H p) =
{

1

m + 1
: m ∈ N0

}
, (3.12)

and

σ(Ct ; H p) =
{

1

m + 1
: m ∈ N0

}
∪ {0}. (3.13)

Proof Let 1 ≤ p < ∞ and t ∈ [0, 1) be fixed. Recall, by [2, Proposition 3.7],
that the point spectrum of Ct ∈ L(H(D)) is given by σpt (Ct ; H(D)) = { 1

m+1 :
m ∈ N0}. Since A(D) ⊆ H p ⊆ H(D) with continuous inclusions, we obtain that
σpt (Ct ; A(D)) ⊆ σpt (Ct ; H p) ⊆ σpt (Ct ; H(D)). Then Proposition 2.3 implies the
validity of (3.12).

Finally, (3.13) follows from the fact that Ct is a compact operator on H p; see
Theorem 3.8(ii). ��
Proposition 3.12 Let 1 ≤ p < ∞. For each t ∈ [0, 1) the spectra of St ∈ L(H p) are
given by

σpt (St ; H p) = ∅; σr (St ; H p) = {0}; σc(St ; H p) = ∅. (3.14)

In particular, σ(St ; H p) = {0}.
Proof Let 1 ≤ p < ∞ and t ∈ (0, 1) be given. For a fixed λ ∈ C \ {0} the equation
λ f − St f = 0 yields, after differentiation, that λ f ′(z) = f (z)

1−t z for z ∈ D, which has
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the solutions f (z) = A(1 − t z)−1/(tλ) for constants A ∈ C. Moreover, St f = λ f
together with St (H p) ⊆ H p

0 implies that f (0) = 0, that is, A = 0 and hence, f ≡ 0.
For t = 0 and λ ∈ C\{0}we consider the solutions of λ f − S0 f = 0, for f ∈ H p.

From the definition of S0 this equation reduces to
∫ z
0 f (ξ)dξ = λ f (z). Differentiating

yields f ′(z) = 1
λ
f (z) and so f (z) = Bez/λ for some B ∈ C. Since (S0h)(0) = 0 for

every h ∈ H(D), it follows that B = 0. Hence, f ≡ 0 is the only solution.
Finally, for λ = 0 the equation St f = 0 implies f ≡ 0 as both S ∈ L(H p) and

Ct ∈ L(H p) are injective.
So, we have established that σpt (St ; H p) = ∅.
Since the operator St ∈ L(H p) is compact (cf. Theorem 3.8(ii)), it follows that

σ(St ; H p) = σpt (St ; H p) ∪ {0} = {0}. Moreover, St is injective and St (H p) =
(S ◦ Ct )(H p) ⊆ S(H p) ⊆ H p

0 show that St (H p) is not dense in H p. Hence, 0 ∈
σr (St ; H p). The proof of (3.14) is thereby complete. ��

Our final result establishes certain linear dynamic features of Ct and St .

Proposition 3.13 Let 1 ≤ p < ∞. For each t ∈ [0, 1) both of the operators Ct ∈
L(H p) and St ∈ L(H p) are power bounded, uniformly mean ergodic and fail to be
supercyclic.

Proof Fix t ∈ [0, 1). The operatorCt is compact in H p by Theorem 3.8(ii). Therefore,
the transpose operator C ′

t ∈ L((H p)′), which is also compact, has the same non-zero
eigenvalues asCt ; see [11, Theorem 9.10–2(2)]. In view of Proposition 3.11 it follows
that σpt (C ′

t ; (H p)′) = { 1
m+1 : m ∈ N0}. So, we can apply [5, Proposition 1.26] to

conclude that Ct is not supercyclic on H p.
Arguing as in the proof of Proposition 2.4 one shows that Im(I−Ct )∩Ker(I−Ct ) =

{0}. On the other hand, Proposition 3.11 implies that 1 ∈ σ(Ct ; H p) = { 1
m+1 ; m ∈

N0} ∪ {0}. Consequently, for δ = 1
2 , all the assumptions of Theorem 1.1 are satisfied;

see also Remark 1.2. So, we can conclude that Ct is power bounded and uniformly
mean ergodic on H p.

The operator St ∈ L(H p) is also power bounded and uniformly mean ergodic.
Indeed, Proposition 3.12 implies that its spectral radius r(St ; H p) = 0. On the other
hand, it is known that also r(St ; H p) = limn→∞(‖Snt ‖H p→H p )1/n ; see pp.234–235
of [21] for the unital Banach algebra A := L(H p). Accordingly, ‖Snt ‖H p→H p → 0
as n → ∞ and so St is surely power bounded.

Given f ∈ H p, its projective orbit satisfies

{λSnt f : λ ∈ C, n ∈ N0} ⊆ span({ f }) ∪ {λSnt f : λ ∈ C, n ∈ N}.

But, Snt (H p) ⊆ H p
0 for all n ∈ N and so

{λSnt f : λ ∈ C, n ∈ N0} ⊆ span({ f }) ∪ H p
0 . (3.15)

Since both span({ f }) and H p
0 are proper closed subsets of H p, also their union is a

proper closed subset of H p. It follows from (3.15) that the projective orbit of f cannot
be dense in H p. Since f ∈ H p is arbitrary, we can conclude that St is not supercyclic.

��
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