European Journal of Operational Research xxx (xxxx) Xxx

o

Contents lists available at ScienceDirect UROPEAN JOURNAL OF

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Invited Review

A review and ranking of operators in adaptive large neighborhood search for
vehicle routing problems

Stefan Voigt
Catholic University of Eichstdtt-Ingolstadt, Ingolstadt School of Management, Auf der Schanz 49, 85049 Ingolstadt, Germany

ARTICLE INFO ABSTRACT

Keywords: This article systematically reviews the literature on adaptive large neighborhood search (ALNS) to gain insights

Metaheuristics into the operators used for vehicle routing problems (VRPs) and their effectiveness. The ALNS has been

R”um}g) successfully applied to a variety of optimization problems, particularly variants of the VRP. The ALNS gradually

gdapntve large neighborhood search improves an initial solution by modifying it using removal and insertion operators. However, relying solely on
perators

adaptive operator selection is not advisable. Instead, authors often conduct experiments to identify operators
that improve the solution quality or remove detrimental ones. This process is mostly cumbersome due to the
wide variety of operators, further complicated by inconsistent nomenclature. The objectives of this review are
threefold: First, to classify ALNS operators using a unified terminology; second, to analyze their performance;
and third, to present guidelines for the development and analysis of ALNS algorithms in the future based on the
outcomes of the performance evaluation. In this review, we conduct a network meta-analysis of 211 articles
published between 2006 and 2023 that have applied ALNS algorithms in the context of VRPs. We employ
incomplete pairwise comparison matrices, similar to rankings used in sports, to rank the operators. We identify
57 distinct removal and 42 insertion operators, and the analysis ranks them based on their effectiveness.
Sequence-based removal operators, which remove sequences of customers in the current solution, are found to
be the most effective. The best-performing insertion operators are those that exhibit foresight, such as regret
insertion operators. Finally, guidelines and possible future research directions are discussed.

1. Introduction literature. Some of these operators are tailored to a specific problem,
while others can be applied to VRPs in general and also be applicable
to the problem the authors try to solve with their ALNS. It is not recom-
mended to solely rely on the adaptive selection of operators during the
search, as the performance might be poor if a wrong set of operators
is chosen to start with. In order to select a well-performing set of
operators, it is necessary to implement and test multiple operators. The
performance of a specific operator is typically evaluated by comparing
the results obtained when solving a set of benchmark instances with
and without the operator. The process of selecting operators from the
literature is further complicated by inconsistent nomenclature. Some
operators have the same name, but are implemented differently, or
have different names but are in fact identical. Additionally, many
operators can be randomized, which increases the number of possible
configurations.

This study employs a network meta-analysis to systematically re-
view operators. A network meta-analysis is a statistical approach that

The adaptive large neighborhood search (ALNS) is a metaheuristic
proposed by Ropke and Pisinger (2006a) which extends the large neigh-
borhood search (LNS) of Shaw (1998). The LNS iteratively destroys
and repairs a solution by applying one destroy and subsequently a
repair operator. The ALNS in contrast, allows multiple problem-specific
operators that are chosen depending on their performance during the
search. The ALNS has been applied to a wide variety of optimization
problems, with a particular emphasis on vehicle routing problems
(VRPs) (e.g. Hemmelmayr et al., 2012; Masson et al., 2013; Ropke &
Pisinger, 2006a). It has also been applied to scheduling problems (e.g.
Liu et al., 2017; Wen et al., 2016), and to more exotic applications, such
as service deployment problems in a cloud computing context (Gullhav
et al., 2017). We however, focus in this review on ALNSs for VRPs (see
Appendix A for a short description and notation of basic VRP variants).

The performance of the ALNS is dependent on the choice of destroy
and repair operators. This is underscored by authors who dedicate
substantial efforts to the development and rigorous testing of these
operators when implementing an ALNS for a particular problem. This
process can be tedious as many operators have been proposed in the

E-mail address: stefan.voigt@ku.de.

https://doi.org/10.1016/j.ejor.2024.05.033
Received 22 June 2023; Accepted 16 May 2024
Available online 18 May 2024

summarizes research and compares multiple treatments used in various
studies. Our study is inspired by the works of Mara et al. (2022)
and Turkes et al. (2021). Mara et al. (2022) reviewed research on the
ALNS in general and highlighted the need for a rigorous analysis of
operators. Turkes et al. (2021) conducted the first meta-analysis in OR

0377-2217/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Please cite this article as: Stefan Voigt, European Journal of Operational Research, https://doi.org/10.1016/j.ejor.2024.05.033

https://www.elsevier.com/locate/eor
https://www.elsevier.com/locate/eor
mailto:stefan.voigt@ku.de
https://doi.org/10.1016/j.ejor.2024.05.033
https://doi.org/10.1016/j.ejor.2024.05.033
http://creativecommons.org/licenses/by/4.0/

S. Voigt

on the adaptiveness of the ALNS. In contrast to their work, our study
goes further by comparing not just two (i.e., ALNS versus non-adaptive
LNS) but several treatments (i.e., several operators).

This review contributes to the literature as follows.

1. We classify existing operators and propose a consistent nomen-
clature, which helps to clarify the terminology used in the
literature and facilitates the comparison of different operators.

2. We conduct a rigorous analysis of the performance of differ-
ent operators. This analysis provides insights into the relative
strengths and weaknesses of different operators, which can help
researchers to make informed decisions when selecting operators
for their specific problem.

3. We identify key design principles of well-performing ALNS im-
plementations, which can serve as guidelines for designing fu-
ture ALNS implementations.

4. We discuss guidelines and further avenues for research not only
for the ALNS but for metaheuristics in general.

The remainder of this paper is organized as follows: Section 2
describes the ALNS framework and implementation variants found in
the literature. Section 3 offers a comprehensive and detailed description
of the research methodology employed in this study, which can be
characterized as a network meta-analysis. We classify and rank removal
and insertion operators through the network meta-analysis in Section 4
and Section 5, respectively. Section 6 elaborates on guidelines for
implementing, evaluating, and selecting operators. Section 7 discusses
research opportunities. Finally, Section 8 summarizes the findings and
concludes the work.

2. Adaptive large neigborhood search
This section briefly describes the framework of the ALNS and high-

lights implementation variants found in the literature. Algorithm 1
depicts the general framework.

Input : Starting solution s // Starting solution

Output: Best solution s*

1 5«5

2 while stop condition is not met do // Stop condition
3 Remove(), Insert() < ChooseOperators() // Selection of

operators

4 (s"¥, C) « Remove(s, q) // Removal
5 s Insert(s™",C’) // Insertion
6 s"V « LocalSearch(s"") // Optional local search
7 if f(s"V) < f(s*) then // Acceptance criteria
8 ‘ §F e MW g gnew

9 else if accept(f(s"")) then

10 ‘ § « sV

11 end

12 UpdateParameters() // Parameter update
13 end

Algorithm 1: Adaptive large neighborhood search framework

The ALNS starts with an initial solution s, which may simply be
obtained by applying repair operators or by any means of a construction
heuristics. The solution s may be required to be feasible or can also be
allowed to be infeasible with respect to constraints using a generalized
cost function. A generalized cost function calculates the objective as
the sum of costs and a penalty depending on the degree of violations.
The ALNS proceeds until a stop condition is met. For instance, the
ALNS may stop after a predefined runtime, after a number of iterations
without improvement, or after reaching a final temperature in case of
simulated annealing.

At the beginning of each iteration, destroy and repair operators are
chosen with a roulette wheel selection. Usually, only one destroy/repair
operator is chosen during one iteration. The only exception is the
combined removal operator of Voigt and Kuhn (2021), where several
operators may be used during one iteration. The operators may be

European Journal of Operational Research xxx (xxxx) xxx

selected independently (i.e., there are two roulette wheels, one for
destroy and one for repair operators) or pair-wise (i.e., there is only
one roulette wheel, selecting a destroy-repair pair). As the focus is on
ALNSs for VRPs, we will further use the more specific terms removal
and insertion instead of the more general terms destroy and repair. The
terms removal and insertion are particular appropriate in the context of
VRPs as the solution is improved by removing and inserting customers,
requests, or nodes. The design of operators is a crucial aspect of each
ALNS, as it determines the solution quality. Section 4 discusses removal
operators and Section 5 insertion operators in detail.

After the adaptive selection of operators, a set of ¢ customers C
is removed from s using the chosen removal operator, resulting in an
incomplete solution s"¥. The chosen insertion operator places some or
all of the removed customers (customer bank, C’) back into the solution
shew,

Some authors enhance the ALNS by applying local search methods
such as 2-opt, after the removed customers have been reinserted. The
local search may be executed either each time, if the objective value
of s"V, i.e., f(s"V) is strictly lower, or within a certain range of the
previous best solution f(s*).

The solutions are updated if the objective value f(s"V) is lower
in case of a minimization problem. Worse solutions may be accepted
depending on the acceptance criteria used (e.g., simulated annealing,
record-to-record, hill climbing).

Lastly, the parameters are updated, either after each iteration or
after a certain number of iterations, i.e., after a search segment. The
parameter update mainly concerns the weights and probabilities for
selecting operators. Please, see the meta-analysis of Turkes et al. (2021)
which discusses the adaptive weight adjustment and its benefit in more
detail.

In summary, ALNS implementations vary by characteristics given
in Table 1. Please note that this is not an exhaustive list, but rather
highlights some of the more commonly encountered concepts.

Despite the various design decisions that must be made, a significant
effort should be invested into the development of operators. In the fol-
lowing section, the research methodology to review and rank operators
via a network meta-analysis is described.

3. Research methodology: Network meta-analysis for reviewing
and ranking operators

Our objective is to conduct a comprehensive review and classi-
fication of operators utilized in ALNS for solving VRPs, ultimately
identifying the most successful ones. Traditional literature reviews that
solely rely on classifying operators and examining their frequency of
usage can be misleading. This is because the most frequently used op-
erators may not necessarily be the best choice in terms of performance.
To address this, a network meta-analysis approach is employed, which
offers a more robust evaluation method.

A meta-analysis involves a systematic review of research, supple-
mented by statistical methods, to summarize the outcomes of included
studies (Moher et al., 2009). Typically, meta-analyses compare two
treatment alternatives, for example the first meta-analysis in the field
of OR by Turkes et al. (2021) compares the ALNS with and without
adaptive operator selection. However, in our review, more than two
treatments are compared as ALNSs generally use several operators.
Therefore, our review can be classified as a network meta-analysis (Hut-
ton et al.,, 2015). This approach allows to go beyond conventional
literature reviews and provides a more rigorous assessment of the
performance of operators. In the following, Section 3.1 describes the
identification and review of literature, Section 3.2 details the ranking
of operators based on their performance, and Section 3.3 discusses
potential biases and limitations.

S. Voigt

Table 1
Components of ALNS and their variants.

European Journal of Operational Research xxx (xxxx) xxx

Component

Variants

Search space

Only feasible solutions
Infeasible solutions penalized by a generalized cost function

Starting solution (line 1 of Alg. 1)

Insertion operator
Construction heuristics

Runtime

Number of iterations

Stop condition (line 2)

Number of iterations without improvement

Temperature in simulated annealing

Selection of operators (line 3)

Independent selection
Pair-wise selection

Operators (lines 4 and 5)

Number and type of removal operators
Number and type of insertion operators

None
Local search (line 6)

When criteria is met

All solutions

Simulated annealing

Acceptance criteria (lines 7-10)

Record-to-record

Hill climbing

Parameter update (line 12)

After every iteration
After a search segment

3.1. Identification and review of studies

We identify relevant studies by searching for publications with
adaptive large neighborhood search in the title on Google Scholar fol-
lowing the procedure of Turkes et al. (2021). In addition, we search
for articles with adaptive large neighborhood search or ALNS as key-
words in SCOPUS following the procedure of Mara et al. (2022). The
search is restricted to contributions in English and published in a peer-
reviewed academic journal, i.e., proceedings, theses, etc. are excluded.
Furthermore, records that do not cover VRPs are excluded. Then, we
review the 211 studies identified (see Online Appendix for the list) in
a chronological order and classify operators used within these studies.

3.2. Ranking

We create a ranking of operators based on their performance in
identified studies. First, we briefly describe how the performance of
operators is usually examined within studies. The two most common
methods are the frequency-based and ablation-based performance anal-
ysis. Second, we describe our ranking method based on pairwise com-
parisons across a set of studies.

3.2.1. Commonly used performance-analysis within studies
Frequency-based performance analysis. The frequency-based performance
analysis shows the number of times the operators have been applied
when solving a set of test instances. The more successful an operator,
the more frequently it is applied during one run. Pairwise comparisons
of the operators can be derived from the frequencies given. Table 2
shows an example with three operators and the resulting pairwise
comparisons in Table 3. w;; € {0,1} indicates the outcome of the
pairwise comparison of operator i against operator j. The variable w; ;
equals 1 if operator i wins against operator j, it equals 0 if i loses
and is undefined if there is a draw. The most frequently used operator
(Operator 3) wins against the other operators denoted by two 1s in
Table 3.

Ablation-based performance analysis. The ablation-based performance
analysis assesses the performance of the operator by comparing the
results when the operator is present compared to when the operator
is excluded from the ALNS. In this case, pairwise comparisons of the
operators are derived by their relative impact on solution quality. Op-
erator i is considered to win the pairwise comparison against operator
j if the gap increases more when operator i is excluded compared to
the case where operator j is excluded.

Table 2
Frequency-based performance.
Operator Frequency
Operator 1 4000
Operator 2 6000
Operator 3 10000
Table 3

Pairwise comparison: wins of operator i against j.

\ Operator 1 Operator 2 Operator 3
1
Operator 1 - 0 0
Operator 2 1 - 0
Operator 3 1 1 -

3.2.2. Ranking of operators across studies based on incomplete comparison
matrices

The methods used to evaluate the performance of operators within
individual studies are not suitable for ranking across multiple studies.
This is because it would be impractical to implement and test all
identified operators on numerous problems and benchmark instances.
Therefore, a network meta-analysis approach is employed to rank the
operators across studies.

Network meta-analyses in the medical field typically use statistical
analysis based on effect sizes with corresponding standard errors to de-
rive a ranking between treatments. However, we refrain from applying
a sound statistical analysis for the following reasons. First, authors do
not report standard errors on their experiments. Second, effect sizes of
the frequency-based and ablation-based experiments are not comparable.
In fact it is even questionable, if it is possible to compare effect sizes
within one type of experiment. Consider for example two studies A
and B, which execute their ALNSs for a different number of iterations
and report the average performance when an operator is or is not
present. A may execute 100,000 iterations, while B only executes 100
iterations. The differences in performance between operators (i.e., the
effect size) may be smaller in A compared to B, as the probability of
finding better solutions even with inefficient operators increases with
longer runtimes. Consider another experiment where study C has only
few operators and study D a large set. One expects that the effect size
is smaller in D, as it is more likely that one of the operators in D may
compensate for an excluded operator.

S. Voigt

Instead of quantifying an effect size, we conduct pairwise com-
parisons for each operator in every study. We then use the pairwise
comparisons of operators extracted from the studies to construct a
pairwise comparison matrix and ultimately derive a ranking of the per-
formance of operators. The ranking of operators based on an incomplete
comparison matrix is not trivial and has some similarities to ranking
teams or players in sports. For example Bozoki et al. (2016) compared
the performance of tennis players over a period of 40 years, where
some players never played against each other, while others played more
than 30 times against each other. In the following, a brief overview is
given of the method used to rank operators based on an incomplete
comparison matrix. For a more detailed explanation see Bozdki et al.
(2016, 2010).

Every article k in the set of articles K analyzed gives a value for
- as shown in Table 3 (of course only when the operators i and j are
present in the respective article and their performance is analyzed).

k

Let x; ; represent the number of comparlsons where operator i was
better than operator j. Then, x;; = X« w,.,j. Let y;; denote the
number of comparisons where operator i was worse than operator j,
and z;; indicate the total number of comparisons (excluding draws)
between operator i and j with z; ; = x; ; + y, e
o . If the ratio g;; > 1, then
operator i is considered to be better than operator j. If operator i always
wins against j (i.e., it never loses y;; = 0, z;; > 0), the ratio would be
undefined, so we assume a;; = x;; +2 (Bozoki et al., 2016). If there is

no comparison between operator i and j (z;; = 0) the value is missing.

X
We construct the win-loss ratio a;; =

} a2 413 e Aip
E 1 a3 azvn
=L L nxn
A= 0 o I ... a,|€eR} @
T T
aln a.n a3z " !
The matrix A is called pairwise comparison matrix, if a;; = 1
and q;; = HL Vi,j € 1,...,n. A is then used to determine a weight
sk .
vector w = (w, Wy, ..., W,), where the elements g, ; are estimated as
% subject to the constraint), w; = 1. The weights w; basically

C(;ndense all the pairwise comparisons such that the ratio of weights

—L approximates g, ; as well as possible. In other words, w reflects the
rankmg of operators, the higher the weight w; the better the operator
i.

We use the logarithmic least squares method to determine w. The
minimization problem as shown below has a unique solution and is
solvable if certain conditions are fulfilled (the interested reader is
referred to Bozoki et al., 2010, p. 328-330 for a full description of the
method and an illustrative example).

2
min z [logai,j—log<%>] 2)
J

(O
n
Yw =1 (3)
i=1

w; >0 Vi€l ...,n 4)

The objective (2) aims to minimize the sum of squared deviations

of the actual win-loss ratio g, ;

and the estimated weight ratio %
Constraint (3) make sure that the weights are standardized, i.e., tﬂe
sum equals one. Constraints (4) define the weights to be larger zero.
Before applying the methodology just described for identifying, clas-
sifying and ranking removal operators in Section 4 and repeating the
same process for insertion operators in Section 5 biases and limitations

are discussed in the following subsection.

European Journal of Operational Research xxx (xxxx) xxx

3.3. Biases and limitations

There are several sources of bias across studies (publication, search
and selection bias) and bias within studies as also explained in detail
in Turkes et al. (2021). In the following, sources of bias are discussed
and evaluated whether they pose an issue in our meta-analysis.

+ Publication bias occurs because positive results are more likely
to be published, leading to an overestimation of the effect size.
This is not an issue for our type of meta-analysis because we are
interested in the performance of operators from positive results,
i.e., in the ranking of operators from well-performing ALNSs.
Therefore, it is reasonable to restrict our search to publications
in peer-reviewed academic journals, assuming that the quality of
ALNSs is superior in journals.

Search bias occurs when a faulty search leads to missing relevant
studies. We search only for records with ALNS in the title or in
the keywords and therefore may miss several relevant studies.
This search procedure may still be reasonable as authors often
include the name of the metaheuristic in the title or keyword if
there is a significant methodological contribution. We believe that
it is unlikely that the subset of studies with ALNS in the title or
keyword shows a significant different ranking of operators as the
whole set of studies using an ALNS (without ALNS explicitly in
the title/keyword). Therefore, the risk that this search procedure
introduces a significant bias on the ranking of operators is low.
Selection bias arises when eligibility criteria are not clearly
mentioned or poorly defined, leading to some studies that may
favor a particular result being overly represented. We defined
a clear set of eligibility criteria and include as many studies as
possible by allowing two types of performance analyses.

There may be bias within the individual studies when evaluat-
ing the performance of operators because authors often only show
results for the “final” ALNS, i.e., the version that they propose to
solve the problem under consideration. This means that the reader
gets no information on other (less efficient) operators that were
implemented and tested but did not make it into the final ALNS.
Therefore, it is likely that there were more pairwise comparisons
made. This could lead to an overestimation of the performance of
less efficient operators, because we do not see the cases where
these operators lost. For more efficient operators, this risk is
lower, as it is more likely that these operators are included and
their performance is analyzed. As we are more interested in the
higher ranking operators, this bias should only slightly affect our
results.

In addition to the sources of bias previously listed, there are some
limitations to our meta-analysis that are outlined in the following.

* Our main assumption is that we can rank operators more or
less independent of the problem under consideration (as long
as there is a routing component). However, it is possible that
the performance of operators depends to a larger extent on the
problem. For example, an operator that does not work for one
problem may be beneficial for another one. Nevertheless, we are
confident that operators that are more efficient on average can
be identified. However, it is still up to the researcher to also
test lower-ranked operators if there is evidence (based on the
problem) that the operator may work efficiently.

The version of the ALNS implemented may have an effect on the
performance of the operators.

Similarly, the parameter settings for the operators effect their
performance. For example, the number of customers removed
may significantly influence the performance of an operator.

S. Voigt

» Both types of performance analyses, i.e., the frequency-based
and ablation-based analysis, have their own limitations. The
frequency-based performance analysis is in some cases not stable,
i.e., the frequencies of the usage of operators may vary signif-
icantly between runs as pointed out by Mara et al. (2022). In
addition, both types of analysis neglect the trade-off between
runtime and solution quality. For example, an insertion operator
that evaluates all insertion positions of a customer in all routes
is computationally more demanding compared to an insertion
operator that evaluates only the insertion positions in one route
randomly chosen, but it is likely that the unrestricted operator
improves on the solution quality (and therefore is chosen more
often).

In our analysis, we assume that the results presented in the liter-
ature are the ground-truth. This assumption is of course highly
questionable. The experiments in the literature are conducted
on a subset of instances for a limited number of replications.
Additionally, the differences in performances are mostly not large,
as the ALNSs are usually still able to find good solutions even if
one operator is excluded. Therefore, it is uncertain if the pairwise
comparisons are true.

There is interaction between operators that is not captured thro-
ugh frequency-based or ablation-based performance analyses. For
example operator A may only work well in interaction with
operator X, Y, Z because A aims at intensification and X, Y, Z
at diversification.

4. Classification and ranking of removal operators

A removal operator removes a number ¢ of customers from a given
solution s. The goal is to either intensify the search in promising areas
or to diversify the search and explore new regions of the search space.

Classification. Removal operators vary in how they determine the set
of removed customers. We classify removal operators according to the
amount of information they use to determine this set. Simple removal
operators do not use information on current or previous solutions (Sec-
tion 4.1). More advanced operators use information derived from the
current solution, either removing customers (Section 4.2) or complete
routes (Section 4.3). The most advanced operators use information from
the current and previous solutions, taking the history of the search into
account (Section 4.4).

Naming convention. We suggest using a consistent and informative
naming convention. The convention consists of four parts, as follows.
The naming convention indicates that it is a removal operator (1).
Please note, that for the sake of brevity (1) is left out in this review
as long as it is obvious we are talking about removal operators.

(1) Removal: (2) criteria - (3) restricted set of removal candidates - (4) seed ‘

The components (2-4) provide clarity on three key aspects of the
removal operator:

(2) What is the criteria used to determine which customers are re-
moved?

(3) Is the set of customers that can be removed restricted in any way?

(4) Does the removal operator use a seed customer/route?

Only components (1) and (2) are mandatory, (3) and (4) should be
left out if there is no restriction on the set of removal candidates, or no
seed element, respectively. For example the node neighborhood removal
first introduced by Demir et al. (2012) (see Section 4.1.3) is termed:
(1) Removal: (2) All customers - (3) from rectangular area - (4) around
static seed customer.

European Journal of Operational Research xxx (xxxx) xxx

Implementation details. Other relevant implementation details are listed
in the following.

» Randomization vs. determinism: Removal operators can ei-
ther choose removal candidates in a random or deterministic
manner. Randomization can be achieved by choosing a random
customer from a (ordered) list of candidates (Ropke & Pisinger,
2006a) or by adding noise to a criteria used in the removal
operator (Hemmelmayr et al., 2012).

Static vs. dynamic seed: In a static version the seed customers/
routes are not updated after the removal of one customer, while
in a dynamic version, the seed customers are updated after the
removal of one customer (Hemmelmayr et al., 2012). Obviously,
this design decision has a significant impact on the runtime of the
removal operator.

One-shot vs. updated measure: A measure, such as the cost
difference of a solution with and without a customer, can be
calculated to decide which customer to remove. This measure
can be updated after the removal of one customer or remain
unchanged (one-shot measure).

Unfortunately, only few articles are specific about the details listed.
If the article does not specify the characteristics, it is difficult to accu-
rately re-implement the proposed ALNS. We hope that this review will
encourage researchers to include more information about the details of
their removal operators in future studies, to improve the replicability
of their work.

In the following, the classes of removal operators are described. We
also indicate, to the best of our knowledge, the author(s) who first
used these removal operator in an ALNS and the original name. It is
important to note that these removal operators may have been used in
other metaheuristics before. Please refer to the Online Appendix for a
more detailed description of the underlying function and concepts of
individual removal operators identified in the literature.

4.1. Customer removal operators using no information on current or previ-
ous solutions

The removal operators in this category do not use any information
from the current or previous solutions to determine the set of removed
customers. Instead, they use information derived from the instance,
such as location or demand of customers. Therefore, any necessary
measures and sets can be calculated beforehand, during pre-processing.

4.1.1. Customer removal operators - no problem-specific information

At the extreme end, removal operators that do not use any problem-
specific information are designed solely for the purpose of diversifying
the search. These operators often remove customers randomly, as in the
case of the random customers operator. The following operators belong
to this class:

» Random customers (random removal, Ropke & Pisinger, 2006a)

» Random customers - from restricted set (forbidden random, Li
et al., 2016)

» Customers with lowest removal counts (tabu based removal, Li
et al., 2016)

4.1.2. Customer removal operators - a priori customer-specific information

Removal operators in this class use a priori available customer-
specific data (i.e., data that is independent from a solution), such as the
customer’s demand or location within the delivery area. For instance,
the all customers - from multiple randomly selected zones operator divides
the delivery area into zones and removes all customers from a chosen
zone. The following operators belong to this class:

» Customers with lowest demand Adulyasak et al. (minimum delivery
quantity selection, 2014)

S. Voigt

+ All customers - from multiple randomly selected zones (zone
removal, Demir et al., 2012)

» Random customers and their nearest neighbor (pair removal,
Mancini, 2016)

4.1.3. Customer removal operators - a priori related to seed customer

The removal operators in this category aim to remove customers
that are related to each other and as such can be easily reinserted
to create a new (acceptable) solution. These operators work in two
stages. In the first stage, a seed (also called pivot) customer is chosen,
typically at random. This seed customer may either be fixed for one
removal iteration (static seed customer) or updated, so that the most
recently removed customer becomes the new seed customer (dynamic
seed customer). In the second stage, customers are selected based on
the relatedness to the seed customer. The relatedness depends on a
priori information obtained from the instance, such as the distance
between customers or their demand similarity. This information can
be calculated during pre-processing.

Removal operators in this class can be distinguished by the way
they determine the relatedness of customers. For example a priori score
related customers - to seed customer first selects a seed customer and
then calculates a relatedness score based on information known a
priori, such as a weighted sum of demand and distance. The following
operators belong to this class:

All customers - from rectangular area - around static seed cus-
tomer (node neighborhood removal, Demir et al., 2012)

A priori distance related customers - to static seed customer
(related removal, Hemmelmayr et al., 2012)

A priori distance related customers - to seed customer (simplified
shaw removal, Ropke & Pisinger, 2006b)

Demand related customers - to seed customer (demand-based re-
moval, Demir et al., 2012)

Time window related customers - to seed customer (time-based
removal, Demir et al., 2012)

A priori score related customers - to seed customer (similarity
removal, Lei et al., 2011)

4.2. Customer removal operators using information on the current solution

Unlike the previous removal operators, the information or sets
needed for these operators can only be obtained once a solution exists.

4.2.1. Customer removal operators - random customers from restricted set

These removal operators randomly select customers to be removed
but only from a restricted set of customers. That set is derived from
the current solution and cannot be obtained beforehand. For example,
random customers - from random route selects only customers that have
been served by the same (randomly selected) route in the current
solution. The following operators are identified that differ in the way
they restrict the set of removal candidates:

» Random customers - from random route (remove k nodes from the
same route, Braaten et al., 2017)

» Random customers - from route with largest distance costs (visits
in long routes removal, Wang et al., 2020)

» Random customers - from route with smallest number of cus-
tomers (minimum route removal, Majidi et al., 2017)

4.2.2. Customer removal operators - based on sequences

These removal operators consider the sequence of customers in the
current solution when selecting customers to be removed. For exam-
ple, All customers - from randomly selected sequence within concatenated
routes concatenates all routes and then randomly selects a sequence of
customers to remove. The following operators belong to this class:

European Journal of Operational Research xxx (xxxx) xxx

Last customer from every route (last customer removal, Lahyani
et al., 2019)

Random customers, their predecessors and successors (predecessors
and successors removal, Sacramento et al., 2020)

All customers - from randomly selected sequence within concate-
nated routes (sequence removal, Li et al., 2016)

All customers - from adjacent sequences (adjacent string removal,
Friedrich & Elbert, 2022)

All customers - from one of two Kruskal clusters from randomly
selected route (cluster removal, Ropke & Pisinger, 2006b)

4.2.3. Customer removal operators - a posteriori related to seed customer
Removal operators in this category calculate a relatedness mea-
sure based on information derived from the current solution. These
operators work similarly to the Customer removal operators - a priori
related to seed customer (Section 4.1.3), the only difference is that
the relatedness now depends on information derived from the current
solution (e.g., start time) and therefore cannot be calculated during
pre-processing. The following operators belong to this class:

« Start time related customers - to seed customer (time-oriented
removal, Pisinger & Ropke, 2007)

» A posteriori distance related customers - to seed customer (shaw
removal, Coelho et al., 2012)

* A posteriori score related customers - to seed customer (shaw
removal, Ropke & Pisinger, 2006a)

4.2.4. Customer removal operators - worst placed customers from unre-
stricted set

These operators determine which customer is placed in an unsuit-
able position by calculating a measure with and without the customer.
We denote this measure by §;. The higher §;, the more likely that
the customer j is removed. For example the worst cost customers cal-
culates the difference in costs §; = f(s;) — f(so), where s, represents
the solution with customer j and s, the solution without customer
Jj. Customers are selected in a decreasing order of §;. As mentioned
earlier these removal operators can be implemented in a one-shot vs.
updated manner. In the one-shot version, §; is not updated during
a single iteration, while in the updated version §; is updated every
time a customer has been removed. Unfortunately, only few authors
are explicit about this fact, therefore, we refrain from categorizing
the worst removal operators according to this property. The following
operators belong to this class:

Worst distance cost customers (worst-distance removal, Demir
et al., 2012)

Worst lateness customers (worst-time removal, Demir et al., 2012)
Worst cost customers (worst removal, Ropke & Pisinger, 2006a)
Worst corresponding average route cost customers (neighborhood
removal, Demir et al., 2012)

Worst forward time slack customers (critical destroy, Grimault
et al., 2017)

Worst feasibility customers (infeasible removal,
2020)

Worst arc costs customer pairs (worst pair removal,
et al., 2021)

Hellsten et al.,

Gunawan

4.2.5. Customer removal operators - worst placed customers from restricted
set

Building on the previous class, these removal operators restrict the
set from which worst customers can be removed. For example worst
distance costs customers - from random routes first selects a random route
and then removes the customers with the worst distance costs. The
following operators belong to this class:

» Worst distance costs customers - from random zones (zone worst
distance removal, Alinaghian & Shokouhi, 2018)

S. Voigt

Worst distance costs customers - from random routes (max dis-
tance of random route removal, Majidi et al., 2017)

Worst distance costs customers - from routes with highest distance
costs (n-job removal, Erdem, 2022)

Worst penalty customers - from random routes (highest penalty
customer removal, Ozarik et al., 2021)

Worst costs customers - from tightest routes (tightest route selection
and worst-distance customer removal, Donmez et al., 2022)

4.2.6. Customer removal operators - other

Lastly, this category includes operators that cannot be classified in
one of the previous classes. There is only one removal operator called
feasibly exchangeable near customer pairs - from two random routes (route
neighborhood removal, Emec et al., 2016) using a rather sophisticated
way of determining the set of removed customers.

4.3. Route removal operators using information on the current solution

Route removal operators remove all customers currently served by
the same route. Obviously, these kind of removal operators use infor-
mation on the current solution (i.e., the route the customer is currently
be served from). Route removal operators can be implemented in a
single route version, where only one route is removed per iteration,
or in a multiple route version, where the operator removes routes
repeatedly until at least ¢ customers have been removed.

4.3.1. Route removal operators - random route

The all customers - from random route (single: route removal heuristic,
multiple: route random sweep, Qu & Bard, 2012; Ribeiro & Laporte,
2012) is the only operator in this category. It selects routes randomly
and removes all customers served via the selected route(s).

4.3.2. Route removal operators - low utilized route

In contrast to the previous category, these removal operators select
routes that have a low utilization, and use different criteria to deter-
mine what constitutes a low utilization, such as the smallest number
of customers served by a route. The following operators belong to this
class:

All customers - from route with smallest number of customers (sin-
gle: least customers route removal, multiple: greedy route removal,
Keskin & Catay, 2016; Ozarik et al., 2021)

All customers - from route with lowest maximum demand Hof and
Schneider (single: route removal, 2019)

All customers - from route with lowest capacity utilization (single:
least used vehicle removal, multiple: worst-vehicle capacity utilization
removal, Ghiami et al., 2019; Grangier et al., 2016)

All customers - from route with lowest distance costs (multiple:
choose shortest routes, Real et al., 2021)

4.3.3. Route removal operators - worst route

In contrast to the previous class, these operators focus on the
objective value by determining the worst route in terms of, for example,
waiting time or costs, and remove all customers from this worst route.
The following operators belong to this class:

+ All customers - from route with worst waiting time (multiple: ship
with long waiting time removal, Bakkehaug et al., 2016)

+ All customers - from route with worst costs (single: worst vehicle
removal, multiple: worst route removal, Hurkmans et al., 2021;
Lahyani et al., 2019)

» All customers - from route with worst average costs (multiple:
removal route short-haul, Soriano et al., 2018)

European Journal of Operational Research xxx (xxxx) xxx

4.3.4. Route removal operators - other

Finally, other types of route removal operators can again not be
classified into the previous categories. The following two removal
operators belong to this class:

+ All customers - from route according to problem specific criteria
» Route-related customers - to seed route (multiple: related route
removal, Azi et al., 2014)

4.4. Removal operators using information on current and previous solutions

4.4.1. Removal operators - historical graph

Removal operators in this class construct a graph using information
collected from previous solutions to determine if a customer is oddly
placed in the current solution. The operator stores information from
previous solutions in a complete, directed weighted graph. The nodes
in this graph correspond to customer visits. The weight of an edge
(i, j) represents different measures. For example in case of the sum of
historical edge weights: highest best known solution costs customers, edge
weights correspond to the costs of the best solution in which customer
i is visited directly before j. The weights are updated each time a new
solution is found. Customers are selected according to a score, which
is calculated by summing the edge weights in the graph corresponding
to the current solution. The following operators belong to this class, all
starting with Sum of historical edge weights: ... :

+ ... highest best known solution costs customers (neighbor graph
removal, Ropke & Pisinger, 2006b)

+ ... highest best known route costs customers (route-cost-based
related removal, Dayarian et al., 2016)

+ ... lowest count same vehicle customers (request graph removal,
Ropke & Pisinger, 2006b)

» ... lowest count same predecessor and successor customers (history
removal, Masson et al., 2013)

4.4.2. Removal operators - historical worst

Removal operators belonging to this class calculate a measure based
on the current worst cost compared to a cost achieved in previous
solutions. The following operators belong to this class:

» Worst historical distance costs customers (historical knowledge
node removal, Demir et al., 2012)

» Worst historical costs customers (worst cost removal, Voigt et al.,
2022b)

» Worst historical average costs customers (historic cost removal,
Voigt et al., 2022b)

4.5. Statistics and ranking of removal operators

4.5.1. General statistics

The analysis included a total of 1266 removal operators, averaging
to 6 removal operators per contribution. Out of these, 281 were specific
to certain problems and not generally applicable to routing problems,
and 5 could not be categorized due to inadequate descriptions. After
analyzing the remaining 980 removal operators, we identified 57 dis-
tinct removal operators, which we classified into 4 main categories with
15 subcategories. The accompanying Fig. 1 depicts the classification
scheme and the frequency of each operator or class of operators used
in the 211 articles studied.

Table 4 shows the top ten most frequently used removal operators
on an individual level. These operators constitute roughly 74% (725
out of 980) of all categorized removal operators, suggesting that the
ALNS implementations often utilize the same removal operators as pre-
vious ones. The three most frequently used removal operators (random
customers, worst cost customers, and a posteriori score related customers -
to seed customers) are standard operators originally proposed by Ropke

S. Voigt

European Journal of Operational Research xxx (xxxx) xxx

Random customers (n = 204) |

No problem-specific

information

Random customers — from restricted set (n = 3) |

(n=212)

Customers with lowest removal counts (n = 5) |

Customers with lowest demand (n = 4) \

A priori customer-specific

All customers — from multiple randomly selected zones (n = 13) \

Random customers and their nearest neighbor (n = 6) |

Customer removal operators [information [
using no information on (n=123)
1 current or previous solutions —
(n = 393)

All customers — from rectangular area — around static seed customer (n = 6) ‘

A priori distance related customers — to static seed customer (n = 30) \

A priori related to seed

A priori distance related customers — to seed customer (n = 57) \

customer

(n=158)

Demand related customers — to seed customer (n = 21) \

Time window related customers — to seed customer (n = 9) |

A priori score related customers —to seed customer (n = 35) \

Random customers — from random route (n = 2) \

Random customers from

restricted set

Random customers — from route with largest distance costs (n = 1) \

(n=5)

Random customers — from route with smallest number of customers (n = 2) |

Last customer from every route (n = 1) |

Random customers, their predecessors and successors (n = 2) \

Based on sequences

(n=32)

All customers — from randomly selected sequence within concatenated routes (n = 6) \

All customers — from adjacent sequences (n = 2) \

All customers — from one of two Kruskal clusters from randomly selected route (n = 21) |

Start time related customers — to seed customer (n = 25) \

A posteriori related to seed

customer

A posteriori distance related customers — to seed customer (n = 4) \

(n=123)

A posteriori score related customers — to seed customer (n = 94) |

Customer removal operators

Worst distance cost customers (1 = 33)]

using information on the

— current solution —

Worst lateness customers (n = 17) \

(n = 400)

Worst cost customers (n = 160) \

Worst placed customers from

unrestricted set

Worst corresponding average route cost customers (n = 15) \

(n=1232)

Worst forward time slack customers (n = 1) |

Worst feasibility customers (n = 2) \

Worst arc costs customer pairs (n = 4) \

Worst distance costs customers — from random zones (n = 2) \

Worst distance costs customers — from random routes (n = 2) |

Worst placed customers from

restricted set

[
X I e e e e e e N A A

Removal operators
|

Worst distance costs customers — from routes with highest distance costs (n = 1) |

(n=7)

Worst penalty customers — from random routes (n = 1) \

Worst costs customers — from tightest routes (n = 1) \

Other

iLL

Feasibly exch near customer pairs — from two random routes (n = 1) \

(=1

Random route

All customers — from random route (n; = 49, n; = 38) |

(n=87)

All customers — from route with smallest number of customers (n; =,3 n; = 8) \

Low utilized route

All customers — from route with lowest maximum demand (ny, = 1,n;, = 0) \

(n=122)

All customers — from route with lowest capacity utilization (n; = 5,1y = 4)]

Route removal

using information on the

All customers — from route with lowest distance costs (n; = 0,n;, = 1) |

— current solution —

(n=136)

All customers — from route with worst waiting time (n; = 0,n, = 1) \

Worst route

All customers — from route with worst costs (n; = 8, ny, = 2) |

(n=17)

All customers — from route with worst average costs (n; = 0,1, = 6) \

Other

All customers — from route according to problem specific criteria (n; = 5,n, = 1) |

(n=10)

Route-related customers —to seed route (n; = 0,1y = 4) ‘

Sum of historical edge weights: highest best known solution costs customers (n = 15) \

Historical graph

Sum of historical edge weights: highest best known route costs customers (n = 1) |

(n=34)

Sum of historical edge weights: lowest count same vehicle customers (n = 9) \

Removal using

information on current and

Sum of historical edge weights: lowest count same predecessor and successor customers (n = 9) \

— previous solutions

(n=51)

Worst historical distance costs customers (n = 12) \

Historical worst

Worst historical costs customers (n = 3)]

(n=17)

i I Ot s R e B st e e

Worst historical average costs customers (n = 2) \

Fig. 1. Classification of removal operators.

and Pisinger (2006a). Hence, we refer to them as the standard set of re-
moval operators. Furthermore, these three operators offer a reasonable
mix between diversification (random customers), intensification (worst
customers), and easy re-insertion (a posteriori score related customers - to

seed customers). With regard to the four main categories, at least one
removal operator from each of them appears in the top ten except for
the removal operators using information on current and previous solutions
category. The relatively low frequency of the latter category may have

European Journal of Operational Research xxx (xxxx) xxx

(b) Most wins: R9: All customers - from randomly selected
sequence within concatenated routes

Fig. 2. Graphs representing the incomplete pairwise comparison matrix for two removal operators.

S. Voigt
(a) Most frequently used: R1: Random customers
Table 4
Top ten most frequently used removal operators - individual level.
Removal operator Frequency
Random customers 204
Worst cost customers 160
A posteriori score related customers - to seed customer 94
A priori distance related customers - to seed customer 57
All customers - from random route (single) 49
All customers - from random route (multiple) 38
A priori score related customers - to seed customer 35
Worst distance cost customers 33
A priori distance related customers - to static seed customer 30
Start time related customers - to seed customer 25
Total 725

several reasons, such as being more demanding to implement or having
poorer performance, which may have led them to be excluded from the
final set of removal operators. In the following section, we rank the
operators at the individual level to determine if there is discrepancy
between the most frequently used and best-performing operators.

4.5.2. Ranking

Out of the 211 articles analyzed, 66 assessed the performance
of their removal operators, allowing for the deduction of pairwise
comparisons. We include only operators that were analyzed in at least
three articles to ensure that the results are not heavily dependent on
single studies. As a result, we are able to evaluate the performance
of 23 operators. These 23 operators represent the majority with 89%
(868 out of 980) of the removal operators used. The remaining 34
operators have not been analyzed in at least three articles and were
therefore excluded from the ranking. We argue that it is unlikely for
rarely used operators to demonstrate superior performance. However,
this may not necessarily be true for recent operators, which could
not have competed several times. Therefore, researchers should still
check currently developed operators. Table 5 shows the outcome of
the pairwise comparisons by displaying the number of wins x;; and
comparisons z; ; for each operator.

Fig. 2 visualizes the incomplete pairwise comparison matrix for two
removal operators. Solid outgoing arcs represent when operator i wins
against operator j (x;; > ¥, ;), incoming dashed arcs represent losses
(x;; < ;;) and light gray dotted lines without direction represent draws
(x,', i =Y, j)

The graph in Fig. 2(a) represents the incomplete pairwise compari-
son matrix of R1: Random customers, which is the most frequently used.
The graph shows that R1 wins against 12 operators (R2, R3, R4, R6,
R7, R12, R14, R15, R18, R20, R21, R22). It loses against 8 operators
(R5, R9, R10, R11, R13, R16, R19, R23), and draws against 2 operators
(R8, R17). Based on these observations, we can expect R1 to rank in
the upper midfield. Similarly, Fig. 2(b) shows that R9: All customers -
from randomly selected sequence within concatenated routes which is the
operator with the most wins, actually wins each comparison. Therefore,
we can expect R9 to have a top rank. However, note that this operator
did not compete against every other operator.

Table 6 shows the results when deriving the weight vector w as
described in Section 3.2 (the weights w; are scaled by a factor of 100
for better readability). The higher the weight, the better the operator.
The table also shows the number of comparisons for each operator
Z; = Yc1....nj+i % in column z;, which provides an indication of the
robustness of the results. Note that z; is not equivalent to the frequency
in Table 2 which shows how often an operator was used in the set of
211 articles examined. This helps to assess the robustness of results, as
the robustness increases with the number of comparisons made.

As expected from the previous graph, R9 ranks first. Notably, there
is a slight discrepancy between the most used (Table 4) and the highest-
ranking removal operators. The most frequently used removal operators
(standard set) occupy ranks three to five: R1: Random customers ranks
fifth, R16: Worst cost customers ranks fourth, and R13: A posteriori score
related customers - to seed customer ranks third. The two sequence-based
removal operators R9 and R10 occupy the first and second rank but
are not even among the top 10 most frequently used operators. This
suggests that adding one of these two operators to the standard set may
improve its performance. It should be noted, however, that the number
of comparisons for R9 and R10 are relatively low at 15 and 21, re-
spectively, which may affect the robustness of the results. Nonetheless,
both operators belong to the class of sequence-based removal operators,
indicating that these type of operators may indeed perform better.
Additionally, the recent metaheuristic SISR proposed by Christiaens
and Vanden Berghe (2020) relies predominantly on a sequence-based
removal operator and shows a good performance. Both facts support the
idea that sequence-based operators could be beneficial. Despite this, the
ranking confirms that the standard set remains a solid choice for ALNSs.
It is worth noting that the difference in weights between ranks 5 to 8
are not large. The same is true for ranks 9 to 14, and so on, suggesting
that there are classes of operators with similar performances.

S. Voigt

European Journal of Operational Research xxx (xxxx) xxx

Table 5
Comparing removal operators: Number of wins/total number of comparisons (x;;/z;;)-

R1 R2 R3 R4 RS R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 RI16 R17 R18 R19 R20 R21 R22 R23
R1 2/2 3/4 3/3 4/10 10/18 5/7 6/12 0/3 0/3 4/9 2/2 8/26 5/8 3/4 18/46 3/6 9/16 3/10 3/3 3/3 5/5 2/5
R2 0/2 1/2 0/1 0/1 0/1 0/1
R3 1/4 172 0/1 1/1 0/1 0/1 272 0/1 1/2 172 0/1 1/1 0/1
R4 0/3 0/1 2/2 172 0/1 172 1/1 272 1/2 0/1
R5 6/10 1/1 /71 172 0/1 0/1 3/6 /1 172 2/4 0/1 1/1
R6 8/18 1/1 072 2/6 1/3 0/1 0/2 4/8 2/9 3/5 1/3 2/14 2/4 3/6 1/2 2/3 172 1/1 2/3
R7 2/7 172 0/1 4/6 3/5 2/6 174 2/3 2/4 2/4 1/3 0/1 1/4
R8 6/12 0/1 1/2 2/3 0/1 0/1 0/1 5/12 2/3 2/3 o/1 1/1 1.1
RO 3/3 1/1 1/1 1/1 1/1 1/1 2/3 1/1 1/1 11 1/1
R10 3/3 11 2/2 1/1 171 01 11 3/4 172 2/3 171 171
R11 5/9 0/2 1/1 4/8 2/5 1/1 0/1 0/1 2/6 2/4 1/3 4/6 0/2 2/4 172 0/1 1/1 2/3
R12 0/2 1/1 2/3 0/1 0/1
R13 18/26 1/1 1/1 172 1/1 7/9 4/6 1/3 0/1 4/6 4/6 3/4 10/21 3/4 3/9 1/3 /1 1/1 2/3 3/4
R14 3/8 2/5 3/4 1/1 2/4 2/6 172 0/3 1/3 3/4 0/2 1/3
R15 1/4 0/1 2/3 1/3 2/3 1/4 1/2 0/2 0/2 0/2 0/1 1/1
R16 28/46 /2 0/2 3/6 12/14 2/4 7/12 0/1 1/4 2/6 1/3 11/21 3/3 2/2 1/2 12/16 5/6 3/4 2/3 5/5 2/2
R17 3/6 172 0/1 2/4 2/4 2/2 1/4 2/3 2/2 172 0/1 0/2 1/2
R18 7/16 171 172 1/2 3/6 2/3 1/3 0/1 172 2/4 1/1 6/9 174 2/2 4/16 1/1 1/1 2/2 2/4
R19 7/10 /1 2/4 1/2 /1 1/3 0/1 1/2 2/3 22 1/1 1/6 2/2 0/1 1/1
R20 0/3 11 1/3 11 /3 11 1/1 0/1 1/4 0/1 1/2
R21 0/3 0/1 1/2 0/1 0/1 0/1 0/1 1/3 1/2
R22 0/5 1/1 0/1 0/1 0/1 1/3 0/5 0/2 1/1
R23 3/5 1/1 1/1 0/1 1/3 3/4 0/1 1/3 1/4 2/3 0/1 0/2 172 2/4 0/1

R1: Random customers, R2: Random customers - from restricted set, R3: Customers with lowest removal counts, R4: Random customers and their nearest neighbor, R5: A priori
distance related customers - to static seed customer, R6: A priori distance related customers - to seed customer, R7: Demand related customers - to seed customer, R8: A priori
score related customers - to seed customer, R9: All customers - from randomly selected sequence within concatenated routes, R10: All customers - from one of two Kruskal clusters
from randomly selected route, R11: Start time related customers - to seed customer, R12: A posteriori distance related customers - to seed customer, R13: A posteriori score
related customers - to seed customer, R14: Worst distance cost customers, R15: Worst lateness customers, R16: Worst cost customers, R17: Worst corresponding average route cost
customers, R18: All customers - from random route - single, R19: All customers - from random route - multiple, R20: Sum of historical edge weights: highest best known solution
costs customers, R21: Sum of historical edge weights: lowest count same vehicle customers, R22: Sum of historical edge weights: lowest count same predecessor and successor

customers, R23: Worst historical distance costs customers

Table 6
Ranking of removal operators.

Removal operator w; z;

1 R9: All customers - from randomly selected sequence within concatenated routes 12.48 15
2 R10: All customers - from one of two Kruskal clusters from randomly selected route 8.78 21
3 R13: A posteriori score related customers - to seed customer 6.41 112
4 R16: Worst cost customers 5.92 164
5 R1: Random customers 5.35 205
6 R19: All customers - from random route - multiple 5.28 40
7 R5: A priori distance related customers - to static seed customer 5.09 31
8 R18: All customers - from random route - single 4.95 80
9 R12: A posteriori distance related customers - to seed customer 3.82 8
10 R4: Random customers and their nearest neighbor 3.71 17
11 R17: Worst corresponding average route cost customers 3.66 35
12 R20: Sum of historical edge weights: highest best known solution costs customers 3.55 21
13 R8: A priori score related customers - to seed customer 3.53 42
14 R11: Start time related customers - to seed customer 3.50 60
15 R23: Worst historical distance costs customers 3.19 36
16 R14: Worst distance cost customers 3.17 45
17 R3: Customers with lowest removal counts 3.15 20
18 R6: A priori distance related customers - to seed customer 3.06 93
19 R7: Demand related customers - to seed customer 2.81 50
20 R22: Sum of historical edge weights: lowest count same predecessor and successor customers 2.35 20
21 R15: Worst lateness customers 2.33 28
22 R2: Random customers - from restricted set 2.01 8
23 R21: Sum of historical edge weights: lowest count same vehicle customers 1.89 15

Coming back to the relatively low frequency of the main category
removal operators using information on current and previous solutions, the
best operator from this class R20 only achieves rank 12. We can deduce
that the reason for the relatively low frequency lies not only in the
rather higher complexity of implementing these operators but also in
their weaker performance.

4.6. Main recommendation
Deducing from the analysis, it may be worthwhile to start with the

standard set of operators which are the three most frequently used re-
moval operators (random customers, worst cost customers, and a posteriori

10

score related customers - to seed customers). These three operators offer
a reasonable mix between diversification and intensification. This set
can be enhanced with a sequence-based operator.

Then, operators should be added one by one from the next best-
ranking class of operators, stopping when the results are no longer
improving, or the performance seems sufficient. The researcher should
not blindly walk through the list of operators but must ensure that
the choice of operators balances intensification and diversification.
Intensification can be achieved by removing customers that increase
the cost the most, while diversification can be achieved by randomly
removing customers or those that have rarely been removed in previ-
ous iterations. The level of intensification respectively diversification

S. Voigt

depends on the degree of randomization within the removal operator,
as well as the update behavior (one-shot version vs. update version).

Irrespective of whether the removal operator is designed for inten-
sification or diversification, it is preferable to remove customers that
can be easily re-inserted. Otherwise, the insertion operators struggle
at finding a solution, that has an acceptable objective value. If that
is the case, the solution is unlikely to be accepted and the runtime
spent during this removal and insertion phase will have been wasted.
To conclude, a well-designed ALNS should include a balanced mix of
diversifying and intensifying removal operators that preferably remove
customers that can be easily reinserted.

5. Classification and ranking of insertion operators

An insertion operator is responsible for reinserting the customers
that were previously removed back into the solution s. To be more
precise, the insertion operator takes the next customer from the sorted
or unsorted list of removed customers and inserts it into the solution
based on a particular criterion, for example, the position that results in
the lowest increase in costs. The goal is to create a complete solution
(i.e., all customers are inserted) with an acceptable objective value.

Classification. The key decision of insertion operators is to determine
in which position the previously removed customers are inserted. We
classify insertion operators based on how they determine this position.

» Random position: Insert customers at a random position (Sec-
tion 5.1).

Best cost position: Select the position that results in the least
increase in objective value (Section 5.2).

Best cost position with restricted options: Evaluate just a
subset of insertion positions (Section 5.3).

Best timing position: Use time criteria instead of objective values
(Section 5.4).

The second criteria used to classify insertion operators is the order
in which the list of insertion candidates is sorted. The following sorting
options are encountered in the literature:

Removal order: The list remains unchanged, i.e., customers are
re-inserted in the same order they were removed.

Random order: The list is randomly shuffled.

Cost-based order: The list is sorted according to a cost measure.
Customers with low costs are inserted earlier.

Distance-based order: Customers near previously inserted cus-
tomers are inserted earlier.

Time-based order: The list is sorted based on time measures,
e.g., width of the time window.

Duration-based order: The list is sorted according to a duration
measure, with customers who cause minimal increases in route
duration being inserted earlier.

Difficulty-based order: Customers who are expected to be chal-
lenging to insert without significantly increasing costs are inserted
earlier.

Regret-based order: The list is sorted based on a regret measure.
Preference is given to customers whose later insertions cause the
highest additional cost increase.

Difficulty-based and regret-based operators attempt to overcome the
myopic behavior of inserting customers with the lowest cost first by
incorporating (expected) information about future insertion costs into
their decision-making process. Difficulty-based operators use proxies to
estimate the expected difficulty of insertions, for example customers
with highest costs are inserted first. In contrast, regret-based operators
calculate a regret value, which measures the cost difference between
inserting the customer now and postponing the insertion. For example,
the customer with highest route regret - at best position operator calculates
the regret value as the difference between insertion costs in the best
route and in the second (third, fourth, ...) route. A larger regret value
indicates a greater urgency to insert the customer immediately.

European Journal of Operational Research xxx (xxxx) xxx

Naming convention. We suggest using a naming convention that reflects
firstly that it is an insertion operator and secondly how customers are
inserted. Again, for the sake of brevity (1) is left out as long as it is
obvious we are talking about insertion operators.

(1) Insertion: (2) order - (3) position - (4) noise - (5) restricted set of insertion positions

The components (2-5) describe four key aspects of the insertion
operator:

(2) Does the operator sort the list of removed customers, and if so in
what way?

(3) Into which position is the selected customer inserted?

(4) Is the chosen position deterministic or does it vary by applying
noise?

(5) Is the set of insertion positions restricted?

Components (1-3) are mandatory. Components (4) and (5) should be
left out if there is no noise, respectively no restriction on the set
of available positions. For example the regret insertion heuristics first
introduced by Ropke and Pisinger (2006b) (see Section 5.2) is termed:
(1) Insertion: (2) Customer with highest route regret - (3) at best
position. Note that no noise is applied and the set of insertion positions
is not restricted, therefore (4) and (5) are omitted.

Implementation details. Similar to removal operators, insertion opera-
tors can be implemented using a one-shot or updated measure approach
(as explained in Section 4). Again, authors are often not specific about
this implementation detail. As a result, categories are not based on this
characteristics. Nevertheless, we stress that this information is crucial
for an accurate implementation.

In the following sections, the classes of insertion operators are
described. A more detailed description of each individual insertion
operator can be found in the Online Appendix.

5.1. Insertion operators - random position

In the literature, both types of random position operators are referred
to as such, even though they can be distinguished based on the insertion
order. These operators insert the customers at random positions. The
primary purpose is obviously to diversify the search.

+ In removal order - at random position (random insertion, Majidi
et al., 2017)

+ In random order - at random position (random insertion, Avci &
Avci, 2019)

5.2. Insertion operators - best cost position

Insertion operators belonging to this class calculate the minimum
insertion costs for customer j in solution s, denoted by & ;= f(s1) —
f(sg), where s, represents the solution with customer j and s, the
solution without customer j. Customers are inserted at their respective
minimum cost position, called the best position. The insertion costs
are usually updated after an insertion. The best cost position operators
insert only one customer in each iteration, resulting in changes to
only one route (i.e., the route in which the customer can be inserted
with minimum costs). In the next iteration, only the insertion costs on
the changed route need to be recalculated. In contrast to the random
position insertion operators, these operators intensify the search.

» Removal order

— In removal order - at best position (basic greedy insertion,
Ribeiro & Laporte, 2012)

— In removal order - at best position - with noise (sequential
perturbed insertion, Schiffer & Walther, 2018)

— In removal order - at best position with route-frequency
penalty (diversification 1-by-1, Li et al., 2016)

» Random order

In random order - at best position (greedy insertion, Lei et al.,
2011)

In random order - at best position - with noise (greedy
insertion perturbation, Contardo et al., 2012)

In random order - at second-best position (second-best inser-
tion, Ghilas et al., 2016)

In random order - at second-best position - with noise
(second-best insertion with noise function, Ghilas et al., 2016)

» Cost-based order

— Customers with lowest cost first - at best position (best
insertion heuristics, Ropke & Pisinger, 2006b)

— Customers with lowest cost first - at best position - with
noise (without dedicated name, Ropke & Pisinger, 2006a)

— Customers with the n lowest cost first - at best position (grasp
insertion, Goeke & Schneider, 2015)

- Distance-based order

— Customers farthest to depot first - at best position (farthest
insertion, Smith & Imeson, 2017)

— Customers closest to depot first - at best position (nearest
insertion, Smith & Imeson, 2017)

— Customers closest to previously inserted customer first - at
best position (distance-related insertion, Ortega et al., 2020)

» Time-based order

— Customers with minimum earliest arrival time - at best
position (earliest delivery release date, Grimault et al., 2017)

— Customers with minimum latest arrival time - at best posi-
tion (time sorted greedy insertion, Bakkehaug et al., 2016)

— Customers sorted according to other time window criteria -

European Journal of Operational Research xxx (xxxx) xxx
5.3. Insertion operators - best cost position - restricted options

Insertion operators in this class are similar to the previous class of
operators, but they operate on a restricted set of available insertion
positions.

- Removal order

— In removal order - at best position - restricted to route with
minimal length (balanced 1-by-1, Li et al., 2016)

— In (reversed) removal order - at best position - restricted
to one best insertion position (hybrid insertion operator,
Franceschetti et al., 2017)

» Random order

— In random order - at best position - restricted to random
route (randomly insert, Coelho et al., 2012)

» Cost-based order

Customers with lowest cost first - at best position - restricted
to positions on new routes (greedy insertion with new route
openings, Emec et al., 2016)

— Customers with lowest cost first - at best position - restricted
to positions not on the previous route (tabu 1-by-1, Li et al.,
2016)

— Customers with lowest cost first - at best position - restricted
to positions on the previous route (local all-at-once, Li et al.,
2016)

— Customers with lowest cost first - at best position - restricted
to closest route (closest insertion repair method, Sacramento
et al., 2019)

— Customers with lowest cost first - at best position - restricted
to loosest route (loosest route selection and least-distance cus-
tomer insertion, Donmez et al., 2022)

— Customers with lowest cost first - at best position - restricted

to position with highest time window gap (fill the gap,

at best position (e.g., Sacramento et al., 2020) Braaten et al., 2017)
+ Difficulty-based order » Regret-based order
- Customers with highest cost first - at best position (auction- - Customer with highest route regret - at best position -
based insertion, Koc, 2016) restricted to positions not on the previous route (regret
- Customers with highest average historic costs first - at best insertion with ban mechanism, Jiang & Li, 2020)

position (without a dedicated name, Voigt et al., 2022a)

— Most constrained customers first - at best position (most
constrained first insertion, Qu & Bard, 2012)

— Customers with highest demand first - at best position
(demand and failure sorting insertion, Lei et al., 2011)

5.4. Insertion operators - best timing position

In contrast to Insertion operators - best cost position, the following
insertion operators consider timing aspects to identify suitable insertion
positions.

* Regret-based order + In random order - at position with least waiting time - restricted

to routes in zone (zone insertion, Demir et al., 2012)

+ Customers with lowest duration increase - at position with lowest
duration increase (time based insertion, Keskin & Catay, 2016)

» Customers with lowest duration increase or costs - at position
with lowest duration increase or costs (Solomon insertion, Braaten
et al., 2017)

— Customer with highest route regret - at best position (regret
insertion heuristics, Ropke & Pisinger, 2006b)

— Customer with highest route regret - at best position - with
noise (Ropke & Pisinger, 2006a)

— Customer with highest position regret - at best position
(regret-k insertion heuristic, Qu & Bard, 2012)

— Customer with highest position regret - at best position -

. ; ° . :) ‘ i 5.5. Statistics and ranking of insertion operators
with noise (regret insertion with noise function, Demir et al.,

2012) 5.5.1. General statistics
- Customer with highest position duration regret - at best We analyzed a total of 788 insertion operators, which corresponds
position (regret-k time window insertion, Kancharla & Ra- to an average of 3.73 insertion operators per contribution. Of these, 176
madurai, 2018) are problem specific. Four could not be classified, as the description
— Customer with lowest impact value - at best position (non- was not sufficiently detailed. Our analysis of the remaining 608 inser-
myopic insertion, Ticha et al., 2019) tion operators resulted in 42 distinct insertion operators into 4 main

12

S. Voigt

Table 7
Top ten most frequently used insertion operators - individual level.

Insertion operator Frequency
Customers with lowest cost first - at best position 141
Customer with highest position regret - at best position 80
Customer with highest route regret - at best position 65
In removal order - at best position 45
Customers with lowest cost first - at best position - with noise 42
In random order - at best position 39
In removal order - at random position 21
Customer with highest position regret - at best position - with noise 20
Customer with highest route regret - at best position - with noise 19
In random order - at random position 14
Total 486

categories. Fig. 3 illustrates the classification and the frequency with
which each operator or class of operators has been used in the 211
articles examined.

Table 7 shows the top ten most frequently used insertion operators
on an individual level. These cover about 80% (486 out of 608) of
the categorized insertion operators, showing an even lower variance
compared to the removal operators, where the top ten accounted for
74%. The most frequently used insertion operator is customers with
lowest cost first - at best position. The second and third rank are occupied
by regret-based operators, namely customer with highest position regret
and customer with highest route regret. Unlike removal operators, there
is no apparent standard set. Instead, authors usually employ either the
insertion operator based on position regret or the original version based
on route regret (Ropke & Pisinger, 2006a).

5.5.2. Ranking

Out of 211 articles 60 evaluated the performance of insertion op-
erators. Again, to be included in the ranking, insertion operators had
to be evaluated in at least three articles. Fourteen insertion operators
met this criterion, representing the majority (88%, or 535 out of 608)
of used insertion operators. The remaining 28 insertion operators did
not meet this criterion and were therefore excluded from the ranking.
Table 8 displays the number of wins x; ; and number of comparisons
z,; ; for each operator included in the ranking.

Equivalent to the analysis of removal operators, graphs represent
the incomplete pairwise comparison matrix for the most frequently
used insertion operator 17 (Fig. 4(a)) and for 113 which has the most
wins (Fig. 4(b)). I7: Customers with lowest cost first - at best position
performs moderately well with eight wins (11, 12, I3, I5, 16, I8, I9, I110:
solid outgoing arcs), four losses against regret-based operators (I11—
I14: incoming dashed arcs), and one tie with 14 (undirected light gray
dotted line). Based on these observations, 17 is expected to rank in the
upper midfield. I13: Customer with highest position regret - at best position
wins every comparison except for a tie with I5: In random order - at best
position. Only two direct comparisons are missing (I11 and I12).

Table 9 shows the results of deriving the weight vector w. Unsur-
prisingly, I13: Customer with highest position regret - at best position ranks
first, being superior to other regret-based insertion operators, and in
particular dominating I11: Customer with highest route regret - at best
position which achieves rank 6. Note that the difference in weights is
rather large with a sufficiently high number of comparisons (53 and
26).

Regarding insertion order, regret-based ordering methods appear to
be more effective than random and removal ordering methods, with
the exception of I5: In random order - at best position, which ranks third.
This ranking of insertion orders is not surprising, as the comparisons do
not take runtime into account, and the regret and cost-based ordering
methods are more computationally demanding than random or removal
order. Therefore, the third rank of I5 is particularly noteworthy.

Regarding insertion position, at best position is the method of choice,
other options are either infrequently used or show inferior perfor-
mance, such as at random position (rank 10 and 13).

13

European Journal of Operational Research xxx (xxxx) xxx

The most frequently used insertion operator, I7: Customers with
lowest cost first - at best position, ranks fifth, which is in contrast to
its frequent usage. Authors may consider using operator I5 instead.
However, note that the difference in weights is not substantial for ranks
3 to 6.

In general, the operator versions with noise perform worse than
clean versions, except for I12: Customer with highest route regret - at best
position - with noise, where the version with noise ranks higher. How-
ever, this insertion operator has only been analyzed in three articles
with a total of eight comparisons, so further comparisons are necessary
to make a definitive statement.

5.6. Main recommendation

To summarize, we suggest that the standard set of insertion opera-
tors should include two operators, namely 113 and I5. I13: Customer with
highest position regret - at best position is preferred against I11: Customer
with highest route regret - at best position because of its higher rank. I5:
In random order - at best position is preferred because of its simplicity
compared to I7: Customers with lowest cost first - at best position. Again,
as also discussed in the section on removal operators, this set of
insertion operators also guarantees a balance of intensification (113)
and diversification (I5).

6. Guidelines for development and presentation of ALNS algo-
rithms

The guidelines presented in this section aim to improve the effec-
tiveness and transparency of ALNS research, with relevance not only to
ALNSs but also to heuristic algorithms in general. We draw upon this
extensive literature review and in addition refer to the valuable guide
by Johnson (2002) for algorithm development and testing. Section 6.1
focuses on the evaluation and selection of operators within ALNS
algorithms. We provide guidelines to ensure a structured approach
to operator selection, taking runtime into account, and conducting
performance assessments through ablation studies. These guidelines
aim to support researchers in making informed decisions about which
operators to include in their ALNS implementations. Section 6.2 shifts
the focus to improving the presentation of ALNS research. Transparent
and reproducible research findings are vital for advancing the field.
To achieve this, we recommend including information on unsuccessful
operators, presenting standard errors in results, providing details on the
implementation of operators, and, whenever possible, publishing the
ALNS code alongside the research article.

6.1. Evaluation and selection of operators

Follow a structured selection process. For future ALNS implementations,
we suggest starting with the identified standard set of operators. For
removal the set consists of four operators:

* R1: Random customers

* R16: Worst cost customers

* R13: A posteriori score related customers - to seed customer

+ A sequence-based removal operator, e.g., R10: All customers - from
one of two Kruskal clusters from randomly selected route.

For insertion the set consists of two operators:

+ 113: Customer with highest position regret - at best position
» and I5: In random order - at best position

In the next step, the researcher may gradually add operators from
the next best-performing group. The added operator may be kept if
a performance measure (e.g., the gap or primal integral, see next
paragraph) improves, otherwise the operator is removed and continued
with the next one. This process should be stopped as soon as the overall
performance seems sufficient.

S. Voigt

Removal order

European Journal of Operational Research xxx (xxxx) xxx

(n=21)

In removal order - at random position (n = 21)

Random position
(n = 35)

Random order

[1

(n=14)

In random order - at random position (n = 14) ‘

In removal order - at best position (n = 45) ‘

Removal order

(n=57)

In removal order - at best position - with noise (n = 11) ‘

In removal order - at best position with route-frequency penalty (n = 1) ‘

In random order - at best position (n = 39) ‘

Random order

In random order - at best position - with noise (n = 12) ‘

(n=55)

In random order - at second-best position (n = 2) ‘

In random order - at second-best position - with noise (n = 2) ‘

Customers with lowest cost first - at best position (n = 141) ‘

Cost-based order

(n=192)

Customers with lowest cost first - at best position - with noise (n = 42) ‘

Customers with the n lowest cost first - at best position (n = 9) ‘

Customers farthest to depot first - at best position (n = 5) ‘

Distance-based order

(n=8)

Customers closest to depot first - at best position (n = 2) ‘

Best cost position

Customers closest to previously inserted customer first - at best position (n = 1) ‘

(n=525)

Customers with minimum earliest arrival time - at best position (n = 5) ‘

Time-based order

Customers with minimum latest arrival time - at best position (n = 5) ‘

(n=14)

Customers sorted according to other time window criteria - at best position (n = 4) ‘

Customers with highest cost first - at best position (n = 3) ‘

Difficulty-based order

Customers with highest average historic costs first - at best position (n = 3) ‘

(n=12)

Most constrained customers first - at best position (n = 4) ‘

Customers with highest demand first - at best position (n = 2) ‘

Route regret order

Customer with highest route regret - at best position (n = 65) |

(n =84)

Customer with highest route regret - at best position - with noise (n = 19) |

Customer with highest position regret - at best position (n = 80) |

Insertion operators

Position regret order

Customer with highest position regret - at best position - with noise (n = 20) |

(n=103)

Customer with highest position duration regret - at best position (n = 2) |

\
e e O e e et e I N

Customer with lowest impact value - at best position (n = 1) ‘

Removal order

In removal order - at best position - restricted to route with minimal length (n = 2) ‘

(n=4)

el

In (reversed) removal order - at best position - restricted to one best insertion position (n = 2) ‘

Random order

—

In random order - at best position - restricted to random route (n = 7) ‘

n=7)

Customers with lowest cost first - at best position - restricted to positions on new routes (n = 6) ‘

Best cost position - restricted

options

‘ Customers with lowest cost first - at best position - restricted to positions not on the previous route (n = 6) ‘

(n=31)

Cost-based order

Customers with lowest cost first - at best position - restricted to positions on the previous route (n = 2) ‘

(n=19)

Customers with lowest cost first - at best position - restricted to closest route (n = 3) ‘

Customers with lowest cost first - at best position - restricted to loosest route (n = 1) ‘

Customers with lowest cost first - at best position - restricted to position with highest time window gap (n = 1) ‘

Route regret order

(n=1)

Customer with highest route regret - at best position - restricted to positions not on the previous route (n = 1) ‘

Random order

—

(n=6)

In random order - at position with least waiting time - restricted to routes in zone (n = 6) ‘

Best timing position
(n=17)

Other orders

Customers with lowest duration increase - at position with lowest duration increase (n = 10) ‘

e

(n=11)

‘ Customers with lowest duration increase or costs - at position with lowest duration increase or costs (n = 1) ‘

Fig. 3. Classification of insertion operators.

Furthermore, it may be worthwhile to test operators from the low-
performing groups if there is evidence that the operator might work
for the specific problem at hand. A fair share of operators did not even
make it into the ranking, because they have not been analyzed in three
or more articles. Still, it may be relevant to check the performance of
unranked operators as well.

14

Take runtime into account. The benchmark of operators should assess
the trade-off between solution quality and runtime. When only looking
at the contribution of an operator to the solution quality, runtime
intensive operators are favored. For example, an insertion operator that
evaluates all insertion positions of a customer in all routes is com-
putationally more demanding compared to an insertion operator that

S. Voigt European Journal of Operational Research xxx (xxxx) xxx

Table 8
Comparing insertion operators: Number of wins/total number of comparisons (x;;/z; ;).
11 12 13 14 15 16 17 18 19 110 111 112 113 114

1 0/1 0/3 0/2 1/1
12 0/1 0/2 0/4 0/2 0/2
13 11 1/1 2/4 0/1 2/5 0/1 1/1 3/5 1/1 1/6 0/3
14 2/4 0/1 172 0/1 0/3 0/3
15 2/2 1/1 1/1 3/4 2/6 1/1 2/2 0/1 2/4
16 1/4 0/1 0/1 2/2 0/2
17 3/3 4/4 3/5 1/2 4/6 1/1 5/8 2/2 2/3 3/13 0/2 8/18 2/5
18 1/1 1/1 0/1 1/1 3/8 2/2 1/2 1/2 0/6 1/5
19 0/2 0/2 0/2 0/2 0/2 0/2
110 0/1 11 1/3 0/1 0/1
111 2/2 2/5 10/13 172 1/1 0/3
112 0/1 2/2 1/2 3/3
113 2/2 2/2 5/6 3/3 2/4 2/2 10/18 6/6 2/2 1/1 7/7
114 0/1 3/3 3/3 3/5 4/5 2/2 0/7

I1: In removal order - at random position, 12: In random order - at random position, 13: In removal order - at best position, 14: In removal
order - at best position - with noise, I5: In random order - at best position, 16: In random order - at best position - with noise, I7: Customers
with lowest cost first - at best position, I8: Customers with lowest cost first - at best position - with noise, 19: Customers with the n lowest cost
first - at best position, 110: In random order - at best position - restricted to random route, I11: Customer with highest route regret - at best
position, 112: Customer with highest route regret - at best position - with noise, I113: Customer with highest position regret - at best position,
114: Customer with highest position regret - at best position - with noise

i

(a) Most frequently used: 7: Customers with lowest cost first (b) Most wins: [13: Customer with highest position regret - at
- at best position best position

Fig. 4. Graphs representing the incomplete pairwise comparison matrix for two insertion operators.

Table 9

Ranking of insertion operators.
Insertion operator w; z;
1 113: Customer with highest position regret - at best position 18.47 53
2 112: Customer with highest route regret - at best position - with noise 11.79 8
3 I5: In random order - at best position 9.27 22
4 114: Customer with highest position regret - at best position - with noise 9.12 26
5 17: Customers with lowest cost first - at best position 8.62 72
6 I11: Customer with highest route regret - at best position 8.07 26
7 18: Customers with lowest cost first - at best position - with noise 6.60 29
8 I3: In removal order - at best position 6.31 29
9 110: In random order - at best position - restricted to random route 5.30 7
10 I1: In removal order - at random position 4.63 7
11 16: In random order - at best position - with noise 3.76 10
12 14: In removal order - at best position - with noise 3.68 14
13 12: In random order - at random position 2.31 11
14 19: Customers with the n lowest cost first - at best position 2.08 12

15

S. Voigt

evaluates only the insertion positions in one route randomly chosen,
but it is likely that the unrestricted operator improves on the solution
quality (and therefore is chosen more often). See Table 9 where there is
a clear tendency for good ranks for computationally more demanding
insertion operators.

We suggest using a measure like the primal integral (PI) as used
in the DIMACS Vehicle Routing Implementation Challenge (http://dimacs.
rutgers.edu/programs/challenge/vrp/). The PI (Berthold, 2013) mea-
sures the area under the search trajectory, i.e., it considers the solution
process as a function over time and computes the integral of that
function. The search trajectory is a step function which decreases every
time the algorithm finds a new best solution. The lower the PI, the
better the algorithm, as the algorithm either finds a better solution
within the same time or the same solution within shorter time.

The runtime of operators could also be taken into account when
updating the weights of operators during the search, i.e., runtime
intensive operators are called less often. See also Turkes et al. (2021)
for a further discussion on different weight adjustment procedures.

Assess operator and algorithmic component performance through ablation
studies. Despite the importance of assessing the performance of algo-
rithmic components, including operators, relatively few articles con-
duct appropriate analyses. Therefore, we stress the need for conducting
performance analyses. We argue that ablation studies are preferable
to frequency-based analyses for two reasons. First, frequency-based
analyses are not always stable, meaning that the frequencies of operator
usage can vary significantly between runs, as pointed out by Mara et al.
(2022). Second, ablation-based performance assessments allow for the
comparison of the impact of multiple algorithmic components, not just
operators. However, when only one component/operator is assessed at
a time, interaction effects cannot be captured.

6.2. Improving the presentation of ALNS research

The following recommendations draw inspiration from the limita-
tions of our study as discussed in Section 3.3. These limitations could
be remedied to a large extent by improving the presentation of ALNS
research.

Include information on unsuccessful operators. Authors often only show
results for the “final” ALNS, i.e., the version that they propose to solve
the problem under consideration. This means that the reader gets no
information on other (less efficient) operators that were implemented
and tested but did not make it into the final ALNS. Authors should
present information on all operators that were implemented and tested,
including the less efficient ones that did not make it into the final
ALNS. This would help narrow down the field of potential insertion
and removal operators and prevent researchers from repeatedly wasting
time and energy on less-efficient operators.

Present standard errors in results. Authors should not only present mean
values but also standard errors when reporting the change in objective
value when one operator is excluded. This would provide a measure of
the robustness of the results and help to assess the validity of pairwise
comparisons.

Provide specific details on operators implemented. Authors should be
more specific about the operators they implemented to facilitate re-
producibility. The clear classification and naming convention can help
indicate the most important implementation details.

Publish ALNS code. The best way to avoid misunderstandings and
facilitate further development of the ALNS is to publish the code. This
would allow for quick testing of operators or concepts on existing
implementations without the need for a time-consuming reimplemen-
tation based on a potentially inaccurate description in the article.
A notable example is the open-source implementation of the Hybrid
Genetic Search (HGS) for the CVRP as introduced by Vidal (2022).
Subsequent to this publication, the HGS was adopted and improved by
various researchers, resulting in an exceptional metaheuristic for VRPs.

16

European Journal of Operational Research xxx (xxxx) xxx
7. Research opportunities

This section discusses various research opportunities in the field of
ALNS algorithms. Section 7.1 suggests three avenues for exploration
within the domain of insertion operators. Moving on to operator se-
lection in Section 7.2, there are several research directions to pursue.
Lastly, in Section 7.3 we emphasize the importance of considering the
bigger picture of metaheuristics.

7.1. Insertion operators

Implement modular insertion operators. The naming convention of in-
sertion operators highlights the decisions taken to insert customers,
i.e., order, position, application of noise, and restrictions on available
positions. Instead of defining insertion operators statically, it could
be appropriate to define operators by combining these components.
The ALNS may then use four modules (possibly each with its own
roulette wheel) to dynamically construct the insertion operator. Some
modules or options may be (de)activated depending on the instance.
For example, to save computation time, it may be worthwhile to restrict
the available insertion positions to near routes for large-scale instances.
The following enumeration summarizes several options for each
module derived from the previous survey of insertion operators.

* Module insertion order

- removal order

— random order

- (n) lowest/highest cost first
— most constrained first

— highest demand first

— farthest/closest to depot first
— route/position regret

- impact value

» Module insertion position

— random position

- best position

- position with least waiting time

— position with lowest duration increase

» Module application of noise

— no noise
— with noise

» Module restriction on available positions

— no restriction

- restricted to random route

- restricted to routes in zone

- restricted to positions on new routes

- restricted to positions (not) on the previous route

— restricted to positions on the closest/loosest/shortest route

- blink mechanism: probabilistically skips the evaluation of
positions (Christiaens & Vanden Berghe, 2020).

Implement granular insertion operators. Upon reviewing the list of re-
strictions on available positions, it becomes evident that there is no
insertion operator restricting the insertion of customers solely to related
neighbors. Determining related customers can be achieved, for exam-
ple, by evaluating the distance between them, with closer proximity
indicating greater relatedness and an increased likelihood that the
edge between the related customers is found in the optimal solution.
This approach is inspired by granular tabu search, which constrains
local search operators to granular neighborhoods (Toth & Vigo, 2003).
Notably, Santana et al. (2022) discovered that granular operators sig-
nificantly enhance the performance of the hybrid genetic search (Vidal
et al., 2012). Therefore, we anticipate that applying this concept to the
ALNS will yield comparable benefits.

http://dimacs.rutgers.edu/programs/challenge/vrp/
http://dimacs.rutgers.edu/programs/challenge/vrp/
http://dimacs.rutgers.edu/programs/challenge/vrp/

S. Voigt

Use machine learning to determine the insertion order. Regret operators
have been widely used and proven to be successful in identifying the
insertion order (refer to Table 9). Regret operators give an estimate of
how strong the costs will increase if the customer is not inserted right
now but another one is preferred. However, they are computationally
intensive. A promising research direction could be to estimate the
impact of inserting a customer on the subsequent insertion process
without calculating actual regret-values. Possibly, machine learning
can be utilized to learn from previous insertion steps which customers
should be inserted earlier.

7.2. Operator selection

Validate the proposed selection process. An interesting avenue for fu-
ture research is to assess the proposed selection process based on the
ranking of operators (see Section 6.1) and compare it with alternative
approaches.

Analyze the performance of operators on different problem and instance
types. Building on the selection process, further research is needed into
how operators perform across a spectrum of problems and instances. If
there is a strong dependency machine learning could facilitate the au-
tomated selection of operators based on these characteristics. SATzilla
provides an example of this approach (Xu et al., 2008), as it employs a
portfolio of algorithms to solve satisfiability problems and uses machine
learning to determine the most suitable algorithm for a specific instance
based on its characteristics.

Analyze the impact of ALNS implementation and parameters on oper-
ator performance. Further extending the analysis of operators, it is
also worth investigating if the version of ALNS implemented or the
parameter settings have an effect on the operator performance.

7.3. The bigger picture: Metaheuristics in the scientific period

When considering the bigger picture, this article represents a next
step towards the scientific period of metaheuristics as termed by
Sorensen et al. (2018), where the acquisition of knowledge is more
important than the introduction of yet another novel metaheuristic (or
operator, in our case) with only a marginal increase in performance.
Future research should focus on the following aspects.

Analyze metaheuristic components to identify well-performing concepts.
Like this article and the works of Santini et al. (2018) and Turkes
et al. (2021), more reviews are needed to synthesize knowledge on
metaheuristic concepts in general. This should not be limited to ALNS
but should focus on all metaheuristic concepts. The goal is to combine
well-performing concepts into powerful hybrid heuristics.

Use and evaluate existing components. Given the already extensive list
of removal and insertion operators, one may question whether there
was really a need to propose yet another operator, or if previously
existing operators would have sufficed. Researchers should work with
existing components and evaluate their performance before propos-
ing a new type of metaheuristic/operator for another variant of a
VRP, unless there is compelling evidence that the existing concepts do
not work. This is especially relevant for application-centered articles
where there is nothing wrong with simply applying an existing (and
well-performing) metaheuristic to a new problem. It is essential to
carefully evaluate whether a proposed novel component/operator is
genuinely new or already exists under a different name, as pointed out
by Sorensen (2013) in the context of metaphor-based metaheuristics.
To facilitate the comparison of metaheuristics, de Armas et al. (2021)
suggest employing a pool template.

17

European Journal of Operational Research xxx (xxxx) xxx

Conduct and participate at implementation challenges. Recent implemen-
tation challenges such as the DIMACS VRP (http://dimacs.rutgers.
edu/programs/challenge/vrp/), NeurIPS dynamic VRP (https://euro-
neurips-vrp-2022.challenges.ortec.com/), and Amazon (https://routin
gchallenge.mit.edu/) challenges have provided excellent opportunities
to test algorithmic components within a standardized environment.
The research community should make a greater effort to host such
challenges to evaluate specific algorithmic components.

8. Conclusion

We analyzed 211 articles to gain insights into the removal and
insertion operators used in the ALNS in VRPs. A total of 1266 removal
operators (an average of 6 per ALNS) and 788 insertion operators
(an average of 3.73) were identified. Of those, 980 removal operators
and 608 insertion operators were found to be applicable to VRPs in
general. Among those are 57 distinct removal operators and 42 inser-
tion operators. A consistent and simple nomenclature for both types of
operators to clearly explain and distinguish the different operators was
given. Based on an incomplete pairwise comparison matrix, a ranking
of the operators is derived and a slight discrepancy between the most
frequently used and the most effective operators was found. Specifi-
cally, sequence-based removal operators appear to be superior but are
underrepresented. For insertion operators, the most commonly used
operator Insertion: Customers with lowest cost first - at best position ranks
only fifth and has a similar performance to the less computationally
demanding Insertion: In random order - at best position. Following the
ranking of removal and insertion operators we identified a standard set
of operators consisting of four removal operators (random customers,
worst cost customers, a posteriori score related customers - to seed customer,
and a sequence-based removal operator, e.g., all customers - from one of
two Kruskal clusters from randomly selected route) and two insertion oper-
ators (customer with highest position regret - at best position and in random
order - at best position). Furthermore, we introduce a more structured
process for selecting and evaluating operators based on the ranking
derived from network meta-analysis. However, the existing ranking
and associated articles usually do not consider runtime. Therefore, we
suggest using a criterion that assesses the trade-off between runtime
and solution quality for selecting operators in future ALNSs. To improve
the presentation of ALNS research, we suggest including information
on unsuccessful operators, presenting standard errors, providing more
details on operators, and publishing the code. Future research is needed
to improve insertion operators and operator selection in the ALNS
domain.

Our study demonstrates the possibility of deriving insights and a
ranking through network meta-analysis in the context of metaheuris-
tics. Further meta-analyses are required to identify well-performing
concepts, for example analyzing components of population-based meta-
heuristics (e.g., genetic algorithms). Future implementations of meta-
heuristics may build on these findings by combining several well-
performing components from different domains into powerful hybrids.

CRediT authorship contribution statement

Stefan Voigt: Conceptualization, Data curation, Formal analysis, In-
vestigation, Methodology, Project administration, Software, Validation,
Visualization, Writing — original draft, Writing — review & editing.

Acknowledgments

I would like to express my gratitude to Sandor Bozoki for gener-
ously sharing the code required to analyze the pairwise comparison
matrices, as described in Bozdki et al. (2016). Furthermore, I thank
the anonymous reviewers whose very constructive comments helped
to significantly improve the paper.

http://dimacs.rutgers.edu/programs/challenge/vrp/
http://dimacs.rutgers.edu/programs/challenge/vrp/
http://dimacs.rutgers.edu/programs/challenge/vrp/
https://euro-neurips-vrp-2022.challenges.ortec.com/
https://euro-neurips-vrp-2022.challenges.ortec.com/
https://euro-neurips-vrp-2022.challenges.ortec.com/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/

S. Voigt
Appendix A. VRP, VRPTW and notation

The basic variants of VRPs are the capacitated VRP (CVRP) and
the VRP with time windows (VRPTW). More complex variants include
these basic VRPs as special case. Therefore, we briefly introduce both
CVRP and VRPTW, as well as the notation used throughout the review.
The CVRP constrains the N'P-hard traveling salesman problem by
introducing a capacity limit. The goal of the CVRP is to find a set
of routes K starting from and returning to a depot, that serve all
customers j € C with minimal distance costs. A route k in K, is
a sequence of customer visits, starting and ending at the depot, and
covering customers in between. Each customer has a demand d; and
is to be served by one vehicle with limited capacity Q. The VRPTW
builds upon the CVRP by adding a temporal constraint. Specifically, it
imposes hard time windows during which customers must be serviced.
Each customer is associated with a time window, defined by the earliest
arrival time e; and the latest arrival time /;. The service time required
at each customer is denoted as s;. It is possible for a vehicle to arrive
earlier than the earliest arrival time, however, it would need to wait.
The actual start of service time at customer j in a solution is denoted by
S;. A solution is considered infeasible if a vehicle arrives at a customer
after the latest arrival time or if the vehicle exceeds its capacity limit.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ejor.2024.05.033.

References

Adulyasak, Y., Cordeau, J. F., & Jans, R. (2014). Optimization-based adaptive large
neighborhood search for the production routing problem. Transportation Science,
48(1), 20-45. http://dx.doi.org/10.1287/trsc.1120.0443.

Alinaghian, M., & Shokouhi, N. (2018). Multi-depot multi-compartment vehicle routing
problem, solved by a hybrid adaptive large neighborhood search. Omega, 76, 85-99.
http://dx.doi.org/10.1016/j.0omega.2017.05.002.

Avci, M. G., & Avci, M. (2019). An adaptive large neighborhood search approach for
multiple traveling repairman problem with profits. Computers & Operations Research,
111, 367-385. http://dx.doi.org/10.1016/j.cor.2019.07.012.

Azi, N., Gendreau, M., & Potvin, J. Y. (2014). An adaptive large neighborhood search
for a vehicle routing problem with multiple routes. Computers & Operations Research,
41, 167-173. http://dx.doi.org/10.1016/j.cor.2013.08.016.

Bakkehaug, R., Rakke, J. G., Fagerholt, K., & Laporte, G. (2016). An adaptive
large neighborhood search heuristic for fleet deployment problems with voyage
separation requirements. Transportation Research Part C (Emerging Technologies), 70,
129-141. http://dx.doi.org/10.1016/j.trc.2015.06.019.

Berthold, T. (2013). Measuring the impact of primal heuristics. Operations Research
Letters, 41(6), 611-614. http://dx.doi.org/10.1016/j.0r1.2013.08.007.

Bozoki, S., Csatd, L., & Temesi, J. (2016). An application of incomplete pairwise
comparison matrices for ranking top tennis players. European Journal of Operational
Research, 248(1), 211-218. http://dx.doi.org/10.1016/j.ejor.2015.06.069.

Bozoki, S., Fiilop, J., & Rényai, L. (2010). On optimal completion of incomplete pairwise
comparison matrices. Mathematical and Computer Modelling, 52(1-2), 318-333.
http://dx.doi.org/10.1016/j.mcm.2010.02.047.

Braaten, S., Gjgnnes, O., Hvattum, L. M., & Tirado, G. (2017). Heuristics for the robust
vehicle routing problem with time windows. Expert Systems with Applications, 77,
136-147. http://dx.doi.org/10.1016/j.eswa.2017.01.038.

Christiaens, J., & Vanden Berghe, G. (2020). Slack induction by string removals for
vehicle routing problems. Transportation Science, 54(2), 417-433. http://dx.doi.org/
10.1287/trsc.2019.0914.

Coelho, L. C., Cordeau, J. F., & Laporte, G. (2012). The inventory-routing problem
with transshipment. Computers & Operations Research, 39(11), 2537-2548. http:
//dx.doi.org/10.1016/j.cor.2011.12.020.

Contardo, C., Hemmelmayr, V., & Crainic, T. G. (2012). Lower and upper bounds for the
two-echelon capacitated location-routing problem. Computers & Operations Research,
39(12), 3185-3199. http://dx.doi.org/10.1016/j.cor.2012.04.003.

Dayarian, I., Crainic, T. G., Gendreau, M., & Rei, W. (2016). An adaptive large-
neighborhood search heuristic for a multi-period vehicle routing problem.
Transportation Research Part E: Logistics and Transportation Review, 95, 95-123.
http://dx.doi.org/10.1016/j.tre.2016.09.004.

de Armas, J., Lalla-Ruiz, E., Tilahun, S. L., & Vo, S. (2021). Similarity in metaheuris-
tics: a gentle step towards a comparison methodology. Natural Computing, 21(2),
265-287. http://dx.doi.org/10.1007/5s11047-020-09837-9.

18

European Journal of Operational Research xxx (xxxx) xxx

Demir, E., Bektas, T., & Laporte, G. (2012). An adaptive large neighborhood
search heuristic for the pollution-routing problem. European Journal of Operational
Research, 223(2), 346-359. http://dx.doi.org/10.1016/j.ejor.2012.06.044.

Doénmez, S., Kog, C., & Altiparmak, F. (2022). The mixed fleet vehicle routing
problem with partial recharging by multiple chargers: Mathematical model and
adaptive large neighborhood search. Transportation Research Part E: Logistics and
Transportation Review, 167, Article 102917. http://dx.doi.org/10.1016/j.tre.2022.
102917.

Emeg, U., Catay, B., & Bozkaya, B. (2016). An adaptive large neighborhood search
for an E-grocery delivery routing problem. Computers & Operations Research, 69,
109-125. http://dx.doi.org/10.1016/j.cor.2015.11.008.

Erdem, M. (2022). Designing a sustainable logistics network for hazardous medical
waste collection a case study in COVID-19 pandemic. Journal of Cleaner Production,
376, Article 134192. http://dx.doi.org/10.1016/j.jclepro.2022.134192.

Franceschetti, A., Demir, E., Honhon, D., Woensel, T. V., Laporte, G., & Stobbe, M.
(2017). A metaheuristic for the time-dependent pollution-routing problem. European
Journal of Operational Research, 259(3), 972-991. http://dx.doi.org/10.1016/j.ejor.
2016.11.026.

Friedrich, C., & Elbert, R. (2022). Adaptive large neighborhood search for vehicle
routing problems with transshipment facilities arising in city logistics. Computers
& Operations Research, 137, Article 105491. http://dx.doi.org/10.1016/j.cor.2021.
105491.

Ghiami, Y., Demir, E., Woensel, T. V., Christiansen, M., & Laporte, G. (2019).
A deteriorating inventory routing problem for an inland liquefied natural gas
distribution network. Transportation Research, Part B (Methodological), 126, 45-67.
http://dx.doi.org/10.1016/j.trb.2019.05.014.

Ghilas, V., Demir, E., & Woensel, T. V. (2016). An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows and scheduled
lines. Computers & Operations Research, 72, 12-30. http://dx.doi.org/10.1016/j.cor.
2016.01.018.

Goeke, D., & Schneider, M. (2015). Routing a mixed fleet of electric and conventional
vehicles. European Journal of Operational Research, 245(1), 81-99. http://dx.doi.
org/10.1016/j.jor.2015.01.049.

Grangier, P., Gendreau, M., Lehuédé, F., & Rousseau, L.-M. (2016). An adaptive large
neighborhood search for the two-echelon multiple-trip vehicle routing problem with
satellite synchronization. European Journal of Operational Research, 254(1), 80-91.
http://dx.doi.org/10.1016/j.ejor.2016.03.040.

Grimault, A., Bostel, N., & Lehuédé, F. (2017). An adaptive large neighborhood search
for the full truckload pickup and delivery problem with resource synchronization.
Computers & Operations Research, 88, 1-14. http://dx.doi.org/10.1016/j.cor.2017.
06.012.

Gullhav, A. N., Cordeau, J. F., Hvattum, L. M., & Nygreen, B. (2017). Adaptive
large neighborhood search heuristics for multi-tier service deployment problems
in clouds. European Journal of Operational Research, 259(3), 829-846. http://dx.
doi.org/10.1016/j.ejor.2016.11.003.

Gunawan, A., Widjaja, A. T., Vansteenwegen, P., & Yu, V. F. (2021). A matheuristic al-
gorithm for the vehicle routing problem with cross-docking. Applied Soft Computing,
103, Article 107163. http://dx.doi.org/10.1016/j.as0c.2021.107163.

Hellsten, E. O., Sacramento, D., & Pisinger, D. (2020). An adaptive large neighbourhood
search heuristic for routing and scheduling feeder vessels in multi-terminal ports.
European Journal of Operational Research, 287(2), 682-698. http://dx.doi.org/10.
1016/j.ejor.2020.04.050.

Hemmelmayr, V. C., Cordeau, J. F., & Crainic, T. G. (2012). An adaptive large
neighborhood search heuristic for two-echelon vehicle routing problems arising in
city logistics. Computers & Operations Research, 39(12), 3215-3228. http://dx.doi.
org/10.1016/j.cor.2012.04.007.

Hof, J., & Schneider, M. (2019). An adaptive large neighborhood search with path
relinking for a class of vehicle-routing problems with simultaneous pickup and
delivery. Networks, 74(3), 207-250. http://dx.doi.org/10.1002/net.21879.

Hurkmans, S., Maknoon, M. Y., Negenborn, R. R., & Atasoy, B. (2021). An in-
tegrated territory planning and vehicle routing approach for a multi-objective
residential waste collection problem. Transportation Research Record: Journal of
the Transportation Research Board, 2675(7), 616-628. http://dx.doi.org/10.1177/
03611981211030262.

Hutton, B., Salanti, G., Caldwell, D. M., Chaimani, A., Schmid, C. H., Cameron, C.,
Ioannidis, J. P., Straus, S., Thorlund, K., Jansen, J. P., Mulrow, C., Catald-Lépez, F.,
Gotzsche, P. C., Dickersin, K., Boutron, 1., Altman, D. G., & Moher, D. (2015).
The PRISMA extension statement for reporting of systematic reviews incorporating
network meta-analyses of health care interventions: Checklist and explanations.
Annals of Internal Medicine, 162(11), 777-784. http://dx.doi.org/10.7326/m14-
2385.

Jiang, D., & Li, X. (2020). Order fulfilment problem with time windows and synchro-
nisation arising in the online retailing. International Journal of Production Research,
59(4), 1187-1215. http://dx.doi.org/10.1080/00207543.2020.1721589.

Johnson, D. (2002). A theoretician’s guide to the experimental analysis of algorithms.
In Data structures, near neighbor searches, and methodology: Fifth and sixth DIMACS
implementation challenges.

Kancharla, S. R., & Ramadurai, G. (2018). An adaptive large neighborhood search
approach for electric vehicle routing with load-dependent energy consump-
tion. Transportation in Developing Economies, 4(2), 1-9. http://dx.doi.org/10.1007/
540890-018-0063-3.

https://doi.org/10.1016/j.ejor.2024.05.033
http://dx.doi.org/10.1287/trsc.1120.0443
http://dx.doi.org/10.1016/j.omega.2017.05.002
http://dx.doi.org/10.1016/j.cor.2019.07.012
http://dx.doi.org/10.1016/j.cor.2013.08.016
http://dx.doi.org/10.1016/j.trc.2015.06.019
http://dx.doi.org/10.1016/j.orl.2013.08.007
http://dx.doi.org/10.1016/j.ejor.2015.06.069
http://dx.doi.org/10.1016/j.mcm.2010.02.047
http://dx.doi.org/10.1016/j.eswa.2017.01.038
http://dx.doi.org/10.1287/trsc.2019.0914
http://dx.doi.org/10.1287/trsc.2019.0914
http://dx.doi.org/10.1287/trsc.2019.0914
http://dx.doi.org/10.1016/j.cor.2011.12.020
http://dx.doi.org/10.1016/j.cor.2011.12.020
http://dx.doi.org/10.1016/j.cor.2011.12.020
http://dx.doi.org/10.1016/j.cor.2012.04.003
http://dx.doi.org/10.1016/j.tre.2016.09.004
http://dx.doi.org/10.1007/s11047-020-09837-9
http://dx.doi.org/10.1016/j.ejor.2012.06.044
http://dx.doi.org/10.1016/j.tre.2022.102917
http://dx.doi.org/10.1016/j.tre.2022.102917
http://dx.doi.org/10.1016/j.tre.2022.102917
http://dx.doi.org/10.1016/j.cor.2015.11.008
http://dx.doi.org/10.1016/j.jclepro.2022.134192
http://dx.doi.org/10.1016/j.ejor.2016.11.026
http://dx.doi.org/10.1016/j.ejor.2016.11.026
http://dx.doi.org/10.1016/j.ejor.2016.11.026
http://dx.doi.org/10.1016/j.cor.2021.105491
http://dx.doi.org/10.1016/j.cor.2021.105491
http://dx.doi.org/10.1016/j.cor.2021.105491
http://dx.doi.org/10.1016/j.trb.2019.05.014
http://dx.doi.org/10.1016/j.cor.2016.01.018
http://dx.doi.org/10.1016/j.cor.2016.01.018
http://dx.doi.org/10.1016/j.cor.2016.01.018
http://dx.doi.org/10.1016/j.ejor.2015.01.049
http://dx.doi.org/10.1016/j.ejor.2015.01.049
http://dx.doi.org/10.1016/j.ejor.2015.01.049
http://dx.doi.org/10.1016/j.ejor.2016.03.040
http://dx.doi.org/10.1016/j.cor.2017.06.012
http://dx.doi.org/10.1016/j.cor.2017.06.012
http://dx.doi.org/10.1016/j.cor.2017.06.012
http://dx.doi.org/10.1016/j.ejor.2016.11.003
http://dx.doi.org/10.1016/j.ejor.2016.11.003
http://dx.doi.org/10.1016/j.ejor.2016.11.003
http://dx.doi.org/10.1016/j.asoc.2021.107163
http://dx.doi.org/10.1016/j.ejor.2020.04.050
http://dx.doi.org/10.1016/j.ejor.2020.04.050
http://dx.doi.org/10.1016/j.ejor.2020.04.050
http://dx.doi.org/10.1016/j.cor.2012.04.007
http://dx.doi.org/10.1016/j.cor.2012.04.007
http://dx.doi.org/10.1016/j.cor.2012.04.007
http://dx.doi.org/10.1002/net.21879
http://dx.doi.org/10.1177/03611981211030262
http://dx.doi.org/10.1177/03611981211030262
http://dx.doi.org/10.1177/03611981211030262
http://dx.doi.org/10.7326/m14-2385
http://dx.doi.org/10.7326/m14-2385
http://dx.doi.org/10.7326/m14-2385
http://dx.doi.org/10.1080/00207543.2020.1721589
http://refhub.elsevier.com/S0377-2217(24)00392-8/sb34
http://refhub.elsevier.com/S0377-2217(24)00392-8/sb34
http://refhub.elsevier.com/S0377-2217(24)00392-8/sb34
http://refhub.elsevier.com/S0377-2217(24)00392-8/sb34
http://refhub.elsevier.com/S0377-2217(24)00392-8/sb34
http://dx.doi.org/10.1007/s40890-018-0063-3
http://dx.doi.org/10.1007/s40890-018-0063-3
http://dx.doi.org/10.1007/s40890-018-0063-3

S. Voigt

Keskin, M., & Catay, B. (2016). Partial recharge strategies for the electric vehicle routing
problem with time windows. Transportation Research Part C (Emerging Technologies),
65, 111-127. http://dx.doi.org/10.1016/j.trc.2016.01.013.

Kog, C. (2016). A unified-adaptive large neighborhood search metaheuristic for periodic
location-routing problems. Transportation Research Part C (Emerging Technologies),
68, 265-284. http://dx.doi.org/10.1016/j.trc.2016.04.013.

Lahyani, R., Gouguenheim, A. L., & Coelho, L. C. (2019). A hybrid adaptive large
neighbourhood search for multi-depot open vehicle routing problems. International
Journal of Production Research, 57(22), 6963-6976. http://dx.doi.org/10.1080/
00207543.2019.1572929.

Lei, H., Laporte, G., & Guo, B. (2011). The capacitated vehicle routing problem with
stochastic demands and time windows. Computers & Operations Research, 38(12),
1775-1783. http://dx.doi.org/10.1016/j.cor.2011.02.007.

Li, B., Krushinsky, D., Woensel, T. V., & Reijers, H. A. (2016). An adaptive large
neighborhood search heuristic for the share-a-ride problem. Computers & Operations
Research, 66, 170-180. http://dx.doi.org/10.1016/j.cor.2015.08.008.

Liu, X., Laporte, G., Chen, Y., & He, R. (2017). An adaptive large neighborhood search
metaheuristic for agile satellite scheduling with time-dependent transition time.
Computers & Operations Research, 86, 41-53. http://dx.doi.org/10.1016/j.cor.2017.
04.006.

Majidi, S., Hosseini-Motlagh, S.-M., & Ignatius, J. (2017). Adaptive large neighborhood
search heuristic for pollution-routing problem with simultaneous pickup and de-
livery. Soft Computing, 22(9), 2851-2865. http://dx.doi.org/10.1007/s00500-017-
2535-5.

Mancini, S. (2016). A real-life multi depot multi period vehicle routing problem with
a heterogeneous fleet: Formulation and adaptive large neighborhood search based
matheuristic. Transportation Research Part C (Emerging Technologies), 70, 100-112.
http://dx.doi.org/10.1016/j.trc.2015.06.016.

Mara, S. T. W., Norcahyo, R., Jodiawan, P., Lusiantoro, L., & Rifai, A. P. (2022).
A survey of adaptive large neighborhood search algorithms and applications.
Computers & Operations Research, 146, Article 105903. http://dx.doi.org/10.1016/
j.cor.2022.105903.

Masson, R., Lehuédé, F., & Péton, O. (2013). An adaptive large neighborhood search
for the pickup and delivery problem with transfers. Transportation Science, 47(3),
344-355. http://dx.doi.org/10.1287/trsc.1120.0432.

Mobher, D., Liberati, A., Tetzlaff, J., & and, D. G. A. (2009). Preferred reporting items
for systematic reviews and meta-analyses: the PRISMA statement. BMJ, 339(jul21
1), b2535. http://dx.doi.org/10.1136/bmj.b2535.

Ortega, E. J. A,, Schilde, M., & Doerner, K. F. (2020). Matheuristic search techniques for
the consistent inventory routing problem with time windows and split deliveries.
Operations Research Perspectives, 7, Article 100152. http://dx.doi.org/10.1016/j.0rp.
2020.100152.

Ozarik, S. S., Veelenturf, L. P., Woensel, T. V., & Laporte, G. (2021). Optimizing
e-commerce last-mile vehicle routing and scheduling under uncertain customer
presence. Transportation Research Part E: Logistics and Transportation Review, 148,
Article 102263. http://dx.doi.org/10.1016/j.tre.2021.102263.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems.
Computers & Operations Research, 34(8), 2403-2435. http://dx.doi.org/10.1016/j.
cor.2005.09.012.

Qu, Y., & Bard, J. F. (2012). A GRASP with adaptive large neighborhood search for
pickup and delivery problems with transshipment. Computers & Operations Research,
39(10), 2439-2456. http://dx.doi.org/10.1016/j.cor.2011.11.016.

Real, L. B., Contreras, 1., Cordeau, J. F., de Camargo, R. S., & de Miranda, G. (2021).
Multimodal hub network design with flexible routes. Transportation Research Part
E: Logistics and Transportation Review, 146, Article 102188. http://dx.doi.org/10.
1016/j.tre.2020.102188.

Ribeiro, G. M., & Laporte, G. (2012). An adaptive large neighborhood search heuristic
for the cumulative capacitated vehicle routing problem. Computers & Operations
Research, 39(3), 728-735. http://dx.doi.org/10.1016/j.cor.2011.05.005.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science, 40(4),
455-472. http://dx.doi.org/10.1287 /trsc.1050.0135.

Ropke, S., & Pisinger, D. (2006). A unified heuristic for a large class of vehicle
routing problems with backhauls. European Journal of Operational Research, 171(3),
750-775. http://dx.doi.org/10.1016/j.ejor.2004.09.004.

Sacramento, D., Pisinger, D., & Ropke, S. (2019). An adaptive large neighborhood
search metaheuristic for the vehicle routing problem with drones. Transportation
Research Part C (Emerging Technologies), 102, 289-315. http://dx.doi.org/10.1016/
j.trc.2019.02.018.

19

European Journal of Operational Research xxx (xxxx) xxx

Sacramento, D., Solnon, C., & Pisinger, D. (2020). Constraint programming and local
search heuristic: a matheuristic approach for routing and scheduling feeder vessels
in multi-terminal ports. SN Operations Research Forum, 1(4), http://dx.doi.org/10.
1007/543069-020-00036-x.

Santana, ., Lodi, A., & Vidal, T. (2022). Neural networks for local search and crossover
in vehicle routing: A possible overkill?. http://dx.doi.org/10.48550/ARXIV.2210.
12075.

Santini, A., Ropke, S., & Hvattum, L. M. (2018). A comparison of acceptance criteria
for the adaptive large neighbourhood search metaheuristic. Journal of Heuristics,
24(5), 783-815. http://dx.doi.org/10.1007/s10732-018-9377-x.

Schiffer, M., & Walther, G. (2018). An adaptive large neighborhood search for the
location-routing problem with intra-route facilities. Transportation Science, 52(2),
331-352. http://dx.doi.org/10.1287/trsc.2017.0746.

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. In M. Maher, & J.-F. Puget (Eds.), Principles and practice
of constraint programming — CP98 (pp. 417-431). Berlin, Heidelberg: Springer Berlin
Heidelberg, http://dx.doi.org/10.1007/3-540-49481-2_30.

Smith, S. L., & Imeson, F. (2017). GLNS: An effective large neighborhood search
heuristic for the generalized traveling salesman problem. Computers & Operations
Research, 87, 1-19. http://dx.doi.org/10.1016/j.cor.2017.05.010.

Sorensen, K. (2013). Metaheuristics-the metaphor exposed. International Transactions in
Operational Research, 22(1), 3-18. http://dx.doi.org/10.1111/itor.12001.

Sorensen, K., Sevaux, M., & Glover, F. (2018). A history of metaheuristics. In R. Marti,
P. M. Pardalos, & M. G. C. Resende (Eds.), Handbook of heuristics (pp. 791-
808). Cham: Springer International Publishing, http://dx.doi.org/10.1007/978-3-
319-07124-4 4.

Soriano, A., Gansterer, M., & Hartl, R. F. (2018). The two-region multi-depot pickup
and delivery problem. OR Spectrum, 40(4), 1077-1108. http://dx.doi.org/10.1007/
500291-018-0534-2.

Ticha, H. B., Absi, N., Feillet, D., & Quilliot, A. (2019). Multigraph modeling and
adaptive large neighborhood search for the vehicle routing problem with time
windows. Computers & Operations Research, 104, 113-126. http://dx.doi.org/10.
1016/j.cor.2018.11.001.

Toth, P., & Vigo, D. (2003). The granular tabu search and its application to the
vehicle-routing problem. INFORMS Journal on Computing, 15(4), 333-346. http:
//dx.doi.org/10.1287/ijoc.15.4.333.24890.

Turkes, R., Sorensen, K., & Hvattum, L. M. (2021). Meta-analysis of metaheuristics:
Quantifying the effect of adaptiveness in adaptive large neighborhood search.
European Journal of Operational Research, 292(2), 423-442. http://dx.doi.org/10.
1016/j.ejor.2020.10.045.

Vidal, T. (2022). Hybrid genetic search for the CVRP: Open-source implemen-
tation and SWAP* neighborhood. Computers & Operations Research, 140, Ar-
ticle 105643. http://dx.doi.org/10.1016/j.cor.2021.105643, URL https://www.
sciencedirect.com/science/article/pii/S030505482100349X.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., & Rei, W. (2012). A hybrid
genetic algorithm for multidepot and periodic vehicle routing problems. Operations
Research, 60(3), 611-624. http://dx.doi.org/10.1287 /opre.1120.1048.

Voigt, S., Frank, M., Fontaine, P., & Kuhn, H. (2022). Hybrid adaptive large neighbor-
hood search for vehicle routing problems with depot location decisions. Computers
& Operations Research, 146, Article 105856. http://dx.doi.org/10.1016/j.cor.2022.
105856.

Voigt, S., Frank, M., Fontaine, P., & Kuhn, H. (2022). The vehicle routing problem
with availability profiles. Transportation Science, http://dx.doi.org/10.1287/trsc.
2022.1182.

Voigt, S., & Kuhn, H. (2021). Crowdsourced logistics: The pickup and delivery problem
with transshipments and occasional drivers. Networks, 79(3), 403-426. http://dx.
doi.org/10.1002/net.22045.

Wang, L., Kinable, J., & van Woensel, T. (2020). The fuel replenishment problem:
A split-delivery multi-compartment vehicle routing problem with multiple trips.
Computers & Operations Research, 118, Article 104904. http://dx.doi.org/10.1016/
j.cor.2020.104904.

Wen, M., Linde, E., Ropke, S., Mirchandani, P., & Larsen, A. (2016). An adaptive
large neighborhood search heuristic for the electric vehicle scheduling problem.
Computers & Operations Research, 76, 73-83. http://dx.doi.org/10.1016/j.cor.2016.
06.013.

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research, 32, 565-606.
http://dx.doi.org/10.1613/jair.2490.

http://dx.doi.org/10.1016/j.trc.2016.01.013
http://dx.doi.org/10.1016/j.trc.2016.04.013
http://dx.doi.org/10.1080/00207543.2019.1572929
http://dx.doi.org/10.1080/00207543.2019.1572929
http://dx.doi.org/10.1080/00207543.2019.1572929
http://dx.doi.org/10.1016/j.cor.2011.02.007
http://dx.doi.org/10.1016/j.cor.2015.08.008
http://dx.doi.org/10.1016/j.cor.2017.04.006
http://dx.doi.org/10.1016/j.cor.2017.04.006
http://dx.doi.org/10.1016/j.cor.2017.04.006
http://dx.doi.org/10.1007/s00500-017-2535-5
http://dx.doi.org/10.1007/s00500-017-2535-5
http://dx.doi.org/10.1007/s00500-017-2535-5
http://dx.doi.org/10.1016/j.trc.2015.06.016
http://dx.doi.org/10.1016/j.cor.2022.105903
http://dx.doi.org/10.1016/j.cor.2022.105903
http://dx.doi.org/10.1016/j.cor.2022.105903
http://dx.doi.org/10.1287/trsc.1120.0432
http://dx.doi.org/10.1136/bmj.b2535
http://dx.doi.org/10.1016/j.orp.2020.100152
http://dx.doi.org/10.1016/j.orp.2020.100152
http://dx.doi.org/10.1016/j.orp.2020.100152
http://dx.doi.org/10.1016/j.tre.2021.102263
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.1016/j.cor.2011.11.016
http://dx.doi.org/10.1016/j.tre.2020.102188
http://dx.doi.org/10.1016/j.tre.2020.102188
http://dx.doi.org/10.1016/j.tre.2020.102188
http://dx.doi.org/10.1016/j.cor.2011.05.005
http://dx.doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/10.1016/j.ejor.2004.09.004
http://dx.doi.org/10.1016/j.trc.2019.02.018
http://dx.doi.org/10.1016/j.trc.2019.02.018
http://dx.doi.org/10.1016/j.trc.2019.02.018
http://dx.doi.org/10.1007/s43069-020-00036-x
http://dx.doi.org/10.1007/s43069-020-00036-x
http://dx.doi.org/10.1007/s43069-020-00036-x
http://dx.doi.org/10.48550/ARXIV.2210.12075
http://dx.doi.org/10.48550/ARXIV.2210.12075
http://dx.doi.org/10.48550/ARXIV.2210.12075
http://dx.doi.org/10.1007/s10732-018-9377-x
http://dx.doi.org/10.1287/trsc.2017.0746
http://dx.doi.org/10.1007/3-540-49481-2_30
http://dx.doi.org/10.1016/j.cor.2017.05.010
http://dx.doi.org/10.1111/itor.12001
http://dx.doi.org/10.1007/978-3-319-07124-4_4
http://dx.doi.org/10.1007/978-3-319-07124-4_4
http://dx.doi.org/10.1007/978-3-319-07124-4_4
http://dx.doi.org/10.1007/s00291-018-0534-2
http://dx.doi.org/10.1007/s00291-018-0534-2
http://dx.doi.org/10.1007/s00291-018-0534-2
http://dx.doi.org/10.1016/j.cor.2018.11.001
http://dx.doi.org/10.1016/j.cor.2018.11.001
http://dx.doi.org/10.1016/j.cor.2018.11.001
http://dx.doi.org/10.1287/ijoc.15.4.333.24890
http://dx.doi.org/10.1287/ijoc.15.4.333.24890
http://dx.doi.org/10.1287/ijoc.15.4.333.24890
http://dx.doi.org/10.1016/j.ejor.2020.10.045
http://dx.doi.org/10.1016/j.ejor.2020.10.045
http://dx.doi.org/10.1016/j.ejor.2020.10.045
http://dx.doi.org/10.1016/j.cor.2021.105643
https://www.sciencedirect.com/science/article/pii/S030505482100349X
https://www.sciencedirect.com/science/article/pii/S030505482100349X
https://www.sciencedirect.com/science/article/pii/S030505482100349X
http://dx.doi.org/10.1287/opre.1120.1048
http://dx.doi.org/10.1016/j.cor.2022.105856
http://dx.doi.org/10.1016/j.cor.2022.105856
http://dx.doi.org/10.1016/j.cor.2022.105856
http://dx.doi.org/10.1287/trsc.2022.1182
http://dx.doi.org/10.1287/trsc.2022.1182
http://dx.doi.org/10.1287/trsc.2022.1182
http://dx.doi.org/10.1002/net.22045
http://dx.doi.org/10.1002/net.22045
http://dx.doi.org/10.1002/net.22045
http://dx.doi.org/10.1016/j.cor.2020.104904
http://dx.doi.org/10.1016/j.cor.2020.104904
http://dx.doi.org/10.1016/j.cor.2020.104904
http://dx.doi.org/10.1016/j.cor.2016.06.013
http://dx.doi.org/10.1016/j.cor.2016.06.013
http://dx.doi.org/10.1016/j.cor.2016.06.013
http://dx.doi.org/10.1613/jair.2490

	A review and ranking of operators in adaptive large neighborhood search for vehicle routing problems
	Introduction
	Adaptive large neigborhood search
	Research methodology: Network meta-analysis for reviewing and ranking operators
	Identification and review of studies
	Ranking
	Commonly used performance-analysis within studies
	Ranking of operators across studies based on incomplete comparison matrices

	Biases and limitations

	Classification and ranking of removal operators
	Customer removal operators using no information on current or previous solutions
	Customer removal operators - no problem-specific information
	Customer removal operators - a priori customer-specific information
	Customer removal operators - a priori related to seed customer

	Customer removal operators using information on the current solution
	Customer removal operators - random customers from restricted set
	Customer removal operators - based on sequences
	Customer removal operators - a posteriori related to seed customer
	Customer removal operators - worst placed customers from unrestricted set
	Customer removal operators - worst placed customers from restricted set
	Customer removal operators - other

	Route removal operators using information on the current solution
	Route removal operators - random route
	Route removal operators - low utilized route
	Route removal operators - worst route
	Route removal operators - other

	Removal operators using information on current and previous solutions
	Removal operators - historical graph
	Removal operators - historical worst

	Statistics and ranking of removal operators
	General statistics
	Ranking

	Main recommendation

	Classification and ranking of insertion operators
	Insertion operators - random position
	Insertion operators - best cost position
	Insertion operators - best cost position - restricted options
	Insertion operators - best timing position
	Statistics and ranking of insertion operators
	General statistics
	Ranking

	Main recommendation

	Guidelines for development and presentation of ALNS algorithms
	Evaluation and selection of operators
	Improving the presentation of ALNS research

	Research opportunities
	Insertion operators
	Operator selection
	The bigger picture: Metaheuristics in the scientific period

	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A. VRP, VRPTW and notation
	Appendix B. Supplementary data
	References

