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Abstract
If f is a power series with radius R of convergence, R > 1, it is well-known that
the method of Carathéodory–Fejér constructs polynomial approximations of f on the
closed unit disk which show the typical phenomenon of near-circularity on the unit
circle. Let E be compact and connected and let f be holomorphic on E . If {pn}n∈N
is a sequence of polynomials converging maximally to f on E , it is shown that the
modulus of the error functions f − pn is asymptotically constant in capacity on level
lines of the Green’s function g�(z,∞) of the complement � of E in C with pole at
infinity, thereby reflecting a type of near-circularity, but without gaining knowledge
of the winding numbers of the error curves with respect to the point 0.

Keywords Complex approximation · Near-circularity · Maximal convergence ·
Capacity · Equilibrium measure
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1 Introduction: Carathéodory–Fejér Approximation

Let f (z) be a power series

f (z) =
∞∑

k=0

akz
k,
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with radius of convergence R, 1 < R < ∞, and let � ⊂ N such that

1

R
= lim sup

n→∞
n
√|an| = lim

n∈�,n→∞
n
√|an|. (1.1)

If γ > 1/R, we may assume that for n ∈ �

an+1 �= 0 and
∣∣an+1+ j

∣∣ ≤ |an+1| γ j for j = 1, 2, . . . . (1.2)

Let Pn denote the collection of all algebraic polynomials of degree at most n. Then
Carathéodory and Fejér considered the following procedure to construct near-best
uniform approximations of f on the closed unit disk: Let m > 0 be fixed and define

fn,m(z) =
n+m+1∑

k=n+1

akz
k,

then there exists a unique function

f ∗
n,m(z) =

n∑

k=−∞
ckz

k + fn,m(z) (1.3)

that is analytic on |z| > 1 and continuous on |z| ≥ 1 such that
∥∥ f ∗

n,m

∥∥|z|=1 is minimal
among all extensions of fn,m(z) of type (1.3) (cf. Goluzin [3, Ch. XI, §7], Trefethen
[10]). Moreover, f ∗

n,m(z) can be expressed as

f ∗
n,m(z) = λ zn+m+1

ν∏

i=1

(
1 − αi z

z − αi

)
, (1.4)

with λ ∈ C, |λ| ≥ |an+1| and ν ≤ m poles αi in the open unit disk. If γ is sufficiently
small (for example γ < (

√
13− 1)/6 ≈ 0.43426 . . .), then Hollenhorst [4, 5] proved

that the function f ∗
n,m(z) has exactly m poles in the interior of the unit disk and f ∗

n,m(z)
describes on |z| = 1 exactly n + 1 circles. Moreover, let

pn,m(z) =
n∑

k=0

(ak − ck)z
k

be the CF-approximation (Carathéodory–Fejér), then the Blaschke product in (1.4)
induces that

f (z) − pn,m(z) = f ∗
n,m(z) + Rn,m(z).

is nearly circular on |z| = 1 for n → ∞, n ∈ �, by using asymptotic estimates
of

∥∥Rn,m
∥∥|z|=1 (cf. Hollenhorst [4, 5], Trefethen [1, 10]). Trefethen was the first to
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use the notion near-circularity for this behavior, namely, for sufficiently small γ and
sufficiently big m (for example the standard choice is m = n + 1) the results of
Hollenhorst ( [4], [5]) and Trefethen [10] lead to

|λ| − O(γ n) ≤ min|z|=1
| f (z) − pn,m(z)| ≤ ∥∥ f − pn,m

∥∥|z|=1 ≤ |λ| + O(γ n),

(1.5)

as n ∈ �, n → ∞, which reflects the near-circularity of the error curve
(
f − pn,m

)
(z)

on the unit circle and moreover,

|an+1| ≤ |λ| ≤ |an+1| (1 + O(1)) as n ∈ �, n → ∞.

Keeping in mind (1.1) and (1.2), we get the coarser inequalities

1

R
≤ lim sup

n∈�,n→∞
min|z|=1

| f (z) − pn,m(z)|1/n ≤ lim sup
n∈�,n→∞

∥∥ f − pn,m
∥∥1/n|z|=1 ≤ 1

R
.

Hence, in the above inequalities the equality sign always holds and therefore

1

R
= lim

n∈�,n→∞ min|z|=1
| f (z) − pn,m(z)|1/n = lim

n∈�,n→∞
∥∥ f − pn,m

∥∥1/n|z|=1 = 1

R
.

(1.6)

This is now the starting point of our investigations.
Let E be compact and connected in C with connected complement � = C\E and

let g�(z,∞) denote theGreen’s function of�with pole at∞, and let�σ denote a level
line of g�(z,∞) and let f be holomorphic inside �ρ( f ), where ρ( f ) is the maximal
parameter of holomorphy of f . Furthermore, if {pn}n∈N is a polynomial sequence
converging maximally to f , then the objective of this paper is to find � ⊂ N and
compact sets Kn ⊂ �σ , n ∈ �, such that analogous to (1.6)we have for 1 < σ < ρ( f )

σ

ρ( f )
= lim

n∈�,n→∞ inf
z∈�σ \Kn

| f (z) − pn(z)|1/n = lim
n∈�,n→∞ ‖ f − pn‖1/n�σ

= σ

ρ( f )
,

where the capacity of the exceptional set Kn tends to 0 as n ∈ �, n → ∞.

2 Main Results

For B ⊂ C, we denote by B◦ the set of interior points of B, by B its closure and by
∂B the boundary of B and we use ‖ · ‖B for the supremum norm over B. Let A(B)

be the class of functions that are holomorphic (i.e. analytic and single-valued) in a
neighborhood of B.

Let K be a compact subset of the complex planeC and letM(K ) be the collection of
all probabilitymeasures supported on K . Then the logarithmic potential ofμ ∈ M(K )
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is defined by

Uμ(z) =
∫

log
1

|z − t | dμ(t)

and the logarithmic energy I (μ) by

I (μ) :=
∫ ∫

log
1

|z − t | dμ(t) dμ(z) =
∫

Uμ(z) dμ(z).

Let

V (K ) := inf{I (μ) : μ ∈ M(K )},

then V (K ) is either finite or V (K ) = +∞. The quantity

cap K = e−V (K )

is called the logarithmic capacity or capacity of K .
Let K be compact in the complex plane C with cap K > 0 and connected comple-

ment �(K ) = C\K in the extended plane C. We define by g�(K )(z,∞) the Green’s
function of �(K ) with pole at ∞, i.e.,

(i) g�(K )(z,∞) is positive and harmonic in �(K )\{∞},
(ii) lim|z|→∞

(
g�(K )(z,∞) − log |z|) = − log cap K,

(iii) limζ∈�(K ), ζ→z g�(K )(ζ,∞) = 0 for quasi-every z ∈ ∂�(K ).

Since cap K > 0, the Green’s function g�(K )(z,∞) is unique and there exists a
unique measure μK ∈ M(K ) such that

I (μK ) = − log cap K = V (K )

and we have

UμK (z) = −g�(K )(z,∞) − log cap K , z ∈ �(K ).

Here, μK is called the equilibrium measure of K .
In the following, let E be a fixed compact and connected set with cap E > 0 and

connected complement � := C\E . We denote by g�(z,∞) the Green’s function of
the region�with pole at∞. Since E is connected and cap E > 0, the Green’s function
g�(z,∞) is unique and g�(ζ,∞) tends to 0 as ζ ∈ � tends to z ∈ ∂� for quasi-every
z ∈ ∂�.

Now, let us define for σ > 1 the Green domains Eσ by

Eσ := {z ∈ � : g�(z,∞) < log σ } ∪ E

with boundary �σ := ∂Eσ . Hence, the Green domains Eσ are Jordan regions for any
σ > 1.
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If f ∈ A(E), then there exist ρ > 1 and polynomials pn ∈ Pn , n ∈ N, such that

lim sup
n→∞

‖ f − pn‖1/nE ≤ 1

ρ
,

due to a result ofWalsh [13]. If f ∈ A(E) is not an entire function and if ρ( f ) denotes
the maximal parameter ρ > 1, 1 < ρ < ∞, such that f is holomorphic on Eρ , then
there exist polynomials pn ∈ Pn such that

lim sup
n→∞

‖ f − pn‖1/nE = 1

ρ( f )
.

Such a sequence pn ∈ Pn is calledmaximally convergent. Moreover,Walsh [13, (§4.7,
Thm. 7, Thm. 8 and its Cor., pp. 79–81)] proved that for such maximally convergent
polynomials

lim sup
n→∞

‖ f − pn‖1/n�σ
= σ

ρ( f )
, 1 < σ < ρ( f ) < ∞. (2.1)

For z ∈ Eρ( f )\E we define the functions

Fn(z) := 1

n
log | f (z) − pn(z)| − g�(z,∞) + log ρ( f ), (2.2)

which are subharmonic and upper semicontinuous in Eρ( f )\E and harmonic outside
the zeros of f − pn . Then Walsh [12] has used for results of type (2.1) more generally
the notion of exact harmonic majorant, namely that the sequence Fn(z), n ∈ N, of
subharmonic functions has on the region Eρ( f )\E the zero function as exact harmonic
majorant, i.e.,

lim sup
n→∞

max
z∈S Fn(z) = 0

for any continuum S in Eρ( f )\E , S not a single point.
If S is a compact set in Eρ( f )\E and ε > 0, we define

Kn(S; ε) := {z ∈ S : Fn(z) ≤ −ε} . (2.3)

and introduce for 1 < κ1 ≤ κ2 < ∞ the annulus

Dκ1,κ2 := Eκ2\Eκ1

between the level lines �κ2 and �κ1 of the Green’s function g�(z,∞).
Then our main result is the following

123



H.-P. Blatt

Theorem Let E be compact and connected, f ∈ A(E)with maximal parameter ρ( f )
of holomorphy, 1 < σ1 ≤ σ2 < ρ( f ) < ∞, and let {pn}n∈N be maximally convergent
to f on E. Then the compact sets Kn(Dσ1,σ2; ε) satisfy

lim
ε→0

lim inf
n→∞ cap Kn(Dσ1,σ2; ε) = 0 (2.4)

so that

lim
ε→0

lim inf
n→∞ inf

z∈Dσ1,σ2\Kn(Dσ1,σ2 ;ε)Fn(z) = lim sup
n→∞

max
z∈Dσ1,σ2

Fn(z) = 0. (2.5)

Remark (2.5) implies that there exists � ⊂ N and a sequence {εn}n∈�, εn >

0, with limn∈�,n→∞ εn = 0 such that the compact sets Kn(Dσ1,σ2; εn) satisfy
cap Kn(Dσ1,σ2; εn) ≤ εn and for n ∈ �

e−εn ≤ inf
z∈Dσ1,σ2\Kn(Dσ1,σ2 ;εn)

(
ρ( f )

eg�(z,∞)
| f (z) − pn(z)|1/n

)

≤ max
z∈Dσ1,σ2

(
ρ( f )

eg�(z,∞)
| f (z) − pn(z)|1/n

)
≤ eεn .

We want to connect the theorem with the phenomenon of near-circularity of
Carathéodory–Féjer approximations, described in (1.5), resp. (1.6).

Corollary 1 There exist � ⊂ N and a sequence

{εn}n∈� with lim
n∈�,n→∞εn = 0

such that for any σ, 1 < σ1 ≤ σ ≤ σ2 < ρ( f ), the compact sets

Kn(�σ ; εn) = �σ ∩ Kn(Dσ1,σ2; εn)

satisfy cap Kn(�σ ; εn) ≤ εn for n ∈ � and moreover,

σ

ρ( f )
e−εn ≤ inf

z∈�σ \Kn(�σ ;εn)
| f (z) − pn(z)|1/n ≤ ‖ f − pn‖1/n�σ

≤ σ

ρ( f )
eεn .

Corollary 2 Let 1 < σ < ρ( f ). Then there exist � ⊂ N and a sequence

{εn}n∈� , εn > 0, lim
n∈�,n→∞ εn = 0,

together with a sequence

{σn}n∈� , 1 < σn < ρ( f ), lim
n∈�,n→∞ σn = σ,

123



Near-Circularity in Capacity and Maximally...

such that for n ∈ �

σn

ρ( f )
e−εn ≤ min

z∈�σn

| f (z) − pn(z)|1/n ≤ ‖ f − pn‖1/n�σn
≤ σn

ρ( f )
eεn .

3 Proof of the Theorem

Let us assume that the theorem is false, i.e.,

lim
ε→0

lim inf
n→∞ cap Kn(Dσ1,σ2; ε) > 0. (3.1)

Then our final goal will be to prove for some θ, 0 < θ < 1, and τ, 1 < τ < ρ( f ),

‖ f − pn‖�τ
≤

(
θτ

ρ( f )

)n

for all sufficiently big n.

This would imply that

‖pn+1 − pn‖�τ
≤ 2

(
θτ

ρ( f )

)n

and finally the telescoping series

f =
∞∑

n=0

(pn+1 − pn)

shows, using the Bernstein–Walsh Lemma (cf. [13, §4.5, Thm. 5)]), that f is holo-
morphic in a neighborhood of Eρ( f ), contradicting the definition of ρ( f ).

Starting from the definition in (2.3), we note that for ε < ε′ we obtain

Kn(Dσ1,σ2; ε′) ⊂ Kn(Dσ1,σ2; ε).

Therefore the function

h(ε) := lim inf
n→∞ cap Kn(Dσ1,σ2; ε)

is monotonically decreasing with ε, ε > 0. Hence (3.1) implies that there exist ε0 > 0
and δ > 0 such that

h(ε) ≥ 2 δ for all 0 < ε ≤ ε0.

Due to the definition of h(ε0), there exists n0 = n0(ε0) such that

cap Kn(Dσ1,σ2; ε) ≥ cap Kn(Dσ1,σ2; ε0) ≥ δ > 0 (3.2)
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for all n ≥ n0(ε0) and 0 < ε ≤ ε0.
Next, let us introduce the conformal mapping

� : � = C\E −→ {z : |z| > 1} , (3.3)

normalized by �(∞) = ∞ and �′(∞) > 0. In � we define the subsets

�+ := {z ∈ � : Im(�(z)) ≥ 0} ,

�− := {z ∈ � : Im(�(z)) ≤ 0} .

Let us define for any compact set K ⊂ Eρ( f )\E

K+ := {
z ∈ K : z ∈ �+}

, (3.4)

K− := {
z ∈ K : z ∈ �−}

. (3.5)

Then K+ and K− are compact sets and, applied to K = Kn := Kn(Dσ1,σ2; ε), we
obtain

Kn := Kn(Dσ1,σ2; ε) = K+
n ∪ K−

n .

According to a Theorem of Nevanlinna [6] (cf. [7, Thm. 11.4] or [8, Thm. 5.1.4]) we
have

1

log d
cap Kn

≤ 1

log d
cap K+

n

+ 1

log d
cap K−

n

, (3.6)

where d is the diameter of Eρ( f ). Let us define

K̃n :=
{
K+
n if cap K+

n ≥ cap K−
n ,

K−
n if cap K+

n < cap K−
n .

Then (3.6) leads to

cap K̃n ≥ (cap Kn)
2

d
≥ δ2

d
,

where Kn = Kn(Dσ1,σ2; ε) (0 < ε ≤ ε0) satisfies (3.2). Hence, replacing Kn by
K̃n we may assume in the following that the sets Kn = Kn(Dσ1,σ2; ε) satisfy for all
sufficiently large n the properties:

(i) cap Kn = cap Kn(σ1, σ2; ε) ≥ δ,
(ii) Kn is of type K+

n or of type K−
n ,

(iii) 0 < δ < 1.
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Let Bn denote the complement of Kn , Bn = C\Kn . Then Bn is connected, since
the functions Fn(z) of (2.2) are subharmonic in Eρ( f )\E . Because Kn satisfies (ii),
we obtain

Eσ1 ⊂ Bn and C\Eσ2 ⊂ Bn .

Let μn denote the equilibrium measure of Kn , so the logarithmic potential Uμn is
superharmonic and lower semicontinuous in C (cf. [11, Thm. II.23, p. 45)]) and

Uμn (z) = −gBn (z,∞) − log cap Kn, z ∈ Bn,

where gBn (z,∞) is Green’s function of Bn with pole at ∞ (cf. [9, Ch. I, Sect. 1.4,
Eq. (4.8), p. 53)]. According to a theorem of Frostman (cf. [11, Thm. III.12, p. 60] or
[8, (Thm. 3.3.4, p. 59]),

Uμn (z) ≤ − log cap Kn, z ∈ C,

and

Uμn (z) = − log cap Kn for q.e. z ∈ Kn,

or more precisely, Uμn (z) = − log cap Kn for all z ∈ Kn except on a Fσ -set of
∂Kn with capacity 0.

For the following we choose 4 additional auxiliary parameters r , R and τ1, τ2 such
that

1 < r < τ1 < σ1 ≤ σ2 < τ2 < R < ρ( f ),

and we define for μ ∈ M(Dσ1,σ2)

Mr ,R(μ) := max
�r∪�R

Uμ(z), Mτ1,τ2(μ) := max
�τ1∪�τ2

Uμ(z).

Lemma 1 Let μ ∈ M(Dσ1,σ2) with supp(μ) ⊂ �+ or supp(μ) ⊂ �−, so

Mτ1,τ2(μ) > Mr ,R(μ). (3.7)

If μn is the equilibrium measure of Kn, then

− log cap Kn = max
z∈Kn

Uμn (z) > Mτ1,τ2(μn) > Mr ,R(μn). (3.8)

Proof The logarithmic potential Uμ(z) is harmonic outside of supp(μ), hence in
C\ (

Dσ1,σ2 ∩ �+)
or in C\ (

Dσ1,σ2 ∩ �−)
. Since

Er ⊂ Eτ1 ⊂ C\ (
Dσ1,σ2 ∩ �+)

or Er ⊂ Eτ1 ⊂ C\ (
Dσ1,σ2 ∩ �−)

,
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we get by the maximum principle of harmonic functions

max
z∈�r

Uμ(z) < max
z∈�τ1

Uμ(z). (3.9)

Moreover,

�τ2 ⊂ C\Dσ1,σ2 and lim
z→∞ Uμ(z) = −∞

and, again by the maximum principle,

max
z∈�τ2

Uμ(z) > max
z∈�R

Uμ(z). (3.10)

Then (3.9) and (3.10) yield

Mτ1,τ2(μ) > Mr ,R(μ).

Concerning (3.8), the theorem of Frostman implies that

− log cap Kn = max
z∈Kn

Uμn (z).

If z0 ∈ C\Kn , then

Uμn (z0) < − log cap Kn,

otherwise, the theorem of Frostman yields

− log cap Kn ≥ max
z∈W Uμn (z) ≥ Uμn (z0) ≥ − log cap Kn,

where W is some neighborhood of z0. Then Uμn (z) = − log cap Kn for z ∈ C\Kn ,
contradicting

lim
z→∞Uμn (z) = −∞.

Hence, the first inequality in (3.8) holds, the second is a special case of (3.7). ��
We define

Hn(z) := Uμn (z) − Mr ,R(μn)

− log cap Kn − Mr ,R(μn)

and the domain

D(n)
r ,R := Bn ∩ D◦

r ,R .
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Then Hn(z) is harmonic in D(n)
r ,R and satisfies the boundary conditions

Hn(z) ≤ 0 for z ∈ �r ∪ �R, (3.11)

lim
ξ∈D(n)

r ,R , ξ→z
Hn(ξ) = 1 for q.e. z ∈ ∂D(n)

r ,R ∩ Kn . (3.12)

For (3.12) we have used the theorem of Frostman. Next, let us define

αn := max
z∈�τ1∪�τ2

Hn(z)

so

αn = Mτ1,τ2(μn) − Mr ,R(μn)

− log cap Kn − Mr ,R(μn)
.

Lemma 2 Let

βn := Mτ1,τ2(μn) − Mr ,R(μn),

so

lim inf
n→∞ βn > 0 (3.13)

and

lim inf
n→∞ αn ≥ α > 0. (3.14)

Proof Let us assume that (3.13) is false, i.e., there exists, because of (3.7), a subset
� ⊂ N such that

lim
n∈�,n→∞

(
Mτ1,τ2(μn) − Mr ,R(μn)

) = 0. (3.15)

Let

D+
σ1,σ2

= {
z ∈ Dσ1,σ2 : φ(z) ∈ �+}

and

D−
σ1,σ2

= {
z ∈ Dσ1,σ2 : φ(z) ∈ �−}

.

according to the definitions in (3.4) and (3.5). Since Kn is either of type K+
n or of type

K−
n , there exists an infinite set �1 ⊂ � such that

μn ∈ M(D+
σ1,σ2

) (resp. μn ∈ M(D−
σ1,σ2

)) for n ∈ �1.
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Then by Helly’s Selection Theorem, there exists �∗ ⊂ �1 and μ ∈ M(D+
σ1,σ2

) (resp.
μ ∈ M(D−

σ1,σ2
) such that

lim
n∈�∗,n→∞Uμn (z) = Uμ(z) for z ∈ C\D+

σ1,σ2
(resp. z ∈ C\D−

σ1,σ2
)

and the functions Uμn , n ∈ �∗, are uniformly bounded on compact sets of C\D+
σ1,σ2

(resp. C\D−
σ1,σ2

). Then {Uμn }n∈�∗ converges uniformly on compact sets of C\D+
σ1,σ2

(resp. C\D−
σ1,σ2

) (cf. Goluzin [3, Ch. 1, §1, Thm. 3, p. 20)]).
Now,

�r ∪ �τ1 ∪ �τ2 ∪ �R

is a compact subset of C\D+
σ1,σ2

and of C\D−
σ1,σ2

as well. Therefore, the functions
Uμn , n ∈ �∗, converge uniformly to Uμ on �r ∪ �τ1 ∪ �τ2 ∪ �R .

Hence, (3.15) implies that

0 = lim
n∈�∗,n→∞

(
Mτ1,τ2(μn) − Mr ,R(μn)

) = Mτ1,τ2(μ) − Mr ,R(μ). (3.16)

Then (3.16) contradicts Lemma 1 and (3.13) is true.
Concerning (3.14), we consider the denominator

− log cap Kn − M (n)
r ,R .

Because of (3.2), for all 0 < ε ≤ ε0

cap Kn = cap Kn(Dσ1,σ2; ε) ≥ δ > 0

for n ≥ n0(ε0) and we have assumed that 0 < δ < 1. Therefore

− log cap Kn ≤ log
1

δ
, n ≥ n0(ε0), (3.17)

Define

m := max

{
1, max

z∈�r∪�R ,t∈Dσ1,σ2

|z − t |
}

,

so m ≥ 1 and

−Uμn (z) =
∫

log |z − t |dμn(t) ≤ logm for z ∈ �r ∪ �R, (3.18)

and consequently (3.17) and (3.18) lead to

− log cap Kn − M (n)
r ,R ≤ log

1

δ
+ logm > 0 (3.19)
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for all n ≥ n0(ε0). Hence, by (3.19) and (3.13) we obtain the inequality (3.14) and
Lemma 2 is proven. ��

Next, we consider the harmonic measures

H∗
n (z) = ω(z, ∂Kn, D

(n)
r ,R), (3.20)

i.e., H∗
n (z) is harmonic in the domain D(n)

r ,R and satisfies the boundary conditions

H∗
n (z) = 0 for z ∈ �r ∪ �R (3.21)

and

lim
ξ∈D[n)

r ,R , ξ→z
H∗
n (ξ) = 1 for q.e. z ∈ ∂Kn . (3.22)

It is known that H∗
n exists and is unique, (3.21) holds because all points of �r and

�R are regular points, (3.22) is a consequence of cap Kn > 0 (cf. Ransford [8,
Cor. 4.2.6, p. 95)]). Because of (3.21) and (3.22), the extended maximum principle,
resp. minimum principle, yields

0 ≤ H∗
n (z) ≤ 1 for z ∈ D(n)

r ,R .

But since H∗
n is not constant, the function H∗

n cannot attain a local maximum or

minimum in D(n)
r ,R . Hence

0 < H∗
n (z) < 1 for z ∈ D(n)

r ,R . (3.23)

Lemma 3 Let

γn = min
z ∈ �τ1∪�τ2

H∗
n (z),

then

lim inf
n→∞ γn = γ > 0.

Proof Let us assume that Lemma 3 is false, i.e., (3.23) implies that

lim inf
n→∞ γn = 0.

We choose a subset � ⊂ N such that

lim inf
n∈�,n→∞γn = 0. (3.24)
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Concerning the harmonic measures H∗
n , n ∈ �, there exists �1 ⊂ � such that the

functions H∗
n (z), n ∈ �1, converge to a harmonic function H∗(z) locally uniformly

in D(n)
r ,R , especially on the compact set �τ1 ∪ �τ2 (cf. Goluzin [3, Ch. 1, §1, Thm. 2,

p. 20)]). Because of (3.23) and (3.24), we get by the maximum principle

H∗(z) ≡ 0, z ∈ D(n)
r ,R .

Applied to �τ1 ∪ �τ2 , we obtain for

εn := max
z∈�τ1∪�τ2

H∗
n (z), n ∈ �1,

that

lim
n∈�1,n→∞εn = 0.

By (3.11), (3.12), (3.21), (3.22) we have for n ∈ N

H∗
n (z) − Hn(z) ≥ 0, z ∈ �r ∪ �R,

and

lim
ξ∈D(n)

r ,R ,ξ→z
(H∗

n (z) − Hn(z)) = 0 for q.e. z ∈ ∂Kn .

Then the extended maximum principle yields

H∗
n (z) − Hn(z) ≥ 0 for z ∈ D(n)

r ,R, n ∈ N,

(cf. Ransford [8, Thm. 3.6.9, p. 70]). Hence

lim inf
n∈�1,n→∞ min

z∈�τ1∪�τ2

(H∗
n (z) − Hn(z)) ≥ 0. (3.25)

Let ξn ∈ �τ1 ∪ �τ2 with

αn = max
�τ1∪�τ2

Hn(z) = Hn(ξn),

then for n ∈ �1

H∗
n (ξn) − Hn(ξn) ≤ εn − Hn(ξn) = εn − αn

and

min
z∈�τ1∪�τ2

(H∗
n (z) − Hn(z)) ≤ H∗

n (ξn) − Hn(ξn) ≤ εn − αn .

123



Near-Circularity in Capacity and Maximally...

Consequently, by Lemma 2,

lim inf
z∈�1,n→∞ min

�τ1∪�τ1

(H∗
n (z) − Hn(z)) ≤ lim inf

n∈�1,n→∞(−αn) ≤ −α < 0,

in contrast to (3.25). Hence, the assumption that Lemma 3 is false, is refuted. ��
In the following we will use the functions Fn(z) of (2.2). Fn(z) is subharmonic in

Eρ( f )\E and the compact sets Kn(σ1, σ2; ε) are

Kn(Dσ1,σ2; ε) = {
z ∈ Dσ1,σ2 : Fn(z) ≤ −ε

}
.

We will compare Fn(z) with

F∗
n (z) := −a H∗

n (z) + b with a > 0, b > 0, (3.26)

where H∗
n (z) = ω(z, ∂Kn, D

(n)
r ,R) is the harmonic measure defined in (3.20)–(3.22).

Lemma 4 There exist parameters a > 0, b > 0 and n0 ∈ N such that F∗
n , defined in

(3.26), is a harmonic majorant of the subharmonic function Fn in D(n)
r ,R for n ≥ n0

and moreover, there exists γ ∗ > 0 such that

max
z∈�τ1∪�τ2

F∗
n (z) ≤ −γ ∗ < 0 for n ≥ n0, n ∈ N.

Proof Let ε̃ > 0 be arbitrary. Because of the maximal convergence of pn to f , there
exists n1 = n1(̃ε) such that

Fn(z) ≤ ε̃ for z ∈ �r ∪ �R and n ≥ n1(̃ε).

Due to the definition of Kn = Kn(Dσ1,σ2; ε),

Fn(z) = −ε, z ∈ ∂Kn .

The parameter ε is always fixed and 0 < ε ≤ ε0, where ε0 satisfies (3.2).
We will define a and b constructively:
The function F∗

n (z) of (3.26) satisfies

F∗
n (z) = b for z ∈ �r ∪ �R,

F∗
n (z) = −a + b for q.e. z ∈ ∂Kn .

Hence, F∗
n is a harmonic majorant of Fn in D(n)

r ,R if

b ≥ ε̃ and − a + b ≥ −ε.

First, we choose

b = ε̃ and a = b + ε. (3.27)
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Then we want to fix ε̃ such that

0 > max
z∈�τ1∪�τ2

F∗
n (z) = −a min

z∈�τ1∪�τ2

H∗
n (z) + b = −a γn + b

for sufficiently big n. If we choose n2 = n2(γ ) ∈ N such that by Lemma 3

γn ≥ γ

2
for n ≥ n2(γ ),

then

max
z∈�τ1∪�τ2

F∗
n (z) ≤ −a

γ

2
+ b < 0 (3.28)

for n ≥ n2(γ ) if

−a
γ

2
+ b = −(b + ε)

γ

2
+ b < 0

or

b
(
1 − γ

2

)
< ε

γ

2

or

b < ε
γ

2 − γ
, (3.29)

where we have used a = b+ ε of (3.27), keeping in mind that 0 < γ ≤ 1. Therefore,
defining

b := ε

2

γ

2 − γ
, (3.30)

then (3.29) holds and (3.27) yields

ε̃ = ε

2

γ

2 − γ
(3.31)

and

a = b + ε = ε

2

4 − γ

2 − γ
. (3.32)

With

γ ∗ := ε

4
γ
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and the parameters a of (3.32) and b of (3.30) we obtain in (3.28)

max
z∈�τ1∪�τ2

F∗
n (z) ≤ −γ ∗ = −ε

4
γ < 0

for

n ≥ n0 := max (n1(̃ε), n2(γ )) ,

where ε̃ is defined in (3.31) and γ is the parameter from Lemma 3. Hence the proof
of Lemma 4 is complete. ��

Now, we are in position for the final step of the proof: Because of Lemma 4, we
have

max
z∈�τ1∪�τ2

F∗
n (z) ≤ −γ ∗ < 0 for all n ≥ n0. (3.33)

Since F∗
n (z) is a harmonic majorant of the subharmonic function Fn(z) in D(n)

r ,R , we
may restrict (3.33) for the further arguments either to �τ1 or to �τ2 . Let us choose �τ1 ,
i.e., we consider

max
z∈�τ1

(
1

n
log | f (z) − pn(z)| − g�(z,∞) + log ρ( f )

)
≤ −γ ∗

for all n ≥ n0, or

‖ f − pn‖�τ1
≤

(
τ1

ρ( f )
e−γ ∗

)n

, n ≥ n0.

Thus,

‖pn+1 − pn‖�τ1
≤ 2

(
τ1

ρ( f )
e−γ ∗

)n

, n ≥ n0.

Then the telescoping series

f = pn0 +
∞∑

n=n0

(pn+1 − pn)

converges to a holomorphic function in a neighborhood of Eρ( f ), using well-known
arguments and the Bernstein–Walsh-Lemma (cf. Walsh [13, Sect. 4.6)]). Hence, ρ( f )
is not the maximal parameter of holomorphy of f , which is a contradiction. Hence,
(3.1) is not true and (2.4) is proven.

123



H.-P. Blatt

Concerning (2.5): Because Fn is subharmonic in Dσ1,σ2 , the maximum principle
yields

max
z∈Dσ1,σ2

Fn(z) = max

(
max
z∈�σ1

Fn(z), max
z∈�σ2

Fn(z)

)
= max

z∈�σ1∪�σ2

Fn(z). (3.34)

Then the maximal convergence of the polynomials pn ∈ Pn to f implies

lim sup
n→∞

max
z∈Dσ1,σ2

Fn(z) = lim sup
n→∞

max
z∈�σ1∪�σ2

Fn(z) = 0. (3.35)

On the other hand, the definition of Kn(Dσ1,σ2; ε) yields

inf
Dσ1,σ2\Kn(Dσ1,σ2 ;ε)Fn(z) ≥ −ε for any ε > 0 and n ∈ N. (3.36)

Let ε → 0, then by (3.36)

lim
ε→0

lim inf
n→∞ inf

z∈Dσ1,σ2\Kn(Dσ1,σ2 ;ε)Fn(z) ≥ 0

and, together with (3.35),

0 = lim sup
n→∞

max
z∈Dσ1,σ2

Fn(z) ≥ lim
ε→0

lim inf
n→∞ inf

z∈Dσ1,σ2\Kn(Dσ1,σ2 ;ε)Fn(z)

≥ 0.

Hence, (2.5) and the Theorem is proven. ��

4 Proof of the Corollaries

Proof of Corollary 1 Because of (3.34) and (3.35),

lim sup
n→∞

max
z∈Dσ1,σ2

Fn(z) = 0. (4.1)

Hence, there exists a sequence
{
ε∗
n

}
n∈N, ε

∗
n > 0, with limn→∞ ε∗

n = 0 and m∗
n ∈ N

such that

Fm(z) ≤ ε∗
n for z ∈ Dσ1,σ2 and m ≥ m∗

n .

Now let us define

δ(ε∗
n) := lim inf

n→∞ cap Kn(Dσ1,σ2; ε∗
n),
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so δ(ε∗
n ) → 0 as n → ∞. Then there exists mn ∈ N, mn ≥ m∗

n , such that

cap Kmn (Dσ1,σ2; ε∗
n) ≤ 2 δ(ε∗

n). (4.2)

Define

� := {mn}n∈N

and

εn := max(ε∗
n, 2 δ(ε∗

n)), n ∈ N, (4.3)

then we get

Fmn (z) ≤ ε∗
mn

≤ εmn , z ∈ Dσ1,σ2 .

Moreover, since εmn ≥ ε∗
mn

we have

Kmn (Dσ1,σ2; εmn ) ⊂ Kmn (Dσ1,σ2; ε∗
mn

)

and, together with (4.2) and (4.3), we obtain

cap Kmn (Dσ1,σ2; εmn ) ≤ cap Kmn (Dσ1,σ2; ε∗
mn

) ≤ 2 δ(ε∗
mn

) ≤ εmn .

Then,

−εmn ≤ inf
z∈Dσ1,σ2\Kmn (Dσ1,σ2 ;εmn )

Fmn (z) ≤ max
z∈Dσ1,σ2

Fmn (z) ≤ εmn .

Consequently, for any σ , σ1 ≤ σ ≤ σ2,

σ

ρ( f )
e−εmn ≤ inf

z∈�σ \Kmn (�σ ;εmn )

∣∣ f (z) − pmn (z)
∣∣1/mn

≤ ∥∥ f − pmn

∥∥1/mn

�σ

≤ σ

ρ( f )
eεmn .

Hence, � = {mn}n∈N and {εn}n∈� satisfy the inequalities of Corollary 1. ��
Proof of Corollary 2 We recall the contraction property of the capacity: If K is a com-
pact set in C and let T : K → C be a mapping satisfying

|T (z) − T (w)| ≤ α |z − w| , z, w ∈ C,

where α is a positive constant, then

cap T (K ) ≤ α cap K
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(cf. Pommerenke [7] or Ransford [8]).
For the conformal mapping � = C\E −→ {z : |z| > 1} of (3.3) it is known that

|�(z) − �(w)| ≤ c(ρ) |z − w|

for compact sets K ⊂ C\Eρ , where

c(ρ) = max
z∈�ρ

∣∣�′(z)
∣∣

(cf. [2, Lem. 5.1]). Define

σ1 := 1 + σ

2
and σ2 := σ + ρ( f )

2
.

Then the Theorem yields

lim
ε→0

lim inf
n→∞ cap Kn(Dσ1,σ2; ε) = 0.

Defining for ε > 0

δ(ε) := lim inf
n→∞ cap Kn(Dσ1,σ2; ε),

weget limε→0 δ(ε) = 0. Then there exists a sequence
{
ε∗
n

}
n∈N such that 0 < ε∗

n ≤ 1/n
and

δ(ε∗
n) ≤ 1

c(σ1)

1

4n
. (4.4)

Set

Dn := Dσ−1/n,σ+1/n,

then there exists m0 ∈ N such that Dn ⊂ Dσ1,σ2 for n ≥ m0.
Because of (4.4) and (4.1), we can choose a subsequence {mn}n∈N, mn+1 > mn ,

such that m1 ≥ m0 and

cap Kmn (Dσ1,σ2; ε∗
n) ≤ 1

c(σ1)

1

2n
, (4.5)

and

max
z∈Dσ1,σ2

Fmn (z) ≤ ε∗
n . (4.6)

Let p1 denote the projection p1 : C\ {0} → R+,

p1(z) = r = |z| for z = reiφ,
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where we have used polar coordinates (r , φ) inC\ {0}. Then the contraction principle
of the capacity, together with (4.5), yields

cap p1(�(Kmn (Dσ1,σ2; ε∗
n))) ≤ cap�(Kmn (Dσ1,σ2; ε∗

n))

≤ c(σ1) cap Kmn (Dσ1,σ2; ε∗
n)

≤ 1

2n
. (4.7)

On the other hand

cap p1(�(Dn)) = cap

([
σ − 1

n
, σ + 1

n

])
= 1

n
. (4.8)

Comparing (4.7) and (4.8), we conclude that there exists

σmn ∈
[
σ − 1

n
, σ + 1

n

]

such that

�σmn
∩ Kmn (Dσ1,σ2; ε∗

n) = ∅

for all mn ≥ m0. Using (4.6), we can summarize

−ε∗
n ≤ min

z∈�σmn

Fmn (z) ≤ max
z∈�σmn

Fmn (z) ≤ ε∗
n .

Consequently, the subset

� = {mn}n∈N ⊂ N

and the sequences {σn}n∈� and {εn}n∈� with εmn := ε∗
n satisfy the properties of

Corollary 2. ��
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