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Abstract

If f is a power series with radius R of convergence, R > 1, it is well-known that
the method of Carathéodory—Fejér constructs polynomial approximations of f on the
closed unit disk which show the typical phenomenon of near-circularity on the unit
circle. Let E be compact and connected and let f be holomorphic on E. If {p,},cn
is a sequence of polynomials converging maximally to f on E, it is shown that the
modulus of the error functions f — p, is asymptotically constant in capacity on level
lines of the Green’s function gq(z, 00) of the complement Q of E in C with pole at
infinity, thereby reflecting a type of near-circularity, but without gaining knowledge
of the winding numbers of the error curves with respect to the point 0.
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1 Introduction: Carathéodory-Fejér Approximation

Let f(z) be a power series

f) = Zakzk,
k=0

Dedicated to the memory of Richard Varga

Communicated by Vladimir V. Andrievskii.

DX Hans-Peter Blatt
hans.blatt@ku.de

Katholische Universitit Eichstitt-Ingolstadt, Mathematisch-Geographische Fakultit, 85071 Eichstiitt,
Germany

Published online: 13 March 2024 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40315-024-00528-5&domain=pdf

H.-P. Blatt

with radius of convergence R, 1 < R < 0o, and let A C N such that

1
— =limsup+/|a,| = lim +/|ayl. (1.1)
nelA,n—oo

R n—>00
If y > 1/R, we may assume that forn € A
anp1 #0 and |api14)| < lansrly? for j=1,2,.... (1.2)
Let P,, denote the collection of all algebraic polynomials of degree at most n. Then

Carathéodory and Fejér considered the following procedure to construct near-best
uniform approximations of f on the closed unit disk: Let m > 0 be fixed and define

n+m-+1
Sum(2) = Z aka,
k=n-+1
then there exists a unique function
n
fin@= Y at + fum (13)
k=—o00

that is analytic on |z| > 1 and continuous on |z| > 1 such that || Som || 2l=1 is minimal

among all extensions of f; ;,(z) of type (1.3) (cf. Goluzin [3, Ch. XI, §7], Trefethen
[10]). Moreover, f,f,,(z) can be expressed as

v 1 __i '
frf,m(z) = )\4 Zn+m+1 1_[ (i) ) (]4)

— o
i1 N % !

with A € C, |A| > |ay+1| and v < m poles ¢; in the open unit disk. If y is sufficiently
small (for example y < (v/13 — 1)/6 ~ 0.43426 . ..), then Hollenhorst [4, 5] proved
that the function f},, (z) has exactly m poles in the interior of the unitdisk and f,f,, (z)
describes on |z| = 1 exactly n + 1 circles. Moreover, let

n

Pam(@) =Y (ar — )2t

k=0

be the CF-approximation (Carathéodory—Fejér), then the Blaschke product in (1.4)
induces that

f(z) — Pn,m(z) = f:,m(z) + Rn,m(Z)‘

is nearly circular on |z| = 1 for n — oo,n € A, by using asymptotic estimates
of || Rum ”lzl:l (cf. Hollenhorst [4, 5], Trefethen [1, 10]). Trefethen was the first to
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use the notion near-circularity for this behavior, namely, for sufficiently small y and
sufficiently big m (for example the standard choice is m = n + 1) the results of
Hollenhorst ( [4], [5]) and Trefethen [10] lead to

1= 0(" < min 1@ = Pam @I = [f = Puml oy < 1M1+ 0GM,
(1.5)

asn € A, n — oo, which reflects the near-circularity of the error curve ( f — P, m) (2)
on the unit circle and moreover,

lans1l < [A] < lapg1l (1 4+ O(1)) asn e A,n — oo.
Keeping in mind (1.1) and (1.2), we get the coarser inequalities

1 1 1
£ = limsup min [£Q) = pun@I"" < limsup |/~ puu]})

R~ neA,n—oo lzI=1 neA,n—oo l2l=1 = R
Hence, in the above inequalities the equality sign always holds and therefore

1/ 1
= hm ||f pn’m” |z|n:1 =%

(1.6)

l: lim mln 1f(2) = pam (@)™ =
R neA,n—oo |z|= ’

This is now the starting point of our investigations.

Let E be compact and connected in C with connected complement 2 = C\E and
let gq(z, 00) denote the Green’s function of €2 with pole at 0o, and let ', denote a level
line of ga(z, 00) and let f be holomorphic inside I'(r), where p(f) is the maximal
parameter of holomorphy of f. Furthermore, if {p,},cn 1S @ polynomial sequence
converging maximally to f, then the objective of this paper is to find A C N and
compactsets K, C I'y,n € A, suchthatanalogousto (1.6) wehaveforl < o < p(f)

o

=, m e (7@ =@l = lim pallt" = 2,
o(f) neAn—oco zelo\K neA,n—00 p(f)

where the capacity of the exceptional set K, tendstoOasn € A, n — oo.

2 Main Results

For B C C, we denote by B° the set of interior points of B, by B its closure and by
9 B the boundary of B and we use || - || p for the supremum norm over B. Let A(B)
be the class of functions that are holomorphic (i.e. analytic and single-valued) in a
neighborhood of B.

Let K be acompact subset of the complex plane C and let M (K) be the collection of
all probability measures supported on K . Then the logarithmic potential of u € M(K)
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is defined by

U'(2) = /IOg dp(t)

|z — 1]

and the logarithmic energy 7 (u) by

1
I(w) i=//10g B dp(r) du(z) =fU“(z) du(z).
Let
V(K) :=inf{l(n) : p € M(K)},

then V (K) is either finite or V(K) = +o00. The quantity

capK = e V&
is called the logarithmic capacity or capacity of K.

Let K be compact in the complex plane C with cap K > 0 and connected comple-
ment Q(K) = C\K in the extended plane C. We define by gq (k) (z, 00) the Green’s
function of € (K) with pole at oo, i.e.,

(i) ga(k)(z, 0o) is positive and harmonic in ©(K)\{oo},
(i) limp; oo (g0(k) (2, 00) —log |z]) = —logcap K,
(iii) limgeq k), iz &a(k) (£, 00) = 0 for quasi-every z € IQ2(K).
Since cap K > 0, the Green’s function go(x)(z, 00) is unique and there exists a
unique measure g € M(K) such that

I(ng) = —logcapK = V(K)
and we have
UMK (2) = —gak)(z,00) — logcap K, z € Q(K).

Here, g is called the equilibrium measure of K.

In the following, let E be a fixed compact and connected set with cap £ > 0 and
connected complement €2 := C\ E. We denote by gq(z, 00) the Green’s function of
the region €2 with pole at co. Since E is connected and cap E > 0, the Green’s function
ga(z, 00) is unique and g (¢, 0o) tends to 0 as ¢ € Q2 tends to z € €2 for quasi-every
Z € 0Q.

Now, let us define for o > 1 the Green domains E, by

Ey ={z€Q:gq(z,00) <logo}lUE

with boundary I'; := 9 E;. Hence, the Green domains E, are Jordan regions for any
o> 1.
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If f € A(E), then there exist p > 1 and polynomials p, € P,, n € N, such that

. 1
limsup || f — pally" <

n—o00

9

D=

due to aresult of Walsh [13].If f € A(E) is not an entire function and if p (f) denotes
the maximal parameter p > 1,1 < p < o0, such that f is holomorphic on E,, then
there exist polynomials p, € P, such that

limsup || f — pul " = ——
n—00 "E ,O(f).

Such a sequence p, € P, is called maximally convergent. Moreover, Walsh [13, (§4.7,
Thm. 7, Thm. 8§ and its Cor., pp. 79-81)] proved that for such maximally convergent

polynomials

I/n __

o
limsup || f — pullr = ——=, 1 <0 <p(f) <oo. 2.1
n—00 e ()
For z € E,(r)\ E we define the functions
1
Fa(@) := —log[f(2) = pa(2)] = 8a(z, 00) +log p(f), 22

which are subharmonic and upper semicontinuous in E,(r)\ E and harmonic outside
the zeros of f — p,. Then Walsh [12] has used for results of type (2.1) more generally
the notion of exact harmonic majorant, namely that the sequence F,(z), n € N, of
subharmonic functions has on the region E,( )\ E the zero function as exact harmonic
majorant, i.e.,

lim sup max F,(z) =0
n—oo €S

for any continuum S in E,(s)\E, S not a single point.
If S is a compact setin E,(r)\E and ¢ > 0, we define

K,(S;e):={z€S:F,(z) < —¢}. 2.3)
and introduce for 1 < k] < kp < oo the annulus
Dy i, := El(z\EKl
between the level lines I'y, and I'y, of the Green’s function gq(z, 00).

Then our main result is the following
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Theorem Let E be compact and connected, | € A(E) with maximal parameter p(f)
of holomorphy, 1 < o1 <02 < p(f) < oo, and let { p,},,cn be maximally convergent
to f on E. Then the compact sets K,(Dyg, 5,; €) satisfy

lim liminf cap K,,(Dg, 6,5 €) =0 2.4)
e—>0 n—o0
so that
lim lim inf inf F,(z) = limsup max F,(z)=0. (2.5
e—~>0 n—o0 ZEDUI az\K (DUl 09 1€) n—o00 ZEDal,az

Remark (2.5) implies that there exists A C N and a sequence {&,},ca, &n >
0, with limyep n—>o00&n = O such that the compact sets K, (Do, 5,; €n) satisfy
cap K, (Do, .05 €n) < €y and forn € A

- i p(f) .
& < ¢ /n
‘ Bl ZED(’I’C’z\}a(Dol 0y3€n) <€g9(z 00) |f(Z) pn(Z)l
p(f) 1n .
= zenl%?faz < g(z,00) |f(2) = pa(2)] <e

We want to connect the theorem with the phenomenon of near-circularity of
Carathéodory—Féjer approximations, described in (1.5), resp. (1.6).

Corollary 1 There exist A C N and a sequence

{en}pen with lim &, =0
nelA,n—oo

such that for any o, 1 < o1 <o <or < p(f), the compact sets
K,(T's;6n) =T N Kn(Dm,(rz; &n)

satisfy cap K,,(U's; €n) < &, for n € A and moreover,

(o

o
et < inf Z 2) I/n < 1/n ot
p(f) e @ =P @I < =l =

Corollary 2 Let 1 < o < p(f). Then there exist A C N and a sequence

{entnen s & >0, lim ¢,=0,
neA,n—oo

together with a sequence

{on}ien, 1 <oy < p(f), lim o, =o0,
neA,n—oo
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such that forn € A

On ¢ . 1/n 1/n On
e” < min |f(2) = pa@I" =N =Pl < e,
p(f) 26T, " "o = p(f
3 Proof of the Theorem
Let us assume that the theorem is false, i.e.,
lim liminf cap K,(Dyg, o,; ¢) > 0. 3.1
e—>0 n—>o0

Then our final goal will be to prove forsome 6, 0 <6 < l,and 7, 1 <7 < p(f),

9 n
ILf = pullr, < <p(—;)) for all sufficiently big n.

This would imply that

ot \"
n - FPn _2
lPnt1 — pullp, < (,O(f))

and finally the telescoping series
o
f= Z (Pn+1 — pn)
n=0

shows, using the Bernstein—Wilsh Lemma (cf. [13, §4.5, Thm. 5)]), that f is holo-
morphic in a neighborhood of E ,(r), contradicting the definition of o (f).
Starting from the definition in (2.3), we note that for ¢ < &’ we obtain
Kn(Dol,az; 8/) C Kn(DU],@; €).
Therefore the function

h(e) :=liminf cap K,,(Dg, 5,; €)
n—o0

is monotonically decreasing with €, ¢ > 0. Hence (3.1) implies that there exist g > 0
and § > 0 such that

h(e) >246 forall 0 < ¢ < g.
Due to the definition of & (gg), there exists ng = ng(gg) such that

cap Kn(Dm,(rz; g) > cap Kn(Dm,(rz; ) >6>0 (3.2)
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for alln > ng(gg) and 0 < & < gy.
Next, let us introduce the conformal mapping

®:Q=C\E — {z:]z] > 1}, (3.3)
normalized by @ (00) = 0o and @'(c0) > 0. In Q we define the subsets

QY i={ze€ Q:Im(®(2)) > 0},
Q ={z€Q:Im(®()) <0}.

Let us define for any compact set K C E,(p)\E

Kt :={zeK:zeQ"}, (B4
K :={zeK:zeQ }. (3.5)

Then K+ and K~ are compact sets and, applied to K = K, := K,,(Dyg, o,; €), We
obtain

Ky = Ky(Do,.0,:6) = K,F UK, .

According to a Theorem of Nevanlinna [6] (cf. [7, Thm. 11.4] or [8, Thm. 5.1.4]) we
have

1 - 1 " 1
4 " Jog—L_  Jog—4_—
cap K, cap K, cap K,

(3.6)
log

where d is the diameter of E (). Let us define

K\ ifcap K,/ >cap K,
K, if capK,” <capK, .

n

ﬁn =

Then (3.6) leads to

~ cap K,)? 52
cap K, > % = R

\Xhere K, = K;(Ds, 6,5 8) (0 < & < go) satisfies (3.2). Hence, replacing K, by
K, we may assume in the following that the sets K,, = K, (Dy, o,; €) satisfy for all
sufficiently large n the properties:

(1) cap K, =cap K, (01,02;¢) > 4,
(ii) K, is of type K, or of type K, ,
(iii) 0 <6 < 1.

@ Springer



Near-Circularity in Capacity and Maximally...

Let B, denote the complement of K,,, B, = @\K,,. Then B, is connected, since
the functions F(z) of (2.2) are subharmonic in E,s)\ E. Because K, satisfies (ii),
we obtain

Ey C B, and C\E,, C B,.

Let w, denote the equilibrium measure of K,, so the logarithmic potential U*» is
superharmonic and lower semicontinuous in C (cf. [11, Thm. I1.23, p. 45)]) and

U"(z) = —gB,(z,00) —log cap Ky, z € By,
where gp, (z, 00) is Green’s function of B, with pole at oo (cf. [9, Ch. I, Sect. 1.4,
Eq. (4.8), p. 53)]. According to a theorem of Frostman (cf. [11, Thm. III1.12, p. 60] or
[8, (Thm. 3.3.4, p. 59]),
UM (z) < —log cap Ky, z € C,
and
UM (z) = —log cap K,, forqe. z € K,,
or more precisely, U*"(z) = —log cap K, for all z € K,, except on a F,-set of
dK,, with capacity 0.
For the following we choose 4 additional auxiliary parameters », R and 11, 72 such
that
l<r<t <o <0y<1m<R<p(f),

and we define for 4 € M(Dy, 0,)

My g(w) = max UM@), My q(p) = max U().

R rrl Urrz
Lemma1 Let u € M(Dy, 5,) with supp(u) C Q1 or supp(n) C Q7, so

M‘El,tz(u*) > Mr,R(/'L)- (37)
If 1y is the equilibrium measure of K, then

—log cap Ky = max U™ (z) > Mz, .o, (in) > My R (in)- (3.8)
Z n

Proof The logarithmic potential U*(z) is harmonic outside of supp(u), hence in
C\ (Doy,0, N Q1) orin C\ (Dg,4, N 7). Since

E; C Er; CC\(Dg,0, NQT) or E. C Ey CC\ (Do, NQ7),
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we get by the maximum principle of harmonic functions

max U"(z) < max U"(z). (3.9)

zel, z€ly
Moreover,
I'y, C C\Dy, 5, and Zgn;o Ut (z) = —o0
and, again by the maximum principle,

max U"(z) > max U* (7). (3.10)
ze[‘rz zel'R

Then (3.9) and (3.10) yield
My o, (1) > My ().
Concerning (3.8), the theorem of Frostman implies that
—logcap K, = grelz}()i Ut (z).
If zo € C\K,,, then
UM (z9) < —logcap Ky,
otherwise, the theorem of Frostman yields
—logcap K, > Iz'[é.?g/{ Ut (z) > UM (z9) > —logcap Ky,

where W is some neighborhood of zg. Then U*"(z) = —logcap K, for z € C\K,,
contradicting

lim UM (z) = —o0.
—> 0
Hence, the first inequality in (3.8) holds, the second is a special case of (3.7). O

We define

Utn(z2) — My r(tn)
—log cap K, — M, r(itn)

Hy(z) ==

and the domain
n) ._ o
Dr’R = B, N Dy p.
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Then H,(z) is harmonic in Df"l)e and satisfies the boundary conditions

Hy(z) <0 for zeTl, UTkg, (3.11)
lim  H,(€) =1 forqe.z e dD"yNK,. (3.12)

§eD("} £z
For (3.12) we have used the theorem of Frostman. Next, let us define

o, = max H,(2)
zel‘rlul“,2

SO

o = Mrl,rz(,U«n) _Mr,R(Mn)
" —log cap K, — My r(un)’

Lemma2 Let

Bn = Mrl,rz(l/‘n) - Mr,R(Mn)»

50
liminf 8, > 0 (3.13)
n—oo
and
liminf o, > @ > 0. (3.14)
n—oo

Proof Let us assume that (3.13) is false, i.e., there exists, because of (3.7), a subset
A C N such that

lim (Mo (i) — My g () = 0. (3.15)

neA,n—oo

Let

D} . ={z€ Do .o, : $(2) € Q)

01,02
and
Df;l,az = {Z € Doy, 1 9(2) € Qi} .

according to the definitions in (3.4) and (3.5). Since K, is either of type K, or of type
K, , there exists an infinite set A; C A such that

n € M(DF, ) (resp. u, € M(D,, ) forn € Aj.

01,02
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Then by Helly’s Selection Theorem, there exists A* C Ajand u € M(D;“l,az) (resp.
n e M(D- _)such that

01,02

lim UM (z) = UM (z) for z € C\DI _ (resp.z € C\D
o

al,0; o 0)
neA* n— 1,02 1,02

and the functions U*", n € A*, are uniformly bounded on compact sets of C\ D}

01,02
(resp. C\Dy, ,,)- Then {U#"}, .« converges uniformly on compact sets of (C\D;“] o
(resp. (C\D;lm) (cf. Goluzin [3, Ch. 1, §1, Thm. 3, p. 20)]).
Now,
r,ur,ur,ure
is a compact subset of (C\D;“h o, and of C\D_. . as well. Therefore, the functions
UHn,n € A*, converge uniformly to U* onI', Uy, UT;, UTR.
Hence, (3.15) implies that
0= lim (Mrl,rz(ﬂn) - Mr,R(l'Ln)) = Mrl,rz(ﬂ) - Mr,R(M)~ (316)
neA* ,n—o0
Then (3.16) contradicts Lemma 1 and (3.13) is true.
Concerning (3.14), we consider the denominator
—logcap K, — M")
gcap K, R
Because of (3.2), forall 0 < ¢ < gg
cap K,, =cap K,,(Dg,,0,;6) =6 >0
for n > ngy(ep) and we have assumed that 0 < § < 1. Therefore
1
—logcap K, < log 3"z no(&o), (3.17)
Define
m::max{l, max Iz—tl},
zel",Ul"R,teDal,g2
som > 1 and
— Ut (z) = /log |z —t|ldu, (t) <logm forz e, UTg, (3.18)
and consequently (3.17) and (3.18) lead to
) !
—logcap K, — M, < log 3 +logm > 0 (3.19)
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for all n > ng(ep). Hence, by (3.19) and (3.13) we obtain the inequality (3.14) and
Lemma 2 is proven. O

Next, we consider the harmonic measures

HY(2) = w(z. 9Ky, D{"}), (3.20)

i.e., H)(z) is harmonic in the domain Dr(f';e and satisfies the boundary conditions
HY(z) =0 for z e, Ulg (3.21)
and

[li)m Hy()=1 forqe. z € dK,. 3.22)
geD,"y, E—z

It is known that H," exists and is unique, (3.21) holds because all points of I', and
I'r are regular points, (3.22) is a consequence of cap K, > 0 (cf. Ransford [8,
Cor. 4.2.6, p. 95)]). Because of (3.21) and (3.22), the extended maximum principle,
resp. minimum principle, yields

0 < Hz) <1 for ze D"},

But since H,' is not constant, the function H,’ cannot attain a local maximum or
minimum in D"),. Hence

0 < Hi(z) < 1 for ze D). (3.23)
Lemma3 Let
= 1 H*
Yn Zerrrggrrz (2,

then
liminf y, =y > 0.
n—0oo
Proof Let us assume that Lemma 3 is false, i.e., (3.23) implies that
liminf y, = 0.
n—oo

We choose a subset A C N such that

liminf y, =0. (3.24)

nelA,n—o00
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Concerning the harmonic measures H,’, n € A, there exists A; C A such that the
functions H,;(z), n € Aj, converge to a harmonic function H*(z) locally uniformly

in fo’l)?, especially on the compact set I';; U I'y, (cf. Goluzin [3, Ch. 1, §1, Thm. 2,
p- 20)]). Because of (3.23) and (3.24), we get by the maximum principle

H*(z) =0, z € fo’l)e.
Applied to I';; U I',, we obtain for

en = max_ H)(z), ne€Aj,
zer,]ur,2

that

lim ¢,=0.
neA|,n—oo

By (3.11), (3.12), (3.21), (3.22) we have forn € N
H}(z) — Hy(z) 20, zeTl,UTlg,
and

lim (H)(z) — Hy(z)) =0 forqe. z € 0K,.
geD!"y £z

Then the extended maximum principle yields
HY(z) — Hy(z) >0 for z € fo’), neN,
(cf. Ransford [8, Thm. 3.6.9, p. 70]). Hence

lim inf min_ (H, (z) — Hy,(z)) > 0. (3.25)

neA|,n—oo zel’,luI‘,2
Let§, e I'y; Uy, with

ap = max Hy,(z) = H,(&,),
ur

71 19
then forn € A
H:(En) —H,(&,) <&, — Hy,(&)) =&, — oy
and

min (H:(Z) — Hy(2)) < H:(Sn) — H,(&,) <&, —ay.
zel"rl Ul",2
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Consequently, by Lemma 2,

liminf min (H,;(z) — Hy(z)) < liminf (—¢a,) < —a <0,
zEA|,n—>00 l“TIUI‘T1 neN,n—oo

in contrast to (3.25). Hence, the assumption that Lemma 3 is false, is refuted. O

In the following we will use the functions F},(z) of (2.2). F,,(z) is subharmonic in
E,(r)\E and the compact sets K, (o1, 02; €) are

Kﬂ(D(T],Jz; 8) = {Z € DO'],O'2 . EI(Z) S _8} .
We will compare F),(z) with
Fi(z):=—-a H (z)+b with a>0, b>0, (3.26)

where H,'(z) = w(z, 0K, DXLI)Q) is the harmonic measure defined in (3.20)—(3.22).

Lemma4 There exist parameters a > 0, b > 0 and no € N such that F)}, defined in

3.26), is a harmonic majorant of the subharmonic function F,, in D(”) orn > ng
7 r,R
and moreover, there exists y* > 0 such that

max  Fi(z) <—y* <0 for n>np,neN.
zer‘,lul“,2

Proof Let’s > 0 be arbitrary. Because of the maximal convergence of p, to f, there
exists n1 = n1(¢) such that

F,(z) <€ for zeI',UT'g and n > ny(¥).
Due to the definition of K,, = K;,(Dy,,5,; €),
F,(2) = —¢, ze€dk,.
The parameter ¢ is always fixed and 0 < ¢ < &g, where g satisfies (3.2).
We will define a and b constructively:

The function F,’(z) of (3.26) satisfies

FX(z)=b for z €T, U,
Fi(z) = —a+b forqe. z €9K,.

Hence, F;’ is a harmonic majorant of F), in Dﬁnl)e if
b>% and —a+b> —¢.
First, we choose

b=% and a=>b+e¢. (3.27)
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Then we want to fix € such that

0> max F*(z)=—-a min HF b=— b
zely Ury, " @) azel",lu o @+ @ynt

for sufficiently big n. If we choose ny = ny(y) € N such that by Lemma 3
14
YnZ 5 for n > nay(y),

then

max Eﬂ@f—ug+b<0 (3.28)

z€l'r Uy,
forn > ny(y) if

—w%+b=—w+@g+b<0

or
b(l—z> <£Z
2 2
or
b<e—t (3.29)
2—y

where we have used a = b + ¢ of (3.27), keeping in mind that 0 < y < 1. Therefore,
defining

b=t Y (3.30)
22—y
then (3.29) holds and (3.27) yields
~ ey
=—— 3.31
T2y 53D
and
4 —_
a=bts=--_Y (3.32)
22—y
With
I3
X _
Yy = 4)/
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and the parameters a of (3.32) and b of (3.30) we obtain in (3.28)

&
max Ff()<—y" =—y<0
7€l Uy, (@ ==y 4J/

for
n > ng :=max (n1(€), n2(y)),

where ¢ is defined in (3.31) and y is the parameter from Lemma 3. Hence the proof
of Lemma 4 is complete. O

Now, we are in position for the final step of the proof: Because of Lemma 4, we
have

max  Fi(z) < —y* <0 foralln > no. (3.33)
zer‘fl ul‘r2

Since F,f(z) is a harmonic majorant of the subharmonic function F,(z) in Dr("])e, we

may restrict (3.33) for the further arguments either to I';; or to I';,. Let us choose I'¢,
i.e., we consider

1
max (; log| f(z) — pn(2)| — ga(z, 00) + 10g,0(f)> <-y"

zel"r1
for all n > ng, or

T

”f_ Pn||1",1 =< <p(})€_y*) , n > no.

Thus,

Tl * n
||p+1—p||r,52( e—y>, n > no.
" P o(f)

Then the telescoping series

f= Pny + Z (Pn+1 — Pn)

n=ng

converges to a holomorphic function in a neighborhood of Ep( f)» using well-known
arguments and the Bernstein—Walsh-Lemma (cf. Walsh [13, Sect. 4.6)]). Hence, p(f)
is not the maximal parameter of holomorphy of f, which is a contradiction. Hence,
(3.1) is not true and (2.4) is proven.
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Concerning (2.5): Because F,, is subharmonic in Dy, 4,, the maximum principle
yields

max Fj,(z) = max (mlgx F.(2), m?x Fn(z)> = max F,(z). ((3.34)

2€Dq) 09 2€lg z€ls, z€l'g Ul's,

Then the maximal convergence of the polynomials p, € P, to f implies

limsup max F,(z) =limsup max F,(z) =0. (3.35)

n—oo ZGDal,az n—o00 z€lg Ul

On the other hand, the definition of K,,(Dq, +,; €) yields

inf F,(z) > —¢ forany ¢ > 0andn € N. (3.36)
Dal,az\Kn(Dal,zQ;S)

Let ¢ — 0, then by (3.36)

lim lim inf inf F.(z) >0
e—~0 n—oo ZED(TI,(rz\Kn(D(TI,rTz;s)

and, together with (3.35),

0=Ilimsup max F,(z) > lim liminf inf F,(2)
n—o00 ZED(rl,az e—0 n—o0 ZEDG].Jz\Kn(DG|,02§5)
> 0.
Hence, (2.5) and the Theorem is proven. m]

4 Proof of the Corollaries

Proof of Corollary 1 Because of (3.34) and (3.35),

limsup max Fy(z) =0. “.1)

n—oo 2€Dg 0y

Hence, there exists a sequence {e
such that

* * IR * __ *
e x> 0, withlim, o &% = O and m}} € N

Fu(z) <& for z € Dy 5, and m > m.
Now let us define
3(e)y :=liminf cap K,(Dg, 0, €1),
n—oo
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so 8(€;) — 0asn — oo. Then there exists m, € N, m, > m}, such that

cap K, (Doy.0y; €) < 28(e). 4.2)
Define
A = {mp}pen
and
&n :=max(ey,28(gy)), neN, 4.3)
then we get

Fin,(2) <&, <ém, Z€Doo,-
Moreover, since &, > &, we have
K, (Doy .05 €my,) C K, (Doy 035 €,)
and, together with (4.2) and (4.3), we obtain
cap K, (Doy 035 €m,) < €ap K, (Doy.0y3 &) <2 8(85,) < &, -

Then,

—&m, = inf Fn,(z) < max Fy,(2) <é&n,.
ZeDal,az\Kmn(Dal.az;gmn) 2€Dq,0y

Consequently, for any o, 01 < 0 < 02,

o
mefemn < zeF{,\anl:ﬁFa;sm,,) | f(2) = pm, (Z)|1/mn
< |f = pma 1"
<7 eomn
— ()
Hence, A = {m,},cn and {&,},,ca satisfy the inequalities of Corollary 1. O

Proof of Corollary 2 We recall the contraction property of the capacity: If K is a com-
pact set in C and let T : K — C be a mapping satisfying

IT(2)—Tw)| <alz—w|, z,weC,
where « is a positive constant, then
capT(K) < capK
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(cf. Pommerenke [7] or Ransford [S]l.
For the conformal mapping ® = C\E — {z : |z| > 1} of (3.3) it is known that

|®(z) — P(w)| =c(p) |z —w]
for compact sets K C C\ E,, where
¢(p) = max |/ ()|
(cf. [2, Lem. 5.1]). Define

_l—i—a

a] =

_o+p(f)
and oy \= ———.
2 2

Then the Theorem yields
lim liminf cap K, (Dg, o,; ¢) = 0.
e—~>0 n—o0
Defining for e > 0

8(e) = liminf cap K, (Dq, o,; €),
n—o0

we getlimg_, ¢ 6(¢) = 0. Then there exists a sequence {8Z}n€N suchthat0 < &} < 1/n
and

1
c(oy) 4n’

S(ep) < 4.4)

Set

Dy := Do —1/n,0+1/n>

then there exists mo € N such that D,, C Dy, 4, for n > my.
Because of (4.4) and (4.1), we can choose a subsequence {m,},cn, Mp+1 > My,
such that m; > mq and

1 1
c(oy) 2n’

cap Ky, (Do.00: €1) < 4.5)

and

max Fp, (z) < &). (4.6)

ZGDGI'Q
Let p; denote the projection p; : C\ {0} = R4,
pi@) =r=lz| for z=re?,
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where we have used polar coordinates (r, ¢) in C\ {0}. Then the contraction principle
of the capacity, together with (4.5), yields

cap pi ((D(Km,, (Dal 02 8:))) cap (b(Kmn (Dal 025 8:))

IA

< c(o1) cap Km, (Do.0,5 €5)
1
< —. 4.7
=5 4.7)
On the other hand
1 1 1
cap p1(®(Dy)) =cap|(|o——,0+—| ) =—. 4.8)
n n n
Comparing (4.7) and (4.8), we conclude that there exists
oera)
Om, €0 ——,0 + —
n n
such that
Fomn N Km,, (Dal,az; 8:) =0
for all m, > mg. Using (4.6), we can summarize
—er < min Fy,(z) < max F,,(z) <e&).
Z€ ompy 2&lomy
Consequently, the subset
A= {mn}neN CN
and the sequences {0,},cp and {e,},ecp With &, = e satisfy the properties of
Corollary 2. O
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