Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Surprise-minimization as a solution to the structural credit assignment problem

Titelangaben

Verfügbarkeit überprüfen

Wurm, Franz ; Ernst, Benjamin ; Steinhauser, Marco:
Surprise-minimization as a solution to the structural credit assignment problem.
In: PLoS Computational Biology. 20 (2024) 5: e1012175. - 29 S.
ISSN 1553-734x ; 1553-7358

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (2MB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1371/journal.pcbi.1012175

Kurzfassung/Abstract

The structural credit assignment problem arises when the causal structure between actions and subsequent outcomes is hidden from direct observation. To solve this problem and enable goal-directed behavior, an agent has to infer structure and form a representation thereof. In the scope of this study, we investigate a possible solution in the human brain. We recorded behavioral and electrophysiological data from human participants in a novel variant of the bandit task, where multiple actions lead to multiple outcomes. Crucially, the mapping between actions and outcomes was hidden and not instructed to the participants. Human choice behavior revealed clear hallmarks of credit assignment and learning. Moreover, a computational model which formalizes action selection as the competition between multiple representations of the hidden structure was fit to account for participants data. Starting in a state of uncertainty about the correct representation, the central mechanism of this model is the arbitration of action control towards the representation which minimizes surprise about outcomes. Crucially, single-trial latent-variable analysis reveals that the neural patterns clearly support central quantitative predictions of this surprise minimization model. The results suggest that neural activity is not only related to reinforcement learning under correct as well as incorrect task representations but also reflects central mechanisms of credit assignment and behavioral arbitration.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Philosophisch-Pädagogische Fakultät > Psychologie > Lehrstuhl für Allgemeine Psychologie
DOI / URN / ID:10.1371/journal.pcbi.1012175
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Public Library of Science
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:33876
Eingestellt am: 08. Nov 2024 15:06
Letzte Änderung: 11. Nov 2024 09:07
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/33876/
AnalyticsGoogle Scholar