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A B S T R A C T

Due to the significant role of land use on the occurrence of rainfall-induced shallow landslides, this factor is 
commonly employed as a landslide susceptibility predictor. However, the land use classification is oftentimes 
very broad, neglecting the proven mechanical and hydrogeological role of the land management on slope sta-
bility. Given the necessity of including spatially distributed and management-specific inputs, the process-based 
landscape evolution model LAPSUS-LS was chosen and adapted to achieve a probabilistic approach which takes 
into account land management as an input by adopting management-specific values of root cohesion. The model 
was applied to four test sites in the Oltrepò Pavese (Italy), where different vineyard management techniques play 
a significant role in triggering landslides. The results for the four test areas had, cumulatively, an Area Under the 
Roc curve greater than 0.73, with false negative cells being < 1 % of the total for all simulations. In the model’s 
application, land use practices characterised by higher root cohesion proved to benefit slope stability, whereas 
tilled vineyards, shrublands and abandoned vineyards were more prone to the formation of shallow landslides. In 
addition, we found that the inclusion of management-specific input parameters produced more accurate outputs 
and that in catchments characterised by average slope angles lower than 15◦, varying the vineyard management, 
did not appear to affect the landslide susceptibility. Due to the model’s high dependency on the land use and its 
ability to include land management, it can take into account the spatial variability of input values such as the 
root cohesion. Additionally, it can be applied i) to manage current conditions, ii) to explore future land use 
change, iii) to study less invasive yet beneficial land use management change scenarios and iv) provide farmers of 
at-risk areas insight on how to improve slope stability.

1. Introduction

Intense and, occasionally, consecutive rainfall events on slopes can 
lead to the formation of shallow landslides (which are landslides with a 
depth lower than 2 m; Gabet and Mudd 2006), which regularly damage 
infrastructures, produce economic loss and endanger human lives 
(Howard et al, 1988; Montrasio and Valentino, 2008). Multiple factors 
have previously been discovered to impact shallow landslide suscepti-
bility and they include factors such as land use, lithology, soil texture 
and geomorphology of the area and topographical factors such as the 
slope angle, aspect, curvature and Topographic Wetness Index (Baeza 

and Corominas, 2001; Pereira et al., 2012; Conforti and Ietto, 2021). In 
particular, the impact of the land use and land use change on the spatial 
and temporal distribution of shallow landslides has previously been 
proven (Persichillo et al., 2017; Meneses et al., 2019; Avila et al., 2020; 
Guo et al., 2023). Different natural and human-controlled land uses are 
characterised by the presence of vegetation species that can influence 
slope stability in a unique way (Bischetti et al. 2005; Bischetti et al. 
2009; Tosi 2007; Wu, 2012; Cislaghi et al. 2017; Cohen and Schwarz, 
2017).

The most widely recognised effect is represented by the mechanical 
reinforcement provided through the anchorage of the roots in the soil, 
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which is directly correlated to the number of roots along the soil profile 
and to the strength and elastic properties of the roots themselves 
(Bischetti et al., 2009; Cohen et al., 2011; Schwarz et al., 2013; Stokes 
et al., 2014; Masi et al., 2021; Mao, 2022). This parameter varies 
depending on the vegetation and, in the case of cultivated plants, also on 
the type of agricultural management of those cultivations (Gonzalez- 
Ollauri and Mickovski, 2017; Bordoni et al., 2019). The impact of the 
land use on shallow landslides has been proven in the past (Reichenbach 
et al., 2014; Pisano et al., 2017; Chen et al., 2019; Meneses et al., 2019) 
as, for instance, bio-engineering techniques exploiting the mechanical 
reinforcement of some vegetation species can be implemented to in-
crease soil shear strength, reducing the probability of occurrence of 
these instabilities at catchment or larger scales (de Jesús Arce-Mojica 
et al., 2019). This implies that some land use types could be effective 
non-invasive tools in reducing shallow slope instabilities, without 
modifying landscapes, environment and economic features of an area 
(Gariano et al., 2018). Due to the significant role of land use on shallow 
landslide occurrence, this factor is commonly employed as a spatially 
distributed input parameter in landslide susceptibility estimation at 
different spatial and temporal resolutions, depending on the data 
availability (van Westen et al., 2008). It is considered as a predictor 
variable in data-driven statistical methods for the zonation of a territory 
in terms of the probability of occurrence of shallow landslides (Hong 
et al., 2017; Chen et al., 2019; Achu et al., 2020; Chen and Li, 2020; 
Azarafza et al., 2021; Chen et al., 2021; Chowdhuri et al., 2021; Knevels 
et al., 2021; Yang et al., 2021). Some authors rely on qualitative land use 
classifications derived from various sources (Chen et al., 2019; Achu 
et al., 2020; Chen and Li, 2020; Chen et al., 2021; Knevels et al., 2021; 
Yang et al., 2021), either referring to the present day land use or, more 
rarely, spanning decades (Knevels et al., 2021), whereas others assign 
weights to qualitative land use classes (Hong et al., 2017; Azarafza et al., 
2021; Chowdhuri et al., 2021). The resolution of the input land use maps 
is also relevant, since low-resolution land use maps tend to negatively 
impact the overall performance of statistical models (Chen et al., 2019; 
Chen and Li, 2020; Chen et al., 2021). Both statistical and physically 
based models operate on the assumption that areas will behave similarly 
if grouped within the same land use, even if, in the case of cultivated 
plants, different agricultural practices could modify the susceptibility of 
the hillslope to shallow landslide occurrence (Heshmati et al., 2011); 
Bordoni et al., 2019). While many slope stability models either consider 
the root cohesion to be constant or omit it entirely as an input param-
eter, some models developed in recent years can take into account the 
role of mechanical root reinforcement in the deterministic estimation of 
slope stability (Masi et al., 2021; Murgia et al., 2022). For example, 
HIRESSS (High Resolution Slope Stability Simulator; Rossi et al., 2013), 
r.slope.stability (Cordoba et al., 2020), modified versions of SLIP 
(Shallow Landslides Instability Prediction; Montrasio and Valentino, 
2008) and TRIGRS (Transient Rainfall Infiltration and Grid-Based 
Regional Slope Stability Model; Baum et al., 2008; Marin, et al., 2021; 
Park et al., 2022, Hwang et al., 2023). Moreover, other models such as 
GIS-FORM (Ji et al., 2022), PRIMULA (Cislaghi et al., 2017; Cislaghi 
et al., 2018), QDSLaM (Quasi-Dynamic Shallow Landsliding Model; 
Tarolli et al., 2011; Penna et al., 2014), MD-STAB (Milledge et al., 2014), 
Ecosfix 1.0 (Mao et al., 2014), SOSlope (Self-Organized Slope; Cohen 
and Schwarz, 2017), SlideforMAP (van Zadelhoff et al., 2021) SPRIn-SL 
(Spatial Prediction of Rainfall-Induced Shallow Landslides; Raimondi 
et al., 2023) and LAPSUS-LS (Claessens et al., 2007) are capable of 
taking into account the spatial variability of the mechanical root rein-
forcement(Rossi et al., 2017).

However, the aforementioned models do not consider two aspects 
which could influence the susceptibility of a territory to the formation of 
shallow landslides: firstly, in areas where agricultural activities along 
sloped terrain are practiced, multiple management techniques exist, 
some of which entail the tillage of the soil up to six times a year whereas 
others require no mechanical disruption of naturally growing grass 
(Bordoni et al., 2019), thus, even in areas grouped within the same land 

use class, different agricultural management techniques can lead to 
significant differences in slope stability (Straffelini et al., 2022). Addi-
tionally, previous models did not specifically consider the influence of 
the agricultural management on the probability of occurrence of shallow 
landslides, nor have they been used to create future scenarios of shallow 
landslide susceptibility according to changes in the land use and agri-
cultural management. Secondly, the existing methods for shallow 
landslide susceptibility assessment do not usually take into account the 
effect of vegetation types on soil hydrological properties, namely on the 
soil hydraulic conductivity. Usually, these methods consider the spatial 
variation in soil permeability due to differences in physical and 
geotechnical properties of the soil matrix, neglecting the possible in-
fluence of the vegetation features. However, some research carried out 
in natural woodlands (Archer et al., 2016; Vergani et al., 2016) and in 
sloped terrain cultivated with vineyards (Biddoccu et al., 2017; Alagna 
et al., 2018; Bordoni et al., 2019), highlighted a strong correlation be-
tween land use and agricultural management and saturated hydraulic 
conductivity, which may also control the spatial occurrence of shallow 
landslides, especially in territories with homogeneous geological and 
geomorphological features (Alessio, 2019). In recent years, probabilistic 
approaches have been adopted, mostly to fill gaps in input data or to 
account for uncertainty, with the goal of limiting their negative impact 
on the performance of predictive models, especially when applied over 
large spatial extents (Raia et al., 2014; Scalciarini et al., 2017; Marin 
et al., 2021; Park et al., 2022).

This work aims to adapt and apply a physically based landslide 
model by incorporating a probabilistic approach, which was chosen with 
the goal of considering the natural variability of the input parameters, 
sampling each one at random from a range of measured values, instead 
of having to select a single representative input, rather than to overcome 
data gaps. For these purposes, the LAPSUS-LS model (Claessens et al., 
2005; Claessens et al., 2007), was selected as a starting point, because 
unlike many existing physically based susceptibility models, which only 
allow a single input value for the root cohesion (Murgia et al., 2022), 
LAPSUS-LS links root cohesion, and soil-specific parameters to a land 
use map, hence considering the impact of land use and agricultural 
management for soil hydraulic conductivity and root mechanical rein-
forcement and their possible variations in every grid cell. In past ap-
plications of the model, it proved especially sensitive to changes in 
parameters related to the vegetation, in particular to changes in root 
cohesion (Rossi et al., 2017). Furthermore, the aim of this study was to 
adopt the newly adapted LAPSUS-LS model to both reproduce the cur-
rent landslide susceptibility and to offer insight into how slope stability 
might change in the future as a consequence changes in land use or 
management, by modelling different land use change scenarios, created 
considering both the land use types that are more affected by past 
shallow landslides and possible abandonment of previously cultivated 
areas. The goal is to provide farmers of at-risk areas with insight as to 
which land uses or management practices can improve slope stability in 
their properties and therefore with non-invasive tools in reducing 
shallow slope instabilities, without modifying landscapes, environ-
mental and economic features of an area.

2. Material and methods

A flow chart of the developed methodology is described in Fig. 1.

2.1. The test sites

All the selected test sites (Figs. 2, 3) belong to an area where shallow 
landslides frequently occur, that of the northeastern portion of the 
Oltrepò Pavese (Italy): a hilly area located south of the river Po, in the 
region of Lombardy, representing the northern termination of the Italian 
Apennines, characterised by elevation ranging between 50 and 600 m.a. 
s.l and slope angles ranging between 15◦ and 35◦ in the north and be-
tween 8◦ and 15◦ in the southern part (Meisina et al., 2006).
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The land use in this region is characterised by different agro-
ecosystems coupled with zones covered by natural vegetation (Bordoni 
et al., 2019). Viticulture is especially common along sloping terrain, 
covering 22 % of the entire territory, woodlands such as broadleaves (e. 
g. black locust trees), Norway maple, European hackberry, buckthorn, 
European hop-hornbeam, and flowering plants make up 39 % of the 
territory, while the remaining percentage of the territory is covered by 
shrublands, urban areas and croplands. For the purposes of this study, 
shrublands and croplands were grouped within the same land use class, 
because they were limited in extent and additionally, while they differ 
from a botanical standpoint (in this area, shrublands are mainly made up 
of hemicryptophytes and chamerophytes, associated with grass species 
such as Festuca spp. and Artemisia spp., whereas croplands are mostly 
made up of Medicago sativa) their Root Cohesion values (RC) in this area 
are similar, as measured by Bordoni et al. (2020a) in which the authors 
also highlighted the similarities between the two (RC at 0.3 m from 
ground level was 1.81 ± 0.77 kPa in sowed fields and 1.20 ± 0.53 kPa in 
shrublands.

Vineyards in this area are managed through three main management 
techniques (Bordoni et al., 2019): (a) Tillage and Total Tillage (T/TT), 
which is the tillage of the soil between vine rows, up to 6 times a year; 
(b) Permanent Grass Cover (PGC), which leaves the inter-rows un-
touched during the year, allowing for spontaneous grass growth; (c) 
ALTernating tillage-grass (ALT), the practice of tilling every other row 
while keeping the rest untouched.

The bedrock lithology is made up, in the northern part of the area, of 
poorly cemented sandstones and conglomerates overlying marls and 
evaporitic deposits, while in the southern part it consists of an alterna-
tion of calcareous and marly flysches, made up of sandstones and marls 
and melange complexes (Meisina et al., 2006). The soil thickness ranges 
between a few centimetres and over 2 m. Slow-moving slope failures can 
be identified, especially in the central and southern portions of the area, 
characterised by clayey soils (Meisina et al., 2006).

The present work focuses however on rainfall-induced shallow 
landslides, which are triggered during intense and, oftentimes, consec-
utive rainfall events. Despite their typical limited extent, in the order of 
tens to hundreds of square meters and sliding depths of up to 2 m from 
ground level, shallow landslides can cause significant damage to 

infrastructures, human activities and cause the loss of fertile soils 
(Bordoni et al., 2019). The inventoried landslides which have been used 
for this study are for the most part classified as translational and roto- 
translational earth slides which evolve into mud flows (Cruden et Var-
nes, 1996). A smaller number of landslides are classified as merely 
translational earth slides that propagate, for the most part, along the line 
of greatest slope and are not channelised.

In this framework, four test sites were selected to apply the adapted 
LAPSUS-LS model, in order to include a wide range of features regarding 
slope angle, vineyard management technique, soil type and number of 
shallow landslides that occurred in the past (Tables 1 and 2).

The test sites are (see Figs. 1 and 2): Cascina Porcarana (referred to as 
“CP”), Rio Frate (“RF”), Rio Vergombera (“RV”) and Vigna del Fico 
(“VDF”). As shown in Table 1, soils in the CP, RF and RV test sites are 
siltier, whereas in the VDF test site they are more clayey. Regarding the 
adopted management techniques, the CP, RF and VDF are managed 
through management techniques characterised by higher root cohesions 
(PGC and ALT; RC of up to 14.07 kPa), whereas both RF and RV include 
vineyards managed through techniques associated with lower root 
cohesion rates (T/TT and abandoned vineyards; RC of up to 3.78 kPa; 
Bordoni et al., 2019). Both areas with multiple landslide events (RF and 
RV catchments, where landslides occurred between April 27th and 28th 
2009 following a cumulated precipitation of 159.4 mm in 62 h) and 
areas where landslide activity has been nearly absent (CP and VDF) were 
selected. The vineyards in the area have been planted at the beginning of 
the 21st century and the slope angles in those are steeper in RF and RV 
compared to CP and VDF.

2.2. Model description and adaptation

LAPSUS-LS was originally created as a way to account for the role of 
landslides in the evolution of landscapes by calculating the location and 
expected quantity of landslide-displaced materials within the LAPSUS 
modelling framework (Schoorl et al., 2000; Schoorl et al., 2002; Claes-
sens et al., 2005; Claessens et al., 2007). It is a reduced complexity 
physically based model, in which the displaced material, after a critical 
rainfall threshold is surpassed, is transported downward and either split 
between cells through a double multiple flow approach (Claessens, 

Fig. 1. Flow chart of the adopted methodology.
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2007) or transferred entirely to the steepest neighbour according to a 
convergence factor, which depends on the slope gradient of the down-
stream cells (van Gorp et al., 2015).

The original model requires two rasterised inputs: a DEM and a land 
use map, and associated to each class of the latter, a set of soil and 
vegetation parameters: General cohesion (“COH” in kPa; which com-
bines soil cohesion and mechanical root reinforcement), internal friction 
angle (“IFR” in rad), soil unit weight (also referred to as “Bulk density”; 
“BD” in g/cm3), soil transmissivity (“T” in m/s; the result of the product 
between soil permeability and soil thickness). The sliding depth was 
calculated as a function of the soil bulk density (BD), gravity (angle) and 
soil cohesion (Cs), assuming always sufficient soil depth available 
(Claessens et al., 2005; De Sy et al., 2013).

To introduce conditions for limited regolith or shallow soils, a soil 
depth map and a map of the soil units have been introduced, as along 
with the soil depth dependent transmissivity, dependent on soil- 
saturated hydraulic conductivity, with the goal of increasing accuracy. 
Furthermore, the total cohesion, dependent on root reinforcement and 
on soil cohesion, can be calculated on a cell-by-cell basis according to 

the distribution of the effects of different land uses, of the different 
agricultural management practices and of the different soil units.

Moreover, to take into account the spatial variability of each 
parameter, the model was adapted so that at each iteration it samples 
randomly each input parameter from a range of acceptable values and 
associates the randomised value to all the cells within the same class. 
The model repeats the process n times: it samples n sets of input pa-
rameters, then runs the physically based model, binarizes the outputs 
(which are the maps of the predicted source areas) in “stable” and 
“unstable” cells and compiles a probability map based on the number of 
times each cell was calculated as the former or the latter. While at each 
iteration only a single input value of bulk density, soil cohesion, friction 
angle and saturated conductivity is selected for each homogeneous soil 
class and a single value of root cohesion is selected for each land use and 
land management, the output is the result of 100 plausible 
combinations.

It must be noted that LAPSUS-LS cannot take rainfall into account, 
however in this application, all landslides occurred during a single 
event, that of April 27th-28th 2009, so that differences in rainfall 

Fig. 2. Study area location in the region of Lombardy (Italy) (d) and the location of the 4 test sites (a, c) in the Oltrepò Pavese including drainage network (b), where 
“CP” refers to the catchment “Cascina Porcarana”, “RF” refers to “Rio Frate”, “VDF” refers to the catchment “Vigna del Fico” and “RV” to “Rio Vergombera”. Panels a 
and b zoom into more detail, including landslide locations in red.
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quantity can be neglected within each catchment.
The original output was the elevation change within the DEM or 

volume of mobilised sediments (in m3), however due to the lack of 
measured volumetric data, calibrating the quantity of mobilised sedi-
ments would not have been possible, so a binarised output was 
preferred.

The main output of the implemented model is a probabilistic map of 

the cells which could lose soils in the occasion of a landslide-triggering 
event, based on the main predisposing factors of shallow slope insta-
bility: it can be approximated as the spatial distribution of potential 
shallow landslide source areas, representing in this way a susceptibility 
distribution.

2.3. Input parameters of the model

The adapted model requires the following set of input parameters for 
each test site: a) DEM, b) lithological map, c) land use map, d) soil depth 
map, e) the range of distribution of Root Reinforcement and Saturated 
Hydraulic Conductivity for each land use class, and f) the range of Soil 
Cohesion, Unit weight and Friction Angle for each class of the litho-
logical map (Tables 3, and 4).

Table 4 shows the range of distribution (minimum and maximum 
values) for the soil and root input parameters required by the model. 
Unit weight, soil cohesion and friction angle were measured through 
undisturbed samples collected in each study area for the shallowest soil 
layer. As described by Bordoni et al., (2015), the geotechnical charac-
terisation of the deposits was performed according to the guidelines of 
the ASTM (American Society for Testing and Materials) and it involved 
an assessment of the physical parameters of the materials (grain size 

Fig. 3. Land use and the location of past landslides in the 4 test catchments: “CP” refers to the catchment “Cascina Porcarana”, “RF” refers to “Rio Frate”, “VDF” 
refers to the catchment “Vigna del Fico” and “RV” to “Rio Vergombera”. Abandoned vineyards in the RF catchment are currently classified as “woodlands”. 
Shrublands and sowed fields were grouped within the same class.

Table 1 
An overview of the features of the selected test sites, which includes the average slope angle in vineyards, the vineyard management techniques, the soil type and the 
number of past shallow landslides. The geotechnical characteristics of the RF test site were measured by Zizioli et al. (2013) and are a range instead of an average value 
and are identified by an asterisk (*).

Site Area (km2) Average Slope Angle in vineyards (◦) Vineyard management Soil characteristics Past shallow landslides (nr)

Average Silt % Average Clay %

CP 0.36 8.8 PGC 65.0 33.0 0
RF 1.93 21.0 Unspecified management/abandoned 20.0–59.0* 12.0–27.0* 145
VDF 0.45 11.3 ALT, PGC 68.3 25.6 7
RV 0.54 16.1 ALT, PGC, T/TT 45.2 46.0 1

Table 2 
Overview of the differences between the test sites. The thresholds for the slope 
angle and the clay percentage provided in this table were chosen to best high-
light the differences between the catchments and are not based on the impact of 
those factors on landslide susceptibility.

Slope angle Vineyard management Clay 
percentage

Past 
landslides

Site <15◦ >15◦ Lower RC 
(up to 
3.78 kPa)

Higher RC 
up to 
14.07 kPa)

<45 
%

>45 
%

Yes No

CP x   x x   x
RF  x x  x  x 
VDF x   x x  x 
RV  x x x  x x 
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distribution, bulk density, Atterberg limits) and the application of both 
direct shear testing using Casagrande’s shear box and triaxial tests to 
calculate the shear strength parameters in terms of the effective stresses 
(ASTM Committee D-18 on Soil and Rock; 2015).

These ranges have been already adopted for shallow landslide trig-
gering models by different deterministic approaches (Zizioli et al., 2013; 
Bordoni et al., 2015) or implemented by new measurements of these 
parameters carried out along the soil profiles, while the saturated hy-
draulic conductivity ranges were measured for each land use class in the 

field along the first 0.5 m of soil horizons through a constant head 
permeameter device (Bordoni et al., 2019). Mechanical root reinforce-
ment ranges of each land use class were derived from measurements 
carried out by Bordoni et al., (2020a) 0.3 m from ground level, except 
for the values of woodlands in the RF test site, which were derived from 
literature. In this site, woodlands are almost entirely comprised of black 
locust trees (Robinia pseudoacacia), whose typical values of root rein-
forcement were measured at around 4–5 kPa by Zhang et al., (2014).

2.4. Validation methods

Since the goal is to test the ability of the model to identify areas 
susceptible to the formation of shallow landslides (source areas), the 
modelled soil depletion areas are compared to the distribution of the 
source areas of past landslides. The source areas of the landslides were 
estimated as 25 % of the landslide body through a semi-automatic 
method implemented by Galve et al., 2015; Galve et al., 2016 which 
has been adopted previously for this area since it is considered to be a 
reliable approximation (Bordoni et al., 2020b).

To assess the performance of the proposed model, it was necessary to 
establish a probability threshold above which a cell is classified as un-
stable, so for the purpose of the present research, three different cutoffs 
were tested, namely 50, 60 and 75 %. In literature, landslide suscepti-
bility is considered low to very low for probabilities lower than 40 %, 
while between 40 to 60 % the susceptibility is considered moderate and 
probabilities higher than 60 to 70 % range from high to very high (Lin 
et al., 2017; He et al., 2021).

The validation of the model’s performance was carried out through 
the use of the AUC (area under the ROC curve; Han et al., 2011; He et al., 
2021) and the four-fold plot of the confusion matrix (Fawcett, 2006; He 
et al., 2021), which were applied to all four test sites simultaneously as 
the number of landslides occurred in some test sites, namely CP and 
VDF, was very low.

Lastly, the fourfold plot was employed as a mean to assess the 

Table 3 
Overview of the input maps.

Map Resolution Description Source

DEM 1X1 m Acquired with LiDAR 
technology between 
2008 and 2010

Italian Ministry for 
Environment, Land, and 
Sea as part of the 
Extraordinary 
Environmental Remote 
Sensing Plan (available on 
the national Italian 
geoportal under the tag 
“Piano Straordinario di 
Telerilevamento per 
l’Ambiente”).

Lithological 
map

1:10000 Lithological map of 
the area

Meisina et al. 2006

Land use 
map

1:10000 For RF: DUSAF 2007 
land use map

Lombardia & ERSAF, 2010

− For CP, VDF and RV: 
the 2009 land use was 
reconstructed as part 
of this work

High resolution 
orthophotographs, field 
surveys, and interviews to 
local landowners

Soil depth 
map

− Calculated according 
to a formula 
developed originally 
for the RF and RV test 
sites and validated in 
the field

Zizioli et al. 2013

Table 4 
Comparison between measured input values and the value range chosen for modelling, compiled from various sources(a) Bordoni et al., (2019), (b) Bordoni et al., 
(2020a), (c) Persichillo et al., (2017); (d) Bordoni et al., (2015); (e) Zhang et al., (2014); (f) Zizioli et al.(2013) and (g) parameters measured within the last year as part 
of the present work. “RC” stands for “Root Cohesion”, “Ksat” stands for “Saturated Conductivity” and the mentioned vineyard management practices “ALT”, “PGC” and 
“T/TT” are respectively “Alternated tillage”, “Permanent Grass Cover” and “Tillage/Total Tillage”. RF, CP, VDF and RV identify the selected test sites. The column “Nr 
of tested samples” refers to the number of samples collected and tested to obtain each measurement. The parameter is marked with a “*” when only a mean value was 
available. For the RF catchment, the geotechnical parameters presented were measured by Zizioli et al., (2013) for the soil located in correspondence of the Rocca 
Ticozzi Conglomerates, where most landslides occurred.

Parameter Measured range LAPSUS-LS input range Nr of samples tested Source

RC 
(kPa)

Shrublands/Fields 0.67–2.58 0.67–2.58 23–56 b
Vineyards ALT 0.90–14.00 0.90–14.00 23–56 b, g
Vineyards PGC 3.00–8.12 3.00–8.12 23–56 b, g
Vineyards T/TT 0.34–3.78 0.34–3.78 23–56 b
Vineyards (all managements) 0.34–14.07 0.34–14.07 23–56 b, g
Woodlands 9.30–12.16 9.30–12.16 23–56 b
Black locust trees 4.00–5.00 4.00–5.00 2 e

Ksat 
(m/s)

Shrublands/Fields 1.70•10-8 − 1.00•10-5 1.70•10-8 − 1.00•10-5 3 a, g
Vineyards ALT 1.00•10-7 − 9.45•10-7 1.00•10-7 − 9.45•10-7 3 a, g
Vineyards PGC 6.40•10-11 − 1.00•10-7 6.40•10-11 − 1.00•10-7 4 a, g
Vineyards T/TT 1.00•10-6 m/s − 5.55•10-6 1.00•10-6 m/s − 5.55•10-6 3 a, g
Vineyards (all managements) 1.00•10-6 m/s − 5.55•10- 1.00•10-6 m/s − 5.55•10- 3 a, g
Woodlands 6.40•10-11 − 1.00•10-5 6.40•10-11 − 1.00•10-5 3 a

Soil cohesion 
(kPa)

RF 1.80*-2.00 1.80–2.00 ~ 3 d, f
CP 1.80–2.50 1.80–2.50 2 g
VDF 1.85–1.85 1.85–1.85 ~3 d, g
RV 1.80–1.85 1.80–1.85 ~ 3 d, g

Friction angle 
(rad)

RF 0.42*-0.56 0.42–0.56 ~ 3 d, f
CP 0.49–0.57 0.49–0.57 2 g
VDF 0.45–0.50 0.45–0.50 ~3 d, g
RV 0.45–0.47 0.45–0.47 ~ 3 d, g

Unit weight 
(g/cm3)

RF 1.52–1.86 1.52–1.86 ~ 7 d, f
CP 1.69–2.02 1.69–2.02 21 g
VDF 1.33–1.73 1.33–1.73 61 d, g
RV 1.50–2.02 1.50–2.02 85–91 d, g
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accuracy of the prediction. It is a visual representation of the confusion 
matrix, which displays the four possible outcomes of the model: true 
positive (TP), true negative (TN), false positive (FP) and false negative 
(FN) (Fawcett, 2006; He et al., 2021).

2.5. Land use change scenarios

For each test site, both the present conditions were modelled and a 
land use change scenario was simulated according to the following 
criteria:

i. Most landslides in the RF catchment have occurred in currently 
abandoned vineyards. The tested land use change scenario aims 
to evaluate how slope stability might change, according to 
LAPSUS-LS, if the spontaneously grown black locust trees, which 
make up most of the woodland areas in the catchment, were to be 
eradicated and those areas were to be brought back to their 
former land use of ALT vineyards.

ii. The CP test site has been stable in the past few decades. The tested 
scenario investigates whether the landslide susceptibility would 
change if the current PGC vineyards were to be managed through 
T.

iii. Similarly, to the CP test site, VDF vineyards have not been 
experiencing shallow landslides in the past decades and the 
proposed land use change scenario evaluates if shallow landslide 
susceptibility would increase if ALT and PGC vineyards were to 
be changed into T.

iv. The RV catchment has been experiencing soil mobilisation on the 
northwest-facing sector, where T is the most commonly adopted 
vineyard management technique. The tested scenario in-
vestigates whether choosing ALT as a preferred management 
technique would improve slope stability in the most landslide- 
prone areas. Additionally, to test the benefit of including 

management-specific parameters into the model, it was run for 
the RV test site using as inputs values a range of Ksat and of RC 
which includes all management techniques.

3. Results

3.1. Susceptibility maps

This section provides the susceptibility maps which were obtained 
through the application of LAPSUS-LS using as inputs both the condi-
tions which were present in 2009 (the box labelled as “a” in the up-
coming figures) and the proposed land use change scenarios (boxes “b” 
and “c”).

For the RF catchment, the simulation which was carried out using the 
original April 2009 land use conditions as inputs (Fig. 4a) predicted 52 
% of all cells as unstable and of those 36 % would fall under the clas-
sification of “very high” susceptibility. The areas which are predicted as 
unstable are located in correspondence of the steepest slopes, since 24 % 
of the area is steeper than 30◦.

On the other hand, for the land use change scenario, which entailed 
the reclamation of the abandoned vineyards (where black locust trees 
currently grow), only 21 % of the total cells were deemed unstable for at 
least half of the simulations and of those 12 % fall into the > 75 % 
probability range (Fig. 4b).

In the CP catchment, two simulations were carried out using 
LAPSUS-LS, the former considering the real land use distribution 
(Fig. 5a) and the latter a hypothetical scenario of change in vineyard 
management along the interrow (Fig. 5b). Both did not significantly 
modify the susceptibility of the area and no shallow landslides were 
predicted, nor they were ever recorded in this area in the past few de-
cades, and neither simulation had any cells exceed the susceptibility 
threshold of 25 %.

Similarly, for the VDF test site, both the simulation run with real 

Fig. 4. LAPSUS-LS simulations for RF for real conditions (a) and for a land use change scenario (b).
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inputs (Fig. 6a) and the land use change scenario (Fig. 6b), which 
entailed turning PGC and ALT vineyards into T vineyards, predicted that 
vineyards in the area would remain stable under this circumstance, 
meaning that no cells located in vineyards exceeded the 50 % suscep-
tibility threshold. In the area, only the shrublands, where one landslide 
has occurred in the past, have been predicted as unstable in the southern 
portion of the catchment.

Fig. 7 shows the probabilistic landslide maps of the RV test site and in 
the first simulation, obtained using the real 2009 inputs (Fig. 7a), shows 
most of the unstable cells are located along the SE sector, where the 
slope angles are steeper (about 25◦) and where the vineyards are 
managed through T and TT, compared to the SW sector where the slope 
angle is on average 15◦ and the vineyards are managed through ALT and 
PGC. For the second simulation, which entailed adopting the ALT 
management technique for vineyards which are currently managed 
through T and TT, LAPSUS-predicted a decrease in the number of un-
stable cells (Table 5; Fig. 7b). The last simulation (Fig. 7c) also adopted 
the April 2009 input parameters, however the different vineyard man-
agement techniques were not taken into account and the result was a 
significant worsening of the model’s performance by failing to identify 
the majority of unstable cells. (Table 6).

The AUC of the simulation which considers the management tech-
nique (Fig. 7a) is 0.86, whereas the AUC of the simulation which does 
not (Fig. 7c), is of 0.52 and therefore the performance is significantly 
worse.

The percentage of cells in a stability range regarding each simulation 
in provided in Table 4, which highlights how the susceptibility changes 
when running LAPSUS-LS using the current land use, compared to the 

proposed land use change scenarios. In RF and RV, the general hillslope 
susceptibility decreased in the proposed scenarios, whereas in CP and 
VDF it remained unchanged.

3.2. Performance of the models

To assess the performance of the model when simulating the present 
land use conditions, the area under the ROC curve and the values of the 
indexes of the confusion matrix (TP, TN, FP, FN) were calculated for 
each tested instability cutoff (50 %, 60 % and 75 %; Table 5, Fig. 8).

With higher cutoffs, the AUC decreases, as do the TP and FP rates, 
whereas the TN and FN rates increase. The 50 % cutoff therefore proved 
best in the identification of unstable cells, with the highest TP and lowest 
FN rates, identifying 85 % of all unstable cells in the area.

By adopting the 60 % cutoff, the percentage of correctly identified 
unstable cells decreased to 79 %, while a 75 % cutoff, only identified 67 
% of all unstable cells in the areas.

For the RV catchment, removing all management-specific input and 
using average RC and Ksat values worsened the performance signifi-
cantly. For the 50 % cutoff, the TP rate went from 0.5 % to 0.02 % while 
the TN rate went from 68.91 % to 97.48 %. The FN rate increased 
significantly, from 0.09 % to 0.23 % while the FP rate dropped from 
30.5 % to 2.27 %.

4. Discussion

The results of the application of the implemented LAPSUS-LS model 
seem to be encouraging, since the AUC ranges between 0.77 (50 % 

Fig. 5. LAPSUS-LS simulations for CP for real conditions (a) and for a land use change scenario (b).

Fig. 6. LAPSUS-LS simulations for VDF for real conditions (a) and for a land use change scenario (rightb).
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cutoff) and 0.73 (75 % cutoff), with FN cells being less than 1 % of the 
total for all simulations. As both the AUC value indicates and the 
confusion matrix shows, the50%cutoff, meaning that a cell was deemed 
as unstable if it was calculated as such in at least 50 % of the simulations, 
guarantees the lowest amount of false negative cells and an overall 
higher AUC value of 0.77. As expected, the lowest cutoff also results in 
the highest amount of False Positive cells (about 30.9 % of the total), 
whereas by selecting as unstable cells those calculated as such at least 
75 % of the times, the number of false positives is the lowest overall 
(21.6 %), but the AUC decreases to 0.73. A cutoff susceptibility of 50 % 
would fall into what is considered in literature a “moderate suscepti-
bility” (He et al., 2021), whereas cutoffs of 60 and 75 % would align with 
what is normally classified as a “high” to “very high susceptibility” (Lin 

et al., 2017; He et al., 2021). A cutoff of 50 % would therefore guarantee 
the lowest number of unstable cells to be missed (false negatives) and an 
overall best performance of the model, as testified by the highest AUC 
value, whereas a higher cutoff (such as 75 %) would be excluding cells 
which are already considered as high risk. For the sake of protecting 
those who are potentially at-risk, correctly predicting unstable cells (and 
therefore obtaining a lower FN rate) is therefore arguably preferable.

The simulations which were carried out, both referring to the 
present-day conditions and to the land use change scenarios, highlighted 
the impact of land use and of the land management on slope stability, 
according to LAPSUS-LS. The results showed that that in some of the 
catchments higher root cohesions were associated with lower landslide 
susceptibility rates. This can be observed in both the RF and RV catch-
ments, where the adoption of ALT vineyards in currently abandoned 
slopes and in T/TT vineyards increased the predicted slope stability. 
Both model results are supported by literature: Persichillo et al. (2017)
observed that in the RF catchment, abandoned cultivated lands, spe-
cifically vineyards where natural woodlands grow, are more prone to 
instability. Similarly, Bordoni et al. 2019; Bordoni et al. 2020a) 
observed that in the Oltrepò Pavese the probability of failure is lower in 
PGC and ALT vineyards compared to T and TT vineyards, while Straf-
felini et al., (2022) noted how vineyards which are tilled frequently are 
more prone to soil mobilisation, namely land degradation. In the Oltrepò 
Pavese area, T and TT vineyards are characterised by lower root den-
sities compared to ALT and PGC vineyards (Bordoni et al., 2020), which 
according to Cohen and Schwarz (2017) is directly correlated with slope 
stability, with sparce roots systems being linked to higher instability. 
These findings are also in line with Rossi et al. (2017), according to 
whom a strong decrease in root cohesion in the original LAPSUS-LS 
model was associated with increased slope instability.

On the other hand, in CP and VDF, which are the catchments char-
acterised by the lowest average slope angles (<15◦), the adoption of 
different vineyard managements did not impact the overall slope sta-
bility. This finding is in line with Bordoni et al. (2020a), who calculated 
that the failure probability exceeded 50 % for slope angles greater than 
17-18◦ for T and TT vineyards, which rose to 25-33◦ for PGC and ALT 

Fig. 7. LAPSUS-LS simulations for RV for real conditions (a), for the land use change scenario (b) and without management-specific inputs (c).

Table 5 
Percentage of cells in each stability range.

Simulation 0–25 
%

26–50 
%

51–75 
%

76–100 
%

RF − current land use 34 % 14 % 16 % 36 %
RF – scenario 59 % 20 % 9 % 12 %
CP − current land use 100 % 0 % 0 % 0 %
CP − scenario 100 % 0 % 0 % 0 %
VDF − current land use 98 % 1 % 1 % 0 %
VDF − scenario 98 % 1 % 1 % 0 %
RV − current land use 86 % 6 % 4 % 4 %
RV − scenario 91 % 5 % 2 % 2 %
RV – unspecified vineyard 

management
85 % 10 % 2 % 3 %

Table 6 
AUC, TP, TN, FP and FN percentages for the three tested stability cutoffs.

Cutoff AUC TP TN FP FN

50 % 0.77 0.5 % 68.5 % 30.9 % 0.1 %
60 % 0.76 0.5 % 72.0 % 27.4 % 0.1 %
75 % 0.73 0.4 % 77.8 % 21.6 % 0.2 %
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vineyards. In this framework, it would be expected that in catchments 
characterised by lower slope angles, the vineyard management would 
not appear to affect the landslide susceptibility, according to LAPSUS- 
LS, while remaining a critical parameter for steeper slopes. However, 
for steeper slopes, such as those in the RF catchment, where 24 % of the 
area is characterised by slopes steeper than 30◦, the model predicts, in 
the land use change scenario, that the stabilising action of the roots 
might be enough to reduce landslide susceptibility considerably.

For the original LAPSUS-LS model, lower values of bulk density were 
associated with increased sediment displacement caused by increased 
infiltration. However in all four test sites the distribution in bulk den-
sities is rather similar, making it difficult to evaluate the impact of the 
geotechnical characteristics of the soil on slope stability. The distribu-
tion of the measured bulk densities is lower in the VDF catchment 
compared to the others, however the slope angles in this test site do not 
exceed the threshold of 17◦ identified by Bordoni et al. (2020a) which 
would make landslide triggering more likely.

Additionally, the simulations proved that the adapted model 
benefitted from the inclusion of management-specific input parameters, 
which in the RV catchment resulted in a more accurate mapping of past 
landslides. Mao et al. (2014) similarly proved, through the application of 
the model Ecosfix 1.0, that the root distribution is especially impactful of 
slope stability and that taking into account more complex inputs related 
to the land use can prove beneficial. Zizioli et al., (2013) applied 
different physically based models (SINMAP: Tarboton, 1997; Pack et al, 
1999; SHALSTAB: Montgomery and Dietrich, 1994; TRIGRS: Baum 
et al., 2008; SLIP: Montrasio, 2000) to calculate the landslide suscepti-
bility in a study area located in the Oltrepò pavese which includes both 
the RF and RV catchments. They observed that the success rate for all 
models was similar: for all landslide types, SINMAP had an AUC of 
0.7965, SHALSTAB had an AUC of 0.7846, TRIGRS an AUC of 0.7943 
and SLIP and AUC of 0.7852, which is in line with the findings of this 
work (AUC of 0.77 for the 50 % cutoff). The models’ performances 
however improved when removing the shallow landslides occurring in 
correspondence of road slopes (about 80 % accuracy with a 20 to 30 % 
false positive rate), which are however not present in the test sites 
chosen for this work. Zizioli et al., (2013) identified that the maximum 
False positive rates were predicted for a) the steepest slopes, b) the 
south-facing slopes and c) the areas in which high root cohesion rates 
contribute to slope stability in reality, but are not accurately taken into 
account in the models. While the first observation is true for the 
implemented LAPSUS-LS model, the other two are not. On the contrary, 
LAPSUS-LS predicted different slope susceptibility rates for similar slope 
angles based on the different root cohesions, which can be observed in 
both the RF and RV catchments, where it was possible to reduce the 
probability of occurrence of landslides by changing the land 

management in the different land management change scenarios.The 
model still has some limitations, which were true for the original model 
structure: it cannot directly take into account the hourly precipitation 
rates which have triggered the landslide event (Guo et al., 2023), which 
does not allow for the effect of different management techniques on the 
hydrogeological behaviour of the slope to be studied in detail. Compared 
to the original model structure, the adapted model presented here also 
no longer offers a quantitative estimation of the displaced material; it 
now produces a probability map instead and the new structure requires 
as input a soil depth map, which might be difficult to produce or unre-
liable if calculated.

However, both the importance of the land use as a spatially distrib-
uted input and the possibility of taking into account the natural range of 
each input parameter through a probabilistic framework could make the 
adapted LAPSUS-LS model an effective, non-invasive tools in reducing 
shallow slope instabilities. It can be used to assess the feasibility of the 
adoption of non-invasive stabilisation techniques, such the adoption of 
management techniques which have been linked to lower landslide 
frequency, to reduce slope instability and consequently the loss of rev-
enue, without modifying landscapes, environment and economic fea-
tures of an area (Gariano et al., 2018). The model can also be adapted for 
different test sites by changing all of the acceptable input value ranges 
and the instability cutoff percentages based on needs, making it highly 
exportable.

5. Conclusions

In this study we adapted the existing physically based landslide 
model LAPSUS-LS to adopt a probabilistic approach, which strongly 
relies on the land use as a variable to predict the landslide susceptibility. 
The implementation of a probabilistic framework also allows the model 
to = take into account the spatial variability of all input parameters, 
namely the soil depth, the root cohesion, the geotechnical parameters 
and the DEM-derived features. The modelling of both present-day con-
ditions and land use change scenarios have predicted that the land uses 
and vineyard managements with lower root cohesion (T and TT vine-
yards, shrublands and abandoned vineyards) are more prone to the 
formation of shallow landslides. The impact of the land use and land 
management seemed however to be limited for catchments charac-
terised by average slope angles lower than 15◦. In addition, these results 
highlighted the importance of taking into account the vineyard man-
agement techniques when modelling the susceptibility to the formation 
of shallow landslides.

The new implementation of LAPSUS-LS can predict present-day 
conditions with an AUC which ranged between 0.73 and 0.77, with 
False Negative cells always being < 1 % of the total in all simulations. 

Fig. 8. Fourfold plots for the tested probability cutoffs (from left to right: 50%, 60% and 75%).

A. Giarola et al.                                                                                                                                                                                                                                 Catena 246 (2024) 108437 

10 



Although it must be noted that the model cannot take into account the 
precipitation rate directly, it can be used to investigate different land use 
and land management techniques, allowing the user to both simulate 
present conditions and to make land use and management change 
scenarios.

Proving the beneficial effects of vineyard management change on the 
slope stability of a risk area would mean providing the population with a 
non-invasive stabilisation technique to reduce soil mobilisation and 
reduce revenue loss. Additionally, the model can be adapted and 
exported to any existing land use, because each land use class is asso-
ciated with a value range assigned by the user.

In the future, a user interface will be built within the framework of 
the LAPSUS 7.0 model to make the implemented model freely available 
to users worldwide (see https://www.lapsusmodel.nl).
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