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CHARACTERIZING BV- AND BD-ELLIPTICITY FOR A CLASS OF

POSITIVELY 1-HOMOGENEOUS SURFACE ENERGY DENSITIES

DOMINIK ENGL, CAROLIN KREISBECK, AND MARCO MORANDOTTI

Abstract. Lower semicontinuity of surface energies in integral form is known to be equiv-
alent to BV-ellipticity of the surface density. In this paper, we prove that BV-ellipticity
coincides with the simpler notion of biconvexity for a class of densities that depend only on
the jump height and jump normal, and are positively 1-homogeneous in the first argument.
The second main result is the analogous statement in the setting of bounded deformations,
where we show that BD-ellipticity reduces to symmetric biconvexity. Our techniques are
primarily inspired by constructions from the analysis of structured deformations and the
general theory of free discontinuity problems.
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1. Introduction

In many applied problems, especially, but not restricted to, those in continuum mechanics,
equilibrium configurations are obtained by minimizing interfacial energies. One typically studies
functionals of the form

u 7→
∫

Ju

g
(

u−(x), u+(x), νu(x)
)

dHn−1(x), (1.1)

where u is an SBV-function with jump set Ju, jump normal νu, and approximate limits u−

and u+ on both sides of Ju, and g : Rn × Rn × Sn−1 → [0,∞) is a suitable energy density.
Such energies often appear in the context of fracture mechanics [4], polycrystalline solids [7–9],
liquid crystals [2,3], free discontinuity problems [5], or the relatively recent theory of structured
deformations, see [10,12] or [17] and the references therein.

While energies as in (1.1), defined on the set of piecewise constant functions (in the sense
of Caccioppoli), were first addressed in [1], a general variational theory to handle existence
of minimizers, relaxation, and Γ-convergence has been developed later in [2, 3]. For bounded
densities, it was proven in [3,5] that lower semicontinuity of the surface energy (1.1) is equivalent
to BV-ellipticity of the corresponding density g. This notion is the surface-density-analogue of
quasiconvexity, the key convexity notion in the bulk-case. One calls g BV-elliptic if

g(i, j, η) ≤
∫

Ju

g(u−, u+, νu) dHn−1 (1.2)

for every (i, j, η) ∈ Rn × Rn × Sn−1 and every piecewise constant function u on Qη with {u 6=
ui,j,η} ⋐ Qη; here, the set Qη ⊂ Rn describes an open unit cube with a face that is orthogonal
to η and ui,j,η is the elementary jump from j to i along the line {x · η = 0}.

Motivated by the setting of structured deformations, in which the energies account for mi-
croscopic slips and separations and, generally, the direction in which they take place, we assume
that g has the shape

g(i, j, η) := f(i− j, η) with f(αλ, η) = αf(λ, η) for every α > 0, (λ, η) ∈ Rn × Sn−1, (1.3)

subadditive and with linear growth in the first variable; via (2.2) below, the function f can
be viewed as positively 1-homogeneous also in the second variable. Since the pair ([u], νu)
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with [u] = u+ − u− is only unique up to a sign, it is natural to require that f is even, i.e.,
f(−λ,−η) = f(λ, η) for every (λ, η) ∈ Rn × Sn−1.

Our assumption (1.3) on the surface density is, however, incompatible with boundedness,
which is why only partial characterization results for lower semicontinuity are available. It is
straightforward to show that the proof of [5, Theorem 5.14] can be modified without relying
on boundedness. Hence, BV-ellipticity is still necessary for the lower semicontinuity of the
corresponding energy. A partial sufficiency result, on the other hand, follows as in [14, Corollary
2.5]; indeed, the BV-ellipticity of the density yields lower semicontinuity of the energy along
converging sequences of piecewise constant functions that are bounded in L∞(Ω;Rn).

Since BV-ellipticity is usually difficult to verify, one is interested in stronger notions that are
easier to handle. Such concepts have been analyzed and compared extensively in the literature,
for example, in [5] or [3, 7–9]. One such notion is biconvexity, which requires that the surface
density in (1.1) can be written as

g(i, j, η) = Φ
(

(j − i)⊗ η
)

for every (i, j, η) ∈ Rn × Rn × Sn−1,

with a convex, positively 1-homogeneous function Φ: Rn×n → [0,∞). This property was in-
troduced by Ambrosio & Braides [3] in a finite-valued setting. It turned out that biconvexity
does indeed imply BV-ellipticity [3, Proposition 2.2], but the reverse has only been conjectured.
Since every biconvex function is necessarily positively 1-homogeneous in the first variable, this
equivalence requires a type of 1-homogeneity condition; indeed, one can easily construct a non-
positively 1-homogeneous BV-elliptic function by exploiting joint convexity, see [5, Definition
5.17, Theorem 5.20]. The conjecture can thus only be true for densities of the form (1.3). As
proposed in [3], the inequality

g(i, j, η) ≤
m
∑

k=1

g(ik, jk, ηk) with

m
∑

k=1

(ik − jk)⊗ ηk = (i− j)⊗ η, (1.4)

for all (i, j, η), (ik , jk, ηk) ∈ Rn×Rn×Sn−1 and m ∈ N, would verify that BV-ellipticity reduces
to biconvexity. The estimate (1.4) has been shown later in [18] by Šilhavý in the context of
structured deformations, however, without establishing a connection to [2,3] or [5]. In this paper,
we merge the complementary results of the two communities and discuss different convexity and
BV-ellipticity notions. Our first contribution is the following equivalence:

Theorem 1.1 (Characterization of BV-ellipticity). If f : Rn×Sn−1 → [0,∞) is even and
positively 1-homogeneous in the first variable, then f is BV-elliptic if and only if f is biconvex.

Note that the definition of the two properties of f as above are canonically transferred from
(1.3), see Definitions 3.1 and 3.2.

Among the recent advances in the analysis of energies like (1.1) defined on piecewise rigid
functions are [14,15]. In particular, Friedrich, Perugini & Solombrino (cf. [14]) carry the notions
of BV-ellipticity and biconvexity (as well as joint convexity) over to the BD-setting of func-
tions with bounded deformation. They show for bounded densities that the energy functional
(1.1), defined on the set of piecewise rigid functions with skew-symmetric gradients is lower
semicontinuous if and only if g is BD-elliptic. The latter is similar to BV-ellipticity in the sense
that (1.2) holds for every (i, j, η) ∈ Rn × Rn × Sn−1 and every piecewise rigid function u with
{u 6= ui,j,η} ⋐ Qη. It is evident that BD-elliptic functions are also BV-elliptic.

In [14], the authors also define the concept of symmetric biconvexity, for which g satisfies

g(i, j, η) = Ψ
(

(j − i)⊙ η
)

for every (i, j, η) ∈ Rn × Rn × Sn−1, (1.5)

with a convex, positively 1-homogeneous Ψ: Rn×nskew → [0,∞); here (i − j) ⊙ η is short for the
symmetric part of (i− j)⊗η. Whereas [14, Proposition 4.10] already establishes that symmetric
biconvex functions with {Ψ = 0} = {0}, where Ψ is as in (1.5), are BD-elliptic, the question
whether the two notions are equivalent (under suitable conditions) remained open. Our second
main result is the affirmation of this issue for the choice (1.3).
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Theorem 1.2 (Characterization of BD-ellipticity). If f : Rn×Sn−1 → [0,∞) is even and
positively 1-homogeneous in the first variable, then f is BD-elliptic if and only if f is symmetric
biconvex.

Proving this equivalence involves several steps. We establish that symmetric biconvex func-
tions are BD-elliptic by providing an alternative proof of [14, Proposition 4.10] that does not
require the assumption {Ψ = 0} = {0} with Ψ as in (1.5) by reorganizing results and arguments
from [14]. To obtain the reverse implication, we leverage the larger class of test functions, un-
veiling additional properties besides those inherited by their BV-ellipticity. Precisely, we show
that BD-elliptic densities (or rather their positively 1-homogeneous extensions, see (2.2) below)
are symmetric in the sense that their two arguments are interchangeable. This can be done by
combining techniques from [18], which are based on the positive 1-homogeneity, classic argu-
ments in [5], and the class of piecewise rigid functions. The final step is to a prove a symmetric
analogue of inequality (1.4) in the BD-setting, for which we carefully adapt a construction in
[18] from the BV-setting.

Organization of this paper. In Section 2, we cover the notation used in this article as well
as a few technical preliminaries. After that, we introduce and characterize a number of BV-
ellipticity notions, defined via different classes of test functions in (1.2). While some of these
properties coincide with biconvexity, see Theorem 3.7, we also highlight that others become
trivial if the class of test functions is too large or small, see Propositions 3.5 and 3.6. We briefly
discuss an alternative approach to joint convexity and characterize the BV-elliptic envelopes of
functions of the form (1.3).

Section 4 is then devoted to the BD-setting, where we prove the equivalence of BD-ellipticity
and symmetric biconvexity in Theorem 4.6. Similarly to before, we review the notion of symmet-
ric joint convexity in our context of (1.3) and provide characterizations of BD-elliptic envelopes.
We round off the article with a curios example of a biconvex function that is symmetric biconvex
although it does not appear to be so at first glance.

2. Preliminaries

2.1. Notation. Let n ∈ N. We denote the standard basis vectors of Rn with e1, . . . , en. For
the Euclidean scalar product of two vectors a, b ∈ Rn, we write a · b and the length of a is then
given by |a| = √

a · a. Their tensor product (or outer/ dyadic product) a⊗ b ∈ Rn×n is defined
componentwise as (a ⊗ b)ij := aibj for every i, j ∈ {1, . . . , n}; we denote its symmetric part
1
2
a⊗ b+ 1

2
b⊗ a as a⊙ b. The (n− 1)-dimensional unit sphere Sn−1 consists of all vectors in Rn

with unit length. Let η ∈ Sn−1 be given and let ζ1, . . . , ζn−1 ∈ Sn−1 be such that the matrix
S = (η|ζ1| · · · |ζn−1) ∈ Rn×n satisfies STS = SST = Id and detS = 1, where (·)T stands for
the transpose and Id ∈ Rn×n is the identity matrix. With a little abuse of notation, we use the
symbol x · η⊥ to indicate x · ζi for every i = 1, . . . , n− 1. In particular, we write

−α ≤ x · η⊥ ≤ α :⇐⇒ −α ≤ x · ζi ≤ α, for all i ∈ {1, . . . , n− 1}. (2.1)

for α ≥ 0.
The scalar product of two square matrices A,B ∈ Rn×n shall be given asA : B =

∑n
i,j=1AijBij ;

this scalar product then induces the Frobenius norm |A| :=
√
A : A of A. For the set of sym-

metric and skew-symmetric matrices in Rn×n we write Rn×nsym and Rn×nskew; note that A : B = 0 if

A ∈ Rn×nsym and B ∈ Rn×nskew.
The notation U ⋐ V for two sets U, V ⊂ Rn means that U is compactly contained in V .

Given η ∈ Sn−1, we define Qη as the open unit cube in Rn centered in the origin such that two
faces are orthogonal to η.

Moreover, we define uλ,η = λ1{x·η≥0} on Qη as the elementary jump of λ ∈ Rn accross the
midplane of Qη perpendicular to η; here, 1U is the indicator function of set U ⊂ Rn, which is
1 on U and vanishes on Rn \ U . A function h : Rn → R is called positively 1-homogeneous if
h(αξ) = αh(ξ) for all ξ ∈ Rn and all α > 0. We say that a function f : Rn × Sn−1 → R is even



4 DOMINIK ENGL, CAROLIN KREISBECK, AND MARCO MORANDOTTI

if f(−λ,−η) = f(λ, η) for all λ ∈ Rn and η ∈ Sn−1. For such a function f , we introduce its
positively 1-homogeneous extension in the second variable as

f̄ : Rn × Rn → R, (λ, ζ) 7→







|η|f
(

λ,
η

|η|
)

for η ∈ Rn \ {0},

0 for η = 0.
(2.2)

By Hn−1 we mean the (n− 1)-dimensional Hausdorff measure and Ln is the Lebesgue measure
in Rn.

Let U ⊂ Rn be measurable and 1 ≤ p ≤ ∞; then we employ the standard notation for
the Lebesgue spaces Lp(U ;Rn) and the spaces BV(U ;Rn),SBV(U ;Rn), as well as C1(U ;Rn).
If u ∈ BV(U ;Rn), then we write Ju for the jump set of u, νu ∈ Sn−1 for its normal, and
[u] := u+ − u−, where u+ and u− are the approximate limits on both sides of Ju; note that
the pair ([u], νu) is only unique up to a sign, which is why we always work with even surface
densities.

2.2. Auxiliary results. We first prove that rank-one matrices have a decomposition into tensor
products of two vectors in Rn and Sn−1 that is unique up to a sign.

Lemma 2.1. If (λ, η), (λ′, η′) ∈ Rn × Sn−1 with λ, λ′ 6= 0 satisfy λ⊗ η = λ′ ⊗ η′, then it holds
that (λ, η) = (λ′, η′) or (λ, η) = (−λ′,−η′).

Proof. Choose any ξ ∈ Rn such that η · ξ = 0, then it holds that

(η′ · ξ)λ′ = (λ′ ⊗ η′)ξ = (λ⊗ η)ξ = (η · ξ)λ = 0.

Since λ′ 6= 0, it holds that η′ · ξ = 0 for any ξ ∈ Rn with ξ · η = 0 and thus η′ is a multiple of η,
which results in either η′ = η or η′ = −η because both vectors are normalized. Then, for any
x ∈ Rn we find that either

(

x · (λ− λ′)
)

η = 0 or
(

x · (λ+ λ′)
)

η = 0,

which means that λ = λ′ or λ = −λ′. �

Next, we briefly cover a few properties of one of the central functions in [18, Theorem 2.3],
which will also be relevant in this work.

Lemma 2.2. Let f : Rn×Sn−1 → [0,∞) be even, positively 1-homogeneous in the first variable,
and continuous. Then, the function Φf : R

n×n → [0,∞) given by

Φf (F ) := inf
{

m
∑

i=1

f(λi, ηi) : m ∈ N, (λi, ηi) ∈ Rn × Sn−1 for all i ∈ {1, . . . ,m}

with

m
∑

i=1

λi ⊗ ηi = F
}

(2.3)

for F ∈ Rn×n, is positively 1-homogeneous and convex and the integer m in (2.3) can be chosen
as m = n2 + 1.

Proof. Step 1: Auxiliary function φf . First, we define the function

φf : R
n×n → [0,∞), F →

{

f(λ, η) if F = λ⊗ η for (λ, η) ∈ Rn × Sn−1,

∞ otherwise,
(2.4)

and show that φf is well-defined. If F = 0, then F = 0 × η for any η ∈ Sn−1. Since f is
continuous and positively 1-homogeneous in the first variable, it holds that f(0, η) = 0. The
case F 6= 0 can be handled via Lemma 2.1 and the evenness of f .
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Step 2: Convex envelope of φf . As f is positively 1-homogeneous in the first variable the func-
tion φf is positively 1-homogeneous. Its convex envelope is then also positively 1-homogeneous
and coincides with Φf , since

inf
{

n2+1
∑

i=1

µiφf (Fi) : µi ≥ 0, Fi ∈ Rn×n for all i ∈ {1, . . . , n2 + 1}

with

n2+1
∑

i=1

µi = 1 and

n2+1
∑

i=1

µiFi = F
}

= inf
{

n2+1
∑

i=1

µif(λi, ηi) : µi ≥ 0, (λi, ηi) ∈ Rn × Sn−1 for all i ∈ {1, . . . , n2 + 1}

with
n2+1
∑

i=1

µi = 1 and
n2+1
∑

i=1

µiλi ⊗ ηi = F
}

= inf
{

n2+1
∑

i=1

f(λi, ηi) : (λi, ηi) ∈ Rn × Sn−1 for all i ∈ {1, . . . , n2 + 1} with

n2+1
∑

i=1

λi ⊗ ηi = F
}

= inf
{

m
∑

i=1

f(λi, ηi) : m ∈ N, (λi, ηi) ∈ Rn × Sn−1 for all i ∈ {1, . . . ,m} with

m
∑

i=1

λi ⊗ ηi = F
}

.

The last two equalities are a direct consequence of the positive 1-homogeneity of f in the first
variable and the proof of [11, Theorem 2.35]. �

Remark 2.3 (Alternative representations of Φf). Let f : Rn × Sn−1 → [0,∞) be even,
positively 1-homogeneous and subadditive in the first variable, and continuous. In particular, f
satisfies

f(λ, η) ≤ C|λ| for every (λ, η) ∈ Rn × Sn−1 (2.5)

with C = maxSn−1×Sn−1 f . According to [18, Theorem 2.3], the function Φf : R
n×n → [0,∞) in

(2.3) can then alternatively be expressed as

Φf (F ) = sup
{

θ(F ) : θ is subadditive on Rn×n, θ(λ⊗ η) ≤ f(λ, η) for all (λ, η) ∈ Rn × Sn−1
}

= inf
{

∫

Ju

f([u], νu) dHn−1 : u ∈ SBV(Qη ;R
n), ∇u = 0 on Qη, u(x) = Fx for x ∈ ∂Qη

}

= inf
{

∫

Ju

f([u], νu) dHn−1 : u ∈ SBV(Qη ;R
n),

∫

Qη

∇udx = 0, u(x) = Fx for x ∈ ∂Qη

}

for every F ∈ Rn×n. Moreover, it holds that

Φf (λ⊗ η) = inf
{

∫

Ju

f([u], νu) dHn−1 : u ∈ SBV(Qη;R
n), u = uλ,η on ∂Qη , ∇u = 0 on Qη

}

for every (λ, η) ∈ Rn × Sn−1. △

Finally, we state the well-known fact that convexity and subadditivity are equivalent for
positively 1-homogeneous function. This result will be needed a few times in Section 3.

Lemma 2.4. Let h : Rn → R be positively 1-homogeneous, then h is subadditive if and only if
h is convex. In this case, the function h is also continuous.

3. BV-ellipticity and related notions

3.1. Basic definitions and properties. First, we provide the reader with a few classes of
functions that appear in the literature, though often without explicit notation, in the context
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of BV-ellipticity and lower semicontinuity of surface energy functionals. For η ∈ Sn−1, we
introduce

SBV0(Qη;R
n) ={ϕ ∈ SBV(Qη;R

n) : ϕ = 0 on ∂Qη},

VA0(Qη;R
n) =

{

ϕ ∈ SBV(Qη;R
n) :

∫

Qη

∇ϕdx = 0, ϕ = 0 on ∂Qη

}

,

VG0(Qη;R
n) ={ϕ ∈ SBV(Qη;R

n) : ∇ϕ = 0 on Qη, ϕ = 0 on ∂Qη},

PC0(Qη;R
n) =

{

ϕ ∈ SBV(Qη;R
n) : ϕ =

∑

k∈N

λk1Pk
with λk ∈ Rn,

and (Pk)k a Caccioppoli partition and suppϕ ⋐ Qη

}

,

SJ0(Qη;R
n) ={ϕ ∈ SBV(Qη;R

n) : ϕ = λ1P with λ ∈ Rn, P ⋐ Qη}. (3.1)

The space SBV0(Qη;R
n) appears in [6, Theorem 4.2.2], the subset VA0(Qη;R

n) with vanishing
average of the gradient and VG0(Qη;R

n) with vanishing gradient can be found in [10, Theorem
2.16, Theorem 2.17]. The set of piecewise constant functions PC0(Qη ;R

n) (in the sense of
Caccioppoli) is the standard class of test functions for BV-ellipticity and appears in, for instance,
[5, Definition 5.13]. Single jumps in SJ0(Qη;R

n) are an addition of ours to round of the discussion
about different BV-ellipticity notions.

Clearly, it holds that

SJ0(Qη;R
n) ⊂ PC0(Qη;R

n) ⊂ VG0(Qη;R
n) ⊂ VA0(Qη;R

n) ⊂ SBV0(Qη;R
n). (3.2)

All inclusions above are also strict: while the first and last one are obvious, the other other two
might not be as easy to see. For the second inclusion, we refer to the construction in [18, Lemma
5.2]. As for VG0(Qη;R

n) ( VA0(Qη ;R
n), we choose A ∈ Rn×n \ {0} and η ∈ Sn−1, define

Q+
η :=

{

x ∈ Qη : x · η ≥ 0
}

and Q−
η :=

{

x ∈ Qη : x · η < 0
}

, (3.3)

and

ϕ(x) :=

{

0 if x ∈ Qη \ 1
2
Qη,

±Ax if x ∈ 1
2
Q±
η ,

x ∈ Qη,

and observe that ϕ ∈ VA0(Qη;R
n) \VG0(Qη;R

n).
Now, we introduce several BV-ellipticity notions with varying classes of test functions.

Definition 3.1 (BV-ellipticity). Let f : Rn × Sn−1 → [0,∞) be an even function. We say
that f is BV-elliptic if for any λ ∈ Rn and η ∈ Sn−1 it holds that

f(λ, η) ≤
∫

Ju

f
(

[u], νu
)

dHn−1 (3.4)

for all u ∈ uλ,η + PC0(Qη;R
n).

More generally, we say that f is BV-elliptic with respect to SBV0/ VG0/ VA0/ SJ0 when
(3.4) holds with PC0(Qη;R

n) replaced by one of the corresponding sets introduced in (3.1).

In Section 3.2, we provide characterizations of all these BV-ellipticity notions. While BV-
ellipticity with respect to the extreme cases SJ0 and SBV0 result in trivial statements, BV-
ellipticity with respect to PC0, VG0, and VA0 are all equivalent and coincide, under suitable
conditions, with biconvexity. In general, the latter is a stronger notion and is much easier to
verify. We introduce this concept in the next definition and adapt it from [3, Section 2.2].
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Definition 3.2 (Biconvexity). We call f : Rn × Sn−1 → [0,∞) biconvex if there exists a
convex, positively 1-homogeneous function Φ: Rn×n → [0,∞) such that

f(λ, η) = Φ
(

λ⊗ η
)

for every (λ, η) ∈ Rn × Sn−1.

Naturally, any biconvex map has to be positively 1-homogeneous in the first argument. It
was already conjectured in [3, Page 9] that BV-ellipticity with respect to PC0 and biconvexity
are equivalent concepts. This conjecture can, however, not be true in general. To see this, one
needs to construct a BV-elliptic function that is not a positively 1-homogeneous in the first
variable. This can be done with the help of a jointly convex one with said property, cf. Remark
3.10 or [5, Definition 5.17], as every jointly convex function is BV-elliptic with respect to PC0

in view of [5, Theorem 5.20]. If one amends this question by requiring positive 1-homogeneity
in the first variable, then the two definitions are indeed equivalent, as is shown in Theorem 3.7
below.

We now gather a few properties emanating from BV-ellipticity with respect to SJ0. This
statement can be drawn from combining and adapting the proofs of Theorem 5.11 and The-
orem 5.14 in [5]. The benefit of our argument is a direct proof which does not rely on lower
semicontinuity arguments.

Proposition 3.3. If f : Rn × Sn−1 → [0,∞) is even and BV-elliptic with respect to SJ0, then
the following statements hold true.

i) For any η ∈ Sn−1, the function f(·, η) : Rn → [0,∞) is subadditive.
ii) For any λ ∈ Rn, the function f̄(λ, ·) : Rn → [0,∞) (cf. (2.2)) is convex.

Proof. i) For fixed λ, ξ ∈ Rn and η ∈ Sn−1, we use the single-jump test functions (ϕk)k ⊂
SJ0(Qη;R

n) defined by

ϕk = −ξ1{0≤x·η≤ 1
k
,− 1

2
+ 1

2k
≤x·η⊥≤ 1

2
− 1

2k
}, for k > 2,

see Figure 1(a); recall also the notation (2.1). Setting uk := uλ,η + ϕk (see Figure 1(b)), the
BV-ellipticity with respect to SJ0(Qη ;R

n) gives

f(λ, η) ≤
∫

Juk

f([uk], νuk) dHn−1

=
(

1− 1

k

)n−1
(

f(λ− ξ, η) + f(ξ, η)
)

+
1

k

(

1− 1

k

)n−2
(

2f(λ, η) +
n−1
∑

i=1

(

f(−ξ, ζi) + f(−ξ,−ζi)
)

)

;

letting k → ∞ yields

f(λ, η) ≤ f(λ− ξ, η) + f(ξ, η).

Substituting λ by λ+ ξ implies

f(λ+ ξ, η) ≤ f(λ, η) + f(ξ, η) for λ, ξ ∈ Rn,

which means that f(·, η) is subadditive for any fixed η ∈ Sn−1.

ii) In view of Lemma 2.4, we can equivalently show that η 7→ f̄(λ, η) is subadditive on Rn.
We illustrate the proof in the case n = 2 for clarity and indicate how to modify it for general
dimensions n ∈ N.

Let η1, η2 ∈ R2 and set η0 := η1 + η2 and η̃j := ηj/|ηj | for every j ∈ {0, 1, 2}. On the “upper”
side of the square Qη̃0 we build a triangle T 0 with side lengths L0 = ρ > 0, L1 = ρ|η1|/|η0|, and
L2 = ρ|η2|/|η0| and normals η̃0, −η̃1, and −η̃2, respectively. Notice that the triangle “closes”
because of the definition of η0. Setting ρ = 1

2k
, we let T k be the corresponding triangle, and we



8 DOMINIK ENGL, CAROLIN KREISBECK, AND MARCO MORANDOTTI

(a)

−ξ

(b)

λ

−ξ

λ− ξ

Figure 1. (a) the function ϕk and (b) the function uk in dimension n = 2 (here
pictured for k = 4), the dashed lines marking the jump set Juk . For the purpose
of illustration, here we have taken λ, ξ ∈ R2 with vanishing first component.

denote by Tk the union of 2k − 2 triangles given by shifting T k along the upper side of Qη̃0 so
that dist(Tk, ∂Qη) ≥ 1

2k
. Let now ϕk ∈ SJ0(Qη;R

n) be the function taking the value −λ on Tk,
and use uk = uλ,η̃0 + ϕk as a test function for the BV-ellipticity of f with respect to SJ0. We
have

f̄(λ, η0) = |η0|f(λ, η̃0) ≤ |η0|
∫

Juk

f([uk], νuk) dH1

= |η0|(2k − 2)

[

f(λ, η̃1)
1

2k

|η1|
|η0|

+ f(λ, η̃2)
1

2k

|η2|
|η0|

]

→ f̄(λ, η1) + f̄(λ, η2)

(3.5)

as k → ∞, so that f is subadditive.
To deduce the statement for arbitrary dimensions, it suffices to use the previous construction

on a thin cuboid whose base is a 2-dimensional section of the cube Qη̃0 , and whose thickness is
1
2k

in the remaining n− 2 dimensions. In doing so, the bracket in (3.5) must be modified to

(

1− 1

k

)n−2

|η0|(2k − 2)

[

f(λ, η̃1)
1

2k

|η1|
|η0|

+ f(λ, η̃2)
1

2k

|η2|
|η0|

]

+

(

1

2k

)n−2

|η0|f(ξ, λ̄),

which reduces to the right-most term in (3.5) in the limit as k → ∞. �

Remark 3.4. Let f : Rn × Sn−1 → [0,∞) be even, positively 1-homogeneous in the first
variable, and BV-elliptic with respect to SJ0, then f̄ is separately convex, in view of Lemma 2.4.
In particular, it follows that f̄ , and thus also f , is continuous and satisfies (2.5). △

3.2. Characterization results. In this section we show that, under suitable assumptions, BV-
ellipticity with respect to the extreme sets SJ0 and SBV0 turn out to be rather trivial and that
all other BV-ellipticity notions introduced in Definition 3.1 coincide.

Proposition 3.5. If f : Rn × Sn−1 → [0,∞) is even and positively 1-homogeneous in the first
argument, then f is BV-elliptic with respect to SBV0 if and only if f = 0.

Proof. For any (λ, η) ∈ Rn × Sn−1 and k ∈ N, let ψk ∈ C∞
c (Qη;R

n) such that

ψk = −λ in (1− 1
k
)Qη and sup

k

‖ψk‖∞ ≤ C < +∞,
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for some positive constant C. We define ϕk := ψk1Q+
η
, with Q+

η as in (3.3) and observe that

ϕk ∈ SBV0(Qη;R
n) by design. The only jumps of uk appear on the set

Nk :=
{

x ∈ Qη : x · η = 0, −1
2
+ 1

2k
≤ x · η⊥ ≤ 1

2
− 1

2k

}

.

Since f is BV-elliptic with respect to SBV0, one obtains with the test fields uk := uλ,η +ϕk and
in view of Proposition 3.3 i) that

f(λ, η) ≤
∫

Juk

f
(

[uk], νuk
)

dHn−1 =

∫

Nk

f
(

λ+ ψk, η
)

dHn−1

≤ Hn−1(Nk)f(λ, η) + C

∫

Nk∩{ψk 6=0}

∣

∣

∣f

(

ψk
‖ψk‖L∞

, η

)

∣

∣

∣dHn−1

≤ (1 + C) max
ξ∈Sn−1

|f(ξ, η)|Hn−1(Nk) → 0.

The second step exploits that f(0, η) = 0 for all η ∈ Sn−1, noting that f(·, η) is continuous by
Lemma 2.4, and the third one makes use of the subadditivity in combination with the positive
1-homogeneity of f ; for the final two steps, we have used that f is continuous in its first variable,
and hence, f(·, η) is uniformly bounded on Sn−1, and that

Hn−1(Nk) ≤ 1− (1− 1
k
)n−1

tends to zero as k → 0. This shows that f ≤ 0, from which we conclude that f = 0 since f is
non-negative by assumption. �

The next theorem shows that separate convexity of the positively 1-homogeneous extension
of f : Rn × Sn−1 → [0,∞) in the second variable is sufficient for the BV-ellipticity of f with
respect to SJ0.

Proposition 3.6. If f : Rn × Sn−1 → [0,∞) is even and positively 1-homogeneous in the first
variable, then f is separately convex if and only if f is BV-elliptic with respect to SJ0.

Proof. The necessity follow immediately from Remark 3.4. We now turn to the proof of suffi-
ciency. Let (λ, η) ∈ Rn × Sn−1 and ϕ ∈ SJ0(Qη;R

n) with ϕ = ξ1P for ξ ∈ Rn and P ⋐ Qη a
set of finite perimeter. Moreover, take P+ := P ∩Q+

η and P− := P ∩Q−
η with Q±

η as in (3.3).
In the following, we take ∂P as the reduced boundary of P in the measure-theoretic sense and
let νP : ∂P → Sn−1 be the generalized outer normal to P according to [5, Section 3.5]; and
analogously for P±.

Setting Nη := {x ∈ Qη : x · η = 0}, by the measure-theoretic Gauß-Green formula (see
e.g. [5]),

∫

∂P±\Nη

νP± dHn−1 = −
∫

∂P±∩Nη

νP± dHn−1 = ±Hn−1(∂P± ∩Nη)η. (3.6)

By Jensen’s inequality, exploiting the convexity of f̄ in its second variable, we find together
with (3.6) that

∫

∂P+\Nη

f(−ξ, νP+) dHn−1 ≥ Hn−1(∂P+ \Nη)f
(

−ξ,−
∫

∂P+\Nη

νP+ dHn−1
)

= Hn−1(∂P+ \Nη)f(−ξ, η),
(3.7a)

and similarly,
∫

∂P−\Nη

f(−ξ, νP−) dHn−1 = Hn−1(∂P− \Nη)f(−ξ,−η). (3.7b)
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Further, let u = uλ,η + ϕ and invoke (3.7) and the evenness of f to obtain
∫

Ju

f([u], νu) dHn−1 =

∫

∂P+\Nη

f(−ξ, νP+) dHn−1 +

∫

∂P−\Nη

f(−ξ, νP−) dHn−1

+

∫

∂P+\∂P−∩Nη

f(−ξ − λ,−η) dHn−1 +

∫

∂P−\∂P+∩Nη

f(λ− ξ, η) dHn−1

+

∫

Nη\∂P
f(λ, η) dHn−1 +

∫

∂P+∩∂P−∩Nη

f(λ, η) dHn−1

≥ Hn−1(∂P+ \Nη)f(−ξ, η) +Hn−1(∂P− \Nη)f(ξ, η)

+Hn−1(∂P+ \ ∂P− ∩Nη)f(ξ + λ, η) +Hn−1(∂P− \ ∂P+ ∩Nη)f(λ− ξ, η)

+Hn−1(Nη \ ∂P )f(λ, η) +H(∂P+ ∩ ∂P− ∩Nη)f(λ, η).

Using the estimates

Hn−1(∂P+ \Nη) ≥ Hn−1(∂P+ \ ∂P− ∩Nη) and f(λ, η) ≤ f(λ± ξ, η) + f(∓ξ, η),
which hold due to (3.6) and Lemma 3.3 a), we find

∫

Su∩Qη

f([u], νu) dHn−1 ≥ Hn−1(∂P+ \ ∂P− ∩Nη)
(

f(ξ + λ, η) + f(−ξ, η)
)

+Hn−1(∂P− \ ∂P+ ∩Nη)
(

f(λ− ξ, η) + f(ξ, η)
)

+Hn−1(Nη \ ∂P )f(λ, η) +H(∂P+ ∩ ∂P− ∩Nη)f(λ, η) ≥ f(λ, η),

since

Hn−1(Nη \ ∂P ) +Hn−1(∂P+ \ ∂P− ∩Nη) +Hn−1(∂P− \ ∂P+ ∩Nη) +H(∂P+ ∩ ∂P− ∩Nη)

= Hn−1(Nη \ ∂P ) +Hn−1(∂P \Nη) = Hn−1(Nη) = 1.

�

As a consequence of [18, Lemma 6.2 and Lemma 6.3], BV-ellipticity can be characterized as
follows:

Theorem 3.7 (Characterization of BV-ellipticity). Let f : Rm × Sn−1 → [0,∞) be even
and positively 1-homogeneous in the first argument. Then the following statements are equivalent:

(1) f is BV-elliptic with respect to VA0;
(2) f is BV-elliptic with respect to VG0;
(3) f is BV-elliptic with respect to PC0;
(4) f is biconvex and f(λ, η) = Φf (λ⊗ η) for every (λ, η) ∈ Rn, cf. (2.3).

Proof. The implications “(1) ⇒ (2)”, “(2) ⇒ (3)” are trivial in light of (3.2). It remains to
prove “(3) ⇒ (4)” and “(4) ⇒ (1)”. Let (λ, η) ∈ Rn × Sn−1 now be arbitrary.

“(3) ⇒ (4)”. As a consequence of Remark 3.4, the function f is separately convex, continuous
and satisfies (2.5). Then, the assumptions of Remark 2.3 are satisfied in view of Lemma 2.4 and
it holds that

Φf (λ⊗ η) = inf

{∫

Ju

f([u], νu) dHn−1 : u ∈ uλ,η +VG0(Qη;R
n)

}

= inf

{∫

Ju

f([u], νu) dHn−1 : u ∈ uλ,η + PC0(Qη;R
n)

}

;

the latter equality follows from the proofs in [18, Section 6] where only test functions in PC0

instead of VG0 are employed. Due to the BV-ellipticty with respect to PC0 of f , we then
conclude that Φf (λ⊗ η) ≥ f(λ, η). On the other hand, by choosing u = uλ,η as a test function,
one immediately finds that Φf (λ⊗ η) ≤ f(λ, η).
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“(4) ⇒ (1)”. Let ϕ ∈ VA0(Qη ;R
n) and u = uλ,η + ϕ. Then, we infer by Jensen’s inequality

and by exploiting the positive 1-homogeneity of Φf (see Lemma 2.2) that
∫

Ju

f([u], νu) dHn−1 =

∫

Ju

Φf ([u]⊗ νu) dHn−1 ≥ Φf

(

∫

Ju

[u]⊗ νu dHn−1
)

= Φf (λ⊗ η) = f(λ, η).

To see the equality before the last, we argue that
∫

Ju

[u]⊗ νu dHn−1 =

∫

Nη

(λ+ [ϕ])⊗ η dHn−1 +

∫

Ju\Nη

[ϕ]⊗ νϕ dHn−1

= λ⊗ η +

∫

Jϕ

[ϕ]⊗ νϕ dHn−1 = λ⊗ η,

due to
∫

Jϕ

[ϕ]⊗ νϕ dHn−1 = Dϕ(Qη)−
∫

Qη

∇ϕdx =

∫

∂Qη

ϕ⊗ νQη dHn−1 = 0,

where we have exploited that the mean value of ∇ϕ on Qη is zero and that ϕ has zero boundary
conditions on ∂Qη. Moreover, we used the fine properties of SBV functions (see [5]) and

Dϕ(Qη) =

∫

∂Qη

ϕ⊗ νQη dHn−1,

which follows from the trace theorem for BV functions, see e.g. [13, Section 5.3, Theorem 1]. �

Remark 3.8. It is known (see [16, Proposition 4]) that SBV-functions cannot generally be
approximated by piecewise constant ones. Proposition 3.5 and Theorem 3.7 provide an additional
confirmation of this fact: if such an approximation existed, then SBV0-elliptic functions could
be approximated by PC0-elliptic ones, but this cannot be the case since the former class only
contains the zero function. △

To close this section, we briefly discuss two closely related topics. We first cover a relaxation
result in the BV-setting. Here, Theorem 3.7 is the key to characterizing BV-elliptic envelopes
of even functions f : Rn × Sn−1 → [0,∞). Two versions of such envelopes could be defined as
follows:

fBV (λ, η) := sup {h(λ, η) : h is BV-elliptic and h ≤ f} ,

fBV (λ, η) := inf

{
∫

Ju

f([u], νu) dHn−1 : u ∈ uλ,η + PC0(Qη;R
n)

}

.

In the following, we prove that they both suitably coincide with Φf under the assumptions in
Theorem 3.7.

Proposition 3.9 (BV-elliptic envelope). Let f : Rn×Sn−1 → [0,∞) be even and positively
1-homogeneous in the first variable. Then, it holds that

fBV (λ, η) = fBV (λ, η) = Φf (λ⊗ η),

for every (λ, η) ∈ Rn × Sn−1. In particular, the BV-elliptic envelope of f is BV-elliptic, and f
is BV-elliptic if and only if it coincides with its BV-elliptic envelope.

Proof. The function

f̃ : Rn × Sn−1 → [0,∞), (λ, η) 7→ Φf (λ⊗ η)

is BV-elliptic due to Theorem 3.7. Hence, it follows

Φf (λ⊗ η) = f̃(λ, η) ≤ fBV (λ, η)
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for every (λ, η) ∈ Rn ×Sn−1. The inequality fBV ≤ f̃ has been shown in [18, Lemma 6.2], so it
remains to show that fBV ≤ fBV . To this end let u ∈ uλ,η + PC0(Qη ;R

n) be any test function

and let ε > 0. By definition of fBV , we find a BV-elliptic function h with h ≤ f such that

fBV (λ, η) ≤ h(λ, η) + ε ≤
∫

Ju

h([u], νu) dHn−1 + ε ≤
∫

Ju

f([u], νu) dHn−1 + ε.

Since u and ε are arbitrary, we conclude the remaining inequality. �

Lastly, we mention another closely related notion of convexity.

Remark 3.10 (Joint convexity). We say that an even function f : Rn × Sn−1 → [0,∞) is
jointly convex if there exist Lipschitz continuous functions gi ∈ C1(Rn;Rn) for every i ∈ N such
that

f(λ, η) = sup
i∈N

(

gi(λ)− gi(0)
)

· η for every (λ, η) ∈ Rn × Sn−1.

This definition differs slightly from the literature [5, Definition 5.17] in the sense that we do
not require the functions gi to be defined on compact sets. We also do not necessitate uniform
continuity and boundedness when extending the functions in [5, Definition 5.17] to all of Rn.

It turns out that this convexity notion is also equivalent to BV-ellipticity if f is positively
1-homogeneous in the first variable. Indeed, any jointly convex function is BV-elliptic and the
proof can be handled exactly as in [5, Theorem 5.20].

On the other hand, any biconvex function is jointly convex since any convex function Φ: Rn×n →
[0,∞) with Φ(0) = 0 can be approximated from below by linear functions gi : R

n×n → R, which
can be expressed as gi(F ) = Ai : F for some Ai ∈ Rn×n and every F ∈ Rn×n. △

4. BD-ellipticity and related notions

4.1. Basic definitions. First, we introduce the primary set of test functions relevant for BD-
ellipticity. For η ∈ Sn−1, we define the set of piecewise rigid functions with compact support in
Qη as

PR0(Qη;R
n) =

{

ϕ ∈ SBV(Qη;R
n) : ϕ(x) =

∑

k∈N

(Akx+ bk)1Pk
(x) for x ∈ Qη,

Ak ∈ Rn×nskew, bk ∈ Rn, (Pk)k a Caccioppoli partition of Qη, and suppϕ ⋐ Qη

}

,

cf. [14, Section 2.1], and give the following definition of BD-ellipticity:

Definition 4.1 (BD-ellipticity). We call an even function f : Rn×Sn−1 → [0,∞) BD-elliptic
if

f(λ, η) ≤
∫

Ju

f
(

[u], νu
)

dHn−1

for every u ∈ uλ,η + PR0(Qη;R
n).

Several examples of BD-elliptic functions can be found in Section [14, Section 4].
The next definition is the BD-analogue of biconvexity, taken from [14, Definition 4.8], and

tailored to our setting.

Definition 4.2 (Symmetric biconvexity). An even function f : Rn × Sn−1 → [0,∞) is
said to be symmetric biconvex, if there exists a convex and positively 1-homogeneous function
Ψ : Rn×nsym → [0,∞) such that

f(λ, η) = Ψ(λ⊙ η) for all (λ, η) ∈ Rn × Sn−1.
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Before we prove our second main theorem, we briefly summarize a few properties of BD-
elliptic functions as a direct consequence of their BV-ellipticity.

Remark 4.3. Let f : Rn × Sn−1 → [0,∞) be even, positively 1-homogeneous and BD-elliptic.
In view of PC0(Qη;R

n) ⊂ PR0(Qη;R
n) and the chain of inclusions in (3.2), it follows from

Proposition 3.3 and Remark 3.4 that f̄ as in (2.2) is separately convex, continuous and satisfies
(2.5). △

4.2. Characterization result. First, we prove that BD-elliptic functions that are positively
1-homogeneous in the first variable are symmetric in the sense that the two variables can be
switched.

Proposition 4.4 (Symmetry of BD-elliptic functions). If f : Rn×Sn−1 → [0,∞) is even,
positively 1-homogeneous in the first variable, and BD-elliptic, then

f̄(λ, η) = f̄(η, λ) for all (λ, η) ∈ Rn × Rn, (4.1)

with f̄ as in (2.2).

Proof. Since f̄ is positively 1-homogeneous in both variables, it suffices to establish (4.1) for
unit vectors. For n = 1, the statement is clear, which is why first consider the case n = 2. We
detail the generalization to higher dimensions in Step 3.

Without loss of generality, we may assume that λ ∈ Sn−1 is arbitrary and η = e2. The goal
is then to show

f(λ, e2) ≤ f(e2, λ).

Our proof strategy relies on the construction of suitable test functions that generate many small
jumps by multiples of e2 in the direction λ, and at the same time compensate the elementary
jump uλ,e2 . To establish the above inequality for any given η ∈ Sn−1, we simply rotate the
construction. The desired equality (4.1) can be obtained by exchanging the roles of λ and
η. If λ = ±e2, there is nothing to prove, which is why we exclude this case in the following
calculations.

Step 1: Construction on a single triangle (n = 2). Let k ∈ N with k > 2. In this step, we
consider the unique matrix Ak ∈ R2×2

skew with the property that

Ake1 = −k2e2. (4.2)

We define a small triangle ∆k with vertices 0, 1
k
e1 and ξk := 1

k
e1 +

2
k2
w, where w ∈ S1 is the

vector with

1

k2
Akw = λ. (4.3)

For now, we assume that w · e2 > 0; the case w · e2 < 0 is detailed at the end of this step.
We intersected the triangle by k2 − 1 parallel lines with normal λ in such a way that their

intersection points with [0, 1
k
) × {0} are equidistant with distance 1

k3
. The resulting geometric

figures inside ∆k (a single triangle and k2−1 trapezoids) are denoted byM1
k , . . . ,M

k2

k , counting
from left to right. For an illustration of the geometric setup, see Figure 2.

We now set

ūk(x) =

{

Akx+ j
k
e2 if x ∈M j

k for some j ∈ {1, . . . , k2},
uλ,e2(x) if x /∈ ∆k,
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∆k

1
k
e1

2
k2
w

ξk

1
k3

|ξk|
k2

Figure 2. An illustration of the triangle ∆k, including k2 − 1 parallel lines
with normal λ that intersect the bottom line equidistantly. All other lengths are
uniquely determined as a consequence of the intercept theorem.

for x ∈ Qe2 . The task is now to carefully estimate the jumps of uk on ∂∆k as well as those
within ∆k. Along the bottom edge D1

k of ∆k in direction e1, we compute with (4.2) that

∫

D1
k

f([ūk], νūk) dHn−1 =
k2
∑

j=1

∫
j

k3

j−1

k3

f
(

(−k2x1 + j
k
)e2, e2

)

dx1 =
k2
∑

j=1

∫
j

k3

j−1

k3

(

− k2x1 +
j
k

)

dx1f(e2, e2)

=

k2
∑

j=1

1

2k4
f(e2, e2) =

1

2k2
f(e2, e2) ≤

1

k2
max

Sn−1×Sn−1
f ; (4.4)

note that −k2x1 + j
k
> 0 on ( j−1

k3
, j
k3
), which allows us to exploit the positive 1-homogeneity of

f in the first variable. With similar arguments, we estimate, with the help of (4.2) and (4.3),
along the top edge D2

k of ∆k, in direction ξ̄k :=
1

|ξk|
ξk (and outer normal ζk)

∫

D2
k

f([ūk], νūk) dHn−1 =

k2
∑

j=1

∫

j|ξk |

k2

(j−1)|ξk |

k2

f
(

λ− k2tAk ξ̄k − j
k
e2, ζk

)

dt

=

k2
∑

j=1

∫

j|ξk |

k2

(j−1)|ξk |

k2

f
(

λ+ k
|ξk|
te2 − 2

|ξk|
tλ− j

k
e2, ζk

)

dt

≤
k2
∑

j=1

∫

j|ξk |

k2

(j−1)|ξk |

k2

[

(

1− 2
|ξk|
t
)

f(λ, ζk)−
(

k
|ξk|

t− j
k

)

f(−e2, ζk)
]

dt

=
|ξk|
2k

f(−e2, ζk) ≤
|ξk|
2k

max
Sn−1×Sn−1

f ≤ 1

k2
max

Sn−1×Sn−1
f. (4.5)

On the shortest edge D3
k, in direction w ∈ Sn−1, we observe the total jump energy

∫

D3
k

f([ūk], νūk) dHn−1 =

∫ 2
k2

0

f
(

λ+ ke2 − k2tλ− ke2, λ
)

dt

= f(λ, λ)

∫ 1
k2

0

(1− k2t) dt+ f(−λ, λ)
∫ 2

k2

1
k2

(k2t− 1) dt

=
1

2k2
(f(λ, λ) + f(−λ, λ)) ≤ 1

k2
max

Sn−1×Sn−1
f, (4.6)
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due to (4.3). The parallel lines inside the triangle ∆k, which we denote by Ljk and have length
2j
k4

for j = 1, . . . , k2 − 1, yield the jumps

k2−1
∑

j=1

∫

L
j

k

f([ūk], νūk) dHn−1 =
k2−1
∑

j=1

j

k4
f
(

1
k
e2, λ)

=
2

k5

k2−1
∑

j=1

jf(e2, λ) =
k4 − k2

k5
f(e2, λ) ≤

1

k
f(e2, λ). (4.7)

If w ·e2 < 0, then we redefine ∆k as having the vertices 0, − 1
k
e1, and − 1

k
e1− 2

k2
w; the parallel

lines Ljk for j = 1, . . . , k2 − 1 inside ∆k are drawn analogously. The function ūk is now set to be

ūk(x) =

{

−Akx− j
k
e2 if x ∈M j

k for some j ∈ {1, . . . , k2},
uλ,e2(x) if x /∈ ∆k,

for x ∈ Qe2 . Using the evenness of f , it is evident that the previous estimates still hold.

Step 2: Extending the construction to multiple triangles (n = 2). We now choose k = 2N for
N ∈ N and place k − 2 = 2N − 2 copies of ∆k next to each other, i.e., we set ∆i

k := ∆k +
i

2N
e1

for i ∈ {1−N, . . . ,N − 2}, cf. Figure 3. Moreover, we define

1
2N

1
2N

Figure 3. An illustration of the translated copies ∆i
k of ∆k.

uk(x) =

{

ūk(x− i
2N
e1) if x ∈ ∆i

k for some i ∈ {1−N, . . . ,N − 2},
uλ,e2(x) otherwise,

for x ∈ Qe2 . In light of (4.4) - (4.7) and Figure 3, we then obtain
∫

Juk

f
(

[uk],νuk
)

dHn−1 =

=
2

k
f(λ, e2) + (k − 2)





∫

∂∆k

f([ūk], νūk) dHn−1 +

k2−1
∑

j=1

∫

L
j
k

f([ūk], νūk) dHn−1





≤ 2

k
f(λ, e2) + (k − 2)

(

3

k2
max

Sn−1×Sn−1
f +

1

k
f(e2, λ)

)

.

For k → ∞, this estimate and the BD-ellipticity of f yield

f(λ, e2) ≤ lim sup
k→∞

∫

Juk

f
(

[uk], νuk
)

dHn−1 ≤ f(e2, λ).

Step 3: Generalization to higher dimensions (n ≥ 3). Let n ∈ N with n ≥ 3. We aim
to prove again that f(λ, e2) ≤ f(e2, λ) for any λ ∈ Sn−1. To this end, let us consider the
two-dimensional plane H spanned by λ and e2, choose a vector v ∈ Sn−1 ∩ Ne2 ∩ H with
Ne2 = {x ∈ Qe2 : x · e2 = 0}, and select the unique matrix Ak ∈ Rn×nskew with

Akv = −k2e2 and Akz = 0 for every z ∈ H⊥, (4.8)

where H⊥ is the orthogonal complement of H. This matrix describes a rotation by −π
2

and

scaling by k2 in the plane H. If λ lies in the e1-e2-plane then Ak can be chosen as in the Steps 1
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and 2 and filled up with zeroes in the remaining components. Any other case is handled by the
fact that UTAU ∈ Rn×nskew for every A ∈ Rn×nskew and every orthogonal matrix U ∈ O(2). As before,

we select w ∈ Sn−1 such that (4.3) is satisfied and assume that w · e2 > 0; the case w · e2 < 0
can be addressed analogously.

In the λ-e2-plane, we can set up a triangle ∆k as in Step 1, where e1 is replaced by v. We
introduce parallel right prisms ∆i

k,n, each base of the shape ∆k, where i is taken from an index
set I of consecutive integers with cardinality k. These prisms are constructed in such a way
that dist(∆i

k,n, ∂Qe2) >
1
k
and their union covers the hyperplane Ne2 up to an error in Hn−1-

measure of order 1
k
. Moreover, we intersect each prism by k2 − 1 hyperplanes with normal λ;

the intersection of these planes with the prism ∆i
k,n are called Lj,ik,n and we denote the resulting

geometric subfigures by M j,i
k,n for j ∈ {1, . . . , k2}. We then define

uk(x) =

{

Ak(x− i
k
v) + j

k
e2 if x ∈M j,i

k,n for some j ∈ {1, . . . , k2}, i ∈ I,

uλ,e2(x) otherwise,

for x ∈ Qe2 .
The calculations for the occurring jumps are now simple modifications of those in Steps

1 and 2 due to (4.3) and (4.8). For instance, in the analogue case of (4.7), we can write

Lj,ik,n = (Ljk +
i
k
v)×Cik,n with (n− 2)-dimensional cuboids Cik,n ⊂ H⊥. The jump energy across

these surfaces inside the prism ∆i
k,n is given by

k2−1
∑

j=1

∫

L
j,i
k,n

f
(

[uk], νuk
)

dHn−1 =

k2−1
∑

j=1

∫

L
j
k
×Ci

k,n

f
(

1
k
e2, λ

)

dHn−1 ≤ Hn−2(Cik,n)
1

k
f(e2, λ).

After taking the sum over all i ∈ I, the right-hand side converges to f(e2, λ), since the expression
∑

i∈I Hn−2(Cik,n)
1
k
converges to the Hn−1-measure of Ne2 up to an error of 1

k
. The computations

for the remaining surfaces, that is, the analogues of (4.4) - (4.6), are even easier since the cuboids
Cik,n are bounded and the cardinality of I is of order k.

Additionally, one needs to account for the jumps across the two bases ∆i
k and ∆̄i

k of each

prism, which are described by the triangle ∆k. If n = 3 and z ∈ H⊥ with |z| = 1, then the
energy contribution of the jumps across these two triangles with normal z (or −z) vanishes in

the limit. Indeed, since the lines Ljk from Step 1 have length 2j
k4

for all j ∈ {1, . . . , k2 − 1} and

the edge of ∆k with normal λ has length 2
k2
, we find that

∫

∆i
k

f
(

[uk], νuk
)

dHn−1 =

k2
∑

j=1

∫ j

k3

j−1

k3

∫ 2j

k4

0

f
(

λ−Ak(tv + sw)− j
k
e2, z

)

ds dt

=

k2
∑

j=1

∫
j

k3

j−1

k3

∫
2j

k4

0

f
(

λ+ k2te2 − k2sλ− j
k
e2, z

)

ds dt

≤
k2
∑

j=1

∫
j

k3

j−1

k3

∫ 2
k2

0

C(1 + k2t+ k2s+ j
k
) ds dt

≤
k2
∑

j=1

∫ j

k3

j−1

k3

∫ 2
k2

0

C(3 + 2k) ds dt =
2C(3 + 2k)

k3
,

while exploiting (2.5), as well as (4.3) and (4.8); analogously for ∆̄i
k. The energy contribution

at the combined prism bases therefore vanishes in the limit, considering that the cardinality of
the index set I is of order k. For n ≥ 4, the bases of the prisms are sets of zero Hn−1-measure
and thus, can be neglected when calculating the surface energy. �
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Next, we prove the BD-elliptic generalization of [18, Lemma 6.2], see also (1.4), by tailoring
Šilhavý’s construction to our setting.

Lemma 4.5. Let f : Rn×Sn−1 → [0,∞) be even, positively 1-homogeneous in the first variable
and BD-elliptic. Then, for any (λ, η) ∈ Rn × Sn−1 it holds that

f(λ, η) ≤
m
∑

i=1

f(λi, ηi)

for all (λi, ηi) ∈ Rn × Sn−1 for i ∈ {1, . . . ,m} and m ∈ N such that
∑m

i=1 λi ⊗ ηi = λ⊙ η.

Proof. Let (λ, η) ∈ R× Sn−1 with

λ⊙ η =
m
∑

i=1

λi ⊗ ηi, or equivalently λ⊗ η = 2
m
∑

i=1

λi ⊗ ηi − η ⊗ λ, (4.9)

for a collection (λi, ηi) ∈ Rn × Sn−1 for i = 1, . . . ,m. We consider for k ∈ N with k > 2 the
rectangle

Bk :=

{

x ∈ Rn : 0 ≤ x · η ≤ 1

k
,−1

2
+

1

2k
≤ x · η⊥ ≤ 1

2
− 1

2k

}

and define

uk(x) :=

{

vk(x) if x ∈ Bk,

uλ,η(x) if x /∈ Bk,
with vk(x) :=

m
∑

i=1

1

k
λi〈k2x · ηi〉 − k(η ⊗ λ)skewx

for x ∈ Qη; here, (η ⊗ λ)skew := 1
2

(

η ⊗ λ − λ ⊗ η
)

, and the notation 〈r〉 stands for the integer
part of r ∈ R. In particular, it holds that, for any t ∈ R and n ∈ N,

0 ≤ t− 1

n
〈nt〉 ≤ 1

n
. (4.10)

Note that (4.9) and (4.10) then yield that

|kλ(x · η)− vk(x)| =
∣

∣

∣

∣

∣

k(λ⊗ η)x−
m
∑

i=1

1

k
λi〈k2x · ηi〉+ k(η ⊗ λ)skewx

∣

∣

∣

∣

∣

= k

∣

∣

∣

∣

∣

2

m
∑

i=1

λi(x · ηi)− (η ⊗ λ)x−
m
∑

i=1

1

k2
λi〈k2x · ηi〉+ (η ⊗ λ)skewx

∣

∣

∣

∣

∣

≤ 1

k

m
∑

i=1

|λi|+
∣

∣

∣

∣

∣

m
∑

i=1

λi(x · ηi)− (η ⊗ λ)x+ (η ⊗ λ)skewx

∣

∣

∣

∣

∣

=
1

k

m
∑

i=1

|λi|+
∣

∣

∣(λ⊙ η)x− (η ⊗ λ)x+ (η ⊗ λ)skewx
∣

∣

∣ =
1

k

m
∑

i=1

|λi| (4.11)

for every x ∈ Qη.
The jump set Juk of uk can be written as the union

Juk = Lk ∪Mk ∪Nk ∪Rk ∪ Sk
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with

Lk =

m
⋃

i=1

Lik with Lik =
{

x ∈ Bk : k
2x · ηi ∈ Z

}

,

Mk =

{

x ∈ ∂Bk : 0 < x · η < 1

k

}

,

Nk =

{

x ∈ Qη : x · η = 0,
1

2
− 1

2k
< |x · η⊥| < 1

2

}

,

Rk = {x ∈ ∂Bk : x · η = 0} ,

Sk =

{

x ∈ ∂Bk : x · η =
1

k

}

.

We now compute the energy of the jumps at these interfaces. Just as in the proof of [18, Lemma
6.2], we obtain on Lk that

∫

Lk

f
(

[uk], νuk
)

dHn−1 ≤ 1

k

m
∑

i=1

f(λi, ηi)Hn−1(Lik) →
m
∑

i=1

f(λi, ηi) as k → ∞, (4.12)

where we have used that f is subadditive in light of Proposition 3.3. On NK , we compute
∫

Nk

f
(

[uk], νuk
)

dHn−1 =
1

k
f(λ, η) → 0 as k → ∞, (4.13)

and for x ∈Mk, we exploit (4.11) to estimate

|λ− vk(x)| ≤ |λ− kλ(x · η)| + |kλ(x · η)− vk(x)|

≤ (1 + k|(x · η)|)|λ| + 1

k

m
∑

i=1

|λi| ≤ 2|λ|+ 1

k

m
∑

i=1

|λi| ≤ 2|λ|.

Hence, |λ− vk(x)| is bounded uniformly in k and
∫

Mk

f
(

[uk], νuk
)

dHn−1 → 0 as k → ∞ (4.14)

since Hn−1(Mk) vanishes in the limit. If x ∈ Rk, we use (4.11) to obtain

|vk(x)| = |vk(x)− kλ(x · η)| ≤ 1

k

m
∑

i=1

|λi|,

and if x ∈ Sk, we similarly find

|λ− vk(x)| = |kλ(x · η)− vk(x)| ≤
1

k

m
∑

i=1

|λi|,

which results in
∫

Rk∪Sk

f
(

[uk], νuk
)

dHn−1 → 0 as k → ∞. (4.15)

Combining (4.12) - (4.15), we then conclude the desired inequality since f is BD-elliptic and
uk ∈ uλ,η + PR0(Qη;R

n). �

We are now in a position to prove our second main result of this paper.

Theorem 4.6 (Characterization of BD-ellipticity). Let f : Rn × Sn−1 → [0,∞) be even
and positively 1-homogeneous in the first variable. Then, f is BD-elliptic if and only if f is
symmetric biconvex with

f(λ, η) = Φf (λ⊙ η)

for every (λ, η) ∈ Rn × Sn−1, where Φf is given as in (2.3).
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Proof. Step 1: BD-ellipticity implies symmetric biconvexity. If f is BD-elliptic, then it holds
that f̄(λ, η) = f̄(η, λ) (cf. (2.2)) for every (λ, η) ∈ Rn × Sn−1 due to Lemma 4.4. In particular,
we find that

Φf (λ⊙ η) ≤ f̄(1
2
λ, η) + f̄(1

2
η, λ) = f(λ, η) (4.16)

for every (λ, η) ∈ Rn × Sn−1 since f̄ is positively 1-homogeneous in both variables. In view of
Lemma 4.5, we conclude that the two sides of (4.16) coincide, which proves that f is symmetric
biconvex.

Step 2: Symmetric biconvexity implies BD-ellipticity. The proof is essentially a reformulation
and simplification of some results in [14]. For the reader’s convenience, we present the details
below. If f is symmetric biconvex, then there exists a positively 1-homogeneous, convex function
Ψ: Rn×nsym → [0,∞) such that f(λ, η) = Ψ(λ⊙ η) for every (λ, η) ∈ Rn × Sn−1.

Following the proof of [14, Proposition 4.9], which is based on [5, Proposition 2.31], we find
a sequence of symmetric matrices (Ai)i ⊂ Rn×nsym such that Ψ(F ) = supi∈NAi : F for every

F ∈ Rn×nsym . In particular, it holds that

f(λ, η) = sup
i∈N

(Aiλ) · η for every (λ, η) ∈ Rn × Sn−1. (4.17)

Finally, we define the auxiliary functions gi(x) := Aix for every x ∈ Rn and continue with
the strategy in [14, Theorem 3.4]. We fix i ∈ N, (λ, η) ∈ Rn × Sn−1 with λ 6= 0 (otherwise
there is nothing to show), and select any u ∈ uλ,η + PR0(Qη;R

n). Since u ∈ SBV(Qη;R
n) and

gi ∈ C1(Rn;Rn), we may apply the chain rule [5, Theorem 3.96] to differentiate the composition
gi ◦ u ∈ BV(Qη ;R

n), obtaining

D(gi ◦ u) = ∇gi(u)∇uLn +
(

gi(u
+)− gi(u

−)
)

⊗ νuHn−1 Ju

= Ai∇uLn + (Ai[u])⊗ νuHn−1 Ju ,

where D(gi ◦ u) is the distributional derivative. By evaluating in Qη and taking the trace, we
then find

Tr
(

D(gi ◦ u)(Qη)
)

=

∫

Qη

Ai : (∇u)T dLn +
∫

Ju

(Ai[u]) · νu dHn−1.

Since Ai is symmetric and (∇u)T is skew-symmetric, their scalar product vanishes. Moreover,
as gi ◦ u− gi ◦ uλ,η has compact support in Qη it holds that D(gi ◦ u)(Qη) = D(gi ◦ uλ,η)(Qη),
which leads to

∫

Ju

(Ai[u]) · νu dHn−1 = (Aiλ) · η.

Finally, we conclude from (4.17) that
∫

Ju

f([u], νu) dHn−1 =

∫

Ju

sup
i∈N

(Ai[u]) · η dHn−1

≥ sup
i∈N

∫

Ju

(Ai[u]) · η dHn−1 = sup
i∈N

(Aiλ) · η = f(λ, η),

which proves that f is BD-elliptic. �

Now that we have established the equivalence of BD-ellipticity and symmetric biconvexity
under suitable assumptions, we turn to a relaxation result similar to Proposition 3.9. For an
even function f : Rn × Sn−1 → [0,∞) we define the two BD-elliptic envelopes

fBD(λ, η) := sup {h(λ, η) : h is BD-elliptic and h ≤ f} ,

fBD(λ, η) := inf

{
∫

Ju

f([u], νu) dHn−1 : u ∈ uλ,η + PR0(Qη;R
n)

}

.

for every (λ, η) ∈ Rn × Sn−1.
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Proposition 4.7 (BD-elliptic envelope). Let f : Rn×Sn−1 → [0,∞) be even and positively
1-homogeneous in the first variable. Then, it holds that

fBD(λ, η) = fBD(λ, η) = Φf (λ⊙ η),

for every (λ, η) ∈ Rn × Sn−1. In particular, the BD-elliptic envelope of f is BD-elliptic, and f
is BD-elliptic if and only if it coincides with its BD-elliptic envelope.

Proof. The proof can be handled analogously to Proposition 3.9. We merely replace Theorem
3.7 with Theorem 4.6, and [18, Lemma 6.2] with Lemma 4.5. �

Similar to Remark 3.10, we tackle one final related convexity notion.

Remark 4.8 (Symmetric joint convexity). We say that an even function f : Rn×Sn−1 →
[0,∞) is symmetric jointly convex if

f(λ, η) = sup
i∈N

(

gi(λ)− gi(0)
)

· η for every (λ, η) ∈ Rn × Sn−1,

where gi ∈ C1(Rn;Rn) is Lipschitz continuous and conservative for every n ∈ N.
Here, we merged [14, Definition 3.1] with the class of functions for gi used in [14, Remark 3.2].

In our setting the chain rule for compositions of gi with BV-functions can be applied directly.
Moreover, if f is positively 1-homogeneous in the first variable, then symmetric joint convexity
is also equivalent to BD-ellipticity.

The proofs of both implications can be handled almost exactly as in Step 2 of the proof
of Theorem 4.6, which are inspired by [14, Theorem 3.4] and [14, Proposition 4.9] but do not
require boundedness of the functions gi. △

We close this article with a curious example for a symmetric biconvex function. It has already
been establishes in [14, Example 4.16] that densities of the form

f(λ, η) = ψ(λ), (λ, η) ∈ Rn × Sn−1

with an anisotropic function ψ are, in general, not BD-elliptic. In the following, we tackle the
case ψ = | · |, which has been addressed in [14, Theorem 4.1]

Example 4.9. We consider the function

f : R2 × S1 → [0,∞), (λ, η) 7→ |λ⊗ η|,
where |.| is the Frobenius norm. It is then obvious that f is biconvex, and also BV-elliptic due
to Theorem 3.7, since f(λ, η) = Φ(λ⊗ η) for every (λ, η) ∈ R2 × S1 with

Φ: R2×2 → [0,∞), F 7→ |F |.
It might be surprising to see that f is also symmetric biconvex, and thus BD-elliptic in view of
Theorem 4.6, since f(λ, η) = Ψ(λ⊙ η) for every (λ, η) ∈ R2 × S1 with

Ψ: R2×2
sym → [0,∞), F 7→

√

(F11 − F22)2 + (F12 + F21)2 =
√

|F |2 − 2 detF.

However, neither Φ nor Ψ (extended canonically to all of R2×2) coincides with Φf (cf. (2.3)) on
all of R2×2.

It turns out that Φf is the nuclear norm | · |∗ on R2×2, i.e.,

Φf (F ) = |F |∗ := Tr
(

√
F TF

)

= σ1(F ) + σ2(F )

for every F ∈ R2×2, where σ1(F ), σ2(F ) ≥ 0 are the two singular values of F . To prove this
identity, we turn our attention to Lemma 2.2, in which we established that Φf is the convex
envelope of (2.4). Since the nuclear norm is convex and coincides with f on tensor products,
we obtain the trivial inequality | · |∗ ≤ Φf . We establish the reverse inequality by exploiting the
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singular value decomposition: for every F ∈ R2×2 there exist orthogonal matrices U, V ∈ O(2)
such that

F = U

(

σ1(F ) 0
0 σ2(F )

)

V T ;

in particular, it holds that

F = σ(F )(Ue1)⊗ (V e1) + σ2(F )(Ue2)⊗ (V e2).

This composition then yields that Φf ≤ | · |∗ since the columns of U and V are normalized and
the singular values are non-negative.
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