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1 | INTRODUCTION

Electrokinetic phenomena have a wide range of applications in nanofluidics and microfluidics and in porous media
such as desalination and remediation [1-4]. In this context, dispersion is a key parameter. Going beyond classical Taylor
dispersion [5, 6], its combination with electroosmotically induced dispersion is essential. In microfluidic devices or
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applications including narrow channels, electroosmotic flow becomes attractive, while pressure-driven flow is impractical
since pumping requirements become prohibitive; see Jacob and Masliyah [2, Chapter 8]. Electroosmotic flow additionally
has the advantage that uniform (plug-like) flow fields leading to less dispersion may be created. The interplay and relative
strength of pressure-driven and electroosmotically induced dispersion is therefore crucial for applications such as frac-
tionation, separation, or mixing of chemical species. Although the importance of such dispersion phenomena for practical
applications is well-known, detailed numerical and analytical investigations are scarce. Since sophisticated models may
easily become computationally demanding, in particular, if evolving geometries are present, often simple geometries such
as thin strips and/or effective/upscaled models are considered.

In the fixed geometry case, effective models including Taylor dispersion were derived by formal upscaling techniques
in earlier studies [7, 8] stating its quadratic dependence on the velocity field. Reactive flow under dominating convective
transport and reaction was (rigorously) studied, and analytical solutions of the corresponding models were investigated
in a series of papers by Mikelic and coworkers [9-14]. In more detail, in previous research [11, 12], the rigorously derived
effective models were justified by means of error estimates, which gave the approximation error as a power of the scaling
parameter. The applied technique of anisotropic singular perturbations was continued to the situation of reactive transport
with adsorption-desorption through a strip in van Duijn et al. [14], while alterations of the underlying microstructure
were disregarded.

However, the underlying pore geometry may significantly alter due to several processes which possibly have a high
impact on the performance or applicability of technical devices. Since experimental settings are often accompanied with
(unwanted) pore changing processes, these effects need to be incorporated in accurate, predictive modeling. Model exten-
sions taking into account such alterations in the transport dominated realm were studied in earlier research [15, 16]. In
the situation of a thin strip, the quadratic dependence of Taylor dispersion on the velocity field was derived by asymptotic
analysis.

In Schmuck and Bazant [17], the results from Allaire et al. [9] were extended to electrohydrodynamics while focusing
on pressure-driven flow and neglecting electroosmotic flow. Effective models including electroosmotically induced
dispersion are well-known in the engineering literature [2]. In earlier studies [18, 19], Taylor dispersion due to combined
pressure-driven and electroosmotically induced flows within a thin porous channel was investigated via asymptotic
analysis. In order to describe electro-osmotic flow and neutral solute transport, effective dispersion coefficients were
derived for soft microchannels in Hoshyargar et al. [20], for channels with dense polyelectrolyte layer in Talebi et al. [21],
for channels containing elastic macromolecules in Hoshyargar et al. [22], and for fouling processes in Ayoubi et al. [23].

In Ray and Schulz [24], the results obtained in previous studies [2, 16, 25] were consistently extended, that is, upscaling
reactive flow and transport in a thin channel, while taking into account dominant pressure-driven and electroosmotic
flow as well as a potentially evolving microstructure due to precipitation/dissolution reactions. In detail, two situations
were considered: First, the crystal precipitant formed a very thin layer and was explicitly modeled by the concentra-
tion of the immobile product. Second, the thickness of the deposited layer was assumed to be not negligible. As a
result of the upscaling procedure, a one-dimensional (fully) coupled ODE-PDE model was obtained, for which explicit
relations for electroosmotically induced dispersion were derived and its cross-coupling with dispersion stemming from
pressure-driven flow was revealed. As in the regime of pure Taylor dispersion, all terms inherit a (weighted) dependence
on the respective velocities squared.

The subject of this research is to build upon these effective models [24] and to address them from both analytical and
numerical perspectives. First, we prove local-in-time existence of strong solutions in the situation of a fixed geometry
setting using a fixed point approach. Although the effective model is just one-dimensional and only partially coupled,
it has specific challenges. On the one hand, quite demanding dispersion coefficients are present, which contain various
components (pressure-driven Taylor-dispersion, electroosmotic-induced dispersion, and cross-coupling terms). Thereby,
applying methods from complex analysis, we show positivity of these coefficients, which is crucial for analytical results.
On the other hand, the coupling of the ODE-PDE model is nonlinear. In addition to numerous technical terms, the
derivative of the reaction rate enters the right side; see Section 2, which is nonstandard and not easy to control. In case of
an evolving geometry, the situation is more involved. Then the weights are modulated by the opening width of the thin
strip, and the flow field does not have a constant profile such that transport, geometry, and flow are fully coupled. This
makes numerical studies more sophisticated than in the situation of fixed geometry setting due to the increasing stiffness
of the overall problem. Respecting this fact, we refrain from applying iterative solution schemes but treat the system of
differential-algebraic equation obtained after discretization in a monolithical manner with adaptive time-stepping.

In terms of numerics, similar settings were investigated in the context of crystal precipitation and dissolution in earlier
studies [25, 26], biofilm growth in van Noorden et al. [27], transport under general interaction potentials in other research
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FIGURE1 Left: pore scale setting for an evolving geometry. Right: corresponding effective model.

[28,29], and reactive flows under dominant convection in previous literature [15, 16]. Consistency with simplified models
was shown by investigating certain limit regimes in other studies [15, 16]. Moreover, the obtained models for fixed and
evolving geometry were compared.

Likewise, we investigate the limit p — oo which corresponds to the situation of a thin but highly dense precipitation
layer, and therefore, the limit corresponds to the fixed geometry situation. Moreover, we show convergence of our model
to a hyperbolic limit model (¢ = 0) by numerically investigating the limit ¢ — 0. Finally, we investigate the limit D — 0,
which allows us to weight the contributions of the distinct dispersive terms. The steepness of the concentration profiles
and the precipitation’s distribution is influenced by these dispersive terms. These results enable us to rate the impact
of distinct dispersion mechanisms and evaluate the necessity of a detailed modeling for different parameter regimes.
Moreover, the results that illustrate the possibility of separating charged species, which open up ways for improved
predictions of breakthrough curves as well as facilitated modeling of mixing and separation processes, are possible. In
this sense, the current work contributes to the improvement and extension of the fundamental understanding of flow and
transport processes.

The paper is organized as follows: In Section 2, we recall the model equations for dispersive transport in an potentially
evolving thin channel, which were derived in Ray and Schulz [24]. We consider the positivity of the corresponding
dispersion coefficient. Then the model for the fixed geometry is analyzed for existence of strong solutions thereafter
in Section 3. These investigations are complemented with numerical simulations in Section 4. Finally, in Section 5, we
conclude the paper with a brief discussion of the obtained results and outline directions of further research.

2 | MODELS

At the pore scale, we consider [24] a charged, narrow channel, geometrically represented by a thin strip (0, L) X (—¢, €)
with small height € > 0 as depicted in Figure 1, left. Such a thin strip represents, for instance, a single pore, a fracture, or
a microfluidic device. Hereby, the thickness of the boundary layer due to precipitated chemical species is ed,.

In this research, we consider the corresponding effective models derived from asymptotic analysis in Ray and Schulz
[24] by averaging quantities of interest with respect to the small height; see Figure 1, right. We emphasize at this point
the principle limitations of effective models, which are still valuable despite their simplicity. Although the model's
applicability is restricted in terms of the underlying geometry, that is, for a very small scaling parameter € > 0, it provides
useful insights into the present flow and transport problems considered. Moreover, in the specific situation of an evolving
thin strip, the model is constrained by the assumption that the boundary layer's thickness can be represented as the graph
of a function according to x.

A fluid, in which dissolved electrically charged chemical species with concentrations ¢ are present, flows through a
one-dimensional domain Q = (0, L) with L > 0. The species’ and induced channel's charges (zeta potential) give rise to
electroosmotic flow 7, go in addition to pressure-driven flow ¥, p. The chemical species ¢} and ¢, (abbreviated as ¢F in
the following) are transported by convection (related to pressure-driven and electroosmotic flow), electric drift (related
to electrophoretic flow induced by electric potential difference ®, —®;), diffusion, and Taylor/electroosmotic-induced dis-
persion. They additionally undergo chemical reactions of the type ¢* +¢~ < ¢™ with the immobile product ¢/™. Under the
assumption of mass action kinetics (disregarding the reaction rate coefficients), this leads to f (¢f,¢;,c") = ¢fc; — ci™.
As parameters, the zeta potential ¢ and the Debye length «, enter the model as dimensionless characteristic positive
number. The diffusion coefficient D as well as the functions F©©, FO,F® highlight the contributions of the distinct
dispersive terms.
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Two different situations are considered in this paper: First, in Model 1, we explicitly consider the concentration of the
immobile product. This reflects situations, in which the crystal precipitant forms a very thin layer, for example, due to its
high density p.

Model 1 (External electric field and double layer potential, fixed geometry).

Transport equation for mobile species

0; (X + ™) + 0, < Vg ;)
1 [ 2w\ 2FP®%) oo , FO®) (0 \? i+
e <D <1 "D [ﬁ (ve’P) T TIsk lePero T o3 <ve’E0> Ol

1 F@ )(K) .
+ €0 <[15D (91;, D 2111“0 f(et,c;.c") ) + ey (EcE) =0 in [0,L],

where the x-depending functions F? , i = 0,1, 2, are defined as follows:

4(6 + x*)sinh*(x) — 9k sinh(2k) — 6x>
(x cosh(x) — sinh(x))?

(—k* + 15;(2 + 45) Sil’lh(K.) — 45k cosh(x) and FO(x) = (—k? — 3)sinh(x) +'31< cosh(x)
x3(x cosh(x) — sinh(x)) x(kx cosh(x’) — sinh(x))

FO(x) =

[l

FO(x) =

Evolution equation for immobile species

0 ,C,cm) + 9 .G, cm . .
<1+ ; 1f( e e ) 2f( Ce )>atclem=f(éet7clem)

D

D
E tanh . . ,
e <115 v B (-1 a“K(K)>> (01 (€28 ") ouct +0af (€0 cl™) o) in [0.L)

Darcy's law and electroosmotic flow and pressure

tanh .
P = _§ e — B¢ <1 - —K(K)> =W+, in [0,L],

o = in [0, L].
Electric field

d’r_d’l
L

—E = in [0,L].

Secondly, in Model 2, we assume that the thickness d, of the deposited layer with density p is not negligible, as
occurs, for example, at high species concentrations. In this situation, the thickness of the layer d, substitutes the
immobile concentration as an additional unknown.

Model 2 (External electric field and double layer potential, evolving geometry).

Transport equation for mobile species
01 ((1 = do)e + pd,) + 0, ((1 - de)vg”aei)

1 50 2 2FD((1 —do)k) _ay_q
— &0y <(1 —d.)D <1 + > [105 (( —d.)v, ) - T"e,p"e,go

FO(Q —dok) () \? i
* e —dr (ve,EO) OxCe
(1—do)? )y FP(A-dox)_ 50
e <[ 15D &P 3Dk eko

] f(aj,a;,,;dg) + eEd, ¢t = 0 in [0, L].
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Fixed microstructure Evolving microstructure TABLE1 Overview of different
Molecular diffusion D d.D regimes and sun;;nary of the
. . corresponding effective dispersion
Taylor dispersion D (1% 1%517§J,> d,D (1 + 1;2 1§5 (devep) ) . P N g - (Ij’
Lo . 1 FO%) 1 FO@ terms, where we introduce
Electroosmotic dispersion D (E o ve,Eo) d.D ( s Toaz Ve EO) d,=1-d,and a = xd,.
. 1 2F0 (k)= = d 2FV(a) = =
Cross-coupling term = 15(")ve PVeEO e D5, pPe.ro

2
Entire dispersive term for smallx D (1 + 5 2 [Dep + Ve ) d.D <D2 = [vep + 37 VeEo] )

Evolution equation for the moving boundary

O f (T, T, pde) + 0, £ (EF ., pde
<1+£1 L@ T pde) + 00f @ T p )p(l_de)> o,

3 D
(1)
17, 2, g 1 1 1 tanh(x(1 — d.))
_f(Ce,pde)+e<15—D( de)” + ( 20-d) oa-dp 3 p ))

(00 f (€, T, pde)orTy + 021 (€, Tz, pde)OxC; )
in [0,L].

Darcy's law and electroosmotic flow and pressure

in [0, L],

o = —%(1 — deyope — —= <1 _ tanh(x(l - do)) > R T

1-d, k(1 —d,) eFO
Py ((1 - de)v§>> — 0., in [0,L].

Electric field

—E=(1-d > ¢’ in [0,L].

Additionally, suitable initial conditions and boundary conditions on the inflow and outflow boundary supplement
the model equations. These are outlined below in Theorem 1 for the analysis and in Table 2 for numerics, respectively.

In the following Table 1, the dispersion coefficients for the situations with fixed/evolving geometry as well as its
contributions from pressure and electroosmotic origin are listed. Additionally, the limit of small Debye length « is
outlined following the investigations in Ray and Schulz [24]. The relation between the distinct models as well as the
analytical and numerical investigations conducted in Sections 3 and 4 is outlined in the following remarks and
illustrated in Figure 2.

Remark 1. Models 1 and 2 can be simplified by disregarding the double layer effect and just taking into account the
external electric field. The reduced model is obtained by setting { = 0, which additionally results in v, g0 = 0. This
model is later on additionally used for numerical investigations in Section 4. If also the external electric field E is
disregarded, the usual Taylor dispersion model is obtained in either of the two situations, fixed geometry or evolving
geometry.

Remark 2. Later on in Section 4, for the sake of comparison to further upscaled models, the hyperbolic limit model is
additionally considered. This reduced model is obtained by setting ¢ = 0 in Models 1 and 2.

Remark 3. Scaling the velocity 172,1) by 1 — d, leads to the well-known Darcy's law expressed in terms of the Darcy
velocity. We emphasize the different scaling properties of the pressure-driven and electroosmotic-driven velocity
contributions.

el _; g

1 __1 3 .
D total = _5(1 = de)"0xpe — EC <1 - (1 —dy) “Qe" +Q,p, n[0,L]

®
Oy (q“’ ) —0d, in [0,L].

e,total
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FIGURE 2 Overview of different models and investigations. [Colour figure can be viewed at wileyonlinelibrary.com]

This underpins the applicability of electroosmotic driven flow in thin channels since the contribution does not scale
with the channel opening.

3 | ANALYSIS

In this section, we deal with the mathematical analysis of Model 1 corresponding to the fixed geometry setting. First, we
investigate in Section 3.1 the dispersion coefficient, since positivity is crucial for the models analysis in the framework of
standard parabolic existence theory [30]. Then we prove the main result; see Theorem 1 below, in Section 3.2.
In the following, the norm of the Lebesgue space L, p € [1,0], is denoted by ||.|[,. For norms of time-and
1
space-dependent functions c, the standard notation is used, for example, |[c||p2@x) = ( /OT ||c(t)||§odt> forc €

L*(0, T; L®(Q)). We introduce an appropriate function space for strong solutions:
X ={c e L*0, T; H(Q) NL*(0, T; Hy(Q)) : dc € L*(0, T;L*(Q))},
where this space equipped with the norm

llellx = sup llc@®llm + llcllzzo,rr@ + 19:cllzz0,r:12 @) (2
te(0,T)

is a Banach space.

Theorem 1 (Strong solvability of Model 1). Let the parameters and the reaction rate be given as described in Section 2.
We consider Model 1 equipped with homogeneous Dirichlet boundary conditions for the mobile species ¢t and pressure
boundary data p(0) = p;,p(L) = p,. Moreover, let czo S Hé(Q) and CZ'(‘) € HY(Q) be the initial data of mobile and
immobile species, respectively. Then for sufficiently small T > 0, there exists a unique pair of strong solutions

treX and

' 3
" € {c€L¥(0,T;H'(Q)) : dc € L*(0, T;LA(Q)} . Y
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FIGURE 3 Plots of D(k) in different ranges around zero. [Colour figure can be viewed at wileyonlinelibrary.com]

3.1 | Positivity of the dispersion coefficient

To prove the positivity of the dispersion coefficient, we reformulate the corresponding expression given in Model 1 as

follows:
_ L[ 2 /w)\ 2FK%) . 0. | FO®) (@ \?
D_D<1+E [ﬁ(‘)&f’) T TIsx CePlero T o3 (veﬂ?)

2
_ 1 2 cy _ TFY() ) S0 )’
oo i { [ o] o)} ).

where D(k) = é EF O (k) — 7(F (D(K'))Z] . The strict positivity of the dispersion coefficient, thatis, D > 0, is ensured since

4

the function D(x) is nonnegative for all ¥ € R, compare Figure 3.
For sufficiently small x, the dispersive term can be replaced as outlined in Table 1, such that the positivity is guaranteed.
For large k > 10, on the other hand, this property can be shown as follows: The nonnegativity of D(x) is equivalent to

Zj . 4K2 6 . 2
(k) 1= - k° - (k cosh(x) — sinh(x))“D(x)

- §K6 [4(6 + x?)sinh?(x) — 9k sinh(2x) — 6x7] (5)

= 7[(—«* + 15«2 + 45) sinh(x) — 45k cosh(:c)]z > 0.
With sinh(2x) = 2sinh(x) cosh(x) and cosh?(x) = 1 + sinh?(x), we obtain

D(k) = 10x°(6 + x*)sinh?(x) — 45«7 sinh(x) cosh(x) — 15«®
— 7 [(=x* + 15k + 45)*sinh*(x) — 2(—k* + 15k + 45) sinh(x )45k cosh(x)
+ 45221 + sinh?(x))]”
= [(10 + 1)k® + (60 — 30)x® + (15% — 90)k* + (=7 - 45> + 30 - 45)x* + 45%| sinh*(x)
+ [-457 — 14 - 45k° + 14 - 15 - 45k> + 14 - 45%| sinh(k) cosh(x)
+ [-156% — 74527 .

(6)

Replacing sinh and cosh by their exponential representations yields

D(x) = [11x® + 30x® + 135k* — 12825k + 2025] % (e —2+e7%)
+ [-45k7 — 630 + 9450k + 28350k | % (e —e7)

+ [-15x® — 14175x7]
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= % [11x® — 45k7 + 30K — 630k + 135k* + 9450k — 12825k + 28350k + 2025] &**

+ % [11® + 45k7 + 30x° + 630K + 135 — 9450k — 12825k — 28350k + 2025] e~

_ [(EHS)K 41566 4 132 135 4+<—12825 +14175> K2+@] @
2 2 2
= %Pl(K)ezx + lePz(K)e_z” — P3(x).

Then Rouché'’s theorem, see Theorem A.1 in the Appendix, yields P;(x) > 0 and P,(x) > 0 for « > 10 since

11-10% >45-107 + 30 - 10° + 630 - 10° + 135 - 10* + 9450 - 103

®)
+ 12825 - 10% + 28350 - 10 + 2025,

that is, P; and P, have all their zeros within the open disk {z € C : |z| < 10}. Due to the positivity of P,, we can estimate
for an appropriate ¥ € N

14 !
D) > TP — Py(x) > 1Py S~ P 20 ©)

Similar to the above, Rouché's theorem implies nonnegativity of the polynomial %Pl(K)(Z;')f — P3(x) for ¥ > 10 and
£ =1 '

Remark 4. In the evolving geometry setting, compare Model 2, the dispersion coefficient additionally depends on the
thickness d, of the precipitated layer:

1 1 Y - 2FV((A =do)x)_ay_q) | FOA=de)x) () \?
D, =1 =doD (1 * 7 | 105 <(1 do)v, ) 15k Verero 122(1 — d,)? <ve,EO>

_ 1 2 _(1) TFD((1 - do)K) _q 1 )2 (10)
—(1- de)D< oo { [(1 — doyf! erﬁo +D((1 - e)x)( ) .

In comparison with the dispersion coefficient D in the fixed geometry case, the values D, x, and v are scaled by
1 - d.. However, the strict positivity of Dy, again follows from the nonnegativity of D as outlined above

3.2 | Proof of Theorem 1: Strong solvability of model 1

In what follows, we discuss the local-in-time strong solvability of the fixed geometry Model 1. As already described above
in Section 2, we use f(c*,c™,c™) = ctc™ — ¢ as a mass and charge conserving reaction rate. We emphasize that the
coupling in this model is one-sided. More precisely, the transport equation as well as the evolution equation depend
on the electric field, the pressure, and electroosmotic flow, whereas these values are determined directly. Note that the
overall velocity v, 7" as well as the pressure driven and the electroosmotic parts are constant for the assumed pressure
boundary data p(0) = p;, p(L) = p,. Therefore, it is sufficient to consider the equations describing im-/mobile species for
given electric field and fluid flow. We linearize these equations by substituting a given value ¢& > 0 for the corresponding
unknowns ¢ in the reaction rate of the evolution equation for the immobile species and rlght -hand side of the transport
equation for the mobile species. Moreover, we regularize the denominator in the evolution equation for the immobile
species by replacing &F by

~+ ~* i>0
(Qh={3ig (11)
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Later on, we deduce the nonnegativity of the solutions ¢ such that the cutoff is redundant. In summary, this leads to
the following ODE-PDE system:

~ -~ -1
1 (C:) + ()4
o = (1 +eg +T
o (12)
b 1Vpr EC(1 1 1tanh(x) [ S
<cjce —cMye <1—5% + 5 <P e, (¢;0xCF +EF 0., ) | in [0,L],
Ot + 0y (vi”z::) — £y (DOEY) + e0y (EY)
(13a)
i 1y FPW) ) | e .
= — 0,c™ — g0, <[15—Dve,P ~ 3D Ve (ete — ™) in [0, L],
and
O + 0y (vg”a;) — £0, (DOLE; ) — £, (ET;)
13b)
_ i 1y FOW) ) | e i : (
= — 0;c™ — €0, <[ﬁve,P ~ 2D Ve (¢te” —c™) in [0, L].
For the sake of readability, we introduce the following notations
(@), + (@)
A () =1l+es +D -,
=(1)
pi= Ller (EC (1 1 Lltanh(x) (14)
15D D \xk?2 «x* 3 « ’

where B and C are constant with respect to the time and space variable in the fixed geometry setting. Furthermore, we
use the intuitive notation

rhs™ 1= A7 (¢F) (¢Fe, — " + €B (T, 0xCF + T 0, )) 1)
rhst 1= —0,ci" — g0y (C (¢ — ™))
for the right-hand side of (12) or (13), respectively.
Throughout this section, C > 0 describes positive constants, where the value may differ from one occasion to another.
Applying Banach's fixed-point theorem, compare Theorem A.3 in the Appendix, we prove the existence of a unique
strong solution to the original Model 1. In what follows, we describe the crucial steps of the fixed-point argument in more
detail:

Step 1: (Fixed point framework) We consider the fixed point operator
A Xy - Xo (16)
with respect to the closed subspace

Xo={ceX : llellx < 2Mlick llm } (7

of the underlying function space X. Here M > 0 is an appropriately chosen constant; see Step 3 below. The
operator A is defined as follows: Let & € X,. We obtain a solution ¢/ of (12) and hence by inserting ¢ and
ci™ on the right-hand side, a solution ¢ for Equation 13; see Steps 2 and 3. Finally, the operator A is defined by
A (EF) = ¢t
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Step 2: (Analyzing the ordinary differential equation (ODE) (12)) Let us start considering the modified evolu-
tion equation of the immobile species. The right-hand side of (12) is Lipschitz continuous with respect to
cm. Assuming ¢ € X, it is guaranteed by standard results (e.g., Evans [30, Theorem 3, Chapter 5.9]) that
¢E € C([0, T1, L*(0, L)) and due to higher regularity of ¢ € X, we even obtain 0,¢ € C([0, T], L*(0,L)). In partic-
ular, & is continuous with respect to time and space variables since H' (Q) is embedded in C(Q) in one dimension.
Moreover, the regularization by means of a cutoff applied to the continuous function && € X also leads to a
continuous function, that is, the right-hand side of the ODE is continuous in time. According to the theorem of
Picard-Lindeldf, there exists a unique absolutely continuous function c¢i™.

We now derive additional estimates for ¢ and its derivatives, which will in turn be needed to investigate the
transport equation below. Testing the ODE (12) with ¢ and applying Young's inequality lead to

%atllcé’"(t)llg < /A—l (%) (¢Fe; — " + eB (T, 0xCF + T 0T, ) ) "
Q
<C (I ONllEz Ollso + K™Dz + 1127 (Ol 10585 D2 + 185 Ol l105z DNI2) NIl (18)

3 - o o - - o .
<3C (I O ONZ + e Ol 1085 O3 + 11EE Ol l1oxEz D15 + llee"OlI3)

where we used the fact that the denominator A~! (Eei) is pointwisely bounded by 1 due to the cutoff. The
right-hand side is well-defined since the continuous embedding for one spatial dimension described above
ensures boundedness. Integration over t and Gronwall's lemma, see Theorem A.4 (with F; = 0) in the Appendix,
implies

sup [l ()lI3 <3Ce*T (IIC%II% + T< sup 1€ 113 sup 1€ 113

te(0,T) te(0,T) te(0,7)
(19)
+ sup [IEz 1% sup [10<€; 115+ sup [1€ 1|3 sup II@@II%)) ,
1e(0,T) te(0,T) te(0,T) te(0,T)

that is, for sufficiently small times T, terms remain small such that the right-hand side is close to 3C ||ci’g ||§.
Since the terms d,¢™ and d,c™ enter the right-hand side of the transport Equation (13), we need the following
additional estimates: First, we directly consider the ODE (12) to obtain

o™ Ol < |47 (&) (e — " + e B (G ot + 20 )|

(20)
SIEE @l liEz Olles + 1™ Ol + 182 Ol [10:EF )]z + 118 D)l o0 10:E7 Dl

In a similar way as outlined above, see (19), we can extract a prefactor T, after integration with respect to time.

Second, we also consider the derivative of the ODE with respect to space and test it with d.c!™. Here, the prod-

uct rule must be applied, which includes the derivative of the prefactor/denominator A=+ (E;f) However, this

contribution can be estimated as outlined below and the L?-estimate as for the previous considerations for ¢i™.

The second contribution of the product rule is more crucial and is estimated as follows:

1 i £ o b i ey ot 2 e o o o o
Eat”axclem(t)”; < <3—DI|6xC$IIzIICZCe — "+ B (6, 0Ty +T70xC; ) N2+ (1187 leol10xES 12 + 1185 1o l10xE 112
. . (21)
+ €l Bl (21103 lall0xCz lla + 11Tz oo 10cEF Il + ”E':”oo”axxée_HZ))) 195" 12 + [1oxce™ |13
The generalized Gronwall's lemma, see Theorem A.4 in the Appendix, implies with y = 1/2
sup |loxc."(D)ll2 < [IldxCZﬁllz+/ I(t)dt] el (22)
1e(0,T) 0
where the integrand I(t) is given by
€ 5 e Sy b | A A o - ~ —
I(t) = Ellaxceillzllff‘:ce — " +&B (Co 0Ty + 0T, ) 2+ (1187 oo 10T 12 + 1185 1o 10T |12
+ €1B] (211087 1411057 lla + 17 oo 19T N2 + 11 oo 10 I12) - 23)
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In contrast to the above situations, we cannot simply extract the factor T in (22). However, there holds the
embedding

0,8 € L0, T; H'(Q)) N L®(0, T; LA(Q)) < L¥*~¢(0, T; HX(Q)), (24)

where the exponents satisfy 4 € (0,1) and ¢ > 0 is sufficiently small; see [Eck]. Choosing 4 = 1/2 + §
leads to H*(Q) < L*(Q), and for an embedding into L*(Q), a parameter A > % is sufficient, that is, 0,¢r €

L8¢(0, T; L*(Q)). Finally, a prefactor of the form T3 can be separated in (22).

Step 3: (Analyzing the PDE (13) and self-mapping property of .A) In summary, the estimates derived above yield
that the right-hand side —d,ci™ — €dy (C ("¢~ — ¢™)) of the transport Equation (13) belongs to L*(0, T; L*()).
Standard parabolic theory, compare Theorem A.2 in the Appendix, yields the unique existence of a strong
solution ¢f in X to the linearized transport Equation (13) with

sup |IcE Ol + I llz2ae) + 110:c* |22
1€(0.1)

(25)
<M (||c§0||H1 +19:c™ + g0, (C (7 — ™)) ||LZ(L2)) .
A sufficiently small parameter T < 1 evenyields ¢f € X, that is, the fixed point operator A : X, — X, introduced
in Step 1 is, in fact, a well-defined self-mapping.

Step 4: (Contraction property) To finally obtain a fixed point ¢ € X, it is sufficient to prove the contraction property
of the map A. For this purpose, it may be necessary to choose T sufficiently small. Thereby, the proof of Lemma
B.1 in Appendix B contains detailed estimates in proving the contraction property.

Step 5: (Positivity and uniqueness) Due to the continuity of the obtained fixed points ¢ and corresponding ci™,
positivity can be ensured at least for a small instant if positive initial data EZO, c% > 0 are assumed. Then ¢F and
¢ represent a solution of the underlying Model 1 without any cutoff. Similar to the proof of the contraction
property, uniqueness of the solution can be verified by standard techniques.

Remark 5. If we had applied the standard form of Gronwall's lemma in (21), as in (19), we would not have been able
to separate a prefactor T* anymore because of d,,¢& € L?(0, T; L3(Q2)).

Remark 6. The proof also holds for the special situation that no double layer potential is present; that is, the flow is
only pressure driven. However, for the case of an evolving geometry, see Model 2, analytical results are not readily
possible without significant model simplifications due to numerous nonlinear coupling terms.

4 | NUMERICS

In this section, we present numerical simulations of both models, that is, fixed as well as evolving geometry case, intro-
duced in Section 2. Moreover, we consider, among others, the limit case of a vanishing scaling parameter as a reference,
where the related hyperbolic system arises formally from the given models by setting £ = 0, compare Remark 2.

All simulations performed in this paper are implemented in MATLAB [31]. In order to solve the full systems of equations
regarded in Section 2, we make use of the integrated function pdepe, capable of solving mixed systems of parabolic
and elliptic equations in one-dimensional space. After spatial discretization using a finite difference method on uni-
form meshes, the resulting system of ODEs and algebraic equations is solved using the odel5s integrator. This solver
employs a variable time-step and variable-order scheme and is specifically tailored to handle stiff and differential-algebraic
equations. Due to its robustness, odel5s is also used for the treatment of the hyperbolic limit problem £ = 0 (Remark 2)
as conducted in Section 4.3 below. To discretize the hyperbolic equation in space, a finite difference scheme with full
upwinding is employed. In both cases, simulations are performed on a grid consisting of 1000 nodes.

For our simulations, we use the set of boundary and initial conditions specified in Table 2.

In the hyperbolic limit case, the boundary conditions on the right side of the domain become superfluous due to the
flux being strictly pointing in this direction. Furthermore, the set of parameters is chosen according to Table 3.

Throughout our numerical experiments, we consider a third solute species modeling electrically neutral particles. As
such, we highlight the effect of the electric field on chemical concentrations. Furthermore, we reconstruct the different
shares of dispersion acting on the particles in spatially resolved way, compare Table 1. Note that the cross-coupling term
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TABLE 2 Initial and boundary conditions used for Left boundary  Rightboundary Initial condition
numerical simulations. ot D=1 N=0 1

c D=1 N=0 1

an/d - - 0

p D=1 D=0 -

Note: D refers to boundary conditions of Dirichlet type, N boundary conditions of
Neuman type.

TABLE 3 Choice of parameters for numerical simulations. L @y @ T ¢ - - p
1 0 1 1 0.5 0.01 1 10 0.1
] concentrations concentration immobile ] pressure %107 dispersion
T T T T
c+, T=1 Cir T=1 —p, T=1 cross
\ — -, T=1 06 o Te02 ] o8k ——p,T=02 ] —E0
0.9\ ctracer, T=1 - 05 im 10— Taylor =
m o mgt, T=02 ’ ——mol. Diff.
- - -c-, T=02 g 04rF 06 ] Full
©o08r ctracer, T=02 ] o~ E E e 5L ]
03 04l :
0.2F 3
7r .
0 - 02f b
- 01F ] 0
0.6 1 0 1 0 1 1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
X X X X

FIGURE 4 Simulation for Model 1, that is, considering a fixed domain and no double layer potential. Illustrated quantities from left to
right: Concentrations of three solute species ¢t /c™ plus neutral tracer - concentration of immobile species - pressure within the liquid -
dispersion itemized according to the different physical contributions. [Colour figure can be viewed at wileyonlinelibrary.com]

; concentrations concentration immobile ; pressure «107 dispersion
T T T T
c+, T=1 ——c ,T=1 —p, T=1 =———Cross
\ ¢, T=1 06 " E ——p, T=0.2 . —F0
\ - c ,T=02 0.8 p, T=0.2 ] ]
0.9 “‘\\ ctracer, T=1 1 05EF m E 10— Taylor
\ == =c+, T=0.2 06F b mol. Diff.
- - -G, T=02 g 04F E - Full
0 08F ctracer, T=02 ] o~ o L ]
0.3F E 04k ] 5
07} ] 02§ E ool b
01f 3 ' oF ]
06 1 O 1 0 1 T
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
X X X X

FIGURES5 Simulation for Model 1, i.e. considering a fixed domain, including the effects of a double layer potential. Illustrated quantities
from left to right: Concentrations of three solute species ¢t /¢~ plus neutral tracer - concentration of immobile species - pressure within the
liquid - dispersion itemized according to the different physical contributions. [Colour figure can be viewed at wileyonlinelibrary.com]

in the dispersive term may have a negative sign, depending on the direction of the electric field. However, Section 3.1
guarantees the positivity of the entire dispersion coefficient.

4.1 | Simulations on fixed geometry

In this section, we perform simulations for Model 1 which exhibits a fixed geometry. First, we consider the simplest case

without the formation of double layers, compare Remark 1; see Figure 4.
As expected by the prescribed pressure difference, concentrations are advected from left to right at a velocity of 1/3.

Due to precipitation processes, the concentrations of the solute educts reduce over time. Opposed to that, the effects of
the electric field on differently charged particles increase over time, steadily separating the three concentration profiles.
Apparently, the concentration of the immobile species is highest towards the left boundary where new reactants are
supplied. Furthermore, the ratio between the immobile concentration at the left and right boundaries increases over time.
Due to the absence of electroosmotic flow, neither electroosmotic nor cross dispersion is present.

This behavior changes when considering the additional formation of a double layer, compare Model 1; see Figure 5.
By the interaction of the exterior electric field E and the double layer potential ¢, an additional fluid flow is generated in
opposite direction to the negative pressure gradient. As such, the slope of all solute concentrations is higher at the left
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] concentrations 12 concentration immobile ] pressure «107 dispersion
T . T T T
. B c+, T=5 c ,T=5 —p, T=5 cross |
ool ® \ o T=5 ] 1 o =11 osl ——p,T=1 ] —EO
“\\ c tracer, T=5 m 10— Taylor =
s - = =, T=1 ] 0.8 P 1 mol. Diff.
0.8 \\\\ e To c 0.6 Full
© °s ctracer, T=1 | &~ 0.6 1 5L ]
07F - 3 0.4F B
S 0.4 B
0.6 B L 1 02F ]
0.2 0
0.5 . 0 . 0 . .
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
X X X X
; concentrations 12 concentration immobile ] pressure %10 dispersion
- T . T T T
‘ c+, T=5 —Ci T=5 —p, T=5 ———Cross
09F" —c-, T=5 ] 1 c ,T=11 0.8 —p, T=1 ] —__—EO -
\‘\\ ¢ tracer, T=5 im 10— Taylor =
- - 0.8 ——mol. Diff.
o8f % Do 06l ] Rl
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e \\.\ 04F
06 ~— osob ] 02l ]
oF <
0.5 L 0 L 0 L :
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FIGURE 6 Solution behavior for longer time horizons T = 5. The top illustration refers to Model 1, i.e. fixed geometry, without double
layer formation, the bottom one includes double layer formation. [Colour figure can be viewed at wileyonlinelibrary.com]

; concentrations thickness d ; pressure %1074 dispersion
T T T T
5 c+, T=1 0.08 —d, T=1 ] —p, T=1 ——cross
—c-, T=1 ——d, T=0.2 L ——p, T=0.2 ] l———EO0 E
0.8
c tracer, T=1 o —— Taylor 3
0.06 1 mol. Diff.
=== =c+, T=0.2 - T
---c, T=0.2 - \ QO'G —Full
c tracer, T=0.2 ] L ] L J
0.04 04l ] 5
] 0.02 1 o2k ]
- 0
0 6 1 0 1 0 1 1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
X X X X

FIGURE 7 Simulation for Model 2, i.e. considering an evolving domain, and no double layer potential. Illustrated quantities from left
to right: Concentrations of three solute species ¢t /c~ plus neutral tracer - concentration of immobile species - pressure within the liquid -
dispersion itemized according to the different physical contributions. [Colour figure can be viewed at wileyonlinelibrary.com]

] concentrations thickness d ] pressure %107 dispersion
[ T T T T
| c+, T=1 0.08 L —d, 7=t ] —p, Tt ——cross
c-, T=1 —d, T=0.2 L —p, T=0.2 ] —EO
\ 0.8 .
\ ctracer, T=1 o Taylor 3
____ o+, T=0.2 0.06 b mol. Diff.
- T=02 - QO-G r 1 Full
c tracer, T=0.2 ] L ] L i
0.04 04f . 5
] 0.02 K 1 02fF i
0
O 6 1 O 1 O 1 1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
X X X X

FIGURE 8 Simulation for Model 2, i.e. considering an evolving domain, including the effects of a double layer potential. Illustrated
quantities from left to right: Concentrations of three solute species ¢t /¢~ plus neutral tracer - concentration of immobile species - pressure
within the liquid - dispersion itemized according to the different physical contributions. [Colour figure can be viewed at
wileyonlinelibrary.com]

boundary in comparison with the case without double layer formation. Note that the pressure curve is still linear due to
the electroosmotic flow field being spatially constant. Moreover, the interaction between pressure and electrically driven
flow results in a negative cross dispersion term.
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FIGURE 9 Solution behavior for longer time horizons T = 5. The top illustration refers to Model 2, i.e. the evolving case, without
double layer formation, the bottom one includes double layer formation. [Colour figure can be viewed at wileyonlinelibrary.com|
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FIGURE 10 Convergence studies for Model 2 with respect to the density parameter p. Values from top to bottom row: p = 3, p = 30,
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p = 300. The black reference curve presents the concentration of ¢t at T = 1 as obtained from the analogous fixed geometry simulation.

[Colour figure can be viewed at wileyonlinelibrary.com]

We note that in both above cases, the solution behavior changes significantly considering larger time horizons. In
Figure 6, results are illustrated for T = 5. Apparently, dissolution and precipitation reaction have almost equilibrated
close to the left boundary, distinctly differing from the steeply descending concentration curves at T = 1. Moreover, since
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the electric forces acted longer upon the differently charges mobile species, the curves for ¢t and ¢~ now spread more
significantly. This effect appears more pronounced in the presence of a double layer.

4.2 | Simulations on evolving geometry

In this section, we additionally take the effects of an evolving geometry into account which results from the precipitation
reaction forming a deposition layer of nonnegligible thickness; see Model 2. Again, we start considering the case without
the presence of a double layer potential, compare Remark 1; see Figure 7. The results for the concentration are comparable
with the respective case of a fixed domain considered in Section 4.1. However, we note that both pressure-driven fluid
velocity and the individual dispersion shares are no longer spatially constant and evolve in time. Due to the aperture of
the thin channel constricting at the left boundary, dispersion is reduced in this area.

As before in Section 4.1, the additional presence of a double layer distinctly changes the behavior of system. The related
solution is presented in Figure 8 clearly indicating an additional flow field acting on the solute concentration. Note that
the reduced thickness of the channel towards the left boundary reduces dispersion, constituting a qualitatively different
behavior compared to the previous case of fixed geometry.

The long-term behavior of solution is illustrated for T = 5 in Figure 9. Similar to Figure 6, the curves for ¢t and ¢~ are
clearly separated, which again becomes even more evident in the presence of a double layer.

4.3 | Convergence for degenerating parameters

In this section, we investigate the sensitivity of the solutions of Model 2 to the choice of parameters and its consistency
with further limit models. More precisely, we consider the following three physical limits cases:

1. p — oo, referring to the limit of large densities of the precipitated layer, i.e. vanishing layer thickness. The result is
expected to approximate the scenario on fixed geometries, compare Figure 5.
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FIGURE 11 Convergence studies for Model 2 with respect to the scaling parameter ¢. Values from top to bottom row: £ = 0.1, £ = 0.01,
€ = 0.001. The reference concentration profile refers to the hyperbolic limit case at T = 1. Note the different scaling in the dispersion plots.
[Colour figure can be viewed at wileyonlinelibrary.com]
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2. & - 0, referring to the limit of vanishing channel width. The result is expected to approximate the hyperbolic limit
scenario.

3. D — 0, referring to the limit of vanishing molecular diffusion. As such, this setup illustrates the intensifying
influences of the other dispersion shares.

4.3.1 | Vanishing precipitation thickness p — o

In case the density of the precipitating mineral p is increased, the thickness of the deposition layer correspondingly
decreases. This is investigated in Figure 10. By illustrating the simulation results for densities p = 3, p = 30, p = 300, we
indeed conclude a vanishing precipitation layer thickness for p — oo, approximating the case of fixed geometry; see black
reference curve in Figure 10 and compare with Figure 5. As expected, the concentration solutions converge to the fixed
geometry results. However, severe constrictions of the flow channel as for the case p = 3, compare Figure 10, top row, result
in a reduced influence of dispersion. This effect stems from the fluid displacement caused by the significantly shrinking
channel thickness, successively accelerating advective flow. Accordingly, a nontrivial pressure distribution arises.

4.3.2 | Vanishing channel width e — 0

As investigated in Kumar et al. [16] for the purely pressure-driven case, we consider the case of vanishing channel width
€ — 0. In Figure 11, the solutions to the model including an evolving geometry are presented exhibiting different values
of € ranging from ¢ = 0.1, ¢ = 0.01 to ¢ = 0.001. As expected, the concentration solutions converge to the ones of the
hyperbolic limit problem, which are represented by the black reference curves. Thereby, the hyperbolic model is restricted
to the terms of leading order and hence neglects all terms of order € (and higher), such as the dispersion terms. Apparently,
large values of the flow channel's diameter (represented by the parameter ¢) increase the overall diffusivity, resulting
in a smoothed-out concentration profile. Moreover, the separation among solute species of different electrical charge is
promoted due to a stronger coupling of the concentrations to the exterior electric field. As a result, also qualitative changes
in the concentration profile become visible for large values of €. As illustrated for € = 0.1, compare, Figure 11, top row,
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FIGURE 12 Convergence studies for Model 2 with respect to the molecular diffusion parameter D. Values from top to bottom row:
D =10,D=1,D = 0.1. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 13 Grid convergence for the concentration fields and their gradients, the pressure field, and the layer thickness. The simulations
have been performed using 2/,i € {5, ... ,11} grid points with an L2 deviation computed as ||.; — -i41]| 12((0,1)) for the quantity - of interest. The
slope of the included black triangles corresponds to a linear convergence rate. [Colour figure can be viewed at wileyonlinelibrary.com]

the concentration of negative species ¢~ exhibits a distinct local minimum at around x, = 0.25. It appears due to the fact
that the product ¢* - ¢~ is significantly higher in this region than towards the right boundary, increasing the precipitation
speed. Since the advection of ¢~ is, however, inhibited by the external electrical field, ¢~ is significantly lower than c¢* at xo.

4.3.3 | Vanishing molecular diffusivity D — 0

Finally, we investigate the behavior associated to vanishing molecular diffusivity D — 0 illustrated in Figure 12. From top
to bottom, D = 10 is decreased by one order in magnitude per row. Apparently, a lower diffusivity results in a more angular
concentration profile. Moreover, high concentrations become more concentrated towards the left boundary, also resulting
in a precipitation layer thickness growth focused in this area. Importantly, the decrease in D increases the contribution
of Taylor- and cross-diffusion to the overall dispersion. Note that the last share comes with a negative sign.

4.4 | Grid convergence

To validate the numerical scheme, we conduct a convergence study for the fully coupled Model 2 as illustrated in
Figure 8 which involves the maximal complexity of all scenarios studied in this paper. Successively increasing the num-
ber 2,,i € {5, ... ,11} of grid points and comparing the i-th and i + 1-th order, we obtain first-order convergence for the
concentrations in H! and superlinear convergence for the pressure in L? as is evident from Figure 13.

5 | SUMMARY AND CONCLUSION

In this paper, we analytically and numerically investigated novel effective models for reactive flow and transport under
dominant advective and electroosmotic flow conditions in a thin, potentially evolving strip as derived in Ray and Schulz
[24]. From an analytical perspective, we proved the following:

« the positivity of the emerging rather sophisticated dispersion coefficient, which contains various components
(pressure-driven Taylor-dispersion, electroosmotic induced dispersion, and cross-coupling terms); see Table 1 and
Section 3.1.

« existence of strong solutions of the underlying partially coupled ODE-PDE system with a fixed point approach for the
case of a fixed geometry; see Model 1, Theorem 1, and Section 3.2.
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Since the analysis is limited to the fixed geometry setting, further research is needed to address the analysis of Model 2,
that is, the case of an evolving pore space; see Remark 6.

Additionally, we conducted numerical simulations. Due to the presence of electric forces, the results illustrated the
possibility of separating charged species. This open up ways for improved predictions of breakthrough curves as well as
facilitated modeling of mixing and separation processes are possible.

Finally, we numerically studied the convergence behavior of the solutions to the evolving geometry case to the fixed
geometry case. To this end, an increased density of the precipitate, that is, decreasing thickness of the precipitated layer
was investigated. The relation to the hyperbolic limit model (¢ = 0) was investigated. In addition, the contributions of the
dispersive terms and the impact on the resulting concentration distribution were underlined by numerical simulations
taking into account D — 0. In summary, we conclude that

« the model's solutions to the evolving geometry case converge to the ones of the fixed geometry case for increasing
density of the precipitate.

« the model's solutions converge to the hyperbolic limit problem for decreasing scaling parameter ¢.

« the contributions of the various dispersive terms significantly influence the steepness of the concentration profiles and
the spatial distribution of the precipitate.

These results not only show the consistency with models known from the literature but also allow to judge under which
conditions which model choice is most reasonable in terms of accurateness and computational cost. Directions of future
research may certainly include model extensions with respect to further drivers of dispersion such as thermal dispersion
effects or to more general geometrical settings. Likewise, a sound analytical and numerical treatment of such models is
desirable to open up new fields of practical applications.

NOTATION: QUANTITIES AND PARAMETERSINCLUDING THEIR DIMENSIONSINSIUNITS

0 zeroth-order quantity

‘1 first-order quantity

D@ horizontal/vertical component of a vector
‘e quantity up to first order

‘e scaled quantity

‘0 value referring to inflow boundary

" value referring to outflow boundary

- averaged quantity

c* [1/m?] mobile species concentration

c+PL [1 / mz] mobile species concentration in double layer
cm [1/m] immobile species’ concentration

D [m?/s] molecular diffusivity

E [kgm/s?] electric field

e[—] scaling parameter

f [kg/(m?s)]  reaction rate

I*[m] upper and lower boundary, potentially evolving
I'"[m] inflow boundary, potentially evolving
% [m] outflow boundary, potentially evolving

2 [1/m?] Debye length

v[=] outer unit normal

Q [m?| thin strip, potentially evolving

p |kg/(ms*)|  pressure

¢ [kgm/s?] electric potential

@PL [kgm/s?]  double layer potential

p |kg/m?| density of boundary layer
v [m/s] velocity
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APPENDIX A: GENERAL STATEMENTS

Theorem A.1 (Rouché's theorem). Let f, g be holomorphic functions and y C C be a circle in the comple x plane. If
| f(2)| > |g(z)| holds for all z € y, then f and f + g have the same number of zeros inside the circle y.

Theorem A.2 (Parabolic regularity, [30, Theorem 5, Chapter 7]). Assume g € H}(Q), f € L*(0, T; L*(Q)). Suppose
u € L*(0, T; Hy(Q)) with d,u € L*(0, T; L*(Q)) is a weak solution of

d d
0*u ou .
ou+ Lu=ou— ai—— + a— +au = f(t,x in Qr,
z k i; W res 2; P f(t.%) T
u=0 on 0Qr,

u(0,-) =gx) in Q.

(AD)
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Then, for an appropriate constant M > 0, the solution u € L*(0, T; H*(Q))NL>®(0, T; H}(Q)) and o;u € L*(0, T; L*(Q))
satisfies the a-priori estimate

sup [|[u®lmi@) + ull2omme@ + 110l 20150200 < M <||g||H;(Q> + ||f||L2(0,T;L2(Q))> .
)

t€(0.T (A2)
Theorem A.3 (Banach's fixed point theorem, [30, Theorem 1, Chapter 9.2.1]). Let Xy be a Banach space. Assume
A X = Xo (A3)
is a nonlinear mapping and suppose that
lA[u] = A[@]]] < yllu—all, u,i € X, (A4)

where y < 1 denotes some appropriate constant. Then A has a unique fixed point.

Theorem A.4 (Generalized Gronwall's lemma [32, Theorem A.1]). Let F; and F, be nonnegative and integrable
functions on [0, T] and let y € (0,1) as well as C > 0 be constants. Assume that the function f € C([0, T]) satisfies

t t
fO<C+ / Fi(s)f(s) 7" ds +/ F(8)f (s)ds (A5)
0 0

forallt € [0, T]. Then, the inequality

t 1/y t
f( < [Cy +y / Fl(s)ds] exp ( / Fz(s)ds> (A6)
0 0

holds for all t € [0, T].

APPENDIX B: CONTRACTIVITY
Lemma B.1. The fixed point operator A : X, — X, defined in (16) satisfies the contraction property.
Proof. Testing the equation satisfied by ¢/ — ¢J with ¢} — c)" leads to
1 im im 2 im im im im
il G B LE A LA 8 (B1)

can be estimated as follows:

Thereby, the term Hrhsi’” — rhsi™
1 2 12(12)

im im
”rhs1 — rhs)) |

-1 s L . o
e S ”A<Cf) ||L°°(L°°) [“CIL =& || o 11 oy + 16 oz 180 = & Mli2ez)

ax (E-l'— - 5_2'—) L2(L2)

L2(L?) }]

+elCH{ e = & oo 10 i + 15 e

o (¢ - &)

+ ”Ef - E;“LZ(Lw)”axEI”Lm(LZ) + ”E;r”Loe(Lw)

+Tl|a(e) ™

“ im _ im
Loyl 2

+a@) " -a@)”

(B2)

L2(L?)

Sta— _ im Y Ty =
. <Hc2 &, — " +eB (¢ 0C) + ¢ axcz)”

L°°(L2))
im
a2 2

im _ ,im

. 1
_ . pim H
=:R"+T> 1 5

la(e

5

£\ -1
1) ||L°°(L°°)
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where ”E;Ez‘ — "+ eB (T;0.CF + T ok )”Lw(p) can be estimated similarly as in Step 2; see Section 3.2 above.
Moreover, there holds

) )

pas) = H<1+ §@+
) <12%) <H%) )+ ), - (@), - (@), "9

L2(L>)
< (@) = @) e, + @), - @),

L2(L°°)> ’
Thus, Gronwall's lemma provides

1 —\—1
sup e - o), < T3 (R4 RY) e AED i, (B4)

1€(0,T)

In order to prove the contraction property of the underlying map A : Xy — Xj, see Step 1 in Section 3.2; we consider

* ¢ € X . This difference solves the equation

the difference ¢ — ¢; for ¢, c;

00 (65 = )+ 0 (5 (5 =) = e (D0 (65 = 5)) + 602 (B 5 - 5)) =)
= -0 ("= ") — €0, (C(Efey — " =T + ")) =: rhsyy.
Theorem A.2 ensures the inequality
e = el =l = o, + 19 6 = ) o+ o e = ) 56
<M||rhsy a2z s
hence, it suffices to estimate the norm with respect to L2(0, T; L?(Q)) of the right-hand side rhs; ,. We obtain
kil < <Hd‘ (cim — cim) sy +EICT| 0 (Ere; —cm —ee; +cm) LZ(LZ)) . (B7)
The time derivative of cilm - ciz’” is given by (12), such that rhs; ; can be estimated by
HA(Z‘f)_l (€ — " + eB {0 + 810,57 })
o\ =1 faga i ~— o~ ~ o
— A(E) T (81 — M+ eB{E 08 + €10, })l s
+elCl o @ =)o Nl + 1085 o 167 = Sl 55
+|[0x (&7 = ¢3) ||LW(L2)”ET”L2(L°°) + ||‘)XE;||L°°(L2)||EIr - E;”U(L*) + |9 (e = &5") LZ(Lz)}
= : R, +¢£|C|R,.
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For R, and T < 1, we obtain with (B3) and (B4)

=1 o [es - . _ L ; ;
R, < “A(CIL) HDOT2 (”CIr - C;”LW(LZ)”Cl o) + 185 Nowo 1E7 = & llzowe) + ey = &5 =2
+€|BI {11E] = & lr=@) 108 ey + 18 Moo 10x @ = ED s
+ |lef - 5;||Lw(Lm)||ax5I||L°°(L2) + 1185 =z [19x (€] = E;)||L°°(L2)}> (B9)

+ @) -aE)” ey — A" 4+ 6B {608 + T8 llieao)]

L2(L*) [”

saft -,

The term in the square brackets is bounded and can be estimated in the same way as (20).
With an inequality similar to (22), we can estimate the remaining term R,. More precisely, we also obtain a constant
C,(T) depending on T < 1, such that

Ry < Cu(T) e -2 - (B10)

Finally, for sufficiently small T, we obtain Co(T) := M(C1(T) + €|C|C2(T)) < 1, and hence, the contraction property
of the map A, that is,

e = ez, < com e -2 (B11)
O
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