Titelangaben
Ling, Kunxiong:
Digital Twinning From Vehicle Usage Statistics for Customer-Centric Automotive Systems Engineering.
In: IEEE Open Journal of Intelligent Transportation Systems. 4 (2023).
- S. 966-978.
ISSN 2687-7813
Volltext
|
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Namensnennung (CC BY 4.0) . Download (1MB) | Vorschau |
|
Link zum Volltext (externe URL): https://doi.org/10.1109/OJITS.2023.3339430 |
Kurzfassung/Abstract
Towards customer-centric automotive systems engineering, it is essential to incorporate physical models and vehicle usage behavior into decision support systems (DSSs). Such DSSs tend to apply digital twin concepts, where simulations are parameterized with fine-grained time-series data acquired from customer fleets. However, logging vast amounts of data from customer fleets is costly and raises privacy concerns. Alternatively, these time-series data can be aggregated into vehicle usage statistics. The feasibility of creating digital twins from these vehicle usage statistics and the corresponding DSSs for systems engineering is yet to be established. This paper aims to demonstrate this feasibility by proposing a DSS framework that integrates four key elements of digital twinning: aggregate usage statistics from customer fleets, logging data from testing fleets, physical models for vehicle simulation, and evaluation models to derive decision support metrics. The digital twinning involves a four-step process: pre-processing, profiling, simulation, and post-processing. Based on a real-world fleet of 57110 vehicles and four evaluation metrics, a proof of concept is conducted. Results show that the digital twin covers the evaluation metrics of 99% of the vehicles and reaches an average fleet twinning accuracy of 91.09%, which indicates the feasibility and plausibility of the proposed DSS framework.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | Digital twins; Modeling; Decision support systems; Data models; Automotive engineering; Spread spectrum communication; Systems engineering and theory; Customer centricity; decision support system; digital twin; fleet data; systems engineering |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL und Wirtschaftsinformatik |
DOI / URN / ID: | 10.1109/OJITS.2023.3339430 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja (Förderung durch DFG-Mittel) |
Peer-Review-Journal: | Ja |
Verlag: | Ieee-Inst Electrical Electronics Engineers Inc |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 33677 |
Letzte Änderung: 04. Sep 2024 10:26
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/33677/