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A note on exponential Riesz bases
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Abstract

We prove that if Iℓ = [aℓ, bℓ), ℓ = 1, . . . , L, are disjoint intervals in [0, 1) with
the property that the numbers 1, a1, . . . , aL, b1, . . . , bL are linearly independent
over Q, then there exist pairwise disjoint sets Λℓ ⊂ Z, ℓ = 1, . . . , L, such that
for every J ⊂ {1, . . . , L}, the system {e2πiλx : λ ∈ ∪ℓ∈J Λℓ} is a Riesz basis
for L2(∪ℓ∈J Iℓ). Also, we show that for any disjoint intervals Iℓ, ℓ = 1, . . . , L,
contained in [1, N) with N ∈ N, the orthonormal basis {e2πinx : n ∈ Z} of
L2[0, 1) can be complemented by a Riesz basis {e2πiλx : λ ∈ Λ} for L2(∪L

ℓ=1 Iℓ)
with some set Λ ⊂ ( 1

NZ)\Z, in the sense that their union {e2πiλx : λ ∈ Z ∪ Λ}
is a Riesz basis for L2([0, 1) ∪ I1 ∪ · · · ∪ IL).

Keywords: exponential bases, Riesz bases, hierarchical structure, finite union
of intervals, Kronecker–Weyl equidistribution along the primes
2000 MSC: 42C15

1. Introduction and Main Results

In 1995, Seip [18] showed that if S is an interval contained in [0, 1), then there
exists a set Λ ⊂ Z such that E(Λ) := {e2πiλx : λ ∈ Λ} is a Riesz basis for L2(S).
Since then, there have been various attempts towards finding/characterizing
the sets S that admit a Riesz spectrum, see e.g., [1, 3, 4, 6, 7, 9]. A significant
breakthrough was made by Kozma and Nitzan [10] who proved that if [aℓ, bℓ),
ℓ = 1, . . . , L, are disjoint intervals contained in [0, 1), then there exists a set
Λ ⊂ Z such that E(Λ) is a Riesz basis for L2(∪L

ℓ=1[aℓ, bℓ)). Recently, Pfander,
Revay and Walnut [17] showed that if the intervals [aℓ, bℓ) form a partition
of [0, 1), then the set of integers Z can be partitioned into some sets Λℓ, ℓ =
1, . . . , L, such that for each ℓ, the system E(Λℓ) is a Riesz basis for L

2[aℓ, bℓ), and
moreover E(∪ℓ∈J Λℓ) is a Riesz basis for L2(∪ℓ∈J Sℓ) whenever J ⊂ {1, . . . , L}
is a consecutive index set (see [17, Theorems 1 and 2]). We would like to point
out that up to date, the existence of exponential Riesz bases is known only
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for several classes of sets S ⊂ R. Recently, Kozma, Nitzan and Olevskii [12]
constructed a bounded measurable set S ⊂ R such that the space L2(S) has no
exponential Riesz basis. For an overview of the known results on exponential
Riesz bases, we refer to [14, Section 1].

We are interested in the following two problems:

Problem 1 (Hierarchical structured exponential Riesz bases). Given a family
of disjoint sets S1, S2, . . . , SL ⊂ [0, 1) with positive measure, can we find dis-
joint sets Λ1,Λ2, . . . ,ΛL ⊂ Z such that for every J ⊂ {1, . . . , L}, the system
E(∪ℓ∈J Λℓ) is a Riesz basis for L2(∪ℓ∈J Sℓ)?

Problem 2 (Complementability of exponential Riesz bases). Let Λ ⊂ R be a
discrete set and let S ⊂ R be a finite positive measure set such that E(Λ) is a
Riesz basis for L2(S). Given a finite positive measure set S′ ⊂ R\S, can we
find a discrete set Λ′ ⊂ R\Λ such that

• E(Λ′) is a Riesz basis for L2(S′), and

• E(Λ ∪ Λ′) is a Riesz basis for L2(S ∪ S′)?

The second problem is closely related to the first, as it deals with the case
L = 2 under the assumption that the sets S1 and Λ1 are already fixed.

Considering the result of Kozma, Nitzan and Olevskii [12], it is necessary to
restrict the sets Sℓ, S and S′ to certain classes of sets. In this paper, we will
address the above problems in the case that Sℓ, S and S′ are intervals or finite
unions of intervals.

Our first main result answers Problem 1 in the affirmative when Sℓ = [aℓ, bℓ),
ℓ = 1, . . . , L, are disjoint intervals in [0, 1) with the property that the numbers
1, a1, . . . , aL, b1, . . . , bL are linearly independent over Q, which means that hav-
ing q + q1a1 + . . .+ qLaL + q′1b1 + . . .+ q′LbL = 0 for some q, qℓ, q

′
ℓ ∈ Q implies

q = qℓ = q′ℓ = 0 for all ℓ. The result is motivated by [10, p.279, Claim 2].

Theorem 1. Let 0 < a1 < b1 < · · · < aL < bL < 1 with L ∈ N. Assume that
the numbers 1, a1, . . . , aL, b1, . . . , bL are linearly independent over Q. There exist
pairwise disjoint sets Λℓ ⊂ Z, ℓ = 1, . . . , L, such that for every J ⊂ {1, . . . , L},
the system E(∪ℓ∈J Λℓ) is a Riesz basis for L2(∪ℓ∈J [aℓ, bℓ)).

Concerning Problem 2, we have the following result which builds on the fact
that E(Z) is an orthonormal basis (thus, a Riesz basis) for L2[0, 1).

Theorem 2. Let 1 ≤ a1 < b1 < a2 < b2 < · · · < aL < bL ≤ N with L,N ∈ N.
There exists a set Λ′ ⊂ ( 1

NZ)\Z such that

• E(Λ′) is a Riesz basis for L2(∪L
ℓ=1[aℓ, bℓ)), and

• E(Z ∪ Λ′) is a Riesz basis for L2([0, 1) ∪ [a1, b1) ∪ · · · ∪ [aL, bL)).

This theorem answers Problem 2 in the affirmative when S = [0, 1), Λ = Z,
and S′ is a finite union of disjoint bounded intervals in [1,∞).
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While the result of Pfander, Revay and Walnut [17] relies on Avdonin’s the-
orem and the ergodic properties of a certain type of integer sequences, Theorem
1 is based on a refinement of the key lemma of [10] for primes, together with
Chebotarëv’s theorem on roots of unity and the Kronecker–Weyl equidistribu-
tion theorem along the primes.

1.1. Remarks

We state the following conjecture which improves upon Theorem 1.

Conjecture 1. Let [aℓ, bℓ), ℓ = 1, . . . , L, be disjoint intervals contained in
[0, 1), that is, 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ aL < bL ≤ 1. There exist
pairwise disjoint sets Λℓ ⊂ Z, ℓ = 1, . . . , L, such that for every J ⊂ {1, . . . , L},
the system E(∪ℓ∈J Λℓ) is a Riesz basis for L2(∪ℓ∈J [aℓ, bℓ)).

This conjecture generalizes Theorem 1 by removing the Q-linear indepen-
dence of the endpoints and by allowing for contiguous intervals in [0, 1), i.e.,
bℓ = aℓ+1 for some ℓ ∈ {1, . . . , L − 1}. The conjecture can be easily reformu-
lated as follows.

Conjecture 1′. Let Iℓ, ℓ = 1, . . . , L, be intervals which form a partition of [0, 1).
There exists a partition Λℓ, ℓ = 1, . . . , L, of Z such that for every J ⊂ {1, . . . , L},
the system E(∪ℓ∈J Λℓ) is a Riesz basis for L2(∪ℓ∈J Iℓ).

Indeed, Conjecture 1 obviously implies Conjecture 1′, and the converse is
seen by considering the partition of [0, 1) formed using the endpoints of all
[aℓ, bℓ). Note that Conjecture 1′ generalizes the result of Pfander, Revay and
Walnut [17] from consecutive index sets J to arbitrary index sets J .

Lastly, we mention that both Problems 1 and 2 remain open for more general
classes of sets Sℓ, S and S′.

2. Preliminaries

Definition. A sequence {fn}n∈Z in a separable Hilbert space H is called

• a frame for H (with frame bounds A and B) if there are constants 0 <

A ≤ B < ∞ such that

A ‖f‖2 ≤
∑

n∈Z

|〈f, fn〉|
2 ≤ B ‖f‖2 for all f ∈ H;

• a Riesz sequence in H (with Riesz bounds A and B) if there are constants
0 < A ≤ B < ∞ such that

A ‖c‖2ℓ2 ≤
∥∥∥
∑

n∈Z

cn fn

∥∥∥
2

≤ B ‖c‖2ℓ2 for all {cn}n∈Z ∈ ℓ2(Z);

• a Riesz basis for H if it is a complete Riesz sequence in H.
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It is well-known (see e.g., [5, Proposition 3.7.3, Theorems 5.4.1 and 7.1.1] or
[10, Lemma 1]) that a sequence in H is a Riesz basis if and only if it is both a
frame and a Riesz sequence. Moreover in this case, the optimal frame bounds
coincides with the optimal Riesz bounds. It is worth noting that Riesz bases
are equivalent to unconditional bases that are norm-bounded above and below
[5, Lemma 3.6.9]. Since every exponential function has constant norm in L2(S)
with S ⊂ Rd, namely ‖e2πiλ·(·)‖L2(S) = |S|1/2 for any λ ∈ Rd, Riesz bases of
exponentials coincide with unconditional bases of exponentials.

Proposition 3 (Proposition 2.1 in [16], Proposition 5.4 in [2]). Let {en}n∈I be
an orthonormal basis of a separable Hilbert space H, where I is a countable index
set. Let P : H → M be the orthogonal projection from H onto a closed subspace
M. Let J ⊂ I, Jc := I\J , and 0 < α ≤ 1. The following are equivalent.

(i) {Pen}n∈J ⊂ M is a frame for M with optimal lower bound α.

(ii) {Pen}n∈Jc ⊂ M is a Bessel sequence with optimal bound 1− α.

(iii) {(Id− P )en}n∈Jc ⊂ M⊥ is a Riesz sequence with optimal lower bound α.

As a direct consequence of Proposition 3, we have that for a set Λ ⊂ Z and
a measurable set S ⊂ [0, 1), the system E(Λ) is a frame for L2(S) if and only if
E(Z\Λ) is a Riesz sequence in L2([0, 1)\S).

Lemma 4. Assume that E(Λ) is a Riesz basis for L2(S) with bounds 0 < A ≤
B < ∞, where Λ ⊂ Rd is a discrete set and S ⊂ Rd is a measurable set. Then
the following hold.
(a) For any a, b ∈ Rd, the system E(Λ + a) is a Riesz basis for L2(S + b) with
bounds A and B.
(b) For any c > 0, the system E(cΛ) is a Riesz basis for L2(1cS) with bounds A

c

and B
c .

Lemma 4 remains valid if all the terms “Riesz basis” are replaced by “Riesz
sequence” or by “frame”. A proof of Lemma 4 can be found in [14].

For any N ∈ N, a measurable set S ⊂ [0, 1), and n = 1, . . . , N , we define

A≥n = A≥n(N,S) :=
{
t ∈ [0, 1

N ) : t+ k
N ∈ S for at least n values

of k ∈ {0, 1, . . . , N − 1}
}
.

(1)

Lemma 5 (Lemma 2 in [10]). Let N ∈ N and let S ⊂ [0, 1) be a measurable
set. If there exist sets Λ1, . . . ,ΛN ⊂ NZ such that E(Λn) is a Riesz basis for
L2(A≥n), then E(∪N

n=1(Λn+n)) is a Riesz basis for L2(S).

This lemma, which plays a central role in [10], combines Riesz bases by
introducing consecutive shift factors n to the frequency sets Λn and then taking
their union ∪N

n=1(Λn+n). For our purpose, we generalize the lemma to allow
for arbitrary shift factors when N is prime.
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Lemma 6. Let N ∈ N be a prime and let S ⊂ [0, 1) be a measurable set. If there
exist sets Λ1, . . . ,ΛN ⊂ NZ such that E(Λn) is a Riesz basis (resp. a frame, a
Riesz sequence) for L2(A≥n), then for every permutation {jn}Nn=1 of {1, . . . , N}
the system E(∪N

n=1(Λn+jn)) is a Riesz basis (resp. a frame, a Riesz sequence)
for L2(S).

See Appendix A for a proof of Lemma 6.
We will use the following notation throughout the proofs. For x ∈ R, we

denote the fractional part of x by {x}, that is, 0 ≤ {x} := x − ⌊x⌋ < 1, where
⌊x⌋ is the greatest integer less than or equal to x. Also, we adopt the convention
that [x, y) = ∅ if x = y ∈ R.

For the proof of Theorem 1, we will need the following version of the Kronecker–
Weyl equidistribution theorem (see e.g., [8, Theorem 443] or [13, p.48, Theorem
6.3 and Example 6.1]) along the primes. The one-dimensional case (d = 1) was
proved by Vinogradov [20] (see also [13, p.22]): if a is an irrational number,
the sequence {2a}, {3a}, {5a}, {7a}, . . . is uniformly distributed in [0, 1), mean-
ing that for every interval I ⊂ [0, 1), the ratio of the numbers {pa} with prime
p ≤ N that are contained in I, tends to |I| as N → ∞. The notion of uniform
distribution is defined similarly in higher dimensions, see e.g., [13, p.47, Defini-
tion 6.1]. As we could not find any reference for the multi-dimensional case, we
include a short proof here.

Proposition 7 (Kronecker–Weyl equidistribution along the primes). Let d ∈ N

and a1, . . . , ad ∈ R. If the numbers 1, a1, . . . , ad are linearly independent over
Q, which means that having q+ q1a1 + . . .+ qd ad = 0 for some q, q1, . . . , qd ∈ Q

implies q = q1 = . . . = qd = 0, then the d-dimensional vectors
(
{p a1}, . . . , {p ad}

)
for p ∈ P

are uniformly distributed in [0, 1)d, where P = {2, 3, 5, 7, . . .} is the set of primes.

Proof. For convenience, we denote the n-th prime by pn, that is, p1=2, p2=3,
p3=5, p4=7, and so on. ByWeyl’s criterion (see e.g., [13, p.48, Theorems 6.2 and
6.3]), the claim is equivalent to having that for every z = (z1, . . . , zd) ∈ Zd\{0},
the fractional part of 〈z, (pna1, . . . , pnad)〉 = z1 · pna1 + . . . + zd · pnad = pn ·
(z1a1 + . . . + zd ad) for n = 1, 2, . . . are uniformly distributed in [0, 1). Note
that for any fixed z = (z1, . . . , zd) ∈ Zd\{0}, the number ã := z1a1 + . . .+ zd ad
is irrational because 1, a1, . . . , ad are linearly independent over Q. Hence, the
result of Vinogradov [20] implies that the numbers {pnã}, n = 1, 2, . . ., are
uniformly distributed in [0, 1), as desired.

3. Proof of Theorem 1

Proposition 7 implies that there exist infinitely many prime numbers N ∈ N

satisfying

0 < {Na1} < {Na2} < . . . < {NaL−1} < {NaL}

< {NbL} < {NbL−1} < . . . < {Nb2} < {Nb1} < 1.
(2)
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Among such numbers, choose a large N ∈ N so that every spacing between the
numbers 0 < a1 < b1 < a2 < b2 < · · · < aL < bL < 1 contains at least one of k

N ,
k = 1, . . . , N−1, as an interior point (which clearly requires 2L+ 1 ≤ N). This
ensures that with respect to the grid 1

NZ the interval [aℓ, bℓ) is partitioned into
translates of

[{Naℓ}
N , 1

N

)
,

[
0, {Nbℓ}

N

)
, and possibly some extra intervals [0, 1

N ), (3)

and that the rightmost segment of [aℓ, bℓ), corresponding to [0, {Nbℓ}
N ) in (3),

lies in a set [ kN , k+1
N ) which does not intersect the next interval [aℓ+1, bℓ+1).

Consequently, each of the sets A≥n = A≥n(N,S), n = 1, 2, . . . , N , is one of the
form

∅, [0, 1
N ), and

[ {Naℓ}
N ,

{Nbℓ}
N

)
for some ℓ ∈ {0, 1, . . . , N − 1}.

Note that due to (2), the translates of [{Naℓ}
N , 1

N ) and [0, {Nbℓ}
N ) in (3) together

contribute exactly [0, 1
N ) and [{Naℓ}

N ,
{Nbℓ}

N ) to the family of sets A≥n. The
nested sets

A≥1 ⊃ A≥2 ⊃ · · · ⊃ A≥N

are thus given by

K︷ ︸︸ ︷
[0, 1

N ) = · · · = [0, 1
N ) ⊃

L︷ ︸︸ ︷[ {Na1}
N ,

{Nb1}
N

)
⊃ · · · ⊃

[{NaL}
N ,

{NbL}
N

)

⊃

N−K−L︷ ︸︸ ︷
∅ = · · · = ∅ for some integer K ≥ L.

Let us associate each set A≥n with the interval [aℓ, bℓ) which it originates from.
The sets [0, 1

N ) can be associated with the intervals [aℓ, bℓ) in various ways, but
for convenience we will assume

K1︷ ︸︸ ︷
[0, 1

N ) = · · · = [0, 1
N )

︸ ︷︷ ︸
l

[a1,b1)

= · · · =

KL︷ ︸︸ ︷
[0, 1

N ) = · · · = [0, 1
N )

︸ ︷︷ ︸
l

[aL,bL)

⊃

L︷ ︸︸ ︷[ {Na1}
N ,

{Nb1}
N

)
︸ ︷︷ ︸

l

[a1,b1)

⊃ · · · ⊃
[ {NaL}

N ,
{NbL}

N

)
︸ ︷︷ ︸

l

[aL,bL)

⊃

N−K−L︷ ︸︸ ︷
∅ = · · · = ∅

where K =
∑L

ℓ=1Kℓ with Kℓ ∈ N for all ℓ.

Step 1. Construction of the sets Λℓ ⊂ Z, ℓ = 1, . . . , L.
For each n = 1, . . . , N , we apply the result of Seip [18] (see the beginning of
Section 1) to obtain a set Λ(n) ⊂ NZ such that E(Λ(n)) is a Riesz basis for
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L2(A≥n); it is easily seen that

Λ(n) =






NZ for 1 ≤ n ≤ K,

( NZ for K+1 ≤ n ≤ K+L,

∅ for K+L+1 ≤ n ≤ N.

Lemma 5 implies that E(∪N
n=1(Λ

(n)+n)) is a Riesz basis for L2(S). For each
ℓ = 1, . . . , L, let Λℓ be the union of Λ(n)+n over all n such that A≥n is associated
with [aℓ, bℓ), that is,

Λ1 :=
⋃
·

n∈{1, 2, ...,K1,K+1}

(Λ(n)+n) =
(⋃

· K1

n=1 (NZ+n)
) ⋃

· (Λ(K+1)+K+1),

Λ2 :=
⋃
·

n∈{K1+1,K1+2, ...,K1+K2,K+2}

(Λ(n)+n)

=
(⋃

· K1+K2

n=K1+1 (NZ+n)
) ⋃

· (Λ(K+2)+K+2),

...

ΛL :=
⋃
·

n∈{K1+···+KL−1+1, ...,K,K+L}

(Λ(n)+n)

=
(⋃

· K
n=K1+···+KL−1+1 (NZ+n)

) ⋃
· (Λ(K+L)+K+L).

Clearly, we have
L⋃
·

ℓ=1

Λℓ =

N⋃
·

n=1

(Λ(n)+n)

and thus, E(∪L
ℓ=1 Λℓ) is a Riesz basis for L2(S).

Step 2. For a subset J ⊂ {1, . . . , L}, we set ΛJ := ∪ℓ∈J Λℓ and SJ :=
∪ℓ∈J [aℓ, bℓ). We claim that E(ΛJ) is a Riesz basis for L2(SJ).

First, note that the corresponding sets AJ
≥n := A≥n(N,SJ) for n = 1, . . . , N

are again of the form

∅, [0, 1
N ), or

[{Naℓ}
N ,

{Naℓ}
N

)
for some ℓ ∈ J.

Denoting J = {ℓ1, . . . , ℓM} with ℓ1 < . . . < ℓM , we see that the nested sets

AJ
≥1 ⊃ AJ

≥2 ⊃ · · · ⊃ AJ
≥N

7



are given by

Kℓ1︷ ︸︸ ︷
[0, 1

N ) = · · · = [0, 1
N )

︸ ︷︷ ︸
l[

aℓ1
,bℓ1

)

= · · · =

KℓM︷ ︸︸ ︷
[0, 1

N ) = · · · = [0, 1
N )

︸ ︷︷ ︸
l[

aℓM
,bℓM

)

⊃

M︷ ︸︸ ︷[
{Naℓ1

}

N ,
{Nbℓ1}

N

)

︸ ︷︷ ︸
l[

aℓ1
,bℓ1

)

⊃ · · · ⊃
[
{NaℓM

}

N ,
{NbℓM }

N

)

︸ ︷︷ ︸
l[

aℓM
,bℓM

)

⊃

N−KJ−M︷ ︸︸ ︷
∅ = · · · = ∅

where KJ :=
∑

ℓ∈J Kℓ. Note that applying Lemma 5 directly to this setup will
incur different shift factors in the frequency sets. Indeed, Lemma 5 implies that
E(Λ′) is a Riesz basis for L2(SJ), with

Λ′ :=
(⋃

· KJ

n=1 (NZ+n)
) ⋃

· (Λ(K+ℓ1)+KJ+1)
⋃
· (Λ(K+ℓ2)+KJ+2)

⋃
· · · ·

⋃
· (Λ(K+ℓM )+KJ+M),

(4)

where Λ(n) ⊂ NZ for n = 1, . . . , N are the sets defined in Step 1. However, our
goal is to show that E(∪M

m=1 Λℓm) is a Riesz basis for L2(SJ), where

Λℓ1 :=
(⋃

·
K1+K2+···+Kℓ1

n=K1+K2+···+Kℓ1−1+1 (NZ+n)
) ⋃

· (Λ(K+ℓ1)+K+ℓ1),

Λℓ2 :=
(⋃

·
K1+K2+···+Kℓ2

n=K1+K2+···+Kℓ2−1+1 (NZ+n)
) ⋃

· (Λ(K+ℓ2)+K+ℓ2),

...

ΛℓM :=
(⋃

·
K1+K2+···+KℓM

n=K1+K2+···+KℓM−1+1 (NZ+n)
) ⋃

· (Λ(K+ℓM)+K+ℓM ).
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To show this, consider the KJ+M sets

Ω1 := NZ+(K1+K2+ · · ·+Kℓ1−1+1),

...
...

ΩKℓ1
:= NZ+(K1+K2+ · · ·+Kℓ1),

ΩKℓ1
+1 := NZ+(K1+K2+ · · ·+Kℓ2−1+1),

...
...

ΩKℓ1
+Kℓ2

:= NZ+(K1+K2+ · · ·+Kℓ2),

...
...

ΩKℓ1
+Kℓ2

+···+KℓM−1

:= NZ+(K1+K2+ · · ·+KℓM−1+1),

...
...

ΩKJ
:= NZ+(K1+K2+ · · ·+KℓM ) = NZ+KJ ,

ΩKJ+1 := Λ(K+ℓ1)+(K+ℓ1),

ΩKJ+2 := Λ(K+ℓ2)+(K+ℓ2),

...
...

ΩKJ+M := Λ(K+ℓM)+(K+ℓM ),

which partitions ∪M
m=1 Λℓm , that is, ∪·KJ+M

n=1 Ωn = ∪M
m=1 Λℓm . Here, the sets

Ωn are exactly ordered in the way that E(Ωn) is a Riesz basis for L2(AJ
≥n).

Note that while the KJ+M components of Λ′ in (4) have consecutive shift
factors, namely from 1 up to KJ+M , the shift factors associated with Ωn are
not consecutive in general. However, since N ∈ N is prime, Lemma 6 implies
that E(∪M

m=1 Λℓm) = E(∪·KJ+M
n=1 Ωn) is a Riesz basis for L2(SJ ). This completes

the proof.

4. Proof of Theorem 2

To prove Theorem 2, we will use Lemma 5 which is the key lemma of Kozma
and Nitzan [10]. Note that by Lemma 4, one may replace the frequency set
∪N
n=1(Λn+n) in Lemma 5 by ∪N

n=1(Λn+n−1), while preserving the Riesz basis
property.

We will first prove the case L = 1 and then extend the proof to the case
L ≥ 2.

Case L = 1. Given a set V = [0, 1) ∪ [a, b) ⊂ [0, N) with N ∈ N and
1 ≤ a < b ≤ N , let S := 1

N V = [0, 1
N ) ∪ [ aN , b

N ) ⊂ [0, 1). We will apply Lemma
5 directly to this set S. There are two cases, either {a} ≤ {b} or {b} < {a}.

First, assume that 0 ≤ {a} ≤ {b} < 1. Then there exists a number M ∈ N

such that

A≥1 = A≥2 = · · · = A≥M = [0, 1
N ) ⊃ A≥M+1 =

[{a}
N ,

{b}
N

)
⊃ A≥M+2 = ∅.
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Clearly, we may choose the canonical frequency sets Λ1 = · · · = ΛM = NZ for
A≥1 = A≥2 = · · · = A≥M = [0, 1

N ), so that for each n = 1, . . . ,M , the system
E(Λn) is a Riesz basis (in fact, an orthogonal basis) for L2(A≥n). Also, there

exists a set ΛM+1 ⊂ NZ such that E(ΛM+1) is a Riesz basis for L2
[ {a}

N ,
{b}
N

)
;

indeed, such a set ΛM+1 can be obtained from the result of Seip [18] with a
dilation (see Lemma 4). Then Lemma 5 with shift factors ‘n − 1’ in place of
‘n’ yields that E((∪M

n=1NZ+n−1) ∪ (ΛM+1+M)) is a Riesz basis for L2(S) =
L2( 1

N V ). By a dilation, we obtain that E((∪M
n=1Z+

n−1
N ) ∪ ( 1

NΛM+1+
M
N )) =

E(Z ∪ (∪M−1
k=1 Z+ k

N ) ∪ ( 1
NΛM+1+

M
N )) is a Riesz basis for L2(V ) = L2([0, 1) ∪

[a, b)). Now, we claim that E(Λ′) is a Riesz basis for L2[a, b), where Λ′ :=
(∪M−1

k=1 Z+ k
N )∪( 1

NΛM+1+
M
N ). To see this, we again apply Lemma 5 (the original

version) to the set S′ := 1
N V ′ with V ′ = [a, b). One can easily check that the

corresponding set A′
≥n is equal to the set A≥n−1 above, that is,

A′
≥1 = · · · = A′

≥M−1 = [0, 1
N ) ⊃ A′

≥M =
[ {a}

N ,
{b}
N

)
⊃ A′

≥M+1 = ∅. (5)

Then Lemma 5 implies that E((∪M−1
k=1 Z+ k

N ) ∪ ( 1
NΛM+1+

M
N )) is a Riesz basis

for L2[a, b), as claimed.
Now, assume that 0 ≤ {b} < {a} < 1. Then there exists a number M ∈ N

such that

A≥1 = · · · = A≥M = [0, 1
N ) ⊃ A≥M+1 =

[
0, {b}

N

)
∪
[ {a}

N , 1
N

)
⊃ A≥M+2 = ∅.

Again, using the result of Seip [18] with a dilation, we obtain a set ΛM+1 ⊂ NZ

such that E(ΛM+1) is a Riesz basis for L2
[ {a}

N ,
1+{b}

N

)
. Since all elements in

E(NZ) are 1
N -periodic, it follows that E(ΛM+1) is a Riesz basis for L

2
([
0, {b}N

)
∪[{a}

N , 1
N

))
. Then, by similar arguments as in the case {a} ≤ {b}, we deduce that

E(Z ∪ (∪M−1
k=1 Z+ k

N ) ∪ ( 1
NΛM+1+

M
N )) is a Riesz basis for L2([0, 1) ∪ [a, b)), and

that E((∪M−1
k=1 Z+ k

N ) ∪ ( 1
NΛM+1+

M
N )) is a Riesz basis for L2[a, b).

Case L ≥ 2. We will use essentially the same arguments as in the case L = 1,
but employ the main result of Kozma and Nitzan [10] instead of Seip [18]. Given
a set V = [0, 1) ∪ [a1, b1) ∪ · · · ∪ [aL, bL) ⊂ [0, N) with L,N ∈ N and 1 ≤ a1 <

b1 < · · · < aL < bL ≤ N , let S := 1
N V = [0, 1

N )∪ [a1

N , b1N )∪· · ·∪ [aL

N , bL
N ) ⊂ [0, 1).

As in the case L = 1, we will apply Lemma 5 to this set S.
Note that there are finitely many possible ordering of the values

0 ≤ {a1}
N ,

{b1}
N , · · · , {aL}

N ,
{bL}
N < 1

N ,

where equalities are also allowed, e.g., the values are all zero if all aℓ and bℓ
are integers. It is easily seen that besides 0 and 1

N , these are the only possible
values that can be the boundary points of A≥n, n = 1, . . . , N . In any case, since
[0, 1

N ) ⊂ S we have

A≥1 = [0, 1
N ) ⊃ A≥2 ⊃ · · · ⊃ A≥N ,

where each of the sets A≥2, . . . , A≥N is either empty or a finite union of intervals.
One can therefore use the main result of [10] with a dilation, to construct sets
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Λ1=NZ,Λ2,Λ3, . . . ,ΛN ⊂ NZ such that for each n, the system E(Λn) is a Riesz
basis for L2(A≥n). The rest of the proof is similar to the case L = 1. �
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Appendix A. Proof of Lemma 6

To prove Lemma 6, we will follow the proof strategy of Lemma 5 [10, Lemma
2]. For any N ∈ N, a measurable set S ⊂ [0, 1), and n = 0, 1, . . . , N , we define

An :=
{
t ∈ [0, 1

N ) : t+ k
N ∈ S for exactly n values of k ∈ {0, 1, . . . , N − 1}

}
,

Bn :=
{
t ∈ S : t+ k

N ∈ S for exactly n integers k ∈ Z
}
.

Obviously, considering the set Bn modulo 1
N yields the n-fold of An, which

means that each element of An corresponds to exactly n points of Bn that
are distanced apart by multiples of 1

N . Note that {An}Nn=0 and {Bn}Nn=0 form
partitions of [0, 1

N ) and [0, 1), respectively, that is, [0, 1
N ) = ∪· Nn=0 An and [0, 1) =

∪· Nn=0 Bn. Also, the family {Bn}Nn=1 forms a partition of S, i.e., S = ∪· Nn=1 Bn.
For f ∈ L2(S) and n = 1, . . . , N , we denote by fn the restriction of f to Bn,
that is, fn(t) = f(t) for t ∈ Bn and 0 otherwise. This yields the decomposition
L2(S) ∋ f = f1 + . . . + fN with all fn having disjoint support. Note that the
set A≥n given by (1) can be expressed as A≥n = ∪N

ℓ=n Aℓ for n = 1, . . . , N .

Similarly, we define B≥n := ∪N
ℓ=n Bℓ and f≥n :=

∑N
ℓ=n fℓ for n = 1, . . . , N . For

brevity, we write Λ := ∪N
ℓ=1(Λℓ+jℓ).

Frame. Assume that Λ1, . . . ,ΛN ⊂ NZ are such that E(Λn) is a frame for
L2(A≥n). To prove that E(Λ) is a frame for L2(S), it is enough to show that
there exists a constant c > 0 satisfying

∑

λ∈Λ

∣∣〈f, e2πiλ(·)〉L2(S)

∣∣2 ≥ c ‖fn‖
2
L2(S) −

n−1∑

ℓ=1

‖fℓ‖
2
L2(S)

for all f ∈ L2(S) and n = 1, . . . , N.

In turn, it is enough to show that there exists a constant c > 0 satisfying

∑

λ∈Λ

∣∣〈f≥n, e
2πiλ(·)〉L2(S)

∣∣2 ≥ c ‖fn‖
2
L2(S), f ∈ L2(S), n = 1, . . . , N. (A.1)
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Such reductions are essentially due to the decomposition f = f1 + . . . + fN
with all fn having disjoint support, and due to S ⊂ [0, 1) and Λ ⊂ Z; see [10,
Eqns. (6)–(7)] for detailed arguments.

To prove (A.1), fix any f ∈ L2(S) and any n ∈ {1, . . . , N}. Since f≥n is
supported in ∪N

ℓ=n Bℓ ⊂ S, we have for any λ ∈ Λℓ+jℓ with ℓ ∈ {1, . . . , N},

〈
f≥n, e

2πiλ(·)
〉
L2(S)

=

∫ 1

0

f≥n(t) e
−2πiλt dt

=

∫ 1/N

0

N−1∑

k=0

f≥n

(
t+ k

N

)
exp(−2πiλ(t+ k

N )) dt

=

∫ 1/N

0

hn,ℓ(t) e
−2πiλt dt =

〈
hn,ℓ, e

2πiλ(·)
〉
L2[0, 1

N
)
,

where

hn,ℓ(t) := 1A≥n
(t) ·

N−1∑

k=0

f≥n

(
t+ k

N

)
e−2πijℓk/N . (A.2)

Note that for ℓ = 1, . . . , n, the function hn,ℓ is supported in A≥n ⊂ A≥ℓ. Since
E(Λℓ) is a frame for L2(A≥ℓ), say, with lower frame bound αℓ > 0, we have

∑

λ∈Λℓ+jℓ

∣∣〈f≥n, e
2πiλ(·)〉L2(S)

∣∣2 =
∑

λ∈Λℓ+jℓ

∣∣〈hn,ℓ, e
2πiλ(·)〉L2[0, 1

N
)

∣∣2

≥ αℓ ‖hn,ℓ‖
2.

(A.3)

Summing up (A.3) for ℓ = 1, . . . , n gives

∑

λ∈Λ

∣∣〈f≥n, e
2πiλ(·)〉L2(S)

∣∣2 ≥
n∑

ℓ=1

∑

λ∈Λℓ+jℓ

∣∣〈f≥n, e
2πiλ(·)〉L2(S)

∣∣2

≥
(

min
1≤ℓ≤n

αℓ

)
·

n∑

ℓ=1

‖hn,ℓ‖
2

≥
(

min
1≤ℓ≤n

αℓ

)
·

n∑

ℓ=1

‖hn,ℓ · 1An
‖2.

(A.4)

On the other hand, for any fixed t ∈ An, Equation (A.2) becomes

hn,ℓ(t) =
N−1∑

k=0

f≥n

(
t+ k

N

)
e−2πijℓk/N

and collecting the equation for ℓ = 1, . . . , n gives the n×N linear system

[
hn,ℓ(t)

]n
ℓ=1

=
[
e−2πijℓk/N

]
1≤ℓ≤n,0≤k≤N−1

[
f≥n

(
t+ k

N

)]N−1

k=0
.

Since t ∈ An, the vector [f≥n

(
t + k

N

)
]0≤k≤N−1 has exactly n nonzero entries,

say, at the indices k1 < . . . < kn from {0, 1, . . . , N − 1}. This reduces the above
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system to an n×n linear system
[
hn,ℓ(t)

]n
ℓ=1

=
[
e−2πijℓkr/N

]
1≤ℓ≤n,1≤r≤n

[
f≥n

(
t+ kr

N

)]n
r=1

,

where the associated matrix [e−2πijℓkr/N ]1≤ℓ≤n,1≤r≤n is invertible since N is
prime (by Chebotarëv’s theorem on roots of unity, see e.g., [19]). As there are
only finitely many possible choices of k1 < . . . < kn from {0, 1, . . . , N−1}, there
exists a constant c′ > 0 such that

n∑

ℓ=1

∣∣hn,ℓ(t)
∣∣2 ≥ c′

N−1∑

k=0

∣∣f≥n

(
t+ k

N

)∣∣2 for all t ∈ An.

Integrating over t ∈ An then gives

n∑

ℓ=1

‖hn,ℓ · 1An
‖2 ≥ c′

∫

An

N−1∑

k=0

∣∣f≥n

(
t+ k

N

)∣∣2 = c′ ‖fn‖
2
L2(Bn)

= c′ ‖fn‖
2
L2(S).

Combining this inequality with (A.4) yields the desired inequality (A.1).

Riesz sequence. Assume that Λ1, . . . ,ΛN ⊂ NZ are such that E(Λn) is
a Riesz sequence in L2(A≥n). We will show that E(Λ) is a Riesz sequence
in L2(S) by using the frame part which is proved above (a similar trick was
used in [11, Lemma 7]). Let S′ := [0, 1)\S and let A′

≥n, n = 1, . . . , N , be the

corresponding sets of (1) for S′. It is easily seen that A′
≥n = [0, 1

N )\A≥N+1−n for

n = 1, . . . , N . Since E(ΛN+1−n) is a Riesz sequence in L2(A≥N+1−n), we deduce
from Proposition 3 with a dilation that the system E(NZ\ΛN+1−n) is a frame
for L2([0, 1

N )\A≥N+1−n) = L2(A′
≥n); see the discussion after Proposition 3. The

frame part then implies that the system E(∪N
n=1((NZ\ΛN+1−n)+jN+1−n)) is a

frame for L2(S′). Finally, again by Proposition 3, we conclude that the system
E(Λ) = E(∪N

n=1(Λn+jn)) = E(Z\ ∪N
n=1 ((NZ\ΛN+1−n)+jN+1−n)) is a Riesz

sequence in L2(S) = L2([0, 1)\S′).

Riesz basis. Since a family of vectors in a separable Hilbert space is a Riesz
basis if and only if it is both a frame and a Riesz sequence, this part follows
immediately by combining the frame and Riesz sequence parts. �
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