Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Bootstrapping persistent Betti numbers and other stabilizing statistics

Titelangaben

Verfügbarkeit überprüfen

Roycraft, Benjamin ; Krebs, Johannes ; Polonik, Wolfgang:
Bootstrapping persistent Betti numbers and other stabilizing statistics.
In: The annals of statistics : an official journal of the Institute of Mathematical Statistics. 51 (2023) 4. - S. 1484-1509.
ISSN 2168-8966 ; 0090-5364

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1214/23-AOS2277

Kurzfassung/Abstract

We investigate multivariate bootstrap procedures for general stabilizing statistics, with specific application to topological data analysis. The work relates to other general results in the area of stabilizing statistics, including central limit theorems for geometric and topological functionals of Poisson and binomial processes in the critical regime, where limit theorems prove difficult to use in practice, motivating the use of a bootstrap approach. A smoothed bootstrap procedure is shown to give consistent estimation in these settings. Specific statistics considered include the persistent Betti numbers of Čech and Vietoris–Rips complexes over point sets in Rd, along with Euler characteristics, and the total edge length of the k-nearest neighbor graph. Special emphasis is given to weakening the necessary conditions needed to establish bootstrap consistency. In particular, the assumption of a continuous underlying density is not required. Numerical studies illustrate the performance of the proposed method.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Statistik
DOI / URN / ID:10.1214/23-AOS2277
Peer-Review-Journal:Ja
Verlag:Inst Mathematical Statistics-Ims
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:33325
Eingestellt am: 30. Apr 2024 13:32
Letzte Änderung: 30. Apr 2024 13:32
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/33325/
AnalyticsGoogle Scholar