
Received 16 July 2023; revised 20 November 2023; accepted 12 February 2024. Date of publication 15 February 2024; date of current version 29 February 2024.

Digital Object Identifier 10.1109/OJITS.2024.3366279

Loss-Aware Histogram Binning and Principal
Component Analysis for Customer Fleet Analytics

KUNXIONG LING 1,2, JAN THIELE1, AND THOMAS SETZER 2

1Research and Innovation Center, BMW Group, 80788 Munich, Germany

2Ingolstadt School of Management, Catholic University of Eichstätt-Ingolstadt, 85049 Ingolstadt, Germany

CORRESPONDING AUTHOR: K. LING (e-mail: kunxiong.ling@bmw.de)

This work was supported by BMW Group.

ABSTRACT We propose a method to estimate information loss when conducting histogram binning and
principal component analysis (PCA) sequentially, as usually done in practice for fleet analytics. Coarser-
grained histogram binning results in less data volume, fewer dimensions, but more information loss.
Considering fewer principal components (PCs) results in fewer data dimensions but increased information
loss. Although information loss with each step is well understood, little guidance exists on the overall
information loss when conducting both steps sequentially. We use Monte Carlo simulations to regress
information loss on the number of bins and PCs, given few parameters of a dataset related to its scale
and correlation structure. A sensitivity study shows that information loss can be approximated well given
sufficiently large datasets. Using the number of bins, PCs, and two correlation measures, we derive
an empirical loss model with high accuracy. Furthermore, we demonstrate the benefits of estimating
information losses and the representativeness of total loss in evaluating the accuracy of k-means clustering
for a real-world customer fleet dataset. For preprocessing sensor data which are aggregated from sufficient
number of samples, continuously distributed, and can be represented by Beta-distributions, we recommend
not to coarsen the histogram binning before PCA.

INDEX TERMS Fleet analytics, histogram, information loss, Monte Carlo, principal component analysis.

NOMENCLATURE
Functions and scalars

α, β Parameters of a Beta distribution
λ Column-wise blending factor
μ Row-wise blending factor
ρ Average correlation coefficient
σ Singular value
κ Number of principal components
A Clustering accuracy
F(x) Empirical cumulative density function

(ECDF)
i Index of vehicle
j Index of sensor
K Performance indicator of binning or PCA
k Number of bins
l Information loss of a random variable

The review of this article was arranged by Associate Editor Hyunbum
Kim.

L Information loss of the whole dataset
m Number of sensors of each vehicle
N Number of samples for computing

information losses
n Number of customer vehicles
p Number of samples per sensor per vehicle
p(x) Empirical probability density function
r Number of vertical vectors
t Index of bin
X Random variable of the raw acquired data

Matrices and vectors

u Vertical coordinate vector
v Vertical weight vector
� Singular value matrix
M Matrix of binned and flattened dataset
R Pearson correlation matrix
U Coordinate matrix
V Unitary weight matrix
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Sets

π Bin value set of a histogram
A, B Generated set of Beta-parameters
b Sample set of the raw acquired data
D Dataset after histogram binning
e Interval set of a histogram
h Histogram
X Target dataset for n vehicles
� Set of real-world customer fleets

Subscripts and superscripts

(·)(ij) Variable for vehicle i and sensor j
(·)(x) The xth element of a set
(·)c Column-wise variable
(·)n Normalized variable
(·)r Row-wise variable
(·)ij Set element for vehicle i and sensor j
(̃·) Reconstructed variable using the first κ

principal components.

I. INTRODUCTION

TO UNDERSTAND the usage of vehicles across the
lifetime, companies acquire and analyze measurements

from various sensors inside the vehicle, providing data-
driven decision support for customer-centric automotive
development. For instance, Wilberg et al. [1] highlighted the
potential of sensor data analysis in supporting requirement
engineering and reliability evaluation. Albers et al. [2]
showed the prospective of automotive development processes
driven by sensor data. More specifically, Reicherts et al. [3]
used naturalistic driving studies to identify vehicle dynamics.
Tanshi and Söffker [4] proposed a method for determining
the takeover time budget based on the analysis of driver
behavior.
However, companies aiming to exploit the customer

data face policies related to data protection and privacy
preservation. To ensure privacy by design, data thriftiness
and obligating procedures are usually required. For example,
Viktoriya et al. [5] identified the automobile industry’s
ethical issue. Enev et al. [6] showed that driver fingerprinting
is possible with sensor data, which would strongly violate
customer privacy. Furthermore, multivariate sensor data
with fine-grained temporal resolution prohibit conducting
analytics on the raw data. These data need to be reduced,
often by orders of magnitude, in respective preprocessing
procedures.
A common approach to manage both, preparing the

data for analytics and privacy preservation, is to aggregate
the operational data from customers and solely keep the
aggregated data as historical sensor data, e.g., by binning
the data [7], [8]. Binning temporal data is typically an initial
step in preprocessing sensor data, often already conducted
directly on vehicle control units, i.e., on the customer side.
It is, however, still challenging to use the heterogeneous,

high-dimensional data, although binned, in exploratory or

supervised analytical models – a problem coined the “curse
of dimensionality” [9]. As each histogram bin accounts
for a dimension, in total, the average number of bins
times the number of sensors considered easily results in a
dimensionality of thousands and prohibiting the application
of most visual procedures and analytical models. Hence,
the aggregated dataset needs to be shrunk to a manageable
number of dimensions. One of the most widespread means
of further reducing the dimension is to perform principal
component analysis (PCA), an unsupervised low-rank matrix
approximation technique, as the second step. Together with
binning, after all, we would like to reduce the number of
principal components (dimensionality) without losing much
information.
With significantly large amount of samples, coarser-

grained histogram binning results in fewer dimensions, but
loses more information. However, with the same outcome
dimensionality, should we perform coarser binning or finer
binning at first to optimize the performance of upstream
analytical models? Although there are already evaluation
metrics for PCA, do they really represent the influence
of binning on the pre-processed dataset? If not, which
evaluation metric can consider the whole process and provide
representative decision support for configuring the binning?
So far, it remains a research gap to understand the

mechanism of the decision support problem that exist in
the two-step process. On the one hand, there is a lack of
large amount of raw data before binning from customer
fleets, as they are previously binned on-board (inside of
control units) [10]. On the other hand, binning and PCA
are combined with the spread of distribution patterns of
various customer fleets. This makes it especially complex to
investigate the research questions using theoretical analysis
and mathematical proofs.
In this paper, we tackle these challenges from the perspec-

tive of information losses, measured by the Kullback-Leibler
divergence between original, binned, and PCA approximated
data. Considering the difficulty of theoretical analysis, we
estimate the information losses by simulating the raw data
based on Monte Carlo approaches. In the following, we
highlight the contributions of our work.
• For the purpose of loss estimation of binning and
PCA, we model raw customer fleet data using
three scale parameters and the correlation struc-
tures between histograms within a row and between
rows. Based on simulations with sensor data drawn
from Beta-distributions with varying degrees of cor-
relation between and within rows, sensitivity study
shows the influence of each parameter on information
losses.

• Based on the sensitivity study, we derive an empirical
model that guides how to set the number of bins
in combination with the order of dimensions to be
considered. The model can determine appropriate values
for the number of bins, number of principal components,
and total loss, given two of the values are set.
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• Using a case study of real-world fleet data from
1454 vehicles, we found the benchmark evaluation
metrics from binning (Kolmogorov-Smirnov statistic)
and PCA (variance unexplained) cannot be considered
as decision support metric. Taking k-means clustering
as an example, neither of those two metrics is capable
of representing the accuracy of fleet analytics right
after binning and PCA. Instead, we demonstrate how
the estimated total information loss outperform those
metrics.

• For fleet analytics with sufficient number of samples,
it is recommended not to coarsen the finely-binned
histograms before performing PCA. Note that all the
findings in this paper are valid only when the raw fleet
sensor data are continuously distributed and could be
represented by Beta-distributions.

The remainder of this article is organized as follows. In
Section II, we review the related work on data binning fol-
lowed by PCA and loss estimation and highlight our position
in the research field. In Section III, we introduce the notation
followed by an overview of our methodology, the model
assumptions, the algorithms proposed, and loss functions
considered. In Section IV, we then present the results of
various investigations, including sensitivity studies with the
proposed model, empirical modeling of the information loss
mechanism throughout the procedures, and a case study on
k-means clustering. We will then summarize the key findings
obtained, conclude, and outline future research direction in
the realm of sensor data preprocessing in Section V.

II. RELATED WORK
Histogram binning and subsequent principal component
analysis (PCA) are popular data aggregation techniques for
preprocessing customer fleet data. To locate the scope of our
work, we review the related work in three parts: histogram
binning for fleet analytics, PCA for histogram data, and
loss-aware perspective for determining the cardinality of
principal component after PCA. Afterward, we highlight the
contribution of our work to the related fields.
Histogram binning allows the removal of the temporal

dimension of sensor information, reduces the cardinality of
sensor values, and can mitigate the effects of noise (obser-
vation inaccuracy). Numerous research activities have been
conducted with binned customer data for customer-centric
decision support, especially in the automobile industry.
Schoch et al. [11] optimized charging strategy for longer
battery cell lifetimes using binned customer data. Huang and
Meng [12] put out a decision support framework for pricing
automobile insurance based on binned telematics driving
data. Ling et al. [13] used binned data for customer vehicle
usage profiling.
Currently, the investigation of binning strategy is mainly

conducted using available raw samples, e.g., Boulle [14]
considered the influence of samples on the bins and the
frequency-based binning. However, if the raw data samples
are not available, information loss cannot be computed.

Hence, in this paper, we enable the binning loss estimation
by simulating the samples and reconstructing the correlation
structure to estimate.
PCA based on histogram data has been systemat-

ically investigated, whereas the histograms are treated
as symbolic data [15], driven by the methodological
approach for symbolic data analytics [16], [17]. Billard and
Le-Rademacher [18] put out the PCA method for interval
data. Makosso-Kallyth [19] extended the scope from interval
data to symbolic histogram variables.
Yet, this research field has not been widely applied

in industrial contexts such as customer fleet analytics,
where interpretability and robustness of methods are essen-
tial. Hence, we focus on a relative more conventional,
but more popular context, i.e., concatenate the histogram
bins and then perform matrix factorization using PCA.
Haselgruber et al. [20] used PCA to aggregate engine load
data for evaluating reliability testing. Bartłomiejczyk [21]
analyzed the driving behavior of bus drivers by aggregating
the measurement signals followed by PCA. Schoch et al. [22]
implemented PCA for binned sensor data to reduce the
features for electric vehicle service analytics. Ling et al. [23]
applied PCA to improve the representativeness of customer
sampling based on aggregated usage data and thus identified
fringe customers.
From the perspective of variances, the approximation

error with a PCA-reconstructed matrix, for instance, can
be measured by the Frobenius norm of the approximation
error matrix. It can be computed as the sum of all
squared singular values minus the sum of the first few
selected singular values squared, as a singular value squared
captures the variance explained by the associated dimension.
According to predefined fraction of variance explained, it
is common practice to determine the number of principal
components [24].
From the perspective of information theory, there is a

principle for guiding model selection, namely minimum
description length (MDL) based on Kullback-Leibler diver-
gences [25]. Tavory integrated the MDL principle into
PCA [26]. Bruni et al. [27] reviewed the methodology using
three test cases and pointed out that MDL outperforms most
of the model selection methods such as variance explained.
On the contrary, specifying the model parameters has unclear
influences on MDL performance. The influences behave
sometimes explicit, but sometimes also implicit.
However, spanning binning and PCA as a sequence,

the binning resolution and number of PCs influence on
each other. Adding to the difficulty of changing the data
acquisition strategy of customer fleets with various control
units, it becomes increasingly time-consuming for big data
analytics of customer fleets. Still, the parameter choosing for
histogram binning followed by PCA is merely investigated,
which remains interesting even for fleet analytics.
So far, Vaiciukynas et al. [28] investigated histogram

binning followed by dimensionality reduction using fleet data
with more than 20,000 vehicles. Although they thoroughly
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investigated various dimensionality reduction techniques on
the performance of feature representation, the influence
of binning resolution remains unknown, especially in the
context of customer fleet analytics.
Therefore, we address the problem from the information

theory perspective, but with simpler metrics, i.e., Kullback-
Leibler divergences. We focus on the estimation and
comparison of the information losses between the raw data,
binned data and PCA approximated data.

III. METHODOLOGY
This section introduces our simulation-based research design
to estimate information loss when preprocessing with chang-
ing characteristics using Monte Carlo sampling. First, we
describe binning and principal component analysis (PCA)
with notations. Then, we present our simulation procedure
and algorithms. Afterward, we define loss functions based
on Kullback-Leibler divergences for these binned data to
evaluate the information losses.

A. PRELIMINARIES
1) HISTOGRAM BINNING

Consider a target dataset X for n vehicles. Each vehicle
consists of m sensors. For vehicle i = 1, . . . , n and sensor
j = 1, . . . ,m, we represent the acquired data using a random
variable Xij, so that the samples of sensor values can be
allocated to discrete intervals (binning).
Assuming (i) the sensor data per vehicle to be binned

with the same number of intervals k, and (ii) the number of
samples p remains to be consistent for each sensor and each
vehicle, we represent random variable Xij by p samples, and
the data by set bij = {b(1)

ij , . . . , b(p)
ij }.

Considering the feasibility of saving the whole sample
set across the whole life of a vehicle, we aggregate bij and
represent them as histogram hij. Each histogram consists of
k rescaled intervals eij = {[0, 1

k ), . . . , [ k−1
k , 1]} and k bins

πij = (π
(1)
ij , . . . , π

(k)
ij ), where

∑k
t=1 π

(t)
ij = p and π

(t)
ij ≥ 0.

In this way, πij need to be stored on board, e.g., in the
control units. In total, m histograms from n vehicles can be
acquired and collected together in dataset

D =
⎡

⎢

⎣

π11 . . . π1m
...

. . .
...

πn1 . . . πnm

⎤

⎥

⎦
, (1)

with the histogram values alone. We refer to this procedure
as k-fold binning.
After k-fold binning, the sequential information is com-

pletely lost. However, as the distributions are discretized
by intervals, the distribution information is lost as well.
Histogram hij can be described by an empirical cumulative
density function (ECDF) Fij(x), where the range of x
is identical to the range of eij. The relative difference
of two ECDFs can be quantified by the Kolmogorov-
Smirnov (K-S) statistic DK-S, i.e., supremum absolute ECDF
difference [29]. The supremum represents the maximum

across all x values. For D, the overall K-S statistic is the
mean of all mn histograms, i.e.,

KK-S = 1

m

m
∑

j=1

1

n

n
∑

i=1

sup
x
|Fij(x)− Fref

ij (x)|, (2)

where the reference ECDF Fref
ij (x) could be the original

ECDF of raw samples bij or another finely binned histogram.

2) PRINCIPAL COMPONENT ANALYSIS OF BINNED DATA

Once the sensor data is aggregated through k-fold binning,
the dataset can be represented as a matrix. One row
represents a vehicle. One column represents the average
number of bins per sensor times the number of sensors
as the number of columns (also coined dimension of the
data). However, the high dimensions might prohibit the
direct usage of the matrix for data mining purposes. By
applying principal component analysis (PCA), we can,
however, exploit correlations within the matrix to represent
the principal structure of the matrix more concisely.
Consider a k-fold binned dataset M consisting of k · m

column vectors by concatenating each vector element from
D in the row direction, i.e.,

M =
⎡

⎢

⎣

π
(1)
11 · · · π

(k)
11 π

(1)
1m · · · π

(k)
1m

...
. . .

... · · · ...
. . .

...

π
(1)
n1 · · · π

(k)
n1 π

(1)
nm · · · π

(k)
nm

⎤

⎥

⎦
.

(3)

To simplify the denotation, we define r as the number of
columns of M, i.e., r = k · m. We now represent M ∈ R

n×r
in a κ-dimensional latent space using PCA. To balance the
weights between the columns, we normalize M to Mn ∈
R
n×r by centering and scaling the histogram values into

probability densities, where element π
(t)
ij , t = 1, . . . , k, is

transformed to

π
(t)
ij,n =

k

p

(

π
(t)
ij −

1

n

n
∑

i=1

π
(t)
ij

)

, t = 1, . . . , k, (4)

as centering elements by subtracting the mean of the
elements’ column entries moves the novel basis vectors
towards maximum variance directions.
After normalizing M to Mn, we approximate the matrix

with lower rank to determine latent basis vectors for Mn’s
column and row space, as done, with truncated singular
value decomposition [30]. These latent basis vectors are
located in directions where the data is most widely spread to
capture the maximum amount of information in the matrix
(the variance of its elements) with as few latent dimensions
as possible. The intuition is to then only consider the
primary latent dimensions derived and discard higher-order
dimensions considered as noise. Hence, Mn is decomposed
into three parts, i.e.,

Mn = U�V�. (5)
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FIGURE 1. Methodology overview.

Here, U ∈ R
n×r represents the coordinate matrix, consisting

of r vertical coordinate vectors U = [u1, . . . ,ur]. Singular
value matrix � ∈ R

r×r is positive, semi-definite and
diagonalized with σ1 ≥ · · · ≥ σr. V ∈ R

r×r is the
unitary weight matrix with r vertical weight vectors V =
[v1, . . . , vr]. Using the first κ principal components, we
reconstruct Mn to ˜Mn ∈ R

n×r with
˜Mn = ˜U˜�˜V�, (6)

where ˜U = [u1, . . . ,uκ], ˜� = diag(σ1, . . . , σκ) and ˜V =
[v1, . . . , vκ]. Moreover, Mn can be projected in the κ-
dimensional latent space ˜Mproj ∈ R

n×κ by

˜Mproj = Mn˜V, (7)

to work with fewer dimensions in further analytical tasks.
We refer to this procedure as κ-rank PCA.

As mentioned in the related work, the most popular
selection metric of κ is the variance explained [24], which
is the proportion of variance remained from all variance,
i.e., the ratio from the sum of first κ singular value squared
to the sum of all r singular value squared. For the consistency
of comparison to the losses after binning, we regard the
variance unexplained Kvar, the opposite indicator, as the
standard metric to quantify PCA performance, i.e.,

Kvar = 1−
∑

κ

t=1 σ 2
t

∑r
t=1 σ 2

t
. (8)

3) METHODOLOGY OVERVIEW

Based on the formulation of histogram binning and PCA
for customer fleet analytics, we formulate our objective and
illustrate the overview of the methodology shown in Fig. 1.
We provide decision support in determining preprocessing

parameters k and κ from the perspective of information
losses, in particular the total information loss after prepro-
cessing L. Without having the raw samples of dataset X, our
hypothesis is that there exists general behavior for customer
fleet data. First, we characterize X by three scale parameters
and two structure parameters. Then, we simulate the data
distribution via GenBeta and get the Beta-parameter set
A and B. After generating binned histogram data D in

SimBinning, we perform PCA in SimPCA. With the first
κ principal components, we project D to ˜Mproj for further
analytics and approximate the generated binned dataset D
by ˜D. The core lies in estimating the information losses
between generated Beta distributions characterized by A and
B, binned dataset D and PCA-approximated dataset ˜D.

B. DATASET CHARACTERIZATION
We represent the time-series sensor data measurements by
Beta distributed random variables, i.e., Xij ∼ Beta(αij, βij),
as (i) according to the study from Greene [31] and
Lin et al. [32], sensor information in vehicles can be well
synthesized with unimodal Gamma distributions, which can
also be represented using Beta-distributions; (ii) compared to
normal distributions, the distribution can describe different
shapes; (iii) their probability density can be zero as apparent
in many practical settings; (iv) realizations are between 0
and 1, facilitating the data preprocessing in our simulation
study and result interpretation.
We restrict Beta-parameters αij ∈ A, βij ∈ B to the interval

[1, 10]. That is because distributions with αij < 1 or βij < 1
are U-shaped, a distribution hardly occurring for sensor data
as the intervals are larger than real conditions.
We model k as a global parameter such that the binning

strategy, in terms of the number of bins, is identical for all
vehicles and sensors.
The samples from a single vehicle i and a single sensor

j describe a random variable Xij that we aggregate into a
histogram hij to receive matrix M.

We model sensor correlation by letting sensor value
follow beta distributions with a varying similarity of their
probability density functions (PDFs), and then calculate the
(resulting) correlation matrices based on the mean value of
each random variable Xij in bij = 1

p

∑

bij. The mean values

of the whole dataset D is represented as matrix D ∈ R
n×m.

D can be decomposed in m column vectors {dc1, . . . , dcm}
or n row vectors {d�r1, . . . , d�rn}. The column-wise Pearson
correlation matrix of D is represented with R ∈ R

m×m, in
which the element ij of the correlation matrix is

R(ij) = cov
(

dci, dcj
)

√
var(dci)

√

var
(

dcj
)

. (9)

Here, cov stands for covariance of two vectors and var
represents the variance of a vector. Hence, we get coefficient
ρc ∈ [0, 1] as the total average of all the correlation
coefficients without the diagonal elements, i.e.,

ρc = 1�(R− diag(R))1

m(m− 1)
, (10)

where 1 ∈ R
m×1 represents the unity vector.

Correspondingly, the row-wise Pearson correlation matrix
of D is represented with Rr ∈ R

n×n, in which the element
ij of the correlation matrix is

R(ij)
r = cov

(

dri, drj
)

√
var(dri)

√

var
(

drj
)

. (11)
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Algorithm 1 Generating Beta-Parameters
1: function GenBeta(n,m, λ, μ)
� Get beta-parameters for each Xij.

2: A← n× m random numbers in [1, 10];
3: B← n× m random numbers in [1, 10];
� Construct the correlation of the beta-parameters.

4: for i = 2, . . . , n do
5: Arow i ← μArow 1 + (1− μ)Arow i;
6: Brow i ← μBrow 1 + (1− μ)Brow i;
7: end for
8: for j = 2, . . . ,m do
9: Acolumn j ← λAcolumn 1 + (1− λ)Acolumn j;
10: Bcolumn j ← λBcolumn 1 + (1− λ)Bcolumn j;
11: end for
12: Return A,B
13: end function

Row-wise correlation coefficient ρr ∈ [0, 1] can be calculated
with

ρr = 1�(Rr − diag(Rr))1

n(n− 1)
, (12)

where 1 ∈ R
n×1, Rr ∈ R

n×n.
In a nutshell, the previous formulation shows that dataset

D can be characterized with scale parameters n,m, p as well
as structure parameters ρc, ρr.

C. SIMULATION PROCEDURE
We simulate dataset D with combinations of parame-
ters described above using Monte Carlo methods. For
each simulation run, the procedure consists of two parts:
Beta-parameter generation to derive D as GenBeta in
Algorithm 1, and preprocessing as SimBinning and
SimPCA in Algorithm 2.
In Algorithm 1, we generate n × m random numbers

uniformly distributed in the range [1, 10], assigning them to
matrix A. Subsequently, we repeat this process, generating
a new set of random numbers and assigning them to matrix
B. At this point, Beta-parameter matrices A and B are
initialized for further processing. Due to the shape property
of Beta-parameters [33], the closer the parameters are, the
stronger their correlation is. Hence, we add a treatment
to the correlation structure using blending about the first
column or row. Regarding the first row and the first column
as references, we subsequently blend the other rows and
columns towards the references, controlled by the column-
wise and row-wise blending factors λ, μ ∈ [0, 1]. The larger
the blending factors are, the nearer the rows (columns) to
the reference row (column) are. However, λ, μ are not
identical to the correlation coefficients. By performing a
parameter study, the blending factors, as expected, exhibit
strong positive associations with correlation coefficients,
i.e., λ ∝ ρc and μ ∝ ρr. In the sensitivity study, we use λ and
μ to represent ρc and ρr. When estimating information loss
with an observed matrix of sensor values, we can empirically
determine estimates of the corresponding λ and μ values.

Algorithm 2 Simulation of Histogram Binning and PCA
1: function SimBinning(A,B, n,m, p, k)
� Generate the samples for each Xij and perform k-fold binning.

2: for i = 1, . . . , n do
3: for j = 1, . . . ,m do
4: bij ← randomly generate p samples according to
Xij ∼ Beta(αij, βij);

5: πij ← aggregate the samples in bij with k equally
distributed intervals in [0, 1];

6: end for
7: end for
8: Construct D with πij according to (1);
9: Return D

10: end function
11:
12: function SimPCA(D, n, p, k,κ)
� Perform κ-rank approximation using PCA.

13: Flatten D to M according to (3);
14: Mn ← Normalize M into probability densities by (4);
15: Perform truncated singular value decomposition for M

according to (5);
16: ˜Mn ← Approximate M with κ rank according to (6);
17: ˜D ← Reconstruct ˜Mn into the nested dataset structure

similar to D;
18: ˜Mproj ← Compress M using the first κ principal compo-

nents according to (7);
19: Return ˜D, ˜Mproj
20: end function

As a result, we get two matrices A ∈ R
n×m and B ∈ R

n×m
and perform the simulation in the next step based on these
simulated beta parameters.
As shown in Algorithm 2, we randomly generate the

samples that obey the Beta-distributions from Algorithm 1.
By binning the samples, we simulate the histogram values
and approximate them with a given lower rank. Here, k
and κ serve as the variables that control the preprocessing
procedure. Typically we project the data into the latent space
to reduce their dimension according to (7). In this case, the
evaluation of information losses requires the reconstructed
dataset. Hence, we take the reconstructed normalized matrix
˜Mn from (6), de-normalize it into ˜M by solving (4). Hence,
M is approximated by ˜M with κ principal components.
As a result, we obtain the binned dataset D and the
approximated dataset ˜D which has the same nested structure
as D, according to (1).

The simulation parameters are summarized in Table 1.
Column-wise parameters are the parameters among the
sensors. Row-wise parameters stand for the parameters
among the vehicles.
After each simulation case, we keep the beta-parameters

A, B, and the binned dataset D as well as the approximated
dataset ˜D for the evaluation of the information losses.

D. LOSS ESTIMATION
To compare the distribution of Xij before and after each
preprocessing step, their probability density functions (PDFs)
are used. For the Beta-distributions, we represent the PDF
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TABLE 1. Preprocessing variables and simulation parameters of sensor data
aggregation.

FIGURE 2. Information flow of random variable Xij before and after the
preprocessing steps.

of Xij with fXij(x), 0 ≤ x ≤ 1. After k-fold binning, we
represent the empirical PDF of the binned Xij as

pXij(x) =
k

p
π

(�xk)
ij , (13)

where �xk represents the ceiling function, and π
(�xk)
ij is an

element of de-normalized Mn towards M. Similarly, we get
the empirical PDF for the reconstructed Xij after its κ-rank
approximation as

p̃Xij(x) =
k

p
π̃

(�xk)
ij , (14)

where π̃
(�xk)
ij represents the reconstructed histogram value

as an element of ˜M, de-normalized from ˜Mn.
As shown in Fig. 2, we can determine the loss of the

binning and the PCA steps.
Hence, we have
- binning loss l(ij)k from fXij(x) to pXij(x),

- PCA loss l(ij)κ from pXij(x) to p̃Xij(x), and
- total loss l(ij) from fXij(x) to p̃Xij(x).

The information loss function used between two PDFs is
the Kullback-Leiber divergence (relative entropy), i.e., the
expectation of the logarithmic difference [34]. In this
paper, the logarithmic function base is 2, and the unit is
Shannon (Sh).

Let us first describe the binning loss. The loss function is
defined as

l(ij)k =
∫ 1

0
fXij(x) log2

(

fXij(x)

pXij(x)

)

dx. (15)

Here only if pXij(x) = 0, for all x, the divergence is defined
as fXij(x) = 0. To compute the integral, we regard it as a sum
of the function values of N samples of variable x with equal
distance, i.e., we apply Quasi-Monte Carlo approach [35].
Hence, we can approximate the loss by giving a finite value
of N, which acts as a hyper-parameter. Over our n times m
random variables, we evaluate the whole dataset using the
average of their absolute values, yielding the average binning
loss

Lk ≈ 1

m

m
∑

j=1

1

n

n
∑

i=1

∣

∣

∣

∣

∣

1

N

N
∑

t=1

fXij(t/N) log2

(

fXij(t/N)

pXij(t/N)

)∣

∣

∣

∣

∣

. (16)

Correspondingly, we evaluate the PCA loss and total loss by
computing

Lκ ≈ 1

m

m
∑

j=1

1

n

n
∑

i=1

∣

∣

∣

∣

∣

1

N

N
∑

t=1

pXij(t/N) log2

(

pXij(t/N)

p̃Xij(t/N)

)∣

∣

∣

∣

∣

, (17)

and

L ≈ 1

m

m
∑

j=1

1

n

n
∑

i=1

∣

∣

∣

∣

∣

1

N

N
∑

t=1

fXij(t/N) log2

(

fXij(t/N)

p̃Xij(t/N)

)∣

∣

∣

∣

∣

. (18)

IV. RESULTS AND DISCUSSION
Before putting our approach into applications, the sensitiv-
ities of information losses (binning, PCA, and total losses)
on the parameters in Table 1 are analyzed. Based on the
sensitivity study, we will derive an empirical model from
estimating these losses without simulation. Furthermore, we
will demonstrate how the loss model benefits the decision-
making of choosing parameters of aggregation.

A. SENSITIVITY STUDY
Table 1 shows the parameters in the simulation procedure.
However, with the data generation and simulation procedure
described, both correlation structure parameters ρc, ρr can
only be calculated when the dataset already exists. Instead,
to generate the dataset, we use the treatment parameter λ, μ

to control the correlation structure.
To start sensitivity analysis, we define the reference case

configurations, shown in the outer-right column in Table 1.
Then, we change parameters individually and derive its
impact on information loss.
As shown in the preprocessing reference configuration,

we choose eight-fold binning and three-rank dimensionality
approximation. It is relatively easy to identify the distribution
shape with lower noise with eight bin histograms, and a
rank of three allows us to visualize the data intuitively. The
scale and structure parameters represent a typical dataset,
exhibiting a weak correlation structure.
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FIGURE 3. Information losses with different resolutions of the preprocessing. The
areas around the curves are 95% confidence bands. Lk , L

κ
and L represent binning,

PCA and total losses. κ is the order of the approximated rank, set 1, 3, or 10.

The solver settings play a role in the sampling resolution.
The number N affects the accuracy to compute the loss
functions in (16)–(18), due to the quasi Monte Carlo approx-
imation of the integrals. Based on results with extensive
preliminary studies, we found a N of 1000 to be sufficient
to approximate the Kullback-Leibler divergence with an
accuracy of at least 99%. Furthermore, with a basis of
stochastic processing, we repeat each simulation case 50
times, i.e., nsim = 50.
In the following, we present the results from the simula-

tions with respect to the type of parameters: resolution of
the preprocessing, scale of the dataset, and the correlation
structure.

1) PREPROCESSING PARAMETERS

Based on the reference case, we modify κ to values between
one and ten. The number of bins, k, is varied from three to
20, representing an increase in granularity. As k rises, more
detailed information about the data distribution is captured.
Fig. 3 shows the resulting losses (binning, PCA, and total
losses) over various levels.
With increasing k, a reduction of binning loss and an

increase of PCA loss can be observed. The aggregated
histograms contain more information, resulting in a closer
difference to the original distributions. However, with an
identical objective (e.g., κ = 3), a higher order of dimension
brings more information and more linearly uncorrelated
dimensions. Furthermore, no influence of κ on the binning
loss is shown, as the binning is the step before PCA. Due
to the growing variance explained with a higher order of κ,
the PCA loss reduces.
Another interesting aspect is that Lκ will surpass Lk with a

higher k. It indicates that with a higher k, the information loss
in the PCA is higher than that induced from the aggregation
process. The turning point that Lκ goes over the Lk is
positively correlated with κ, implying that if we accept a

FIGURE 4. Information losses with different scales of the dataset. The areas around
the curves are 95% confidence bands.

higher order of dimension for the preprocessing, then it
makes sense to aggregate the data with higher order.
Additionally, the trend of the total loss L is dominated

by binning loss with up to 20-fold aggregation. It seems
that we can minimize the whole information loss by merely
increasing k. However, L yields to Lκ , although L reduces
with an increasing k. At high values of k, the dimension
decrease brings more information loss to the dataset. In this
case, the PCA dominates the divergence induced from the
whole preprocessing.

2) SCALE PARAMETERS

In our study, the scale parameters n, m, and p are systemat-
ically varied within the range of 1 to 10000. This variation
allows for an exploration of the algorithm’s sensitivity to
different scales of input features. Their dependencies to the
information losses are presented in Fig. 4.

As shown in Fig. 4(a), no correlation between n and Lk is
found. Similarly, Lκ and L become less dependent to n when
n exceeds 100 approximately. After reaching this threshold,
Lκ yields Lk. With small n, the smaller losses are due to the
correlation structure. With identical correlation coefficients
or treatment parameters, the linear dependency of the whole
matrix after aggregation becomes stronger if the matrix
is small. According to Fig. 4(b), a similar phenomenon is
observed between m and the losses, but the yield threshold
is found at roundly over ten. This threshold is much less
than that for n, as the dimension order is k times higher
than m.

The trends become different when it comes to p. Fig. 4(c)
shows a reduction of all the information losses with a
larger number of samples. It saturates with more than
1000 samples. With lower p, the sampling affects the noise
and the histogram binning accuracy, which further influences
Lk. Another effect is that we have 80 columns of the matrix
after aggregation (according to the reference case). With a
p fewer than the number of columns, aggregated histogram
values are noisy. At the same time, large amounts of missing
values exist in the dataset. Based on this matrix, another
level of noise is included after PCA. The PCA performed
here indirectly approximated the missing values, resulting in
a lower total loss. With higher p, this missing-value effect
disappears, and the losses go stable. In summary, before

VOLUME 5, 2024 167



LING et al.: LOSS-AWARE HISTOGRAM BINNING AND PCA FOR CUSTOMER FLEET ANALYTICS

FIGURE 5. Information losses with different correlation structures. The areas
around the curves are 95% confidence bands. Lk , L

κ
and L represent binning, PCA

and total losses. μ is the row-wise blending factor, set 0.3, 0.5, or 0.7.

decision-making for the data acquisition, it is necessary to
keep scale parameters above the thresholds and disable the
noise resulted from missing values.

3) STRUCTURE PARAMETERS

From the reference case described in Table 1, we modify the
column-wise (between sensors) structure treatment λ from
0.3 to 0.9 at three levels of row-wise (between vehicles)
structure treatment μ, namely 0.3, 0.5, and 0.7. Their
information losses are presented in Fig. 5.

It is observed that a stronger correlation between the
sensors reduces the PCA losses, resulting in a decrease in
total losses. Since the aggregation is performed for each
sensor and each vehicle individually, the matrix structure
does not affect the aggregated histogram values. Hence, no
clear dependence is observed in this study. These findings
are also valid for the correlation between the vehicles.

B. LOSS MODEL DERIVATION
According to the findings in Section IV-A, when p �
mk, m and n are sufficiently large, we can outline the
dependence between the parameters and the information
losses empirically in (19).

L = Lk + 0.777Lκ . (19)

The binning loss term is shown in (20).

Lk = 2.364 · exp

(

− k

1.450

)

+ 0.028. (20)

The PCA loss term is a function of preprocessing parameters
and structure parameters. According to Fig. 5, the effect
from structural parameters is considered as a multiplier in
the loss function, based on a function of the preprocessing
parameters. Hence,

Lκ = C ·
[

− exp

(

− k

3.235

)

+ 1.494 · exp
(

− κ

7.647

)

]

. (21)

The left term C represents the structural multiplier, which
combines the row-wise and column-wise correlation effects
as

C = 1.290 · exp

(

− λ

0.323
− μ

0.271

)

. (22)

Based on the mean values from the sensitivity study cases,
we perform curve-fitting on the equations by minimizing
R2. The empirical functions from (19)–(22) predict the
information losses with an accuracy over 97.8%. This further
supports the findings about the parameter dependencies.

C. CASE STUDY
In this section, we demonstrate how to use the derived
information loss model and evaluate if the estimated losses
imply the accuracy of upstream analytics. First, we present
the data basis of the real-world fleet data and the evaluation
case configuration. Subsequently, we project the data onto
the first two principal components and visualize it with
five binning levels. This step is taken to investigate the
influence of binning levels on data interpretation, aiming
to understand how varying levels of granularity impact
the visual representation. Afterward, we evaluate the two-
step preprocessing using our loss model. Furthermore, we
compare our loss-aware method to two benchmark reference
metrics, i.e., the variance unexplained for PCA and the K-S
statistic for histogram binning.

1) CASE DESCRIPTION

Let us take an example from exploratory data analysis based
on usage statistics from customer fleets. We take 1454
customer vehicles as the dataset with two segments, in which
727 BMW 740i limousine vehicles from the United Arab
Emirates (UAE), denoted as set �1, and 727 BMW 540i
limousine vehicles from Japan, denoted as �2 are given. In
this case, these two segments are with identical cardinalities,
i.e., |�1| = |�2| = 727. The long-term statistical data is
acquired from dealers via on-board diagnostics [36], [37] or
vehicle telemetries [10]. As shown in Table 2, the statistical
usage data includes binned histogram values from ten
measurements, with 24 bins for each measurement (sensor)
histogram in average, 240 dimensions in total.
According to the prior knowledge, the usage behavior

of the given two customer segments are quite different.
Solely based on those binned data, we try separating the
whole dataset into two segments after the preprocessing steps
introduced in Section III-A. As the number of segments
(two) is known, we group the 1454 vehicles by minimizing
the squared Euclidean distances between them and their
cluster centroids or means, i.e., k-means clustering [38].
According to Tselentis and Papadimitriou [39], k-means is
one of the most commonly used methodologies for driver
profile identification and driving pattern detection.
Denote the resulted cluster sets ˜�1 and ˜�2 from clus-

tering based on the binned data after κ-rank PCA. After
clustering, we count the proportion of correctly clustered
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FIGURE 6. Experimental results of case study. (a)-(e) show the scatter plots of the 1424 customer fleets projected by the first two principal components (PC1 and PC2, κ = 2)
with five different binning levels (L1 to L5). For example, Fig. 6b is the scatter plot of PC1 and PC2 with binning level L2, denoted as L1 / 2D. (f)-(h) show three metrics (PCA
variance unexplained Kvar, relative binning K-S statistic KK−S, and information loss L in Sh) and their correlation to the accuracy A for clustering the two fleet segments over 25
experiment configurations (L1 to L5 combined with 1D to 5D).

TABLE 2. Binning configurations for case study. # is the abbreviation of “number
of”. L1–L5 are binning levels, where L1 is the original dataset without coarsening bins
in the case study.

customers to all customers. As the clustered segment sets are
unsupervised, their mapping to our reference segments can
be represented by either the intersection of corresponding
segment and cluster numbers or vice versa. We take the
larger proportion as the clustering accuracy A, i.e.,

A = max

{ |�1 ∩ ˜�1| + |�2 ∩ ˜�2|
|�1| + |�2| ,

|�1 ∩ ˜�2| + |�2 ∩ ˜�1|
|�1| + |�2|

}

. (23)

To evaluate the relationship between estimated information
loss and the accuracy of k-means clustering, we compare
them under different number of bins k and principal
components κ. As time-series raw data before binning are
not available, we coarsen the fine-binned data by adding
every two bins up. If the k for a sensor is odd, in the

end, we add the last three bins up to make the coarsening
more conservative. If there is only one bin, we keep it as
it is without further coarsening. Regarding the original data
as binning level one (L1), we repeat the coarsening steps
until all bins to be concatenated, yielding five binning levels
(L1,. . . , L5), whose number of bins for each random variable
are listed in Table 2. Furthermore, we test the clustering with
κ from one up to five, where the “curse of dimensionality”
hardly occurs.
For this dataset, the number of observations (customer

fleets) n equals |�1| + |�2| = 1454, the number of sensors
(measurement variables) m is ten, the number of samples
p → ∞ as they are long-term sensor measurements which
could span over several years. As the influence of structural
parameters on losses are a multiplier, there is no impact
on the trends with different k and κ. Without the raw data
before binning, we approximate the row-wise and column-
wise blending factors λ, μ with the correlation coefficients
of the L1 dataset. Hence, λ = 0.117, μ = 0.822, which
implies that the bin values are weakly correlated and the
customers are strongly correlated.
Given the scale and structure parameters, we estimate

the average information loss per measurement variables per
vehicle (shortly “information loss” in the following) using
our empirical loss model according to (19)–(22) and their
parameters.

2) DATA VISUALIZATION

On each aggregation level (L1 to L5), we plot the scatter
snapshots of reduced fleet data in Fig. 6 (a-e), using the
first two principal components (PC1 and PC2) with given
segment information. Corresponding to clustering accuracies
shown in Fig. 6h, we can perform exploratory data analysis
by observing those snapshots and trying identifying the two
segments visually, assuming that the segments are not given.
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The information losses and accuracies of L1 and L2 close
to each other. Their snapshots also show nearly identical
pattern despite their opposite directions of PC1. Compared
the snapshot of L2 to that of L3, we observe that the
two segments can be decently identified, whereas their
centroids are closer. This implies the tiny loss gain and
the small accuracy drop. Moving to higher aggregation
levels (fewer bins and lower dimensions before PCA),
the sensitivity of loss estimation to clustering performance
slightly decreases. However, with a tripled information loss
from L3 to L4, the accuracy decreases from a general
acceptable level (over 80%) to less than 70%, i.e., nearly
two thirds of customers are correctly clustered, which shows
limited ability of clustering. The snapshot of L4 shows a
larger intersection area between two customer segments.
Without given segment information, it is already difficult
to identify two segments with our eyes. In L5 where the
loss is doubled to L4, the points are so close that we can
hardly identify the distance between the centroids of both
segments.

3) LOSS-AWARE EVALUATION

Figure 6h shows the relationship between the accuracies for
k-means clustering and our estimated information losses.
When the average number of bins k decreases, the

accuracy for clustering two customer segments decreases
significantly. At the same time, with the increase of principal
components (PCs) remained κ for clustering, the clustering
accuracy A increases from a single PC to two PCs, and
then converges with minor fluctuation due to the algorithmic
uncertainty of k-means clustering and higher dimensionality.
Comparing the converged A for each binning level to
their next level (after pairwise coarsening), the increase
accuracy by explaining more variance with more PCs did
not compensate the influence of binning. In other words, the
clustering accuracy with lower binning resolution generally
decreases to an extent that more principal components
could not explain the original pattern before k-fold binning.
Hence, other than κ-rank PCA, k-fold binning dominates
the clustering performance.
From the information loss perspective, the empirical

estimated total information loss L follows the trends of
clustering accuracy. With higher binning levels and lower k,
higher L is estimated from 0.07 Sh up to over 0.5 Sh when
most of the effective information is lost (two bins). On the
other side, for lower binning levels with higher k (mainly
from L3 to L1), the loss converges without further increase,
as the variance explained could cover the most information
after binning. With higher κ, L also decreases but it decreases
comparatively milder than that with higher k. In addition to
clustering performance, binning dominates the information
loss as well.
In this case in practice, twelve bins per sensor in average

(L2) keeps the most of information and ensures the clustering
performance. Hence, L2 shows a trade-off between clustering
accuracy (or visualization) and the dimensionality.

4) COMPARISON OF EVALUATION METRICS

As mentioned in Section II, there are already well-known
metrics of histogram binning and PCA for evaluation.
For histogram binning, we usually regard such histograms
as empirical distributions and compare them to original
distribution via K-S statistics, expressed in (2). For PCA,
the variance unexplained quantifies the fraction of variance
lost by projecting the high-dimensional dataset into a
low-dimensional latent space described by those principal
components (PCs), formulated in (8). Spanning binning and
PCA as a sequence where binning does not take place on the
analytics site but in the vehicle control units, data scientists
usually focus on PCA guided by variance explained or
unexplained. In this case study, therefore, we first compare
our loss-aware approach to the variance unexplained, then to
the K-S statistics. As we do not have the original time-series
data from customer fleets over the years, we choose the finest
binning level from our raw binned data (L1) as the reference
for computing K-S statistics. For each comparison, we focus
on two trends, more number of PCs, or finer binning.
As shown in Fig. 6f, with more PCs, we observe lower

variance explained and higher accuracy. However, with less
than 60% variance explained, we can hardly identify the
correlation between the accuracy and variance unexplained.
This implies that the variance unexplained is representable
for PCA induced losses, but insensible for lower variance
unexplained. With lower binning levels (finer binning),
higher variance unexplained are estimated for the PCA.
However, clustering accuracy are higher, indicating the
variance unexplained cannot represent the influence of
binning granularity on clustering accuracy. To conclude, the
variance unexplained is unsuitable for evaluating PCA for
histogram data.
For the other benchmark metric (binning K-S statistic),

the experiment results are plotted in Fig. 6g. With more PCs,
no influence of the relative binning K-S statistic has been
observed on the accuracy. With finer binning, the metrics are
lower, indicating the higher clustering accuracy, which means
that the K-S statistic can properly identify the impact of
binning on clustering accuracy. Although binning dominates
the overall impact, the minor impact of PCA on the accuracy
cannot be indicated by binning statistics, as it happens after
binning. In summary, it is partially suitable as a criterion for
preprocessing histogram data, but it provides no guidance
on how to perform PCA afterward.
Compared to the both reference metrics, shown in Fig. 6h,

our loss-aware approach shows good correlation between
the estimated total information loss and the clustering
accuracy. In summary, our empirical loss model explains the
experiment results from k-means clustering well.

D. APPLICABILITY AND LIMITATIONS
From the perspective of overall preprocessing, aggregation
with fewer bins is not the proper choice to improve the
performance of PCA. If more bins are available without
losing more information, fewer dimensions are required,
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TABLE 3. An exemplary illustration of limitations of the loss-aware methods. In
addition to k , the variance unexplained and total information loss are shown with the
first one or two principal components, expressed in ( · )@κ(1 or 2).

due to the enhanced correlation structure between the bins
and between the sensors. In practice, if more bins per
sensor are aggregated, the long-term statistical data can be
preprocessed more compactly, improving the performance of
further analysis such as clustering.
However, these findings are typically valid for customer

fleet analysis or similar use cases where the raw fleet sensor
data are continuously distributed, and they could be described
by Beta distributions. To better indicate the limitations, we
illustrated two counterexamples. Their snapshots, character-
istics, and relevant indicators are presented in TABLE 3.
The sparkline bar plots in the header show the histogram
pattern of exemplary counterexamples A and B. These data
for counterexample A and B are with n = 4, m = 1, and
p → ∞. Similar to the case study, both cases have been
coarsened twice, yielding the number of bins k from twelve
to six and then three.
Counterexample A shows no advantage with more than

three bins per histogram. The histograms all have only
three different levels, which are cut equidistantly. By coarser
binning resolution where k = 3, we do not lose any
information. Hence, the estimated losses should not be
applied to counterexample A.
Counterexample B shows no advantage with more than

two principal components (PCs). All four observations of
histograms can be described by linear combinations of the
first two histograms. Hence, more than two PCs do not
bring any additional information gain here. All variance are
explained with the first two PCs, whereas our estimated
losses show slightly drop with more PCs. Hence, the method
proposed in this paper does not imply the real behavior when
preprocessing counterexample B.

V. SUMMARY AND OUTLOOK
This paper showed a comprehensive, information loss-
based perspective to support decision-making in configuring
preprocessing for customer fleet analytics. The preprocessing

includes (i) data binning on the customer side, and (ii)
principal component analysis (PCA) based on the binned
data without given raw sensor measurements. First, we
characterized the data using three scale parameters (number
of vehicles, number of sensors, and number of samples) and
two structural parameters (average correlation coefficients
between the vehicles and the sensors each other). Based
on these parameters, the scale and correlation structure of
the dataset can be modeled. To estimate the information
losses across binning and PCA, we generated the sample
datasets stochastically. We then simulated the preprocessing
parameterized with the number of bins, and the order of
dimension remained.
A sensitivity study identified the impact of preprocessing,

scale, and structure parameters on the binning, PCA, and
total losses. If the scale parameters are sufficiently large,
their effects on information losses are negligible. By per-
forming empirical regression, we identified the mechanisms
of the loss formulation. The total loss consists of both
binning loss and weighted PCA loss. The binning loss
depends primarily on the number of bins in a negative
exponential fashion. The PCA loss was modeled using
two parallel loss terms of the preprocessing parameters,
weighted by a structural multiplier, in which the structural
parameters are combined serially. A case study based on
the customer fleet data, which is acquired in real-world
and binned, manually configured various binning levels
by coarsen the bins, and applied k-means clustering and
exploratory data analysis. The case study demonstrated
that the estimation of information loss could support
decision-making in properly configure histogram binning
and PCA without having the raw time-series measurement
logging.
When working with histogram binning and PCA, it is

valuable to assess information loss (for example, using
our derived loss model) and then determine the optimal
number of bins and principal components accordingly.
Traditional methods like variance explained for PCA may
not fully capture the influence of histogram binning on
analytical performance. Our approach provides a more
nuanced perspective for a thorough understanding of how
histogram binning affects PCA and analytical outcomes.
With sufficient number of samples, customers, and sen-
sors, a higher resolution of histogram bins per sensor
can generally improve the performance of dimensionality
reduction without losing more information in a compre-
hensive view. Furthermore, we discussed the limitation of
our methodology and the findings by illustrating two polar
cases.
In the closing section of our paper, we highlight avenues

for future research that stem from the methodology proposed
in this study. A promising area for further investigation
involves the exploration of multi-objective optimization
techniques for binning followed by PCA. This optimization
could aim to simultaneously minimize noise while maxi-
mizing retained information, all while avoiding an increase
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in dimensionality that might compromise interpretability.
Another interesting aspect worthy of future research is that,
how the information losses of the original part of the dataset
could be affected, when adding new sensors to the vehicle
and keeping the number of bins unchanged. Additionally,
when dealing with sensors that share physical relationships,
there arises a need for aggregating their joint distributions,
such as engine maps. Furthermore, understanding the impact
of the mixed-variate aggregated dataset on information losses
presents a valuable avenue for exploration in subsequent
research efforts.
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