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Abstract
This article develops a decision model which enables service firms to optimize their productivity. Companies must efficiently
determine the necessary resource input to increase service productivity to meet customer demand. In so doing, managers face
service-specific challenges: They must select the appropriate type and quantity of limited resources to deliver services efficiently,
consider the volatility of demand to provide services effectively, and integrate the interaction effects of resources in terms of
substitution to utilize constraint resources optimally. In addressing these challenges, we develop an interdisciplinary approach by
combining insights from service research and operations research to create a decision model that helps managers select the optimal
type and quantity of resources available to overcome the abovementioned challenges.We validate our model in several case studies
and further generalize our findings by applying it to different data settings. Ultimately, we prove that productivity can be increased
significantly if firms optimize resource selection by considering stochastic demand, the effects of substitution among resources, and
resource constraints.
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The growing importance of technology and artificial intelli-
gence (Huang and Rust 2018, 2021) and the shortage of service
employees (e.g., Bhattarai and Penman 2023; Horowitz 2021)
in service encounters forces service firms to address a significant
challenge: Companies must efficiently determine the necessary
resource input (e.g., level of human resources and computer-
aided support) to meet customer demand. This optimization of
service productivity directly impacts the bottom-line profit-
ability of service firms. However, while technological ad-
vancements progress and services became pivotal for economic
growth, service productivity is declining in many developed
countries, suggesting that productivity-enhancing approaches at
the firm level have yet to materialize (Hofmeister, Kanbach, and
Hogreve 2023a). Therefore, in his call for action, Andreasen
(2021) highlights the necessity to research service productivity
so service firms can achieve sustainable growth.

The managerial issue of obtaining high service productivity
is present in nearly all industries. Healthcare industries further
exemplify the productivity issues service firms face in input-
and output-related decisions: The COVID-19 pandemic has
shown that limited hospital resources such as nurses and beds
must be used as efficiently as possible. At the same time, a
sufficient level of patient care and service quality must be
maintained. Therefore, hospital managers need to optimize the
workload for medical staff, even in unexpected emergencies,
while operating with specific capacities and limited idle times to
ensure cost-efficient operations. These challenges in managerial

practice are widely acknowledged in academic literature fo-
cusing on service productivity (e.g., Anderson, Fornell, and
Rust 1997; Mittal et al. 2005; Rust and Huang 2012; Wirtz and
Zeithaml 2018).

Optimizing service productivity requires strategic and effi-
cient planning of capacities as resources cannot be scaled up or
down on a short-term basis (Mittal et al. 2005; Rust and Chung
2006). Thus, our research develops a strategic decision support
system to optimize service productivity based on the seminal
work of Rust and Huang (2012). Adopting a profit-optimization
perspective, Rust and Huang (2012) demonstrate how firms can
obtain higher service productivity by optimizing resource se-
lection. We add to this research by extending the optimization
model by Rust and Huang (2012) and contribute in several
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ways. First, Rust and Huang (2012) are the first to research
service productivity within a decision context. In their model,
the authors show that productivity increases can be obtained by
the optimal selection of two main resources: automation and
labor. In managerial practice, however, firms usually deal with
multiple resources. Furthermore, each resource type is available
at different quality levels. For example, in a hospital, physicians
with different seniority and qualification levels are essential for
patient care; other resources include nurses, administrators,
medical devices, and technologies. Thus, our model considers
multiple resources and different resource qualities to increase
managerial applicability. We deal with a strategic decision
problem where managers need to make decisions in the long-
term context. In this context, the decision-maker determines the
resources on a longer planning horizon.

Second, customer demand for services is not fully known in
advance and is subject to deviations. However, whenever
customer demand exceeds the capacity of a service firm, profits
are lost; the opportunity to sell a service will either disappear, or
high investments will be needed to win back lost customers. An
emergency room, for instance, must provide sufficient health
care levels, even in unexpected emergencies. Therefore, patients
must be transferred to other hospitals if demand exceeds ca-
pacity. We address this critical issue by considering stochastic
demand, thus revealing how capacities can be managed stra-
tegically and on a long-term basis best in the face of demand
volatility. The current state-of-the-art in the service literature is
to model known deterministic demand. From a scientific per-
spective, we contribute to the literature by following a stochastic
approach capable of handling uncertainties in the inputs applied.

Service managers must strategically select their resources in
light of the constraints they face (e.g., labor shortage, budget
constraints, flexibility of technological resources) and of
different employee qualification levels (e.g., highly flexible
and experienced workers, less experienced workers that can
fulfill only specific tasks). These resources may be perma-
nently or temporarily substituted. Again, in the hospital
context, take surgery services as an example: robot-assisted
surgery technologies partially substitute for the work of
physicians, expediting a patient’s healing process and short-
ening expensive hospital stays. We extend previous work by
considering resource constraints along with permanently and
temporarily substitutable resources. This yields a more so-
phisticated sense of how service productivity can be optimized
through resource allocation, capacity management, and sub-
stitution effects.

Finally, we test our model using case studies with industry
applications and a general data set. This reveals how service
productivity can be optimized across different industries and
settings (e.g., resources with varying qualification and quality
levels or high degrees of customer coproduction), as well as
enhances current literature with general insights about opti-
mizing service productivity given multiple resources, resources
constraints, stochastic demand, and permanently or temporarily
substitutable resources. We demonstrate that correctly consid-
ering stochastic demand enables firms to increase performance

significantly, and we identify substituting resources as a sig-
nificant lever of service productivity management.

The Service Productivity Challenges

Traditionally, productivity is defined as the ratio of inputs and
outputs (Deming 1986). Services, however, inherently call for a
broader understanding of productivity given that they involve
several input- and output-related issues (Grönroos and Ojasalo
2004; Rust and Huang 2012; Wirtz and Zeithaml 2018). We
address these issues and define service productivity as a stra-
tegic decision variable to optimize firms’ profits (Rust and
Huang 2012).

In managing service productivity, we identify three main
challenges: First, firms need to balance long-term investments
and generate a service output that creates external interest and
meets operational objectives to get an optimal response for their
resources at the same time (Anderson, Fornell, and Rust 1997;
Grönroos and Ojasalo 2004; Mittal et al. 2005; Rust and Huang
2012; Rust, Moorman, Dickson 2002; Rust, Zahorik, and
Keiningham 1995). Service productivity depends on various
resources, including, for example, service employees and their
ability as well as a willingness to deliver service quality
(Marinova, Ye, and Singh 2008; Singh 2000), customers’
willingness to coproduce (Auh et al.2019; Nachum 1999, Xue
and Harker 2002), and the information technology supporting
the service delivery process (Hogreve and Beierlein 2023;
Huang and Rust 2021; Rust and Huang 2012). Each resource
adds to the quality of the service outcome and generates rev-
enues. Still, each has its costs, for example, wages, training, and
development, or ensuring the functionality of the technical
infrastructure. Consequently, we delineate the first challenge
firms are confronted with while optimizing their levels of
service productivity:

1. To optimize service productivity, managers must deter-
mine on a strategic level the optimal type and quantity of
resources from a set of multiple yet limited resources
(e.g., due to labor shortage).

Second, service creation and consumption happen simulta-
neously (Zeithaml, Bitner, and Gremler 2017). As services
cannot be stored, meeting the volatile and unknown customer
demand is a powerful lever in obtaining high service produc-
tivity by efficient capacity utilization (Armistead and Clark
1994). This is relevant as the resources cannot be scaled up or
down on a short-term basis. Companies need to provide these
resources from a long-term perspective and can adjust capacities
within longer planning periods. In the hospital, for example,
other departments within the hospital could send physicians and
nurses to compensate for capacity shortages. From a govern-
mental planning perspective, the planners of an entire region
could share resources across hospitals. Similarly, the resources
of an entire company network (e.g., with different subsidiaries)
can be shared across the different entities (e.g., different lo-
cations). Limited capacities might mean that certain resources
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are temporarily or permanently unavailable yet may be
substituted; for example, service technologies might substitute
for service employees, or customer input might replace em-
ployees’ input during coproduction (Mills and Morris 1986).
This might happen due to manifold reasons, such as short-term
breakdown of self-service devices, shortages of human re-
sources, or demand exceeding management expectations. Such
substitutions affect service outcomes in terms of quality and
costs. For example, less experienced employees might be less
costly than experienced employees, yet negatively affect service
quality (Marinova, Ye, and Singh 2008; Meyer Goldstein 2003;
Nachum 1999; Singh 2000). The same is true for customer
coproduction and its effects on service outcomes depending on
customers’ willingness and ability to coproduce (Auh et al.
2019; Bendapudi and Leone 2003).

Consequently, the decision problem in optimizing service
productivity formulated in our first statement is increased as it
cannot be done for each resource individually. Additionally,
decisions about which type and quantity of resources to invest
among a set of multiple, substitutable, and limited resources are
required. We thus formulate the second challenge:

2. To optimize service productivity, managers must con-
sider resources’ limited availability and substitutability
when deciding on the optimal selection of resources.

Third, resources might be temporarily or permanently un-
available and might be substituted, for instance, customer input,
substituting employees’ input during coproduction processes
(Mills andMorris 1986). Although we find incidents concerning
these issues in current service research (e.g., Haumann et al.
2015), they are not fully addressed in the service management
literature. In a service context, supply and demand are inter-
related as service production and consumption happen simul-
taneously in real-time. Controlling service quality, for example,
in terms of individualization or achieving economies of scale,
are much more complex than products (Chase 1978, 1981;
Wirtz and Zeithaml 2018) as demand cannot be backlogged,
excess demand or capacity cannot be stored or transferred to
another period, and hence the demand and profit of servicing
these customers are lost. Customers usually arrive at a service
provider and are either served within the period of their arrival
or turned away (Armistead and Clark 1994; Armstrong,
Morwitz, and Kumar 2000; McLaughlin and Coffey 1990;
Wirtz and Zeithaml 2018). Consequently, managing service
productivity requires accounting for highly volatile demand
(Dobni 2004; Rust and Chung 2006). We thus phase the third
challenge:

3. To optimize service productivity, unknown customer
demand must be considered.

Current research on service productivity only partially ad-
dresses these challenges in combination. Instead, the focus has
fallen on how single antecedents like human resources
(Marinova, Ye, and Singh 2008; Singh 2000), technology (De

Jong, De Ruyter, and Lemmink 2003; Huang and Rust 2021;
Rust and Huang 2012), processes and service design (Melton &
Hartline, 2013; Nakata Cheryl & Hwang Jiyoug, 2020), and
customers (Frei and Harker 1999; Haumann et al. 2015; Xue
and Harker 2002) influence efficiency and/or effectiveness of
services and how these antecedents can be managed accord-
ingly. In addition, substituting or interacting effects of resources
generally are only partially considered for two resources (e.g.,
Rust and Huang 2012), whereas service firms usually have to
choose from many substitutable resources.

Yet challenges in managing service productivity go beyond
which resources to invest. Service managers must balance re-
source allocations and efforts to meet customers’ expectations
(e.g., service quality) as well as internal operational objectives
(e.g., budget constraints, costs) to get optimal economic results
depending on actual demand (Marinova, Ye, and Singh 2008;
Rust, Zahorik, and Keiningham 1995; Wirtz and Zeithaml
2018). To fully address the complexity of service productiv-
ity, we need a more nuanced understanding and a compre-
hensive decision model on how to select the right type and
quantity of resources from a limited pool of multiple resources
(such as human resources, technology, and customer copro-
duction) under given demand volatility and possible substitu-
tions of resources.

Drawing on decision theory, Rust and Huang’s (2012)
seminal work discusses service productivity as a strategic de-
cision variable that allows firms to select their optimal level of
service productivity and optimize their profits. Yet the practical
applicability of this model could be expanded because the
particularities of managing service productivity (like specific
resource selection, stochastic demand, and substitutions) are
only partially addressed. However, literature and managerial
practice need more tools and methods to gain the optimal
balance of efficiency and effectiveness through strategically
optimizing resource selection (Mittal et al. 2005; Rust and
Chung 2006). “What is needed is a method to help managers
decide where they are likely to get the greatest response for their
limited resources” (Rust, Zahorik, and Keiningham 1995, p.
59). With our proposed decision model and its application, we
seek to fill this apparent gap in literature.

Decision Problem and Associated Model

We build on the work of Rust and Huang (2012) by developing a
strategic decision model that helps managers to optimize service
productivity by selecting resources and determining the quantity
of substitutable and constrained resources required to deliver
services under stochastic demand. We denote the decision
problem as Capacitated Service Productivity Model with
Substitutions (CSPMSUB).

Decision Model and Resource Constraints

As outlined in our first challenge, managers need to select
resources j from a set of resources j2N and to define asso-
ciated quantity levels for each resource considering
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limitations. For example, hospital management needs to
define how many nurses with different qualification levels
they want to engage in a specific clinical department. A
consultancy firm needs to define a strategic level how many
senior, mid-level, and junior consultants they want to hire for
the upcoming planning cycle to meet their expected demand.
In these examples, the seniority levels are the resource types,
and the headcount of each type is the quantity level. As
services cannot be stored, we draw on a single-period model.
That means we have a long-term planning horizon and define
the resources for this long-term horizon. Our model opti-
mizes profits by optimizing resource selection and quantity
for all items j with N = {1, 2, …, j, … N}, whereas N denotes
the entire set of resources (e.g., senior, mid-level, and junior
workers). Hereby resource selection is expressed by the
binary variable xj, which is set to 1 if resource j is available
and 0 otherwise. The second decision variable of quantity qj
determines the quantity level of each resource the firm
provides (e.g., number of employees of a certain qualification
level). The model is formulated as follows:

max !Πðx, qÞ ¼
X
j2N

πj

�
qj
� � xj (1)

subject to X
j2N

qj � bj ≤C (2)

xj 2f0; 1g; qj≥0and integer"j2N (3)

The objective function is quantified in equation (1).
Equation (2) limits the available resources to the capacity
constraint C. The capacity coefficient is represented by bj for
all items j2N, that is, the capacity consumption to use one unit
of resource j. Equation (3) allows only binary values for xj as
well as positive and integer values for the quantity qj. The
quantity-related profit function πjðqjÞ is given by equation (4).
Resources are characterized by revenue r, input costs c, sal-
vage value v, and shortage costs s. The profit πjðqjÞ per re-
source depends on the quantity qj provided for each resource
j2N, and consists of the revenue rj, which is offset by input
costs cj as well as the trade-off between shortage costs for
unsatisfied demand sj and salvage value vj for unused
resources.

πj qj
� � ¼ �qjcj þ rj

Z qj

0

yf *j dyþ vj

Z qj

0

ðqj � yÞf *j dy

þrj

Z ∞

qj

qjf
*
j dy� sj

Z ∞

qj

qj y� qj
� �

f *j dy "j2N

(4)

Beyond optimal resource selection, we further consider
leftovers: Whenever resources remain unused, there are salvage
values. In the best case, those remaining resources can be used
for services with lower profitability or, in the worst case, perish
fully without being consumed. For example, a senior worker can
fulfill the jobs of a junior worker. Furthermore, demand cannot

be backlogged, and if demand has been underestimated,
shortage costs occur (e.g., costs to retain unsatisfied customers).
To factor in stochastic demand, the estimated demand Dj for
item j is defined by the probability density function fDjðyÞ,
which specifies the demand function in equation (4) for the
model: Please note that any kind of demand distribution can be
applied to model the customer demand. The only requirement is
non-negative demand values.

Addressing these issues, the first term in equation (4)
quantifies the total input costs for the resource j reflecting all
processing or purchase costs the firm requires to provide this
particular resource. The second term quantifies total revenues
generated with the quantity qj of resource j. The third term
denotes the salvage values if resource input has been over-
estimated and resources remain unused at the end of the period
for disposal or discounted sales. In such case, resources need to
be disposed at salvage value vj and the provider incurs a loss of
(cj � vj) on each resource (e.g., when overqualified workers
perform a job below their qualification level). The fourth term
defines lost sales costs. If the demand for resource j is greater
than its quantity qj, the excess demand and associated revenues
are lost (i.e., a demand cannot be fulfilled as the capacity is not
sufficient). Shortage costs sj occur in such cases representing
penalty costs for unsatisfied demand. These costs are expressed
in the fifth term.

Demand Model and Substitutions

Beyond the challenge of optimized resource selection, we
consider the challenge of substitution effects among re-
sources (e.g., a higher qualified nurse may complete jobs of a
lower qualified nurse during a peak period) and the depen-
dence on a stochastic demand (e.g., demand is not per se
known when defining the headcount for each qualification
level). We consider demand depending on resource avail-
ability (e.g., care capacity in a hospital) and the associated
quality of a resource (e.g., higher qualified doctors for certain
surgeries). For example, consider a less experienced em-
ployee who might negatively affect service quality compared
to a well-experienced employee and, in turn, negatively
impact service demand. Thus, total demand for a selected
resource j, j2N

þ consists of the base demand Dj determined
by the quality γj of this resource, the gain in demand for

substitutions from temporarily unavailable resources, j2N
þ,

and of substitutions from the set of unselected resources,
i2N�, to resource j. Selected and provided resources are
denoted by the set Nþ and unselected resources by N�. Thus,
N

þ,N�4N,Nþ[N� = N and N
þ\N�¼ ˘. Equation (5)

summarizes the three demand components.

bDj x, qð Þ ¼ Dj γj
� �þ X

i2N�, i ≠ j
βperij Di

þ
X

i2Nþi ≠ j

βtempij Di � qið ÞjDi > qi½ �"j2N
þ (5)
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The first part of equation (5) denotes the volume that a
customer initially prefers of resource j. The base demand is also
impacted by the service quality γj of a resource. We model a
factor for known service quality for each resource, denoted by γj
with 0 ≤ γj≤1, j, j2N. This factor expresses a scale parameter of
the service quality provided by resource j.

Given that demand is highly volatile, however, it might
exceed the capacity of a service firm. Either demand cannot be
satisfied, or it may be more profitable to force customers to
switch to more profitable substitutes (e.g., if a lower qualified
hairdresser is not available, the customer may choose hair
cutting from the more qualified hairdresser). Hence, substitution
effects are part of the decision-making process. We assume that
if a resource is permanently unavailable (e.g., not provided at all
due to changing constraints) or temporarily unavailable (per-
haps already consumed by other customers during peak de-
mand), it can potentially be replaced by another resource. The
probability of replacing one resource with another is expressed
as the substitution rate. Substitution effects are integrated into
the demand function by combining the base demand for re-
source j with the substituted demand for all unavailable re-
sources. We generally follow exogenous demand (ED) models.
All customers choose their favorite resource i from setN. If their
requested resource i is not available for some reason, the
substitution rate βij expresses that they will choose their second
favorite j, j2N, j ≠ i. Those customers willing to compromise
their initial choice are expressed in the probability of δi, with
ð1� δiÞ as the share of customers unwilling to substitute their
initial choice (i.e., δi ¼

P
j2N, j ≠ iβij, i2N). Furthermore, we

differentiate between permanent and temporary substitution
rates, that is, βperij and βtempij , respectively. The substitution rate

βperij expresses to what extent customers are willing to substitute

permanently unavailable resources i, i2N�, with resource j. The
substitution rate for resources temporarily not available i, i2Nþ

is denoted with the substitution rate βtempij . Generally, the sub-

stitution rate refers to the ability to replace one resource with
another. For example, it may not be possible that a junior
employee may replace a senior employee for certain tasks. In
this case, the substitution rate can be set to zero.

The demand function of each resource j depends on the
vector of the decision variables, x ¼ ðxj, j2NÞ (i.e., type of
resources selected) and q ¼ ðqj, j2N

þÞ (i.e., the quantity for
each resource provided). The substituted demand is reflected in
the second and third parts of equation (5). The second part
quantifies the substitution volume of permanently unavailable
resources. The third part of equation (5) quantifies substitution
demand for those resources temporarily not available. Further,
following assumptions in ED models, one round of substitution
is allowed. If customers want to substitute their first choice for a
resource that is not available, sales are lost. There is no attempt
to model individual customer decisions. Instead, an ED model
capable of capturing aggregated customer demand is applied.

We assume that the probability density function fDj of the
base demand for resource j, j2N is exogenously known and does

not include substitutions. The generic demand functions for the

CSPMSUB are expressed as f *j ¼ fDjðx, q, yÞ, j2N. If the demand

function f *j in equation (4) is set to the probability density function

of the base demand, that is, f *j ¼ fDj, j2N, the resulting base

model ignores substitution effects. In the numerical results section,
we investigate the different demand effects step by step and use
these different model formulations. The CSPMSUB is the generic
model accounting for all effects. The CSPM is a special case of the
CSPMSUB with no substitution, that is, β

temp
ij ¼ 0, i, j2N

þ, and the
demand model can cope with any type of demand distribution. It
only needs to allow a non-negative demand. We refer to the Web
Appendix and the demand model presented in Equations (9) and
(10). These make sure that only any non-negative demand is
considered.

To summarize, the total demand for each selected resource
j, j2N

þ depends on the base demand for resource j, its service
quality γj, the set of not selected resources i2N�, and the as-

sociated substitution rate to available resources βperij as well as

the availability of selected resources j2N
þ and the associated

substitution rate of resources that are temporarily out of stock,
βtempij . Please note that the selection variable xj is an auxiliary

variable, as we can also model the selection problem in the
following way: if qj¼ 0, then xj¼ 0; if qj≥1, then xj¼ 1.

The underlying optimization problem is NP-hard and integer
knapsack problem with a nonlinear and non-separable objective
function. Solving the integer problem with a full enumeration or
commercial solver (like CPLEX or Gurobi) is only possible for
toy problems. We, therefore, develop a specialized heuristic
built on a Lagrange derivation and a bi-section algorithm to
determine optimal quantities under constraints and a rounding
algorithm to find optimal integer quantities. Details of the so-
lution approach, its detailed computation steps, and its algo-
rithmical approach can be found in the Web Appendix.

Case Studies and Numerical Analysis

To test our model and to obtain managerial insights, we con-
sidered several case studies referring to real data from firms
offering distinct services and applying different resources (see
Table 1). In addition to reviewing annual demand figures and
financials, we conducted workshops with firm-intern experts to
obtain data that explains to what degree resources can be
substituted. In each workshop, up to six experts from the
companies were engaged. Real-life data on service and resource
performance from various companies has been obtained.
However, due to confidentiality and competitive reasons, we are
only able to report on ranges rather than specific values. To
demonstrate the decision problems faced by service companies,
we have carefully selected case studies covering a wide range of
productivity issues. These case studies include the internal and
external substitution of employees, customer involvement in
coproduction, and the impact of technology on productivity.
Table 1 provides an overview of the companies involved. The
results obtained are reported as aggregated results and relative
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numbers compared to the status quo. Next, we describe the
settings of our five case studies regarding the main resource
while illustrating the data collection process and explaining the
decisions required to optimize productivity. Finally, we gen-
eralize our results with simulated data in a subsequent analysis.

Case Study Setting and Data Description

Internal and External Substitution of Employees. We conducted
three case studies to analyze how employees in different settings
impact service productivity from an internal and external
substitution perspective.

Internal Substitution. For internal employee substitution, we
consider substitutions among employees with varying levels of
qualification in distinct departments and at distinct subsidiaries.
We worked on the internal substitution with two different
companies (see Table 1). First, we applied the model in a large
maximum-care hospital with different clinical departments and
nursing staff as critical resources. Nurses have different qual-
ification levels (e.g., head of the nursing unit, senior nurse,
junior nurse, assistant nurse, or transportation and assistance
nurses) and specialize in one department. Yet nurses can par-
tially execute jobs for other departments so that they can be
substituted. Furthermore, nurses substitute themselves within a
department; whereas all can execute standard treatments, for
example, more complicated procedures are performed only by
senior nurses. The substitution possibility is expressed in the
substitution rate μji and is assumed to be 75 percent within the
group of nurses of one department and 25 percent among
identically qualified nurses of other departments. The demand
per period (i.e., nursing days per qualification level) is assumed
to be a normal distribution with μjϵ [50; 780] and σjϵ [1; 230]
based on historical demand data over 36 months. As in all cases
studies and applications of our model, we made sure that no

negative demand values are considered (see equation (9) in the
Web Appendix).

Unit costs cj of the five differently qualified nurses with
j¼ 1; 2,…,N are obtained from their monthly salaries and
revenues rj assumed to be units costs cj plus an overall margin of
the hospital. This reflects that hospitals may charge patients
differently for the treatment depending on the qualification level
of the caregiver. If nurses are not engaged (e.g., due to low
occupancy), they execute different jobs in the clinical depart-
ments; however, the revenues obtained are lower and assumed
to be 66 percent only of the original job because they are either
executing jobs that require a lower qualification or are engaged
in other departments they are not qualified for. We include this
fact with the salvage value vj. If service requirements are not met
due to the non-availability of nurses, hospitals suffer shortage
costs. These shortage costs sj are expressed for overtime at
maximum-care hospitals or additional management costs re-
quired to obtain additional capacities. The model thus addresses
the strategic problem of obtaining productive nursing capacities
in the hospital context.

Second, we apply our model to a manufacturing firm offering
maintenance services to industrial customers. The main re-
sources are engineers with distinct qualification levels (e.g.,
basic mechanics, advanced mechanics, and engineers with a
university degree). The firm operates subsidiaries in different
locations with various qualification levels and wages (i.e., costs
for the resource) by location. The firm charges different revenue
rates rj for each qualification level and location, with different
internal unit costs cj. Engineers can be partially substituted as
long as customers accept the different qualification levels. The
substitution can happen either by an employee with a different
qualification level at the same location or by an employee with
the same qualification level from another site. The substitution
rates μij among engineers are estimated at 50 percent when
substituted by an identically qualified engineer from another

Table 1. Overview of Case Studies.

Case Study Service Setting Critical Resources Substitutions

Internal and external substitution of
employees

Nursing Employees at five different qualification
levels

Qualification level (high and low)

Employees at several departments Departments (departments A and
B)

Aftersales Employees at six different qualification
levels

Qualification level (high and low)

Employees at several subsidiaries Location (locations A and B)
Store
replenishment

Employees at two different qualification
levels

Qualification level (high and low)

External service provider (refiller) Employee or service provider
Customer coproduction Consulting Employees at three different qualification

levels
Qualification level (high and low)

Customer Customer coproduction (high and
low)

Technology Maintenance Employee (on-site service) Employees and technology
Technology (remote service)

The exact sales and financial data are subject to confidentiality agreements with the companies.

6 Journal of Service Research 0(0)

https://journals.sagepub.com/doi/suppl/10.1177/10946705231213118


location, 30 percent for the higher qualified level at the same
location, and 20 percent for the lower qualified level. Only for
the highest (or lowest) qualified staff, there is no upward (or
downward) substitution. Cross-location replacement increases
unit costs cj for a service (e.g., due to shipments of material or
travel to other countries). Engineers not engaged in customer
service during idle times can complete internal jobs such as
product development and training. This generates revenues for
the alternative jobs at lower rates (on average between 25
percent and 33 percent of the original job) and can be described
as salvage value vj. Further, suppose the firm does not meet
customers’ expectations toward service quality with respect to
timing or quantity of engineers available. In that case, customers
may charge penalty costs sj, which amount to 10-20 percent of
the sales price. The demand per period for the services (i.e., an
engineer’s days per qualification level) is assumed to be nor-
mally distributed with μjϵ½12:5; 250� and σjϵ½1:5; 5� based on
historical demand data over the last 24 months in two countries.

External Substitution. To go beyond firm-internal substitution
among employees, we conducted a case study considering the
substitution of employees by external service providers. In a
retail context, in-store logistics represent an expensive part of
the supply chain, and retailers often engage external and
dedicated shelf refillers to replenish the shelves. This regular
shelf replenishment is scheduled, and the frequency is deter-
mined based on the weekly pattern of deliveries. Thus, refillers
come on days with warehouse deliveries to execute shelf re-
plenishment. In between the two warehouse deliveries, the
regular sales staff restocks if the shelf inventory of a product is
too low. Varying sales and delivery sizes result in varying
demand for shelf replenishment jobs.

In our case study, the retailer had to determine the appro-
priate working hours of external refillers (j¼ 1), sales staff
(j¼ 2), and store/category managers (j¼ 3) for shelf replen-
ishment. All resources have unit costs cj per hour and can be
fully substituted if higher qualified employees cover the task
ðPj2Nμji¼ 1:0"j> iÞ but only partially if lower qualified em-

ployees cover for higher qualified employees
ðPj2Nμji < 0:25"j> iÞ. Salary increases with staff qualification

level. Demand for replenishment can be expressed as working
hours required to replenish shelves during a period entirely.
Demand (with μjϵ½16; 180�) and its deviations (with σjϵ½3; 25�)
for replenishment jobs are given by historical engagement
plans. If refillers are oversupplied, the retailer engages them
with different jobs (e.g., backroom cleaning). The value of
alternative jobs is expressed with vj, but obtains a lower value
than primary jobs. We assume vj ¼ cj�1"j≥2 and v1¼ 0:5c1.

Revenue per resource rj is calculated based on unit costs for
each resource plus the average store margin. This represents the
revenues that can be generated by each resource. Shortages of
refillers result in overtime costs or, in the worst case, in lost sales
due to empty shelves. This is expressed by sj and assumed with

sj¼ 0:1rj. In our case study, the share of external refillers re-
sponsible for replenishment is 85 percent.

Customer Coproduction. To analyze the distinct resource of
customer coproduction, we obtained data from a consulting firm
focused on engineering and planning services for logistics
systems. Joint planning teams of employees and customers
coproduce the design of warehouse systems. Results are
achieved in customer coproduction by partially or fully taking
over the planning, operations, and maintenance of the logistics
system. Each planner thus generates revenues rj and costs cj per
day, depending on three different qualification levels with
j¼ 1; 2; 3 (senior engineers, junior engineers, and trained
workers). When a resource is unavailable, jobs can be com-
pleted (=substituted) by the nearest two qualification levels of
the firm and a member of the customer’s team with an identical
qualification level. The substitution rates are 40 percent to the
next qualification level and 20 percent to the next plus one level
within the firm, and the customer team can substitute 40 percent.
For the middle qualification level (j¼ 2), 40 percent is
substituted upward and 20 percent downward.

If planners engaged exceed requirements, they take over
partially internal responsibilities or work part-time for other
customers. This generates salvage values vj, assumed to be only
33%–40 percent of unit costs. If capacities are underestimated,
planners must work overtime for the firm to find additional
resources or to violate quality objectives. This results in ad-
ditional costs, represented as shortage costs sj assumed to be
15%–20 percent of unit costs cj. The demand per period (i.e., an
engineer’s days per qualification level) is assumed to be a
normal distribution with μj ϵ [25; 100] and σjϵ [5; 20] based on
historical demand data over the last 12 months. About 20
percent of the team are customers’ engineers. With an identical
ratio across all qualification levels, we assume 20 percent of
demand and its variation for customers’ engineers. Unit costs of
internal engineers that are replaced by customers’ engineers
represent the revenues of these engineers. Further cost ratios are
applied for the internal resources.

Technology. Finally, we focus on technology as a lever of service
productivity within a healthcare firm providing hospital
maintenance services. The firm can either send employees to the
customer’s site or use technology to deliver the service re-
motely. The decision problem is to optimally select the required
service level (i.e., the resources xj) and the appropriate quantity
qj for each service type. For remote service, the firm can log in to
a customer’s system and maintain or complete the servicing of
medical devices from the firm’s site. The onsite service (j¼ 1) is
more costly and time intensive, whereas the remote service
(j¼ 2) requires more intensive technology, which is much less
cost intensive. The firm charges different revenue rates rj for
their services according to internal unit costs cj plus a certain
margin for each service, whereas the remote service is more
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profitable. 95 percent of the services at the customer site can be
completed remotely, and a technician can complete 100 percent
of the remote jobs. The execution possibility of remote services
instead of onsite services depends on the customer’s acceptance.
The substitution rates μij are estimated at 90 percent and 100
percent.

If technicians are not engaged in any customer service during
idle times, they can complete other jobs resulting in revenues for
alternative jobs, which are described as salvage value vj. Re-
mote service operators can directly take over other services;
thus, alternative revenues nearly compensate for their costs (i.e.,
v2¼ 0:9c2), whereas onsite service operators can only take over
onsite jobs with lower revenue (on average 10 percent of the
original job, i.e. v1¼ 0:1c1). There is no penalty on remote
services (s2¼ 0), and it is assumed that the shortage costs for
onsite services are equal to the costs of the remote operator
(s1 ¼ c2Þ. The demand per period for the services is assumed to
be of a normal distribution with an equal average demand for
both services (μjϵ½50; 50�Þ but a different variation (σjϵ½5; 20�).
Total capacity is represented by the current sum of all resources.

Summary of the Case Study Results. Based on the data provided
by the firms, we can apply our model to different service
settings and test substitutions among different resources. In
so doing, we show that applying our model optimizes service
productivity in each case study by determining the optimal
level of input resources. This optimization generates total
savings of between 4.8 percent and 15.5 percent (see Table 2).
We find that the total savings are extraordinarily high in case
studies with substitution among employees of different
subsidiaries and departments. The same is true for the sub-
stitution of employees by technology. The lowest savings are
generated in the case study focusing on third-party service
providers. Generally, savings generated in our case studies
can be explained by the effect of substitutions and by cor-
rectly accounting for demand volatility, thus lowering
oversupply and shortage costs.

The insights gained in the five case studies reveal that the
challenges of service productivity represent important issues.
Firms must select resources from a mid- to long-term per-
spective and define the appropriate quantity of service when
meeting varying customer demands. Choices are subject to
capacity constraints. Each service setting analyzed faces a
specific decision problem that can be solved using our proposed
model. We further demonstrate the seminal potential of sub-
stitution effects and the importance of correctly accounting for
demand to optimize service productivity. Although results
confirm the appropriateness and functionality of our model in
managerial practice to optimize service productivity, we cannot
draw general conclusions or guarantee more general applica-
bility. We apply our approach to simulated data and derive
general rules to generalize our insights further and increase
external validity. We generate several test cases and use dif-
ferent numerical analyses to prove the model’s general appli-
cability and generalize the findings.

Generalization of Findings with Simulated Data

Approach, Test Problems, and Data Applied. Each test instance
consists of 1,000 examples with randomly generated parame-
ters. The simulation is informed by the data constellation that we
obtained from the case studies with the industry partners. The
examples adhere to the following rules: Each resource j, j2N,
has a positive profit (rj > cj) as well as a salvage value vj and
shortage costs sj. The parameters for all items j, j2N, follow
these boundaries: Revenues of 10 ≥ rj≥6; unit costs of
rj�1 ≥ cj≥4; positive salvage value at the end of period:
cj�0:1 ≥ vj≥3; and positive shortage costs: vj ≥ sj≥1. We assume
unit costs are equivalent to the capacity coefficient bj, repre-
senting a budget constraint. We apply normally distributed
demand parameters with Dj ∼Nðμj; σjÞ; with

P
j2Nμj ¼ N∙10;

and with
P

j2Nσj ¼ N∙5; and identical positive substitution rate
for all unavailable resources i, i2N�: δi ¼ δ¼ 0:6. If the first

Table 2. Summary of Results Obtained From Case Studies (in % of Current Profit).

Productivity Issue
Addressed Service Setting

Total
Savings, %

Savings Explained by

Impact Through
Substitution Effects,a %

Impact of Correctly
Accounting for Stochastic

Demand,b %
Impact of Better Capacity

Management,c %

Internal and external
substitution of
employees

Nursing 12.1 5.6 10.3 �0.8
Aftersales 15.5 13.1 14.5 0.2
Store

replenishment
4.8 1.5 16.6 �22.7

Customer coproduction Consulting 8.8 0.6 1.5 �20.0
Technology Maintenance 13.4 1.2 12.7 �20.3

Please note that the explanations of the savings do not add up to the total savings as these are different ex-post analyses and the effects may mix up, balance, or even
amplify each other.
aEx-post comparison of model application with substitution (μji > 0) and without substitution (μji¼ 0) effects.
bEx-post comparison of model application with variance (σ2≥0) and without variance (σ2¼ 0).
cDifference between underage and overage costs.
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alternatives for i are also not selected (i.e., j2N�) or if the
alternatives are selected but temporarily not available, the share
of lost demand is accordingly higher than 1� δi. Without any
loss of generality, we assume that the fraction of consumers who
are willing to substitute item i, δi is equally distributed to all
other resources j: βij ¼ δi=ðN�1Þ, i2N , j2N , i ≠ j and
βii¼ 0, i2N , in both cases of substitution. That also means
βperij ¼ βtempij .

The numerical tests investigate the effects of volatile demand
(Test 1), substitution (Test 2), perishability of resources (Test 3),
capacity constraints (Test 4), and joint resource selection and
quantity (Test 5) on optimizing service productivity.

Test 1: Effect of Stochastic Demand. Figure 1 (Panel A) shows the
impact of increasing stochastic demand (i.e., coefficients of
variation, CV) on the solution structure considering different
levels of substitution (δ). In the base scenario, demand is only
slightly stochastic (CV = 1 percent). If substitution is low (δ =
20 percent or δ = 40 percent) and CV changes to 20 percent, we
already find significant changes in the solution structure. At δ =
20 percent, each second resource, on average, has different
optimal quantities. The more CV increases, the higher the share
of resources with quantity changes. Considering higher sub-
stitution rates (δ = 60 percent or δ = 80 percent), we still find
increasing CV to impact the solution structure significantly. For
δ = 80 percent, an increase in CV to 20 percent changes the
quantities of the resources on average by 59 percent. Again, the
more CV increases, the higher the share of resources that have
changes in quantities.

In summary, between 20 percent and 70 percent of the re-
sources reveal different quantities when stochastic demand is
considered correctly. These differences in optimal solutions
always increase as CV increases for all δ-values. It also in-
creases as δ increases when comparing the same CV values,
except for very high CV. The latter effect is because the demand
for one resource and its optimal quantities is determined more
by the (high) substitution and less by its variation.

Figure 1 (Panel B) shows the impact on profits for the same
setting. Here, a firm receives a profit advantage if it accounts for
demand variation are considered correctly. Quantifying the
profit advantage, we calculate (Profit of CSPMSUB/Profit of
CSPM*SUB)-1, whereas CSPM*SUB denotes the solution ob-
tained assuming CV = 1 percent, but where the profit is
evaluated with the actual CV. Thus, it identifies the error firms
make when not correctly accounting for the actual CV. Intui-
tively, we find that the more stochastic demand, the higher the
advantage. For example, at δ = 20 percent, a firm’s average
profit advantage, if correctly accounted for CV = 20 percent
instead of CV = 1 percent, is 2 percent. This advantage increases
to 5 percent, if CV = 40 percent. Furthermore, we see profit
advantages increase with a lower magnitude when substitution
rates increase: In the case of δ = 80 percent and CV = 20 percent,
the average advantage is 1.8 percent; if we further increase CV =
40 percent, the advantage is up to 3.8 percent. This can be
explained by a buffering function of substitutions. Thus,

substitutions work as a buffer if firms make suboptimal deci-
sions on resource investments due to not correctly accounting
for demand.

Our generalized data reveal that correctly considering sto-
chastic demand results in 0.5 percent to 6.0 percent higher
profits. If stochastic demand is considered correctly, profit
differences increase with higher demand variation and lower
substitution levels.

Test 2: Effect of Substitutions. To analyze the effect of substitution,
we CSPMSUB considering substitution effects that are not re-
flected in CSPM.We add a posteriori substitution to the results of
CSPM to ensure comparability in the event of substitutions. This

is denoted by CSPM*, which is compared with CSPMSUB.
Figure 2 illustrates the change in required resources (left) and
profit (right) when substitution effects are taken into account.
This leads to significant profit improvements and lower resource
requirements. In all cases, profit rises while the required resources
fall for higher δi. Since resources with a higher profit margin
benefit from the substitution demand of unselected resources,
profit increases to 35 percent, and up to 35 percent fewer re-
sources are assigned to the firm’s portfolio (see Figure 2).

Test 3: Effect of Perishability of Resources. Service resources
perish over time. To express the associated costs, we model
shortage costs s and salvage values v. Precisely estimating those
costs, in reality, is difficult, however, as shortage costs are
opportunity costs for unsatisfied demand. Sales could be lost in
future periods due to shortages, but it is almost impossible to
calculate those effects exactly. Further, a firm’s reputation is
impaired by shortages, influencing demand. Salvage values v
are also difficult to set as these are estimates for prices at the end
of a period, for example, consumer willingness to pay in an
alternative sales channel, at later periods or for different re-
sources. To solve these estimation issues, ratios between over-
and underestimation costs can be analyzed. Table 3 shows that
the relationship of sj to vj for all j2N has a moderate impact on
profits and solution structure. The reference case is sj = vj. We
find that decreasing sj in relationship to vj leads to increasing
profits, while an increase in sj compared to vj leads to decreasing
profits. Resource structure varies between 5 percent and �3
percent for changes of ± 30 percent of sj against vj. This variance
results from the decision criteria applied: the higher the shortage
costs, the more the underestimation is penalized; the quantities
will increase, and the overall number of different resources will
decrease. The situation is reversed for higher salvage values.

If either sj or vj, j2N is set to zero, the profit and solution
structures change significantly, as illustrated in Table 4. The
analyses show a moderate impact of the relationship of sj to vj,
j2N, whereas integrating one of these cost parameters signif-
icantly influences decisions and profit levels. If s = 0, lost profit
for undershooting demand is lower, resulting in lower quantities
and enabling a higher amount of different resources. If v = 0,
overshooting of demand is less penalized, resulting in lower
quantities and a higher amount of different resources.

Hogreve et al. 9



Test 4: Effect of Capacity Constraints. Total capacity constraint is
a managerial decision determined by various overarching pa-
rameters. Table 5 shows that decisions regarding C significantly
impact profit and solution structures. Reducing capacity leads to
fewer resources and quantities per resource and a significant
profit decrease. For example, an increase in capacity of 30
percent leads to a profit increase of 17 percent and an increase in
different resources by 28 percent in our examples. However, the
changes in capacities have a limited impact on the average
quantity per resource. A capacity reduction of 30 percent only
leads to an average reduction in quantities of less than 1 percent.
On the contrary, a capacity increase of 30 percent leads to an
increase in quantities of 1.2 percent. Therefore, changes in C
influence the number of resources more than the quantities. This
is driven by our decision calculus, which weighs over- and

underestimation of demand. That means qj is only increased
until overestimation costs force a limit.

Test 5: Effect of Integrated Resource and Quantity
Planning. CSPMSUB can be treated as an integrated capacity
management problem with resource selection and quantity
determination. Therefore, we evaluate the effect of CSPMSUB

over a sequential planning (SP) approach whereby the resources
are selected, and then the quantities are determined. Comparing
CSPMSUB and SP, the integrated planning results in up to 13
percent higher profits on average and up to 23 percent fewer
resources (see Figure 3). The left part of Figure 3 shows that
resources required in CSPMSUB are smaller compared to SP for
δi≥0:6. With an increasing substitution level δi, i2N�, the
number of resources in the CSPMSUB decreases as more and

Figure 1. Panel A impact of stochastic demand and substitution level on solution structure. Panel B profit advantage of CSPMSUB over CSPM*SUB
(assumed CV = 1 percent).
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more demand from low-profit resources is transferred to high-
profit resources. This is because the higher the substitution
level, the lower the lost sales. The right part of Figure 3 il-
lustrates the average profit increase via integrated planning
depending on δi ¼ δ, j2N�. First, it is not surprising that the
integrated CSPMSUB achieves higher profits than SP. However,
there are two contrary effects. On the one hand, the higher the
lost sales (i.e., the lower the substitution rate), the more a firm
may be penalized for suboptimal resource configurations. On
the other hand, substitutions also work as a buffer for subop-
timal decisions, as suboptimal resource and quantity decisions
are still partially absorbed by substitutions. Thus, the profit delta
between the CSPMSUB and SP is the greatest when substitution
rates are lower. This buffer diminishes with lower substitution
rates; profit then deltas between CSPMSUB and SP increase as
substitution rates fall. As substitution effects further increase,
additional profit from other resources continues to grow, which

results in a convex coherence of profit increase and substitution
level. This also means that the CSPMSUB is more beneficial in
settings with either very low or high substitution rates.

Discussion

Theoretical Implications

Managing productivity is a major challenge for service man-
agers, as it requires an optimal selection from a limited and
substitutable set of resources to meet productivity and profit-
ability objectives. Technological advancements and shortage of
labor call for an efficient engagement of resources to match the
unknown customer demand, prompting calls from academia and
managerial practice for comprehensive support systems (Mittal
et al. 2005; Rust and Huang 2012; Rust, Zahorik, and
Keiningham 1995; Wirtz and Zeithaml 2018). Building on
the seminal work of Rust and Huang (2012), we develop such a
decision support system and extend knowledge on service
productivity. We demonstrate the functionality and applicability
of the proposed decision model in multiple, distinct service
settings and industries using five case studies. Moreover, to
increase external validity, we draw on data simulation and
generalize our insights through numerical examples.

First, we focus on optimizing the long-term resource
selection and quantity determination as levers of service
productivity management. The current literature examines
how different resources—employees, customers, processes,

Figure 2. Change in required resources and profit when substitution effects are regarded.

Table 3. Change in Profits and Solution Structure due to Variations for sj in Relationship to vj.

Average Changes sj ¼ 0:7vj sj ¼ 0:8vj sj ¼ 0:9vj sj ¼ 1:1vj sj ¼ 1:2vj sj ¼ 1:3vj

In profits +3.1% +1.8% +1.0% �1.2% �2.1% �3.0%
In number of resources +4.7% +1.9% +1.1% �1.1% �2.1% �3.1%

Note. Average of examples with N = 10, N = 30, and N = 50; reference sj ¼ vj.

Table 4. Change in Profits, Quantity, and Number of Resources by
Integrating sj ¼ s and vj ¼ v, j2N.
Average Change vs. v, s ≠ 0, v ≥ s s = 0 v = 0

In profits +12.0% �21.0%
In quantity �25.0% �15.0%
In average number of resources +33.0% +19.0%

Note. Average of 1,000 examples with N = 10, N = 30, and N = 50.
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and technology—influence how well services are delivered in
terms of service productivity (e.g., Hofmeister, Kanbach, and
Hogreve 2023a, 2023b; De Jong, De Ruyter, and Lemmink
2003; Marinova, Ye, and Singh 2008; Xue and Harker 2002).
Rust and Huang (2012) show how resource investment de-
cisions about either technology or labor as the major resource
influence optimal service productivity. Yet, in managerial
practice, firms usually apply multiple resources. Thus, we
consider multiple resources within our proposed decision
model, each generating revenues and costs. In so doing, we
provide a decision support system that determines the optimal
resource combination to invest in terms of type and quantity
of resource available to optimize service productivity.

Our five case studies focus on internal and external sub-
stitution of employees, customer coproduction, and technology
as major resources, revealing savings of up to 15.5 percent. Our
generalized results demonstrate the importance of integrated
resource and quantity planning compared to sequential planning
(i.e., the selection of type comes before the determination of
quantity). Our comprehensive approach results in up to 13
percent higher productivity and up to 23 percent lower number
of resources needed. In addition, we reveal how applying our
decision model makes resource planning more accurate and
reduces the costs of over- and undersupply of resources. Fur-
thermore, information gathered by a sensitivity analysis of the

capacity constraint can be leveraged for hierarchical planning
and be used to inform the overarching assignment of overall
budgets per business unit that determine the overall capacities.
Furthermore, our model can also be applied for an overarching
network planning or for planning resources on a regional or
governmental level.

Second, we are the first to consider substitution effects
among resources available in managing service productivity.
The literature and managerial practice prove that resources
might be temporarily or permanently unavailable. To overcome
resource shortages and/or demand peaks, substitutions among
resources might work as a buffer; customers might settle for an
alternative resource instead of switching the service provider.
Customers who are partial employees in coproduction processes
(Bowen 1986; Mills et al. 1983) or remote services using
technology are ripe for substitutions (Rust and Huang 2012).
Therefore, to get a finer-grained understanding of optimal re-
source allocation and, in turn, to optimize service productivity
by either buffering exceeded demand or compensating exceeded
capacities, we figure in permanent and temporary substitution.

Our case studies analyze substitution among employees of
different qualification levels, distinct departments, and
subsidiaries. We further consider substituting the internal and
external workforce, the input of employees and customers (i.e.,
coproduction), and human workforce and technology. We find

Table 5. Impact of Capacity Variations.

Average Change 70% C 80% C 90% C 100% C 110% C 120% C

In profits �22.5% �14.4% �6.7% +6.0% +11.9% +17.0%
In quantity �29.6% +19.2% �9.8% +9.6% +19.2% +28.4%
In average number of resources �0.6% �0.9% �0.3% +0.4% +0.6% +1.2%

Note. Average of 1,000 examples with N = 10, N = 30, and N = 50.

Figure 3. Change in required resources and profit when resources and quantities are integrated planned (CSPMSUB vs. SP).
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extraordinarily high savings for substitution among employees.
The case studies and simulated data reveal the significance of
substitution as a lever of service productivity. Considering
substitution in capacity management results in lower resource
requirements (up to 35 percent) and productivity improvements
(up to 35 percent). Consequently, resources with higher profit
margins benefit from substitution demand of unselected re-
sources. We also examined how substitution among employees
increases service productivity and discovered that considering
substitution is especially relevant given stochastic demand.
Substitutions are a buffer for non-optimal decisions (e.g.,
without a decision support system).

Third, we further enhance the deterministic decision model
of Rust and Huang (2012) by considering stochastic demand
that is more representative of actual customer behavior, espe-
cially for services. Demand and capacity cannot be backlogged,
so capacity management must account for volatility (e.g.,
Armistead and Clark 1994; Armistead, Johnston, and Slack
1993; Chase and Apte 2007). Considering the volatility of
demand, the applicability and usability of our model in man-
agerial practice increases as costs for over- and undersupply of
resources can be significantly reduced.

Our case studies and the generalization with simulated data
further stress the importance of considering stochastic demand
in service productivity management. Correctly accounting for
demand volatility lowers the costs of oversupply and shortages
and generates significant savings. Our data simulation further
reveals that correctly considering demand increases profits by
up to 6 percent. However, the solution structure significantly
changes if demand volatility is not considered. In fact, the
higher the demand volatility, the more it needs to be factored in
to manage service productivity. Otherwise, up to 70 percent of
resources may receive non-optimal levels.

Managerial Implications

Our research provides several insights on how to optimize
service productivity successfully. We delineate and prove the
relevance of three concrete challenges for service managers to
consider while achieving cost efficiency and quality effec-
tiveness. As outlined in further research, productivity in a
service context goes beyond a ratio of input and output. Service
productivity must be handled as a strategic decision variable
enabling firms to choose their optimal service productivity level
and optimize their profits. Service managers need to select the
optimal type and quantity of multiple yet constraint resources
while simultaneously considering the substitutability of re-
sources. This decision problem is further increased as customer
demand is highly volatile.

The insights gained in our studies allow for deriving several
managerial implications in managing these three challenges.
First, we showed that the optimal resource selection of multiple
resources available in terms of type and quantity serves as a
lever of success for service productivity. More concretely, we
show that focusing on the right resource type before considering
quantity aspects has a higher impact on service productivity. A

comprehensive planning framework and hierarchy with feed-
back loops would thus facilitate decision-making accuracy.
Consequently, we encourage managers to develop a compre-
hensive planning framework and hierarchy with iterative in-
formation flows. Doing so presupposes a clear understanding of
the tasks to be done and customer expectations.

The second challenge formulated focuses on substituting
effects among resources. We outline the outstanding im-
portance of substituting resources in managing service
productivity as it helps in overcoming resource shortages as
well as it buffers not correctly accounted demand. Hereby,
especially substituting among employees within a firm and
substituting employees by technology shows high gains in
service productivity. A further opportunity is to substitute
resources within a network and coordinate the resource en-
gagement across different entities (e.g., coordinating re-
sources for health services of a region).

From a managerial perspective, these insights underscore
the importance of enabling the substitution of these major
resources. We assume that certain services or customer
segments will accept substitution, so firms must carefully
monitor their substituting activities and corresponding de-
velopment of demand. We recommend that service managers
invest in transparency and clarity in job requirements and
customer expectations within a firm to enhance options for
substitution among employees and other company entities.
Furthermore, enabling job rotation, empowering employees
in terms of self-organization, and investing in internal
communication activities and knowledge transfer will further
enhance the substitutability of employees. Doing so, our
support system enables managers to optimize their resource
investments and enhance flexibility. Regarding human re-
source management, we provide support for planning per-
sonnel deployment (within a department, across departments
and locations), especially during peak times of demand or
given personnel absence due to vacations or disease.

The third challenge signposts the importance of correctly
accounting for customer demand, which is not always known
beforehand. As outlined before, substituting effects among
resources buffer wrong estimated demand and thus further
outline the importance for service managers to consider our
suggestions formulated above. Moreover, based on our
findings, we strongly recommend that service managers
consider stochastic demand to improve capacity management.
Furthermore, investing in market research and monitoring de-
mand will make capacity planning and decision-making more
accurate.

Limitations and Directions for Further Research

Our theoretical decision support models significantly add to
the research stream of service productivity. However, to
provide a balanced discussion, we must recognize several
limitations. Discussing these limitations raises avenues for
further research. First, our insights are based on five case
studies, their specific context (e.g., firm size, budget
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constraints, and employee qualification levels), and their
current situation. We used simulated data to further gener-
alizations the findings. Although we chose our case studies in
an economic context that suffers from service productivity
management like high coproduction, heterogeneity of the
service outcome, and personnel-intense service environments
(see Anderson, Fornell, and Rust 1997), service productivity
might operate differently in other industries. Rust and Huang
(2012) indicate that technology tremendously impacts opti-
mal service productivity. Therefore, economic environments
characterized by highly dynamic technological development
might perform differently when it comes to service pro-
ductivity. Also, no long-term effects of resources being
unavailable are considered. We assume a constant service
productivity among the workers and over time. Our model
does not include incentives or other system changes (e.g.,
team structure, further technological support). We apply
historical productivities and hence the average productivity
of resources. We apply examples where substitutions among
the team members are possible and necessary. We encourage
researchers to conduct studies that take into account the
longitudinal effects of resource optimization on service
productivity. Doing so would require a multi-period model.
For example, there might be long-term effects of substituting
resources on demand and, in turn, on profitability. An ex-
tension could also include an analysis of seasonal effects or
other variable demand patterns. Furthermore, as some of the
data are based on expert estimations (e.g., substitution rates),
objectivity might suffer. To further validate our approach, a
more extensive dataset is needed.

Second, in formulating our substitution effects, we follow
assumptions in ED models. The resulting model is cruder but
has the advantage of being much easier to analyze and requires
less data. However, more knowledge about substituting effects
and their effects on productivity is needed.

Third, we develop a demand function wherein the demand
depends on resources. We are aware, however, that there are
further demand sources. For example, having higher quan-
tities of one particular resource may also increase demand,
for example, a certain type of service is offered in high
quantity, thereby increasing demand due to higher visibility.
Furthermore, the perceived quality of identical resource types
might differ. We, therefore, encourage further research to
explore additional opportunities to represent service quality
and to show how service quality impacts optimal resource
selection and service performance. We also assume that
demand follows a normal distribution. Our modeling and
solution approach is capable of coping with different demand
distributions that include any positive demand. Further re-
search is needed into how this impacts decisions and profits.

Finally, interdisciplinary research on service productivity is
at an early stage. As discussed, using quantitative and modeling
methods for service productivity-related problems can be
beneficial. We would welcome more empirical research ad-
dressing the managerial challenges of service productivity from
an interdisciplinary perspective.
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