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Abstract
Aerial drone delivery has great potential to improve delivery time in package
delivery, as drones can fly autonomously over obstacles at a possibly higher speed
than trucks. The benefits of drones in delivery can even be increased in a truck-
and-drone tandem where a truck carries one or multiple drones and releases
them at advantageous places. This problem is known as the traveling salesman
problem with multiple drones (TSPmD). We focus on a variant of this problem,
where the drones have two options after serving the customer: they can return
to a node the truck visits at a later stage (sidekick) or return to the same node
they were launched from (loop).
While several variants of the TSPmD have been studied, considering sidekicks
and loops in combination with minimizing the makespan is not represented so
far. We fill this gap and introduce an efficient two-indexed mixed-integer linear
program (MILP) formulation that provides new optimal solutions for instances
with up to 28 nodes for benchmark purposes. Our MILP formulation outperforms
two state-of-the-art MILP formulations from the literature considering one drone.
In a case study, we analyze the impact on the minimization of the makespan when
allowing drones to perform loops. Loops mainly become relevant when drones
travel faster than trucks resulting in average makespan savings of up to 2.7%.

Keywords: Unmanned aerial vehicles, Routing, Last-mile delivery, Mixed-integer
linear program, Benchmark instances
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(a) Performed sidekick by a drone. (b) Performed loop by a drone.

Fig. 1: Illustration of drone routes.

1 Introduction

Parcel delivery via aerial drones is much considered in academia [e.g., 1] and also
in practice [e.g., 2]. One known delivery option is the interaction of one or more
drones with a delivery truck. The routing of both a truck and one drone is known
in the literature as traveling salesman problem with drone (TSPD). In the case of
multiple drones, the problem is called traveling salesman problem with multiple drones
(TSPmD) [e.g., 3]. Initially introduced by [1], many publications on the truck-and-
drone tandem only consider drones performing sidekicks, which means that they return
to a node the trucks visits at any later stage in its tour (see Figure 1a). However,
only a few publications consider additionally drones performing loops, meaning drones
return to the same node they are launched from (see Figure 1b). Thereby, [4] already
found that drones perform loops in the final found routing if these are allowed.

Considering multiple drones that can perform both sidekicks and loops while min-
imizing the makespan is not represented in the literature, and thus, the literature also
lacks suitable benchmark instances. We fill this gap and introduce a compact two-
indexed mixed-integer linear program (MILP) formulation of this TSPmD. This MILP
formulation is easily implemented and outperforms MILP formulations for the single
drone case from the literature for larger instances, i.e., it finds the optimal solution
faster.

This paper contributes to the literature as follows: First, we introduce the TSPmD
with drones performing both sidekicks and loops while minimizing the makespan.
Second, we formulate the problem as MILP with only two-indexed variables that
outperforms MILP formulations from the literature for the single drone case. Third,
we present new optimal solutions for the instances of [1] and [5] for up to 28 nodes for
benchmark purposes. Fourth, in a numerical study, we analyze the impact of allowing
drone loops for different numbers of drones on minimizing the makespan and the
runtime of a MILP solver and present managerial insights.

The structure of this paper is as follows. In Section 2, we describe the decisions and
assumptions in detail. In Section 3, we present the relevant literature and delimit our
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paper to this literature. Next, we introduce the MILP in Section 4. In Section 5, we
describe the instances for which we present benchmark results, analyze the runtime,
and give managerial insights on allowing drone loops. Last, in Section 6, we summarize
the results and give a brief outlook.

2 Problem setting

We decide on the routing of one truck and its equipped multiple drones that need to
visit certain nodes, i.e., customers. Additionally, we also decide if a customer is served
by a truck or else by drone. For this, we minimize the makespan, i.e., the time until
the last vehicle has returned to the depot, starting with the first release at time zero.
The peculiarity of the considered problem setting is that we consider multiple drones
and these can both perform sidekicks and loops. Additionally, we make the following
assumptions:

• Traveling times of the truck and the drones generally differ and thus, different
speeds and distance metrics can be considered.

• Drones have an endurance limit, i.e., maximum flight time per flight.
• Assumptions regarding customers:

– All customers must be served once by truck or by drone.
– Some customers cannot be served by drones, but all by truck [e.g., 1].
– The truck has a sufficient high payload to serve all customers in one tour.
– A drone can serve one customer per trip and has to return to the truck afterwards.

• Assumptions regarding synchronization:

– If drones return to a node, the truck continues its tour at this node as soon as
all returning drones have landed.

– Drones do not wait for the truck but reduce their speed instead to a certain extent
[e.g., 1, 6]. This allows to avoid unrealistic routes where the drone has to wait for
almost the complete truck’s tour at a node, for example, at the end of the tour.

– Drones only return to the truck at a node the truck visits. This node must be
the same node they are launched from (loop) or a node the truck visits later in
its tour (sidekick).

– Drones can perform loops at the depot, but these are only allowed at the end of
the truck’s tour, which results in waiting times at the end of the tour [e.g., 7].

– Each drone can only perform at maximum one loop at a node.

• There are no service, preparation, or rendezvous times for trucks and drones.
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• There are no loading or battery change times for drones.

Exemplary routing plan

For a better understanding of the problem setting, Figure 2 presents an example
routing of the truck equipped with two drones serving ten customers. Customers
(C1,...,C10) are numbered in the order of serving. Starting at the depot, C1 is served
by the truck first, where one drone is launched to perform a sidekick to serve C2. The
truck and the drone meet again at C3, where a second drone performs a loop and
serves C4. Note that the truck continues its tour as soon as both drones have returned
from serving C2 and C4. Next, the truck serves customer C5 and launches a drone to
perform a sidekick to serve C7. Note that the drone can return to any node, the truck
visits at a later stage as long as the flight time is within the endurance limit. At C6,
the second drone is launched to perform a sidekick to serve C8. Both drones return
to the truck at C9. The truck and its drones return to the depot afterwards, where
again, one drone is launched to serve C10 in a loop. The tour is finished as soon as
this drone returns. Thus, the truck waits at the depot for the drone to return.

Depot

Customer (Truck)

Customer (Drone)

Truck tour

Drone tour

𝐶𝐶1

𝐶𝐶4

𝐶𝐶2

𝐶𝐶3
𝐶𝐶5

𝐶𝐶6

𝐶𝐶7

𝐶𝐶8

𝐶𝐶9

𝐶𝐶10

Fig. 2: Exemplary routing plan for ten customers served by one truck equipped
with two drones.

3 Related literature

In this section, we differentiate this paper to the relevant literature regarding truck-
and-drone tandems, where one or multiple trucks are equipped with at least one drone.
Especially, we only focus on literature that includes a MILP formulation without
special assumptions like, e.g., battery consumption or a sole supply of drones where
the truck only has auxiliary means to launch drones at advantageous locations. First,
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we present the literature where drones only perform sidekicks, and second, we present
the literature where drones can perform both sidekicks and loops. We recommend
the paper of [8] for an extensive review of drone operations and [9] for a more recent
literature review.

Sidekicks

The truck-and-drone tandem is initially introduced by [1] who present a three-indexed
MILP formulation with makespan minimization, which has difficulties to be solved
to optimality, if instances with eleven nodes are considered. As a result, [10] and
[11] published new and improved modelling approaches, which accelerate a standard
solver. Further, multiple publications consider close problem settings with either a
different objective or extensions like an increased number of trucks or drones. So [3]
and [12] consider multiple drones and [13] and [14] additionally multiple trucks. Cost
minimization is considered by [15] (single truck) and [16] (multiple trucks) who present
heuristic solution approaches.

Sidekicks and loops

Drone loops are rarely represented in the literature, however, [4] show that the final
found routing might include drone loops as well. The authors analyze – among other
things – the number of loops and sidekicks performed in a truck-and-drone tandem
with multiple trucks and drones. Drones’ speed was found to be a significant influ-
encing factor on performed loops. [17] propose two MILP formulations and analyze
– among other things – the impact of loops on the objective of cost minimization,
if the truck is equipped with an unlimited number of drones. The authors find that
allowing drones to perform loops can significantly reduce routing costs. However, an
analysis of the impact on minimizing the makespan when permitting loops and for
different numbers of drones is missing. [18] present a multiple TSPD problem where
the assumption that a drone might only return to the same truck is relaxed and thus
drones can return to a different truck. The authors consider loops but only if performed
at the depot. [7] derive several benchmark results for the instances of [1] for differ-
ent drone settings including loops, however, multiple drones are missing. [19] and [20]
present a two-indexed formulation of a TSPD. While [19] additionally introduce an
exact branch-and-price approach, [20] accelerate the solver by adding upper and lower
bounds by, e.g., starting with an initial solution that is generated by a greedy inser-
tion heuristic, and additionally assess the data in a pre-processing step to reduce the
number of possible drone arcs. Considering multiple drone delivery options, [6] present
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both a MILP formulation and heuristics solution approach for a problem setting where
drones may launch from trucks and additionally from the depot or microdepots.

Differentiation to the literature

Table 1 summarizes the major assumptions, the objective, the largest number of vari-
ables’ indices in the MILP formulation, and the largest instance size (including the
depot once) solved to optimality with the MILP formulation. While there are three
two-indexed formulations for the TSPD [10, 19, 20], there is one publication with a
two-indexed formulation for the TSPmD [3]. However, among other things, the author
does not consider loops for drone delivery.

The truck-and-drone tandem presented in this paper extends the one of [6]. In
contrast to their paper, we minimize the makespan, have additional assumptions (e.g.,
the return time of drones to the depot is sufficient), and an enhanced modelling version
of some constraints accelerating the runtime of the solver.

Assumptions Objective

# Trucks # Drones Loops Costs Make- # Variables’ Instance
(per truck) span indices size

[1] 1 1 ! 3 -
[15] 1 1 ! 3 11
[10] 1 1 ! 2 14
[11] 1 1 ! 5 11
[16] n 1 ! 3 13
[3] 1 m ! 2 14
[12] 1 m ! 3 25
[13] n m ! 4 9
[14] n m ! 5 9
[20] 1 1 ! ! 2 32∗

[7] 1 1 ! ! 3 11
[19] 1 1 ! ! 2 10
[17] 1 m ! ! 3 20
[4] n m ! ! 3 11
[18] n m !∗∗ ! 3 10
[6] n m ! ! 3 15
This paper 1 m ! ! 2 28

Table 1: Comparison to the relevant literature. Note that each publication
considers drones performing sidekicks.

∗ The authors added lower and upper bounds and a pre-processing step before
running the MILP, ∗∗ drone loops only allowed at the depot.
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To sum up, this paper introduces the first TSPmD considering both loops and
sidekicks while minimizing the makespan. Moreover, we present a two-indexed MILP
formulation that can solve instances with more nodes.

4 Two-indexed TSPmD formulation

In this section, we present the MILP formulation for the TSPmD. First, in Section 4.1,
we describe the proceeding of creating the two-indexed formulation. Second, in
Section 4.2, the used index sets, parameters, and variables are introduced. Third, in
Section 4.3, the MILP formulation is presented, and last, in Section 4.4, the adjust-
ment for preventing loops is described, as this is needed in the numerical study to
show the impact of loops.

4.1 Proceeding of two-indexed formulation

A full flight of a drone can be interpreted as a three-node sortie (i, c, j) including the
launch node i, the served customer c, and the landing node j [1], and thus consisting
of the outbound flight to the customer and the return flight to the truck. To formulate
a TSPD using only two-indexed variables, the drone’s flights are split up into two
variables instead of one: one for the outbound −→y i,c and one for the return flights←−y c,j

and these flights are matched in the constraints [e.g., 10].
Considering multiple drones per truck, each vehicle is typically represented in an

index set for vehicles [e.g., 13], which is, however, not necessary, i.e., the TSPmD can
be formulated without the index set for vehicles. Each drone flight can be defined over
the same variables −→y i,c and ←−y c,j with a flow formulation [3]. For this, an auxiliary
variable (πi,j) is introduced to monitor the number of drones on the truck traveling
from i to j.

To also include loops in the MILP, which only affect the truck’s waiting time, a
variable for the truck’s waiting time ϕi,j is defined with two indices. ϕi,j determine
the truck’s waiting time at node j for each node i where a drone is launched, and thus
the variable includes sidekicks (i ̸= j) and loops (i = j). The truck’s waiting time at
node j results from the variable ϕi,j for each i. Thus, in contrast to the literature for
the TSPD [e.g., 19, 20], there is no need for variables that track drones traveling an
arc while staying on the truck, i.e., the drone is not flying.
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4.2 Decisions and relevant parameters

We consider the index set for customers I, customers including the depot I0, and
customers that can be served by both the truck and drones ID. In contrast to, e.g., [7],
we include the depot only once in the index set I0. Therefore, constraints regarding
a launch or return at the depot are handled differently.

The decisions taken are the routing of the truck (xi,j) and the routing of the drones
(−→y i,c, ←−y c,j). Additionally, the model decides on the customers served by truck (zT

c )
and drones (zD

c ).
The truck is equipped with m drones, each with an endurance e per flight. Similar

to, e.g., [7], the different speeds or distance metrics of the truck and drones are also
considered in tT

i,j , and tD
i,j , respectively.

Index sets

I, I0, ID Node sets for customers, customers and the depot, and customers that can be served by
drones.

Parameters

e Endurance time for each drone flight.
m Number of drones on the truck.
Mbig

l
Big M for l = 1, 2, 3, 4.

tT
i,j , tD

i,j Truck’s (drones’) traveling time from node i ∈ I0 to node j ∈ I0.

Decision variables

xi,j Binary variable indicating if the truck travels from node i to j (i, j ∈ I0).
−→y i,c Binary variable indicating if a drone is launched at node i ∈ I0 to serve customer c ∈ ID.
←−y c,j Binary variable indicating if a drone returns from customer c ∈ ID to node j ∈ I0.
zT

c , zD
k Binary variable indicating if customer c ∈ I (k ∈ ID) gets served by truck (drone).

Auxiliary variables

uc Real-value variable for subtour elimination by [21] (c ∈ I).
λi,c Binary variable indicating if customer c ∈ ID is served in a drone loop launched at node

i ∈ I0.
πi,j Positive integer variable monitoring the number of drones that travel on the truck from

node i to j (i, j ∈ I0) and thus do not serve a customer at that time.
τi,j Positive real-value variable indicating the accumulated travel time of the truck traveling

from node i to j including the waiting times for drones at node j ∈ I. Note that waiting
times at the depot are excluded and must be considered separately in the objective function.

τ∗ Positive real-value variable indicating the makespan.
ϕi,j Positive real-value variable indicating the waiting times of the truck on the last returning

drone at node j, if the drone performs a sidekick (i ̸= j) or a loop (i = j).

Table 2: Index sets, parameters, and decision and auxiliary variables.
Note that binary variables have a value of 1, if they are true, and 0 otherwise.

Table 2 describes index sets, parameters, and decision and auxiliary variables in
detail.
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4.3 MILP

Objective function

The objective is to minimize the makespan.

min τ∗ (1)

Definition of the makespan

τ∗ is defined in Constraint 2 as the truck’s accumulated travel time τi,0 when arriving
at the depot plus the truck’s waiting time for returning drones at the depot, as these
are not included in τi,0 when returning to the depot. This objective function results
in runtime issues, as a solver has a severe problem finding a lower bound [3]. To
overcome this issue, we add another definition of the makespan, which helps to find
strong lower bounds, particularly in initial iterations (Constraint 3). Note that either
Constraint 2 or Constraint 3 can be chosen. The solver has the best runtime if both
constraints are chosen.

τ∗ =
∑
i∈I0

(
τi,0 + ϕi,0

)
(2)

τ∗ =
∑

i,j∈I0

(
tT
i,j · xi,j + ϕi,j

)
(3)

Set partitioning problem

Constraints 4 ensure that the problem is a set partitioning problem. Constraints 5
determine the customers that are served by truck and Constraints 6 the customers
that are served by drones.

zT
i +

{
zD

i , i ∈ ID

0 , else

}
= 1 ∀i ∈ I (4)∑

i∈I0

xi,j = zT
j ∀j ∈ I (5)

∑
i∈I0

−→y i,c =
∑
j∈I0

←−y c,j = zD
c ∀c ∈ ID (6)

Truck related constraints

Constraints 7 conserve the truck’s flow. Subtours are eliminated by Constraints 8 [21].
M big

1 can be set as the number of nodes |I0|. The truck is launched at maximum once
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from the depot (Constraint 9). Note that a solution might be that all customers are
served by drones that perform a loop at the depot and thus the truck does not leave
the depot. Constraints 10 ensure that the truck only travels to a different node.

∑
i∈I0

xj,i −
∑
i∈I0

xi,j = 0 ∀j ∈ I0 (7)

ui + 1 ≤ uj + M big
1 · (1− xi,j) ∀i, j ∈ I (8)∑

j∈I0

x0,j ≤ 1 (9)

∑
i∈I0

xi,i = 0 (10)

Drone related constraints

Constraint 11 defines the number of drones the truck carries starting from the depot.
Constraints 12 are balance constraints during the tour to ensure that the number of
drones on the truck that leaves a node is equal to the number of drones that were
previously on the truck minus launching plus landing drones. The number of drones
carried by truck in its complete tour is limited in Constraints 13.

Drones may only launch and land on nodes, the truck has visited (Constraints 14).
Drone flights must not exceed an endurance (Constraints 15). Additionally, the truck
must pick up the drone within the considered endurance limit (Constraints 16, if
launched at node i ∈ I and Constraints 17, if launched at the depot). M big

2 can be
set as the truck’s maximum possible tour length.

∑
j∈I

π0,j +
∑

c∈ID

(−→y 0,c − λ0,c

)
= m (11)

∑
j∈I0:i̸=j

πi,j =
∑

k∈I0:k ̸=i

πk,i +
∑

c∈ID

(
←−y c,i −−→y i,c

)
∀i ∈ I (12)

πi,j ≤ m · xi,j ∀i, j ∈ I0 : i ̸= j (13)
−→y j,c +←−y c,j ≤ 2 ·

∑
i∈I0

xi,j ∀c ∈ ID, j ∈ I (14)

tD
i,c · −→y i,c + tD

c,j · ←−y c,j ≤ e ∀i, j ∈ I0, c ∈ ID (15)∑
f∈I0

(
τf,j − τf,i

)
−M big

2 · (2−−→y i,c −←−y c,j) ≤ e ∀i ∈ I, j ∈ I0, c ∈ ID (16)

∑
f∈I0

τf,j −M big
2 · (2−−→y 0,c −←−y c,j) ≤ e ∀j ∈ I0, c ∈ ID (17)
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Setting up the truck’s travel time

The truck’s accumulated travel times at the beginning of the tour are defined in
Constraints 18. Constraints 19 defines the lower and Constraints 20 the upper bound
for the accumulated travel times during the truck’s tour. These are equal if the truck
travels from node i to node j. The accumulated travel time is zero, if the truck does
not travel from i to j (Constraints 21).

τ0,j = tT
0,j · x0,j ∀j ∈ I (18)

τi,j ≥ tT
i,j · xi,j +

∑
f∈I0

(
τf,i + ϕf,i

)
−M big

2 · (1− xi,j) ∀i ∈ I, j ∈ I0 (19)

τi,j ≤ tT
i,j · xi,j +

∑
f∈I0

(
τf,i + ϕf,i

)
+ M big

2 · (1− xi,j) ∀i ∈ I, j ∈ I0 (20)

τi,j ≤M big
2 · xi,j ∀i, j ∈ I0 (21)

Sidekicks

Constraints 22 (at the beginning of the tour) and Constraints 23 (during the tour)
ensure that drones do not return to a node that was visited by the truck previously
on its tour. M big

3 can be set as twice the reciprocal value of the truck’s shortest travel
time tT

i,j between two nodes. M big
4 is dependent on the values of M big

2 and M big
3

and has to be at least M big
2 · M big

3 . There are at maximum m sidekicks per node
(Constraints 24). The lower bound of the truck’s waiting time arriving at node j is
presented in Constraints 25 at the beginning of the tour and in Constraints 26 during
the tour. The inequality exists since the truck waits at a node until the last drone has
returned.

−→y 0,c +←−y c,j ≤M big
3 ·

∑
f∈I0

τf,j

+ M big
4 · (2−−→y 0,c −←−y c,j) ∀j ∈ I, c ∈ ID (22)

−→y i,c +←−y c,j ≤M big
3 ·

∑
f∈I0

Å
τf,j − τf,i

ã
+ M big

4 · (2−−→y i,c −←−y c,j) ∀i ∈ I, j ∈ I0, i ̸= j, c ∈ ID (23)∑
c∈ID

(−→y i,c − λi,c

)
≤ m ∀i ∈ I0 (24)

ϕ0,j ≥ tD
0,c · −→y 0,c + tD

c,j · ←−y c,j
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−
∑

f∈I0

τf,j −M big
2 · (2−−→y 0,c −←−y c,j) ∀j ∈ I, c ∈ ID (25)

ϕi,j ≥ tD
i,c · −→y i,c + tD

c,j · ←−y c,j

−
∑

f∈I0

(
τf,j − τf,i − ϕf,i

)
−M big

2 · (2−−→y i,c −←−y c,j) ∀i ∈ I, j ∈ I0, c ∈ ID : i ̸= j (26)

Loops

The truck waits at node i until all drones planned to return have returned to node i

(Constraints 27). Constraints 28 ensure that drones are only launched to perform
loops if there is a sufficient number of drones on the truck at node j. Constraints 29
set up λi,c, if a customer is supplied in a loop. If a drone starts from node i to serve
customer c and returns to node i, λi,c must be set to 1 (left side). If λi,c is set to 1, a
drone must start from and return to node i (right side).

ϕi,i ≥ 2 · tD
i,c · λi,c ∀i ∈ I0, c ∈ ID (27)∑

i∈I0

πi,j +
∑

c∈ID

(←−y c,j − 2 · λj,c

)
≥ 0 ∀j ∈ I0 (28)

−→y i,c +←−y c,i

2 ≥ λi,c ≥ −→y i,c +←−y c,i − 1 ∀i ∈ I0, c ∈ ID (29)

Definition of variables

Last, decision and auxiliary variables are defined.

xi,j ,−→y i,c,←−y c,j , λi,c ∈ {0, 1}, πi,j ∈ N, ϕi,j , τi,j , τ∗ ∈ R+ ∀i, j ∈ I0, c ∈ ID (30)

zT
i , zD

c ∈ {0, 1}, ui ∈ R ∀i ∈ I, c ∈ ID (31)

4.4 Adjustment for preventing drone loops

Variable structures are generally chosen such that drones might perform loops. Thus,
to prevent drone loops the variable λi,c needs to be removed from the Constraints 11,
24, and 30, and the Constraints 32 need to replace Constraints 27, 28, and 29. These
constraints prevent drones to launch and return to the same node.

−→y i,c +←−y c,i ≤ 1 ∀i ∈ I0, c ∈ ID (32)
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5 Numerical experiments

In this section, we describe the instances for which we present new benchmark solu-
tions (Section 5.1). Next, we analyze the runtime solving the MILP and compare the
runtime of our MILP to MILPs for the TSPD from the literature (Section 5.2). Last,
we show the impact of considering drone loops on minimizing the makespan and the
solver’s runtime for different drone speeds and endurance limits (Section 5.3).

The MILP is implemented in OPL, solved using CPLEX v12.10., and executed on
an AMD Ryzen 9 3950X with 32 GB of RAM (single thread). Each instance has a
runtime limit of 3600 seconds.

5.1 Benchmark instances

In the following, we describe two published instance sets. Detailed solutions of each
individual instance for benchmark purposes can be found in Appendix A for the
instances of [1] and in Appendix B for the instances of [5]. We present results for
these instances, if one (m = 1), three (m = 3), and a theoretically unlimited number
of drones (m =∞) are considered.

Instances of [1]

[1] published twelve instances with eleven nodes (ten customers and the depot) whose
locations are uniformly distributed in an 8 × 8 mile region. The authors consider
two endurance limits of 20 and 40 minutes and three different drone-to-truck speed
ratios α ∈ {0.6, 1.0, 1.4}. Thus, there are 72 instances for which we present results for
benchmark purposes. Within the instances, the truck follows a Manhattan distance,
while the drone flies the Euclidean path. 80 - 90% of all customers can be served via
drones.

Instances of [5]

[5] published instances with 20 and 50 customers that are uniformly distributed with
coordinates from 0 to 100. From these instances, we consider 16, 20, 24, 28, and 32
nodes as in [20]. These are drawn by taking the first 16, 20, 24, 28, and 32 nodes
from the instance with the next-largest number of nodes, i.e., 16 and 20 nodes from
instances with 20 nodes, and 24, 28, and 32 nodes from instances with 50 nodes. The
endurance limit is set to 30, and drones have the same speed as the truck. Both drones
and the truck travel the Euclidean path. All customers can be served by drones.
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5.2 Runtime analysis

For the runtime analysis, the instances are aggregated by the number of nodes |I0|
and the endurance e. Table 3 presents for each number of drones (m = 1, m = 3, and
m = ∞) the number of instances solved to optimality, the average runtime needed
in seconds and the average optimality gap, if the solver could not find the optimal
solution within 3600 seconds.

m = 1 m = 3 m =∞

|I0| e Opt CPU [s] Gap Opt CPU [s] Gap Opt CPU [s] Gap

[1]
11 20 36/36 104 0% 36/36 6 0% 36/36 4 0%
11 40 33/36 880 1% 36/36 16 0% 36/36 4 0%
Summary 69/72 492 72/72 11 72/72 4

[5]

16 30 10/10 11 0% 10/10 6 0% 10/10 11 0%
20 30 10/10 247 0% 10/10 299 0% 10/10 319 0%
24 30 8/10 1327 1% 8/10 1319 1% 8/10 1387 1%
28 30 1/10 3294 4% 1/10 3305 4% 2/10 3237 4%
32 30 0/10 3600 12% 0/10 3600 10% 0/10 3600 11%
Summary 29/50 1696 29/50 1706 30/50 1711

Table 3: Aggregated results for instances of [1] and [5].

Findings: For the instances of [1], we could find all optimal solutions except three
if one drone is considered. In particular, it is noticeable for all these instances that
the optimal solution is found much faster when multiple drones are considered. For
the instances of [5], we could find all optimal solutions for instances with 16 and
20 nodes, eight of ten optimal solutions for instances with 24 nodes, and up to two
optimal solutions for instances with 28 nodes when considering one, three, and an
infinite number of drones. In contrast to the instances of [1], there is no significant
change in runtime if multiple drones are considered.

Runtime comparison to the literature

The two-indexed MILP formulation of the TSPmD presented in this paper can solve
instances with more nodes than the literature (see also Table 1). So, [1] could not solve
one of the 72 instances with eleven nodes to optimality. Considering the instances of
[5], [20] could find optimal solutions for up to two out of the ten instances with 24
nodes. However, it is difficult to compare the MILPs based on results in the literature,
as they have slightly different assumptions, a different solver (or version of solver)
is used, and they were run on a computer with different RAM. Thus, to show the
efficiency of our MILP formulation in comparison to the literature, we implemented
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the MILPs of [19] and [20] in OPL. [19] have an arc-based formulation and [20] a node-
based formulation of the TSPD, where additional variables track the drone’s tour,
even if it is carried on the truck. Both MILP formulations are chosen for comparison,
as they are efficient two-indexed MILP formulations for the TSPD and include loops
while minimizing the makespan.

MILP of [19] MILP of [20] This paper

|I0| e Opt CPU [s] Gap Opt CPU [s] Gap Opt CPU [s] Gap

[1]
11 20 24/24 238 0% 24/24 93 0% 24/24 148 0%
11 40 24/24 76 0% 23/24 399 1% 21/24 870 2%
Summary 48/48 157 47/48 246 45/48 509

[5]

16 30 0/10 3600 19% 10/10 27 0% 10/10 11 0%
20 30 0/10 3600 28% 10/10 576 0% 10/10 247 0%
24 30 0/10 3600 30% 5/10 2165 4% 8/10 1327 1%
28 30 0/10 3600 36% 0/10 3600 9% 1/10 3294 4%
32 30 0/10 3600 42% 0/10 3600 17% 0/10 3600 12%
Summary 0/50 3600 25/50 1994 29/50 1696

Table 4: Aggregated results running the MILPs of [19], [20], and from this paper for
the instances of [1] and [5]. All MILP formulations represent a TSPD (single drone)

with the same objective and assumptions.

We tested both MILP formulations for the instances of [1] and [5]. However, only
a subset of the instances of [1] is suitable, because both MILP formulations require
a drone speed that is at least the same as the truck’s speed. Thus, only 48 of the 72
instances, but all of [5] are considered. The MILP of [20] is additionally adjusted by
endurance constraints that limit the waiting times of drones (similar to Constraints
16 and 17). This is already considered by [19]. Note that for implementing the MILPs,
we also consider the enhanced modelling assumptions to accelerate the MILP solver
presented in the papers (similar to Constraints 3), but no lower or upper bounds or
any pre-processing steps as in [20]. Table 4 presents the aggregated results solving the
three MILPs. The column gap shows the gap to the own lower bound of the respective
model. Note that all MILP formulations represent the same problem setting of the
TSPD with one drone that can perform both sidekicks and loops.

Findings: The MILP of [19] works best for the instances of [1], as all 48 instances
could be solved optimally with the lowest runtime on average, but, on the other
hand, not one instance with 16 or more nodes could be solved. Running the MILP
of [20], optimal solutions for all ten instances with 16 and 20 nodes and five out of
ten instances with 24 nodes could be found. In contrast, our MILP formulation could
additionally be solved to optimality for three more instances with 24 nodes and one
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instance with 28 nodes. Moreover, the average runtime and the optimality gap are
significantly lower. Thus, the MILP presented in this paper outperforms the literature
for larger instances. Additionally, it should be noted that our MILP formulation is a
more general formulation as drones might have lower speeds than trucks and multiple
drones can be considered without any increase in runtime.

5.3 Impact of drone loops

Drone loops as an additional routing option for drones might reduce the makespan
τ∗, but on the other hand, considering loops might increase the solver’s runtime on
average, which in turn can be problematic, as truck-and-drone tandems are difficult to
solve even for heuristic solution approaches [e.g., 16]. So, [4] already found that drones
perform loops in the solutions, and [17] found that loops might reduce total routing
costs. However, in the solutions presented by [7] drones do not perform a single loop.
Thus, in the following, we give detailed insights on the makespan reduction and the
runtime increase when allowing loops compared to prohibiting loops for the instances
of [1] and [5] with a varying number of drones m, endurance limits e, and truck-to-
drone speed ratios α. For this, we only compare instances solved optimally for the
case with and without drone loops.

Instances of [1]

Table 5 presents the reduction of the makespan τ∗ and the increase in runtime of the
MILP solver in percent if drones can perform loops. For this, the makespan considering
loops is compared to the makespan, if loops are forbidden. We generate results for
three different numbers of drones (m = 1, m = 3, m = ∞), two endurance limits
(e = 20, e = 40), and five speed factors (α = 0.6, α = 1.0, α = 1.4, α = 2.0, α = 2.8).
These are two additional speed factors (α = 2.0, α = 2.8) compared to the data
considered in [1] as the speed has a significant impact on the number of performed
loops [4]. Each entry presents the average τ∗ reduction or runtime increase of up to
twelve instances. Note that there might be less than twelve instances considered if
they are not solved to optimality. A negative entry in column “Runtime increase [%]“
means there is a decrease in runtime.

Findings. Considering instances of [1] with eleven nodes, loops can reduce the
makespan τ∗ by up to 1.9% on average. For these instances it can be stated that
there are only improvements in the objective considering loops if drones travel faster
than trucks (α > 1). Note that in these instances, the drone follows a Euclidean
path contrary to the truck that travels the Manhattan distance. The improvements
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considering loops occur especially when few drones are considered. However, slow-
traveling drones are more likely to perform loops when the truck is equipped with
multiple drones. If the truck is equipped with an unlimited number of drones, there
are nearly no reductions of τ∗. Moreover, endurance does not have an impact on
performed loops. The runtime, on the other hand, increases significantly by up to
113%, considering loops as an additional routing option. The runtime increase is
significantly higher if the truck is equipped with only one drone.

m = 1 m = 3 m =∞

τ∗ Runtime τ∗ Runtime τ∗ Runtime
|I0| e α reduction [%] increase [%] reduction [%] increase [%] reduction [%] increase [%]

11

20

0.6 - 62.2 - -2.2 - 7.3
1.0 - 23.4 - 33.5 - -11.7
1.4 - -4.8 0.1 16.5 0.6 18.8
2.0 0.6 79.1 0.1 9.4 - 3.8
2.8 1.7 57.4 0.5 4.5 - 5.9

40

0.6 - 48.7 - 34.4 - 37.8
1.0 - 23.2 - 14.4 - 10.7
1.4 - 29.1 0.3 -6.0 - 7.2
2.0 0.6 113.3 0.1 46.2 - -0.4
2.8 1.9 5.0 0.5 32.0 - 1.6

Average 0.5 43.7 0.2 18.3 0.1 8.1

Table 5: Makespan reduction and the solver’s runtime increase, if drones can
perform loops, for the instances of [1].

Instances of [5]

Similar to the previous table, Table 6 presents the results for 16 considered nodes for
two different endurance limits (e = 30, e = 60) and three speed factors (α = 1, α = 2,
α = 3). The additional endurance limit and speed factors are similar as in [20]. An
analysis of instances with 20 or more nodes is not meaningful, as there are only a few
instances solved to optimality for both the consideration and the ban of loops. Each
entry presents the average τ∗ reduction or runtime increase of up to 10 instances.

Findings Both the makespan reduction and runtime increase are on average larger
for these instances compared to the instances of [1]. So, allowing drones to perform
loops may reduce τ∗ by up to 2.7%. Again, the endurance e has no significant impact
on τ∗, but a larger drone-to-truck speed ratio α has. Contrary to the results for
the instances of [1], a larger number of drones now results in a larger reduction of
τ∗. Additionally, if drones and trucks have the same speed (α = 1), there is even
an instance where one loop is performed in the optimal solution resulting in slight
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reductions of τ∗. Note that drones and trucks follow both the Euclidean path. The
runtime increases significantly by up to 194.4% and is especially high if one drone is
considered. However, considering an infinite number of drones, there is no significant
runtime increase, but the impact on τ∗ is high.

m = 1 m = 3 m =∞

τ∗ Runtime τ∗ Runtime τ∗ Runtime
|I0| e α reduction [%] increase [%] reduction [%] increase [%] reduction [%] increase [%]

16

30
1 - 57.8 0.1 41.9 0.1 44.5
2 1.0 63.8 1.5 -14.4 2.0 -24.6
3 0.3 194.4 1.7 6.3 1.3 -11.4

60
1 - 99.1 - 44.3 - 26.1
2 ./. ./. - 19.2 1.7 9.5
3 ./. ./. - -2.7 2.7 -33.0

Average 0.3 103.8 0.6 15.8 1.3 1.9

Table 6: Makespan reduction and the solver’s runtime increase, if drones can
perform loops, for the instances of [5]. Entry ./. indicates that no instance was

solved to optimality for both the consideration and the ban of loops.

6 Conclusion

This paper considers the TSPmD with drones performing sidekicks and loops while
minimizing the makespan. We introduce the problem as a two-indexed MILP formula-
tion that outperforms MILP formulations for the single drone case from the literature.
We present new benchmark solutions for instances of [1] and [5], which we could solve
to optimality for up to 28 nodes. Additionally, we generate managerial insights on the
impact of allowing drone loops on makespan minimization.

We can find that makespan savings of up to 2.7% can be achieved by allowing
drones to perform loops. The savings are essentially dependent on the drone-to-truck
speed ratio, but not on the endurance. It follows that there are no drone loops if
the drones’ speeds are too slow. On the other hand, drone loops make the problem
significantly harder to solve, even if in the optimal solution drones do not perform
loops. Therefore, for the TSPmD with any number of drones, drone loops should only
be considered if drones have at least the truck’s speed.

Compact and efficient MILP formulations for truck-and-drone tandems are good
competitors to exact algorithms. However, an efficient optimal solution approach is
still required for the TSPmD that can solve instances with more than 28 nodes to
optimality.
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Appendix A: Benchmark results for instances of [1]

The following two tables present results for the instances of [1] for the endurance of
e = 20 and e = 40. The instance names are similar to [7].

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

20140810T123437v1 54.3926 12 - 51.3825 2 - 51.3825 2 -
20140810T123437v2 51.6111 12 - 51.6111 7 - 51.6111 6 -
20140810T123437v3 54.0684 15 - 52.8225 10 - 52.8225 8 -
20140810T123437v4 66.8684 9 - 65.6225 11 - 65.6225 8 -
20140810T123437v5 45.3353 326 - 32.0655 10 - 24.4390 2 -
20140810T123437v6 43.9153 210 - 28.9400 7 - 24.0264 1 -
20140810T123437v7 46.5813 18 - 43.2069 9 - 39.8664 7 -
20140810T123437v8 59.3813 34 - 57.7700 12 - 53.1454 7 -
20140810T123437v9 39.2035 821 - 24.9912 6 - 21.8536 1 -
20140810T123437v10 36.9077 343 - 25.7710 11 - 21.9720 2 -
20140810T123437v11 39.3002 107 - 33.7779 7 - 32.3077 2 -
20140810T123437v12 51.5645 61 - 47.7507 8 - 45.1077 3 -
20140810T123440v1 46.4304 52 - 43.8455 6 - 43.8455 6 -
20140810T123440v2 49.3737 56 - 46.2455 11 - 46.2455 14 -
20140810T123440v3 53.6616 13 - 51.6277 8 - 51.6277 7 -
20140810T123440v4 66.4616 14 - 64.4277 6 - 64.4277 10 -
20140810T123440v5 39.7498 115 - 32.2263 3 - 31.6066 1 -
20140810T123440v6 40.3790 91 - 34.0066 2 - 34.0066 1 -
20140810T123440v7 43.3126 21 - 40.7304 2 - 40.7304 2 -
20140810T123440v8 55.7960 20 - 53.5304 2 - 53.5304 1 -
20140810T123440v9 35.5331 14 - 31.6066 1 - 31.6066 0 -
20140810T123440v10 36.0764 10 - 34.0066 1 - 34.0066 1 -
20140810T123440v11 40.7304 4 - 40.7304 1 - 40.7304 1 -
20140810T123440v12 53.5304 7 - 53.5304 1 - 53.5304 1 -
20140810T123443v1 69.5865 8 - 69.5865 4 - 69.5865 7 -
20140810T123443v2 72.0639 5 - 71.7473 3 - 71.5839 3 -
20140810T123443v3 76.1447 4 - 76.0673 1 - 75.9039 1 -
20140810T123443v4 89.1839 2 - 88.8673 2 - 88.7039 2 -
20140810T123443v5 54.7521 236 - 42.2634 3 - 39.7845 3 -
20140810T123443v6 55.1268 112 - 45.0943 11 - 43.9992 5 -
20140810T123443v7 62.2491 36 - 60.8333 5 - 60.8333 5 -
20140810T123443v8 80.0971 34 - 76.3401 27 - 73.8724 5 -
20140810T123443v9 41.9314 749 - 27.6100 1 - 24.5760 1 -
20140810T123443v10 42.9348 153 - 30.9760 1 - 30.9760 1 -
20140810T123443v11 51.4056 17 - 43.7760 3 - 43.7760 2 -
20140810T123443v12 62.6175 9 - 56.5760 1 - 56.5760 1 -

Table 1: Results for instances of [1] with an endurance of 20.
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m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

20140810T123437v1 49.1189 3369 - 35.5186 23 - 33.8109 8 -
20140810T123437v2 46.3113 442 - 35.3759 29 - 32.6510 7 -
20140810T123437v3 52.6868 248 - 49.2858 87 - 40.9090 28 -
20140810T123437v4 65.4868 272 - 62.5748 112 - 54.5333 56 -
20140810T123437v5 42.8354 2663 - 28.4013 31 - 24.4390 2 -
20140810T123437v6 41.6015 1344 - 28.4688 10 - 24.0264 3 -
20140810T123437v7 43.3913 173 - 36.4363 13 - 35.8290 8 -
20140810T123437v8 56.1913 267 - 50.5161 13 - 48.6273 7 -
20140810T123437v9 37.8082 3600 12.2% 24.9912 12 - 21.8536 1 -
20140810T123437v10 36.9077 635 - 25.7710 15 - 21.9720 2 -
20140810T123437v11 39.3002 312 - 29.3975 19 - 26.4022 1 -
20140810T123437v12 51.2536 115 - 40.7507 7 - 37.3724 1 -
20140810T123440v1 45.1029 686 - 35.5331 29 - 32.3895 1 -
20140810T123440v2 44.4461 866 - 37.2360 60 - 34.0066 1 -
20140810T123440v3 52.3083 421 - 45.3532 16 - 45.3532 7 -
20140810T123440v4 66.3969 581 - 58.9284 14 - 58.1532 7 -
20140810T123440v5 39.7498 310 - 32.2263 3 - 31.6066 0 -
20140810T123440v6 39.6581 207 - 34.0066 1 - 34.0066 1 -
20140810T123440v7 43.3126 58 - 40.7304 1 - 40.7304 1 -
20140810T123440v8 55.7960 40 - 53.5304 1 - 53.5304 1 -
20140810T123440v9 35.5331 13 - 31.6066 1 - 31.6066 1 -
20140810T123440v10 36.0764 9 - 34.0066 1 - 34.0066 1 -
20140810T123440v11 40.7304 5 - 40.7304 1 - 40.7304 1 -
20140810T123440v12 53.5304 5 - 53.5304 1 - 53.5304 1 -
20140810T123443v1 54.0129 1121 - 37.5843 7 - 37.4695 2 -
20140810T123443v2 56.5729 2149 - 38.5950 11 - 35.1953 1 -
20140810T123443v3 66.1746 298 - 54.6474 11 - 47.4513 1 -
20140810T123443v4 81.4603 350 - 69.2538 13 - 65.6295 3 -
20140810T123443v5 49.0759 3600 25.0% 31.2183 19 - 24.2916 0 -
20140810T123443v6 48.4864 2640 - 35.0597 12 - 30.0160 0 -
20140810T123443v7 56.8793 777 - 44.3748 3 - 42.8160 0 -
20140810T123443v8 68.3988 225 - 56.5760 1 - 55.6160 0 -
20140810T123443v9 41.9314 3600 6.3% 27.6100 3 - 23.6160 0 -
20140810T123443v10 42.9348 240 - 30.9760 1 - 30.0160 0 -
20140810T123443v11 51.3950 38 - 42.8160 0 - 42.8160 0 -
20140810T123443v12 62.6175 7 - 55.6160 0 - 55.6160 0 -

Table 2: Results for instances of [1] with an endurance of 40.
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Appendix B: Benchmark results for instances of [5]

The following five tables present the results for the instances of [5]. The instance names
are similar to [20] and the results are split up for each considered number of nodes.

|I0| = 16

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

Uniform-61-n20 347.0919 74 - 346.9223 27 - 346.9223 75 -
Uniform-62-n20 353.7019 2 - 353.7019 2 - 353.7019 4 -
Uniform-63-n20 372.9289 2 - 370.1349 2 - 370.1349 1 -
Uniform-64-n20 357.9113 10 - 357.9113 11 - 357.9113 9 -
Uniform-65-n20 368.6511 5 - 368.6511 4 - 368.6511 4 -
Uniform-66-n20 426.5167 2 - 426.5167 2 - 426.5167 2 -
Uniform-67-n20 372.7803 2 - 372.7803 1 - 372.7803 1 -
Uniform-68-n20 423.3365 2 - 423.3365 2 - 423.3365 3 -
Uniform-69-n20 363.4143 7 - 363.4143 6 - 363.4143 5 -
Uniform-70-n20 410.1439 8 - 410.1439 4 - 410.1439 8 -

Table 3: Results for instances of [5] with 16 nodes.

|I0| = 20

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

Uniform-61-n20 351.5212 588 - 351.4622 1526 - 351.4622 399 -
Uniform-62-n20 374.1195 431 - 374.1195 481 - 374.1195 1308 -
Uniform-63-n20 394.5000 34 - 391.7060 31 - 391.7060 78 -
Uniform-64-n20 368.7314 575 - 368.7314 506 - 368.7314 581 -
Uniform-65-n20 390.5601 224 - 381.0652 52 - 381.0652 67 -
Uniform-66-n20 436.2728 166 - 435.1632 62 - 433.3361 101 -
Uniform-67-n20 391.4744 46 - 391.4744 34 - 391.4744 53 -
Uniform-68-n20 435.6068 25 - 435.6068 29 - 435.6068 36 -
Uniform-69-n20 380.4329 336 - 380.4329 181 - 380.4329 525 -
Uniform-70-n20 422.6549 42 - 422.6549 84 - 422.6549 42 -

Table 4: Results for instances of [5] with 20 nodes.

|I0| = 24

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

Uniform-71-n50 415.8466 1059 - 415.8466 1449 - 415.8466 1219 -
Uniform-72-n50 410.1562 28 - 410.1562 30 - 410.1562 29 -
Uniform-73-n50 394.5155 495 - 391.3396 324 - 391.3564 316 -

Continued on next page
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Continued from previous page

Uniform-74-n50 467.6828 865 - 467.6828 502 - 467.6828 552 -
Uniform-75-n50 463.6015 1072 - 463.6015 863 - 463.6015 1742 -
Uniform-76-n50 394.2924 3600 2.7% 394.2924 3600 4.8% 394.2924 3600 2.8%
Uniform-77-n50 458.7309 565 - 452.9030 98 - 452.9030 106 -
Uniform-78-n50 412.8484 1428 - 410.8227 1263 - 410.8227 1217 -
Uniform-79-n50 412.1437 554 - 412.1437 1460 - 412.1437 1492 -
Uniform-80-n50 397.2048 3600 4.6% 391.7442 3600 2.8% 391.7442 3600 2.7%

Table 5: Results for instances of [5] with 24 nodes.

|I0| = 28

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

Uniform-71-n50 446.9016 3600 6.7% 441.6016 3600 4.8% 441.6016 3600 3.2%
Uniform-72-n50 449.6584 541 - 449.6584 645 - 449.6584 412 -
Uniform-73-n50 449.0387 3600 2.6% 445.8796 3600 2.6% 445.8628 3600 1.2%
Uniform-74-n50 470.8468 3600 1.0% 470.8405 3600 1.3% 470.8468 3600 1.7%
Uniform-75-n50 473.0050 3600 4.0% 473.0050 3600 5.9% 473.0050 3600 6.8%
Uniform-76-n50 407.7456 3600 9.2% 407.4875 3600 8.8% 407.7456 3600 9.5%
Uniform-77-n50 485.5172 3600 2.6% 480.5688 3600 1.0% 480.5687 3159 -
Uniform-78-n50 462.1742 3600 1.5% 459.4857 3600 1.2% 459.4857 3600 2.1%
Uniform-79-n50 447.7367 3600 7.9% 447.7367 3600 8.6% 447.7367 3600 10.3%
Uniform-80-n50 454.8248 3600 9.1% 450.3997 3600 8.4% 449.3641 3600 8.9%

Table 6: Results for instances of [5] with 28 nodes.

|I0| = 32

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

Uniform-71-n50 483.6558 3600 7.5% 478.3559 3600 7.7% 478.3559 3600 6.5%
Uniform-72-n50 493.0942 3600 3.4% 493.0942 3600 3.6% 493.0942 3600 3.6%
Uniform-73-n50 497.0019 3600 7.5% 490.4027 3600 6.9% 490.4758 3600 7.3%
Uniform-74-n50 484.4209 3600 15.1% 479.3757 3600 14.1% 492.1320 3600 17.6%
Uniform-75-n50 502.6546 3600 12.5% 502.5212 3600 12.0% 504.6453 3600 12.6%
Uniform-76-n50 494.6067 3600 19.5% 474.7205 3600 15.6% 483.1039 3600 19.0%
Uniform-77-n50 521.4612 3600 7.2% 511.1739 3600 4.9% 511.1739 3600 4.7%
Uniform-78-n50 507.7490 3600 7.3% 504.8168 3600 5.3% 505.4795 3600 5.5%
Uniform-79-n50 483.3885 3600 16.1% 452.3963 3600 10.4% 459.7861 3600 12.1%
Uniform-80-n50 473.7993 3600 21.9% 445.4466 3600 16.9% 451.4449 3600 19.0%

Table 7: Results for instances of [5] with 32 nodes.
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