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Kurzzusammenfassung

Die vorliegende kumulative Dissertation befasst sich mit vier Problemstellungen der Transport-
planung im Falle der Übernahme des Paket- und Medikamententransports durch Lieferwagen und
Drohnen. Folgende vier Artikel sind Hauptbeiträge der Dissertation:

1. Rave, A., Fontaine, P., Kuhn, H., 2023. Drone location and vehicle fleet planning with trucks
and aerial drones. European Journal of Operational Research 308 (1), 113–130.

2. Rave, A., 2023. Two-indexed formulation of the traveling salesman problem with multiple
drones performing sidekicks and loops. Working paper.

3. Rave, A., Fontaine, P., Kuhn, H., 2023. Cyclic stochastic inventory routing with reorder points
and recourse decision for an application in medical supply. Working paper.

4. Rave, A., Fontaine, P., Kuhn, H., 2023. Drone fleet planning and battery allocation for emer-
gency resupply of pharmacies and ambulances. Working paper.
Die veröffentlichten bzw. eingereichten Versionen der Beiträge können sich leicht von den Versionen in die-
ser Dissertation unterscheiden (z.B. Gestaltung der Tabellen). Inhalte bleiben hiervon unberücksichtigt, mit
Ausnahme weiterer Anpassungen von Beiträgen während des Review Prozesses.

Der erste Beitrag thematisiert die Fahrzeugflottenplanung und Zuweisung von Drohnen zu Mikrode-
pots, wenn Lieferwagen und Drohnen den Transport von Paketen in der letzten Meile übernehmen.
Im Vordergrund stehen die taktischen Entscheidungen, welche Kombination von Auslieferungsfor-
men mit Lieferwagen und Drohnen optimal wäre sowie die Ausgestaltung der Fahrzeugflotte. Die
Problemstellung wird als gemischt-ganzzahliges lineares Programm (MILP) modelliert. Zudem wird
eine adaptive große Nachbarschaftssuche (ALNS) eingeführt, die neue problemspezifische Operato-
ren beinhaltet.

Der zweite Beitrag fokussiert sich auf die operative Tourenplanung eines Lieferwagens, welcher
mit mehreren Drohnen ausgerüstet ist. Hierfür wird ein effizientes MILP entwickelt, welches ein
kommerzieller Solver schneller lösen kann als vergleichbare MILPs für eine Ein-Drohnen Problema-
tik aus der Literatur.

Der dritte Beitrag optimiert die simultane Bestands- und Tourenplanung für die Belieferung
von Krankenhäusern unter der Berücksichtigung ihrer Lagerhaltungspolitiken. Es wird analysiert,
welchen Einfluss Drohnen als Vehikel für Notfalltransporte zur Vermeidung von Fehlmengen ha-
ben. Die Problemstellung wird als zweistufiges stochastisches Programm präsentiert und eine pro-
blemspezifische ALNS wird entwickelt, welche einen innovativen Algorithmus zur Bestimmung von
Bestellpunkten innerhalb der Lagerhaltungspolitiken beinhaltet.

Der vierte Beitrag thematisiert die Ausgestaltung der Drohnenflotte für die Belieferung von Apo-
theken und Krankenwagen im Einsatz durch einen Großhändler. Hierfür wird die Drohnenflotte in
einer ereignisdiskreten Simulationsstudie hinsichtlich der Kosten bzw. der CO2-Emissionen opti-
miert.
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Abstract

This cumulative dissertation addresses four problems in transportation planning in the case of
delivery trucks and drones taking over parcel and medicine delivery. The following four articles are
the main contributions of the dissertation:

1. Rave, A., Fontaine, P., Kuhn, H., 2023. Drone location and vehicle fleet planning with trucks
and aerial drones. European Journal of Operational Research 308 (1), 113–130.

2. Rave, A., 2023. Two-indexed formulation of the traveling salesman problem with multiple
drones performing sidekicks and loops. Working paper.

3. Rave, A., Fontaine, P., Kuhn, H., 2023. Cyclic stochastic inventory routing with reorder points
and recourse decision for an application in medical supply. Working paper.

4. Rave, A., Fontaine, P., Kuhn, H., 2023. Drone fleet planning and battery allocation for emer-
gency resupply of pharmacies and ambulances. Working paper.

The published or submitted versions of the papers may differ slightly from the versions in this dissertation
(e.g., design of tables). Contents are not affected, with the exception of further adjustments to working papers
during the review process.

The first paper covers vehicle fleet planning and assignment of drones to microdepots when both
trucks and drones can handle the last-mile delivery of packages. The focus is on tactical decisions
as to which combination of delivery methods with trucks and drones is optimal, as well as the
number of trucks, drones, and microdepots used. The problem is modeled as a mixed-integer linear
program (MILP). In addition, an adaptive large neighborhood search (ALNS) is introduced, which
includes new problem-specific operators.

The second paper focuses on optimizing the operational routing of a truck that is equipped with
multiple drones. For this purpose, an efficient MILP has been developed, which a commercial solver
can solve faster than comparable MILPs from the literature for a one-drone problem.

The third paper simultaneously optimizes inventory and routing for clinic supplies, while taking
their inventory policies into account. The influence of drones as vehicles for emergency transport
to avoid shortages is analyzed. The problem is presented as a two-stage stochastic program, and
a problem-specific ALNS is developed, which includes an innovative algorithm for determining
reorder points within the inventory policies.

The fourth paper covers the design of drone fleets for deliveries to pharmacies and ambulances
at service by a wholesaler. For this purpose, the cost- or CO2-emission-minimal drone fleet is
determined in a discrete-event simulation optimization.
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Einleitung

Der kommerzielle Pakettransport mit Lieferwagen ist kosten-, zeit- und CO2-intensiv (z.B. Roberti
and Ruthmair 2021, Perboli and Rosano 2019). Daher ist die Entwicklung alternativer Auslie-
ferungskonzepte im Transport der letzten Meile bedeutsam. Ein vielversprechendes Konzept zur
Erhöhung der Effizienz und Effektivität des Transports der letzten Meile ist der Einsatz von Flug-
drohnen (kurz: Drohnen). Drohnen können mit hoher Geschwindigkeit und unabhängig vom Stra-
ßennetz autonom operieren. Aufgrund dieser leistungssteigernden Effekte gewinnen Drohnen auch
im Gesundheitswesen an Relevanz. So sind Drohnen ideal geeignet, um schnell, dringend benötigte
medizinische Produkte an für herkömmliche Bodenfahrzeuge schwer erreichbare Ziele zu transpor-
tieren (z.B. Zipline 2022). Der Transport von Produkten mit Drohnen ist daher aktuell Forschungs-
gegenstand sowohl in der Wissenschaft (z.B. El-Adle et al. 2021, Tiniç et al. 2023) als auch in der
Praxis (z.B. Mims 2022, Quantum Systems 2020).

Damit Drohnen sowohl im kommerziellen Pakettransport als auch im Gesundheitswesen opti-
mal eingesetzt werden können, bedarf es an Entscheidungen sowohl auf taktischer Ebene bzgl. der
Fahrzeugflottenplanung, der Ausgestaltung von Belieferungskonzepten und der Netzwerkstruktur
als auch auf operativer Ebene bzgl. der Tourenplanung. Die folgenden Beiträge adressieren diese
taktischen und operativen Problemstellungen mit Anwendungsfällen im Pakettransport (Beiträge 1
und 2) und Gesundheitswesen (Beiträge 3 und 4). Zunächst beschäftigt sich Beitrag 1 mit der Fahr-
zeugflottenplanung und der Wahl von Auslieferungskombinationen auf taktischer Ebene. Beitrag 2
evaluiert die operative Tourenplanung einer Auslieferungskombination mit einem Lieferwagen, der
mit mehreren Drohnen ausgerüstet ist. Basierend auf einer neuen Fallstudie aus der Praxis werden
in Beiträgen 3 und 4 ein Krankenhaus bzw. ein Großhändler mit einer Drohnenflotte ausgerüstet,
um umliegende Krankenhäuser bzw. zusätzlich Krankenwagen im Einsatz zu beliefern (Beitrag 4).
Im Fokus stehen bei diesen beiden Beiträgen die simultane Bestands- und Auslieferungsplanung
(Beitrag 3) und die Ausgestaltung der Drohnennflotte (Beitrag 4).

Für die komplexen Problematiken werden Entscheidungs- und Unterstützungsmodelle bzw. ein
Bewertungsmodell vorgestellt, die einem Paketdienstleister oder Großhändler bei der Problemlö-
sung helfen. In den Beiträgen 1, 2 und 3 werden die Problemstellungen als gemischt-ganzzahlige
lineare Programme (MILP) formuliert, welche mit einem kommerziellen Solver (z.B. CPLEX Op-
timization Studio) optimal gelöst werden können. In den Beiträgen 1 und 3 wird zusätzlich jeweils
eine problemspezifische adaptive große Nachbarschaftssuche (ALNS) entwickelt, welche größere
Probleminstanzen lösen kann. Zuletzt optimiert Beitrag 4 die Ausgestaltung der Drohnenflotte in
einer ereignisdiskreten Simulationsstudie.

Sowohl die betrachteten Problemstellungen, die entwickelten Methodiken als auch die präsen-

iv



tierten Forschungsergebnisse tragen innovativ zur Literatur bei und knüpfen am wissenschaftlichen
Diskurs zum Thema Drohnentransporte an. Dies gilt konzeptionell insbesondere für die Entschei-
dungsprobleme auf taktischer Ebene, methodisch für die innovativen MILP Formulierungen und
der problemspezifischen Komponenten der ALNSs sowie für die Ergebnisse zur neuen Fallstudie
aus der Praxis.

Im Folgenden wird zunächst ein Überblick der Dissertationsbeiträge gegeben. Anschließend wer-
den die vier Beiträge ausführlicher zusammengefasst.

Überblick der Dissertationsbeiträge
Die vorliegende Dissertation thematisiert auf konzeptioneller und methodischer Ebene vier Trans-
portplanungsprobleme mit Drohnen. Die Beiträge 1 und 2 betrachten neue Entscheidungsprobleme
im Pakettransport, wenn Drohnen für den Transport der letzten Meile hinzugezogen werden. Die
Beiträge 3 und 4 analysieren den Einsatz von Drohnen im medizinischen Bereich, wenn Drohnen
anstelle von Lieferwagen den Medikamententransport übernehmen. Zur Lösung der Entscheidungs-
probleme werden in den Beiträgen 1, 2 und 3 neuartige MILP Formulierungen vorgestellt. Die
Beiträge 1 und 3 entwickeln zudem jeweils eine ALNS Heuristik mit neuen problemspezifischen
Komponenten. In Beitrag 4 wird methodisch eine Optimierung in einer ereignisdiskreten Simulati-
onsstudie durchgeführt. Die Beiträge 3 und 4 liefern zudem Daten und Ergebnisse zu einer neuen
Fallstudie aus der Praxis.

Beitrag 1 - Drone location and vehicle fleet planning with trucks and aerial dro-
nes
Während autonome Drohnen durch ihre höhere Geschwindigkeit und Unabhängigkeit vom Straßen-
netz den Transport effektiver gestalten können, haben Lieferwagen den Vorteil der großen Tragfä-
higkeit, sodass Konsolidierungseffekte im Transport der letzten Meile genutzt werden können. Eine
Kombination von Lieferwagen mit Drohnen bietet die Möglichkeit, die Vorteile beider besser zu
nutzen und kann folgende Ausprägungen annehmen: Zum einen können Lieferwagen und Drohnen
synchronisiert zusammenarbeiten, indem die Drohnen direkt vom Lieferwagen aus starten. Dies
ist Vorteilhaft, da der Lieferwagen günstige Start- und Landepunkte für die Drohne wählen kann.
Zum anderen können Drohnen von Mikrodepots oder dem zentralen Lager aus starten und agieren
somit unabhängig von der Tour des Lieferwagens. Dies hat insbesondere den Vorteil, dass größere
und effizientere Drohnen gewählt werden können, da Mikrodepots und das zentrale Lager mehr
Kapazität zur Verfügung haben als Lieferwagen. Zusätzlich entfallen potentielle Wartekosten des
Lieferwagens, die durch die Synchronisation von Lieferwagen und Drohne entstehen. Beide genann-
ten Auslieferungsmöglichkeiten können zudem beliebig kombiniert werden. So kann der Lieferwagen
sowohl mit eigenen Drohnen ausgestattet sein, als auch Mikrodepots beliefern, von denen aus eine
eigene Drohnenflotte agiert.

Dieser Beitrag stellt sich den zentralen Fragen auf taktischer Ebene, wie die kostenoptimale Aus-
lieferungsmethode ausgestaltet ist. Dazu gehört die Anzahl an Lieferwagen, Drohnen und Mikrode-
pots und die Zuweisung von Drohnen zu jedem Lieferwagen, jedem Mikrodepot und dem zentralen
Lager. Hierbei von Bedeutung ist zudem die Berücksichtigung der operativen Tourenplanung und
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der daraus resultierenden Kosten. An dieser Stelle knüpft dieser Beitrag am wissenschaftlichen Dis-
kurs zum Thema Drohnen an, da bisher in der Literatur verschiedene Auslieferungskonzepte mit
Lieferwagen und Drohnen nur in wesentlich geringerem Umfang gemeinsam betrachtet wurden.
Zudem lag der Fokus der Literatur bisher nicht auf taktischen, sondern vielmehr auf operativen
Planungsproblemen.

Methodisch wird in dem Beitrag die Problemstellung zunächst als two-echelon location routing
problem with drones als MILP formuliert. Aufgrund der Komplexität der Problematik wird zu-
sätzlich eine ALNS mit problemspezifischen Operatoren entwickelt, welche größere Instanzen lösen
kann. Die gute Performance der ALNS wird zunächst für kleine Instanzen gezeigt, welche mit
dem entwickelten MILP optimal gelöst werden können. Für Tests mit größeren Instanzen wird an-
schließend auf Benchmark-Instanzen aus der Literatur zurückgegriffen, welche die Tourenplanung
einer kombinierten Auslieferung von mehreren Lieferwagen mit jeweils einer Drohne heuristisch
lösen. Hierbei konnte nicht nur gezeigt werden, dass die entwickelte ALNS vergleichbare Ergebnisse
erzielt, sondern zudem noch 17 neue bessere Lösungen findet.

Eine numerische Studie mit Kunden im ländlichen Raum zeigt, dass eine Kombination bzw. ein
Mix beider Auslieferungsmethoden in 58% aller betrachteten Szenarien kostenoptimal ist. Dadurch
lassen sich die gesamten Lieferkosten um durchschnittlich 33,3% im Vergleich zu einem Szenario
ohne Drohnen und 14,1% reduzieren, wenn Lieferwagen, welche mit mehreren Drohnen ausgerüstet
sind, für die Lieferung in Betracht gezogen werden.

Beitrag 2 - Two-indexed formulation of the traveling salesman problem with
multiple drones performing sidekicks and loops
Dieser Beitrag thematisiert die operative Tourenplanung eines Lieferwagens in der Belieferung der
letzten Meile, wenn dieser mit mehreren Drohnen ausgerüstet ist (TSPmD). Im Fokus steht die
Analyse der folgenden beiden Möglichkeiten eines Drohnenflugs: Drohnen können an einen späteren
Ort innerhalb der Lieferwagentour (Sidekick) oder zum selben Ort zurückkehren, von dem aus sie
gestartet wurden (Loop). Dies wird näher untersucht, da die Berücksichtigung von Loops zu einer
komplexeren Problemstellung und somit zu längeren Laufzeiten führt. Bisher wurde dieses TSPmD
mit Sidekicks und Loops in der Literatur nicht definiert und dementsprechend fehlte auch eine
MILP Formulierung.

Dieser Beitrag definiert das TSPmD mit Sidekicks und Loops und liefert eine MILP Formulie-
rung, welche besonders effizient zu lösen ist, sodass optimale Lösungen für Instanzen mit bis zu
28 Knoten gefunden werden. Zudem wird die Performance des MILPs im Vergleich zu zwei state-
of-the-art MILP Formulierungen aus der Literatur für eine Tourenplanungsproblematik mit nur
einer Drohne gezeigt, welche in einem Standard Solver implementiert wurden. Durch diese Effizi-
enzsteigerung der mathematischen Formulierung können neue Lösungen für Benchmark Instanzen
generiert werden. In der numerischen Studie wird gezeigt, dass die Berücksichtigung von Loops zu
einer durchschnittlichen Reduktion der maximalen Zykluszeit von bis zu 2,7% führt.
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Beitrag 3 - Cyclic stochastic inventory routing with reorder points and recourse
decision for an application in medical supply
Für die Versorgung von Patienten ist es entscheidend, dass Kliniken ausreichend Medikamente zur
Verfügung haben. Da die Medikamentennachfrage stochastisch ist, entstehen hohe Lagerhaltungs-
kosten und Notfalllieferkosten zur Vermeidung von Fehlmengen. Diese Notfalllieferungen beinhalten
in der Praxis nur wenige Medikamente und erfolgen in einer Pendeltour. Basierend auf einer rea-
len Fallstudie wird in diesem Beitrag analysiert, welchen Einfluss eine Drohne als Vehikel für die
Notfalllieferungen auf die Kosten und Medikamentenbestände hat.

Typischerweise übernimmt in Deutschland eine zentrale größere Klinik sowohl die Beschaffung als
auch die Verteilung von Medikamenten an kleinere umliegende Kliniken. Innerhalb dieser zweistufi-
gen Netzwerkstruktur planen die Kliniken nach individueller Lagerhaltungspolitik, bei welcher die
mögliche Notwendigkeit von Notfalllieferungen fest eingeplant ist. Während die zentrale Klinik nach
Bedarf bestellt, werden die umliegenden Kliniken stets an festgelegten Tagen innerhalb eines Zy-
klus (z.B. eine Woche) beliefert. Daher ist es möglich, bei der Belieferung der umliegenden Kliniken
ebendiese zu konsolidieren. Im Beitrag werden die zyklischen Bestellzeitpunkte und Routen für die
Belieferung der umliegenden Kliniken sowie die Bestellpunkte aller Kliniken optimiert. Hierfür wer-
den die Lagerhaltungspolitiken mit mehreren verschiedenen Produkten, welche eine stochastische
Nachfrage aufweisen, berücksichtigt. In der Literatur fehlen bisher integrierte Planungsansätze, die
zwei Lagerhaltungspolitiken parallel betrachten. Zudem stellen die hier betrachteten Lagerhaltungs-
politiken eine Besonderheit dar, da Drohnen zur Vermeidung von Fehlmengen eingesetzt werden.
Dieser Beitrag schließt diese Forschungslücke und modelliert die Problemstellung als zweistufiges
stochastisches Programm, bei welcher die Höhe der Bestellpunkte und die Tourenplanung in der
ersten Stufe, und die resultierenden Notfalllieferungen in der zweiten Stufe entschieden werden.
Zusätzlich wird eine problemspezifische ALNS entwickelt, welche in jeder Iteration einen innova-
tiven Algorithmus zur Bestimmung lokal-optimaler Bestellpunkte ausführt. Die gute Performance
der ALNS wird mit optimalen Lösungen für kleine Instanzen sowie mit Benchmark Instanzen aus
der Literatur gezeigt.

In einer neuen Fallstudie mit dem Klinikum Ingolstadt wird aufgezeigt, dass die simultane Pla-
nung - im Vergleich zum Status Quo - die Transport- und Lagerhaltungskosten der umliegenden
Kliniken um 58,4% und der zentralen Klinik um 15,9% senken kann. Zudem wird gezeigt, dass der
Einsatz von Drohnen den durchschnittlichen Medikamentenbestand in den umliegenden Kliniken
bei teuren und selten benötigten Medikamenten reduzieren kann, sodass Gesamtkosteneinsparun-
gen von 29,8% entstehen. Für die zentrale Klinik hingegen hat der Einsatz der Drohne für den
Notfalltransport keinen merklichen Effekt auf die Gesamtkosten.

Beitrag 4 - Drone fleet planning and battery allocation for emergency resupply
of pharmacies and ambulances
Basierend auf der Fallstudie des vorherigen Beitrags Cyclic stochastic inventory routing with reor-
der points and recourse decision for an application in medical supply thematisiert dieser Beitrag
die Ausgestaltung einer Drohnenflotte für einen Großhändler. Diese Drohnenflotte soll den Notfall-
transport zu Apotheken beschleunigen und kosten- und CO2-effizienter gestalten. Zudem erschließt
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sich ein neues Geschäftsmodell, Krankenwagen im Einsatz zu beliefern. Ziel des Beitrags ist die Be-
stimmung der kosten- bzw. CO2-minimalen Drohnenflotte, sodass ein gewünschter Servicelevel und
eine Belieferungsrate durch Drohnen sichergestellt werden. Zentrale Entscheidungen sind hierbei
sowohl die Flottenplanung, bestehend aus der Anzahl an Drohnen, Batterien und Transportbo-
xen, als auch die Platzierung von zusätzlichen Batterien bei den Apotheken. Diese Problemstellung
wurde insbesondere mit dem Detaillierungsgrad der Drohnenflotte in der Literatur bisher nicht
betrachtet.

Zur Bewertung von Ausprägungen der Drohnenflotte anhand ökonomischer, ökologischer und
service-orientierter Key Performance Indices (KPIs) präsentiert dieser Beitrag eine ereignisdiskre-
te Simulationsstudie, welche eine Optimierung der Flotte beinhaltet. Zudem wird ein Framework
zur Bewertung neuer Geschäftsideen auf die Problemstellung angewandt. Zunächst werden alle
Stakeholder identifiziert und ihre wirtschaftlichen Verbindungen sowie der Wettbewerb zueinander
aufgezeigt. Anschließend werden die KPIs und relevante Parameter eingeführt, die Lieferketten der
Notfalllieferung analysiert und zuletzt die Simulationsstudie durchgeführt. Der Beitrag zeigt, dass
eine kostenoptimale Drohnenflotte zu Kosteneinsparungen von bis zu 19,6% führt, wenn ein Service-
level und eine Belieferungsrate von mindestens 90% eingehalten werden sollen. Wird andererseits
ein Servicelevel bzw. eine Belieferungsrate von 95% angestrebt, können keine Kosteneinsparungen
erzielt werden.
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1 Drone location and vehicle fleet planning with trucks
and aerial drones

Alexander Rave, Pirmin Fontaine, Heinrich Kuhn

Abstract In the context of parcel delivery, aerial drones have great potential that particularly
applies in rural areas. In these areas drones mostly operate faster than trucks. As drones are
limited in their payload, a combination of trucks and drones can be beneficial in reducing last-mile
delivery costs. There are two different delivery methods that combine truck and drone delivery:
trucks and drones collaborating with each other with drones launched from trucks, and trucks and
drones serving customers independently of each other with drones launched from microdepots or
the central distribution center.

We develop a tactical planning model that decides on the cost-optimal vehicle fleet and the
location of dedicated drone stations of a logistics service provider that minimizes total costs. The
problem setting is modeled as a mixed-integer linear program that allows the assessment of benefits
of different transport concepts as well as the impact of mixing different delivery modes. To solve
larger instances we develop a specialized adaptive large neighborhood search.

We present a numerical study for parcel delivery in a rural area where customers live in scattered
settlements, e.g., villages or hamlets. The case study shows that it is best to launch drones both
from trucks and dedicated drone stations in 58% of all scenarios considered. This fleet mix leads to
average cost savings of 33.3% compared to an only truck scenario and 14.1% if trucks and drones
launched from trucks are considered for delivery. Moreover, we find 17 new best-known solutions
for benchmark instances from the literature.
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1 VFP with trucks and drones

1.1 Introduction

Parcel delivery with unmanned aerial vehicles, in the following also called drones, has the potential
to revolutionize classic parcel delivery since drone delivery can both reduce costs as well as increase
the speed of last-mile logistics (Aurambout et al. 2019, Joerss et al. 2016, Campbell et al. 2017).
Because drones can fly over obstacles on the ground and do not have to avoid them, they can take
more direct routes and perform the direct delivery of parcels in shorter times than conventional
trucks (Caraballo et al. 2017, Scott and Scott 2017). In addition, drones typically fly at higher
speeds than conventional trucks can normally travel (Otto et al. 2018). Drone delivery is therefore
an innovative, fast and above all cost-effective development. So, for example, Amazon introduced
drone delivery service under the name Prime Air in America (Mims 2022) and JD.com serves
customers in some rural areas in China via drones since 2016 (Gartner 2016). Due to technological
progress, disadvantages such as a maximum transport weight or a high noise level of drones are
expected to reduce or even vanish (Wingcopter GmbH 2020). But contrary to conventional trucks,
drones may not consolidate customers due to their restrictive payload and are therefore not suitable
to serve all regions. For example, if many customers are located close to each other the consolidation
effect of a truck can compensate for the lower speed, and a mix of both trucks and drones leads to
an economic advantage.

We consider a tactical planning problem that aims to find the cost-optimal last-mile delivery
system. This includes deciding on locations for dedicated drone stations (microdepots) from where
drones can start as well as deciding on the fleet of conventional trucks, trucks equipped with drones,
and drones. We therefore develop a decision-support model that determines both the best truck-and-
drone delivery concept as well as the number of different vehicles within a tactical planning horizon.
We introduce a mixed-integer linear program (MILP) and develop an adaptive large neighborhood
search (ALNS) to solve larger instances. The ALNS is compared to optimal solutions for small
instances and to the benchmark instances by Sacramento et al. (2019) for the vehicle routing
problem with trucks and drones. In a sensitivity analysis we generate multiple managerial insights.

We contribute to the literature as follows: Our paper is the first that mixes a truck-and-drone
concept with stationary drones with focus on fleet planning which means that the delivery methods
and the fleet mix is not predetermined. We develop a comprehensive and consolidated model that
allows the combination or mix of truck and drone delivery and derive both a MILP and an ALNS
with fleet specific elements including a location decision for microdepots within its destroy and
repair operators.

The structure of the paper is as follows. In Section 1.2, different delivery methods and mix of
methods as well as the problem are described in detail. Section 1.3 presents a literature review on
parcel delivery with trucks and drones. In Section 1.4, we present the MILP before describing the
ALNS in Section 1.5. The numerical study is shown in Section 1.6. Lastly, Section 1.7 summarizes
the main findings of the contribution and provides directions for future research.
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1 VFP with trucks and drones

1.2 Problem setting

To introduce the problem setting, we first elaborate relevant delivery methods with trucks and
drones. In the second subsection we detail the decision problem based on these delivery methods.

1.2.1 Delivery system

A very common system for drone delivery in the literature is one where drones are launched from
trucks (see, e.g., Murray and Chu 2015, Wang et al. 2016, Agatz et al. 2018, Sacramento et al. 2019).
Other forms of drone delivery are conceivable, such as starting drones from the central distribution
center (CDC) or microdepots, which are small, possibly mobile warehouses. Microdepots have the
option of being placed in a more economically favorable location compared to the CDC for a certain
period of time (Hemmelmayr et al. 2012). Additionally, these microdepots allow customers who are
out of range of the CDC to be served via drones (Boysen et al. 2021). Since these microdepots
are first supplied by trucks, they operate as transshipment points where drones are the second-tier
transportation mode.

Drones launched from

CDC Microdepot Truck

De
liv

er
y

to
cu

st
om

er
by

Trucks only

Drones only

Trucks and 
drones

CDC

Customer

Microdepot

Drone launching point

Truck tour

Drone tour

Figure 1.1: Drone and/or truck delivery methods

Figure 1.1 illustrates the different potential delivery methods of trucks and drones, depending on
where the drone is launched from and how the customer is visited. The example in the first row of
Figure 1.1 assumes that only trucks are used. In that case no variation of the delivery method exists
and the problem can be formulated as a classical vehicle routing problem (VRP) (Toth and Vigo
2014). The examples in the second row assume that deliveries are performed exclusively by drones.
In these cases, drones can be launched either from the CDC, from microdepots, or from trucks.
Note that the microdepots have to be supplied by trucks but trucks do not deliver to customers.
Instead, they only serve as launching platforms for drones. Launching drones from trucks instead of
microdepots offers the advantage that the launch and return location can be flexibly selected and
changed (Luo et al. 2017). Examples two and three can be modeled as a facility location problem
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1 VFP with trucks and drones

(FLP) (e.g., Kim et al. 2017), two-echelon location routing problem (2E-LRP), or two-echelon
vehicle routing problem (2E-VRP) depending on the assumptions made. Finally, the examples in
the third row of Figure 1.1 assume that the deliveries are carried out by both trucks and drones. The
delivery processes can be organized either independently of each other (first and second example)
or synchronized with each other (third example). The truck that supplies microdepots can also
deliver to customers before and after serving the microdepot (second example). The first example
of the three cases considered in the third row of Figure 1.1 can be modeled as a heterogeneous
VRP where drones are presented by a second type of vehicle. The second example can be modeled
as 2E-LRP. The third example requires the synchronization of drone and truck deliveries that is
denoted as a VRP with drones (VRPD) in the literature (e.g., Wang et al. 2016). .

In this paper, we consider all delivery methods shown in Figure 1.1 as well as all possible subsets,
i.e., a mix of these methods by allowing a truck to serve both customers and microdepots as well as
carrying drones, or the decision to set up microdepots or potentially handle deliveries without these
transshipment points. Figure 1.2 shows a potential delivery configuration serving eleven customers.
The configuration serves customers C1, C2, C3, C4, and C5 by one drone launched from microdepot
M1, customer C11 directly by one drone launched from the CDC and customers C6 and C9 by a
conventional delivery truck. Additionally, this truck launches two drones to serve customers C7, C8,
and C10 and supplies the microdepot M1, so drone deliveries to customers C1, C2, C3, C4, and C5

have to start after that. The truck in this example is equipped with two drones. These drones
launch from and return to the truck, while it is stationary. This is a typical restriction for the
VRPD chosen in the literature (e.g., Wang et al. 2016, Otto et al. 2018, Agatz et al. 2018).

CDC

Customer

Microdepot

Truck tour

Drone tour

𝑀𝑀1

𝐶𝐶1

𝐶𝐶2

𝐶𝐶3

𝐶𝐶4
𝐶𝐶5

𝐶𝐶6

𝐶𝐶7

𝐶𝐶8

𝐶𝐶9
𝐶𝐶11

𝐶𝐶10

Figure 1.2: Example of mixed truck and drone delivery methods.

1.2.2 Decision problem

We consider a tactical truck and drone fleet planning problem including a microdepot location
problem for a single logistics service provider that has to serve a given set of customers. Similar
to other tactical planning problems in last-mile delivery (e.g., Fontaine et al. 2021) and drone
delivery (e.g., Wankmüller et al. 2020), we assume a representative demand scenario as given input
of the problem that is repeated throughout the planning horizon. Minor demand variations are
then considered in the operational day-ahead planning problem.
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1 VFP with trucks and drones

As delivery options, we consider the truck and drone delivery methods presented (Figure 1.1)
as well as the mix of these methods. We are interested in determining the cost-optimal number
of trucks and drones as well as the locations of microdepots from where drones can be launched.
This further implies the allocation of drones to microdepots, the CDC, and trucks. Note that we
assume that the drones will need to return to their respective trucks, microdepots, or the CDC.
We consider the following costs: variable costs per distance covered (including personnel costs),
fixed costs per vehicle and microdepot, possible additional fixed costs, if a truck is equipped with a
drone launching station, costs for the time serving a microdepot or customer, and waiting costs for
trucks, as the problem setting requires the synchronization of trucks and drones that are launched
from both trucks and microdepots. This implies that a truck has to wait at the landing node of
the drone in case it arrives earlier. On the contrary, waiting times of drones do not occur since a
drone can reduce its travel speed to arrive at the landing node on time. However, the flight time
of the drone cannot be reduced arbitrarily since the drone needs a minimum flight speed because
of aerodynamic reasons. In addition, the total flight time of a drone is limited by an endurance. A
truck driver on the other hand would not and maybe even cannot simply reduce the travel speed
on a highway. Additionally, we prohibit drones to return to a truck arc (e.g., Wang et al. 2016,
Agatz et al. 2018). Trucks can send out all of their drones at a node. Trucks can thus also operate
as “flexible microdepots”. For drones launched from microdepots, the synchronization requires that
a truck first has to deliver the parcels to the microdepots. The time until the microdepot is filled
reduces the available time for satisfying customers from this microdepot.

Further, we take the following assumptions for customers (C), trucks (T), drones (D), and mi-
crodepots (M):

C1 All customers have to be served exactly once.

C2 Each customer has a deterministic demand of one parcel. There are no split deliveries.

C3 Some customers cannot be served by drones due to personal preferences or technical reasons.
These customers must be served by trucks.

T1 Trucks have a maximum payload of parcels and a maximum delivery time.

T2 Trucks have a maximum payload of drones.

T3 If drones are launched from a truck, this truck needs an additional launching platform on top
of it which adds additional costs, but does not reduce the truck’s payload.

D1 Each drone can serve one customer per flight (e.g., Roberti and Ruthmair 2021).

D2 If a drone is launched from a truck, it may return to the same or any later node within this
truck’s tour

D3 We assume two types of drones: large drones for the CDC and microdepots and small drones
for trucks which vary in fixed costs, speed and endurance.

M1 There is one predefined location for the CDC and multiple potential microdepot locations.
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1 VFP with trucks and drones

M2 Microdepots can at maximum be served once by a truck.

M3 Before a drone is launched from a microdepot, it has to be served by a truck.

M4 Microdepots have a maximum payload of drones.

The problem introduced belongs to the class of 2E-LRPs (Li et al. 2021). The first level considers
all arcs used by trucks, the second level all arcs followed by drones. We denote the associated decision
problem as 2E-LRP with drones (2E-LRPD). The 2E-LRPD extends the 2E-LRP and VRPD in
several ways. The model does not only include the synchronized truck and drone delivery, but
also drones launched from microdepots and/or the CDC. Therefore, the model represents the most
comprehensive model in the literature so far. The model determines the best delivery method or
mix of methods, the number of drones, trucks, and location of microdepots. In addition, the model
also decides on the route planning of trucks and drones.

1.3 Literature review

Our literature review is divided in two main subsections. Subsection 1.3.1 presents the most relevant
literature on route planning with trucks and drones. In this subsection, we also consider delivery
planning problems with ground robots and trucks with detachable trailers, which show similarities
to our problem. Subsection 1.3.2 then reviews the drone-relevant literature on facility location and
vehicle fleet planning since we consider the problem of tactical fleet planning of trucks and drones,
which also includes the decision on the locations of microdepots.

We recommend the paper of Otto et al. (2018) for an overview of drone-related topics in logistics
including more possible applications than delivery, Boysen et al. (2021) for a more recent overview
on drone delivery, and Li et al. (2021) for a specific overview of two-echelon routing problems with
drones. For a review of fleet planning related literature, we refer to Baykasoğlu et al. (2019).

1.3.1 Route planning with drones and robots

Drones launched from a single truck The first combination of truck and drone delivery was
conducted by Murray and Chu (2015), where a single truck equipped with a single drone serves
customers with the objective of minimizing delivery time. The specialty about this delivery concept
is the required synchronization between the truck and the drone, since drones typically return to
the truck at a later node within the truck’s route. However, taking synchronization into account
increases the combinatorial complexity. So, the most successful exact solution method so far for this
truck-and-drone concept is presented by Roberti and Ruthmair (2021) who develop a specialized
branch-and-price approach in order to solve instances with up to 39 customers to optimality. The-
refore, the literature mainly focuses on heuristic methods when solving instances with practically
relevant customer sizes (e.g., Luo et al. 2017, Agatz et al. 2018, Sacramento et al. 2019).

Several authors vary or extend the truck-and-drone delivery problem originally developed by
Murray and Chu (2015). For example, Ha et al. (2018) quantify waiting costs for trucks, if a truck
arrives earlier at a node than the drone. Thus, their problem formulation minimizes variable delivery
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costs. Agatz et al. (2018) also consider cost minimization, but in contrast to the model of Murray
and Chu (2015) or Ha et al. (2018) the truck may visit customer nodes multiple times in order to
pick up drones. Luo et al. (2017), on the other hand, allow drone deliveries to multiple customers
per flight. Furthermore, all customers must be served by drone and not by truck. Wang et al. (2022)
also assume a pure drone delivery mode. The truck is used only to launch drones at a favorable
node of the delivery network. After serving one customer, each drone returns to the depot and can
be picked up again by the truck in its next tour.

Drones launched from multiple trucks Another stream of literature deals with drone deliveries
from multiple trucks, with each truck equipped with one or even multiple drones. Wang et al. (2016),
for example, derive and prove several upper and lower bounds for the objective of completion time
minimization for different delivery settings with drones. Poikonen et al. (2017) extend the paper
by presenting and proving upper and lower bounds to include more use cases. Similar to Luo et al.
(2017), Kitjacharoenchai et al. (2020) assume multiple drone deliveries per drone flight, but the
authors define the problem as 2E-VRP with multiple trucks and multiple drones per truck.

Sacramento et al. (2019) develop an ALNS to solve a VRPD with one drone per truck. A parti-
cular limitation of the problem they consider is that the drones must not return to the same node
from which they were launched, but must return to a node that the truck visits later on its route.
Euchi and Sadok (2021) derive an hybrid genetic algorithm for the same problem setting and find
multiple best-known solutions for the instances from Sacramento et al. (2019).

Drones launched from dedicated drone stations Kim and Moon (2019), for example, assume a
delivery system where customers are delivered by drones or by one single truck. The drones are
located at a dedicated drone station that is close to the customer area. The single truck serves
both the customers and the drone station with parcels delivered by drones. Thus, drone delivery
cannot begin until the truck arrives at the drone station. However, if advantageous, the truck can
also serve some customers first before delivering the drone station.

Drones launched from trucks and the CDC The combination of two drone delivery methods is
considered by Wang et al. (2019). They extend the VRPD with one drone launched per truck by
also launching several drones from the CDC. Murray and Raj (2020) also consider both the truck-
and-drone-concept and drones launched from the CDC. In contrast to Wang et al. (2019), the
authors only consider a single truck, but it is equipped with several drones. Drones launched from
trucks and drones launched from the CDC differ in speed, payload, service times, and maximum
flight time.

Ground robots Simoni et al. (2020) develop a truck-and-robot concept with a single truck and
a single robot launched from the truck. Robots are slower, but can carry multiple packages more
easily than drones and thus can serve more than a single customer per tour. Chen et al. (2021)
develop a truck-and-robot concept, where robots are exclusively allowed to return to the same node
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they have been launched from. The authors moreover take time-windows into account and derive
a specialized ALNS to solve larger instances.

Due to the robot’s low speed, some publications assume a delivery method where robots launch
from a truck but return to the closest microdepot. The synchronization is missing due to an un-
bounded occurrence of robots per microdepot. This problem is first introduced by Boysen et al.
(2018), who also assume that a single truck picks up robots at microdepots and releases them to
serve customers but the truck cannot serve customers on its own. Ostermeier et al. (2022) and
Heimfarth et al. (2022) follow up on this work by considering, among other things, fixed time win-
dows for deliveries (Ostermeier et al. 2022) or, in addition, direct deliveries by trucks (Heimfarth
et al. 2022).

Truck-and-trailer The truck-and-trailer routing problem (TTRP) is a related problem where
trucks have a detachable trailer and need to serve customers. But, in contrast to delivery by drones,
which can operate independently, the trailer’s tour is totally dependent on the truck (Agatz et al.
2018). The pecularity of the TTRP is that some customers cannot be reached with the trailer
but always by the truck. So the trailer is decoupled and temporarily parked at customers while
the truck travels a subtour. This results in synchronization efforts between the trucks and their
trailer (e.g. Lin et al. 2009). While typically in TTRP the trailer can be parked at any customer
it can reach, Accorsi and Vigo (2020) consider a variant of this problem with only one truck and
additional parking spots that are not customer locations. They also assume that only a subset of
all customers have parking spots.

1.3.2 Facility location and fleet planning

Vehicle fleet planning in combination with microdepot location for delivery with drones is hardly
represented in the literature, because the focus on this research question requires the combination
of different delivery methods, which is not done yet. Thus, most publications on this topic focus
on location problems for microdepots (e.g., Chauhan et al. 2019, Wankmüller et al. 2020) or refuel
stations (e.g., Shavarani et al. 2019) or the determination of drone and battery amounts (e.g.,
Troudi et al. 2018). For this, Chauhan et al. (2019) and Troudi et al. (2018) put a special focus on
energy consumption whereas Troudi et al. (2018) consider time-windows and different methods of
drone charging as well. Wankmüller et al. (2020) focus on the supply of defibrillators via drones.
The authors investigate an allocation problem of drones to base stations in mountainous regions
under minimization of the number of drones used or the average travel time for drones.

To summarize the previous literature review, Table 1.1 provides an overview of the drone and
robot delivery methods and problem settings. Integrated vehicle fleet planning with trucks and
drones including a microdepot location decisions has not yet been covered in the literature. Parti-
cularly, none of the above publications on truck and drone delivery combine both drones launched
from trucks as well as drones launched from microdepots and the CDC. We address this gap in
literature and derive a vehicle fleet planning and microdepot location problem that involves a mix
of trucks and drones launched from trucks, microdepots, and the CDC, as well as deciding which
microdepots to open.
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Trucks Drones/Robots Launched from Problem setting

Sin- Mul- Sin- Mul- CDC Truck Micro- Rou- Facility Vehicle
Paper gle tiple gle tiple depot ting location fleet

Lin et al. (2009) ! !

Murray and Chu (2015) ! ! ! !

Wang et al. (2016) ! ! ! !

Poikonen et al. (2017) ! ! ! !

Luo et al. (2017) !* ! ! !

Ha et al. (2018) ! ! ! !

Agatz et al. (2018) ! ! ! !

Troudi et al. (2018) ! ! !**
Boysen et al. (2018) ! ! ! !

Sacramento et al. (2019) ! ! ! !

Kim and Moon (2019) ! ! ! !

Wang et al. (2019) ! !h *** ! ! !

Chauhan et al. (2019) ! ! ! !**
Shavarani et al. (2019) ! ! ! !**
Accorsi and Vigo (2020) ! !

Kitjacharoenchai et al.
(2020)

! ! ! !

Simoni et al. (2020) ! ! ! !

Murray and Raj (2020) ! !h ! ! !

Wankmüller et al. (2020) !h ! ! !**
Roberti and Ruthmair
(2021)

! ! ! !

Euchi and Sadok (2021) ! ! ! !

Chen et al. (2021) ! ! ! !

Wang et al. (2022) ! ! ! !

Ostermeier et al. (2022) ! ! ! !

Heimfarth et al. (2022) ! ! ! ! !**
Our paper ! !h ! ! ! ! ! !

Table 1.1: Overview of relevant problem settings with drones or robots in the literature.
h Heterogeneous trucks/drones are considered * Truck does not serve customers

** Only the number of drones/robots per CDC/microdepot are determined *** Single
drone per truck, multiple drones per CDC.

In summary, our work contributes to the literature as follows. (1) We decide on the cost-optimal
fleet mix and microdepot locations considering different truck-and-drone delivery methods that
are relevant in practice. (2) We formulate a MILP in form of a specialized 2E-LRPD and (3) we
present a problem-specific ALNS for solving large instances. (4) To generate managerial insights, we
conduct an extensive numerical study that analyzes a variety of demand distributions in differently
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structured delivery areas.

1.4 Mathematical formulation

In this section, we introduce the mathematical model for the 2E-LRPD. First we discuss the general
problem structure, including notation and modeling assumptions. Section 1.4.2 presents the MILP
formulation of the problem.

Variables and parameters associated with drones, trucks, and microdepots are superscripted (.)D,
(.)T , and (.)M , respectively, for ease of reading. Sets that include the CDC are denoted by (.)0.
As we assume two types of drones, variables and parameters that affect both types of drones are
marked with a superscripted (.)D1 , if drones belong to the CDC or microdepots, and with (.)D2 , if
drones belong to trucks.

1.4.1 Modeling assumptions, sets, parameters, and variables

The 2E-LRPD is defined on a directed graph G(N0,A0) with node set N0 and arc set A0 =
{(i, j)|i, j ∈ N0}. N0 consists both of the customer set NC as well as the microdepot set NM and
the CDC 0. Thus, N0 is defined as N0 = NC ∪NM ∪ {0}. NC

D ⊆ NC denotes the set of customers
that can be served by drones.

General problem structure The problem is a set partitioning problem since all customers consi-
dered have to be served by the available fleet of trucks T or drones D.

Decision variables The main decision variables determine the vehicle fleet, i.e., whether truck
t ∈ T is used (yT

t ∈ {0, 1}), whether it is equipped with a launching platform for drones (yTmod
t ∈

{0, 1}) and the number of its drones (zD2
t ∈ N). Further, yM

j ∈ {0, 1} define whether microdepot
j ∈ NM is opened and yD1

d ∈ {0, 1} whether drone d ∈ D is in use. yD1
d moreover determines if a

location is used.
Aligned variables determine the routing of each vehicle. ui,j,t equals 1 if truck t travels on arc

(i, j) and 0 otherwise. The binary decision wi,c,t indicates whether a drone is launched from a truck t
at node i to serve customer c. Similarly, xc,j,t ∈ {0, 1} denotes the flight back from a customer c
to a node j. Finally, vi,c,d equals 1 if customer c is served by drone d launched from the CDC or a
microdepot i and 0 otherwise. Note that drones launched from trucks have a binary decision each
for their traveled arcs in their outbound flight and return flight, since the variables are affected by
different restrictions.

Parameters The variable costs for trucks, cT
i,j and drones, cD1

i,j and cD2
i,j depend on the distance

traveled for an arc (i, j) ∈ A0, while fixed costs for trucks, cT
fix, drones, cD1

fix and cD2
fix, and microde-

pots, cM
fix depend on the number of vehicles or microdepots used. cTmod

fix are additional fixed costs,
if a truck is equipped with a drone launching station. cwait are waiting costs for trucks that are
dependent on their waiting time at each node. Last, service costs depend on each customer and
microdepots served by trucks, cT

serv and for each customer served by drones, cD1
serv and cD2

serv.
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Index sets

NC , NC
0 Node set for customers (and the CDC)

NC
D Node set for customers that can be served by drones
NM , NM

0 Node set for microdepots (and the CDC)
N , N0 Node set for customers and microdepots (and the CDC)
A, A0 Arc set between customers and microdepots (and the CDC)
T Index set for trucks
D Index set for drones launched from microdepots and the CDC

Parameters

aT , aD1 , aD2 Speed of trucks/drones in distance unit per time unit
cT

i,j , cD1
i,j , cD2

i,j Variable costs for traveling arc (i, j) ∈ A0 for trucks/drones
cwait Waiting costs for trucks per time unit
cT

serv, cD1
serv, cD2

serv Service costs for trucks/drones per customer and microdepot
cT

fix, cD1
fix, cD2

fix, cM
fix Fixed costs per truck/drone/microdepot

c
Tmod
fix Additional fixed costs per truck, if the truck is equipped with drones
di,j Distance between customers, microdepots and CDC
eD1 , eD2 Maximum endurance time traveled of drones per flight
KT

t Maximum number of drones per truck t ∈ T
KM

i Maximum number of drones per microdepot i ∈ NM

Mbig
l big M for l = 1, 2, 3, 4

Q Payload of trucks in number of customers
QT

time, QD
time Maximum time for each truck/drone within the planning period considered

sT
i Service time for trucks at each node i ∈ N
sD1

c ,sD2
c Service time for drones at each node c ∈ NC

D

Decision variables

ui,j,t Binary variable∗, indicating truck t ∈ T travels arc (i, j) ∈ A0

vi,c,d Binary variable∗, indicating drone d ∈ D launched from i ∈ NM
0 serves customer c ∈ NC

D

wi,c,t Binary variable∗, indicating drone launched from i ∈ N0 and truck t ∈ T serves customer
c ∈ NC

D

xc,j,t Binary variable∗, indicating drone returns from customer c ∈ NC
D to j ∈ N0 and truck t ∈ T

yT
t , yTmod

t Binary variable∗, if truck t ∈ T is in use/equipped with a drone launching station
yD1

d , yM
i Binary variable∗, if drone d ∈ D is in use/ microdepot i ∈ NM is opened

zD2
t Integer variable, indicating the number of drones per truck (t ∈ T )

Auxiliary variables

κi Subtour elimination variable for node i ∈ N by Miller et al. (1960)
λi,t Integer variable indicating the demand per microdepot i ∈ NM served by truck t ∈ T
ξi,d Binary variable∗, indicating if drone d ∈ D is allocated to microdepot or CDC i ∈ NM

0

πi,j,t Integer variable indicating the number of drones traveling arc (i, j) ∈ A0 on truck t ∈ T
τi,j,t Real-value variable indicating the accumulated travel time of truck t ∈ T traveling arc

(i, j) ∈ A0 in its route taking into account waiting times for its drones

Continued on next page
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Table 1.2 – Continued from previous page

ϕT
i,j,t Real-value variable to determine waiting times of truck t ∈ T at node j ∈ N0 dependent

on the time the truck travels arc (i, j) ∈ A0 if drones are launched from a previous node
(i ̸= j) and if drones perform commuting tours j (i = j). The nodes i and j may but do
not have to be visited subsequently.

ϕD
c,j,t Real-value variable quantifying the extended flight time of a drone launched from truck

t ∈ T to serve customer c ∈ NC
D so that the drone does not arrive at the return node

j ∈ N0 before its associated truck.
χi,t Binary variable∗, indicating node i ∈ N gets visited by truck t ∈ T
ψc Binary variable∗, indicating customer c ∈ NC gets served by drone from a CDC or mi-

crodepot
ωc,t Binary variable∗, indicating customer c ∈ NC gets served by drone launched from truck

t ∈ T

Table 1.2: Index sets, parameters, decision variables, and auxiliary variables.
∗ binary variables have a value of 1, if they are true, and 0 otherwise.

For the synchronization of trucks and drones we consider the distance per arc di,j , the truck speeds
aT , the drone speeds aD1 and aD2 , the service times sT

i for trucks per customer or microdepot i ∈ N ,
and the service times sD1

c and sD2
c for drones per customer.

The truck tours are restricted through a maximum time limit QT
time and to the number of

customers that can be served by a payload of Q. For trucks equipped with drones this payload
includes the customers served by a drone from this truck. The maximum available travel time for
drones within the planning period is denoted as QD

time. This maximum time is reduced by the
amount of time the respective truck needs to serve the microdepot assigned to it. The later a truck
arrives at the microdepot, the less time the drones stationed at that microdepot have to serve
customers. The total time QD

time is not to be confused with the endurance of a drone (eD1 and eD2)
which limits each flight’s duration per flight. The minimum of the two time spans (time remaining
within the planning period and endurance of a drone) defines for each drone launched from a
microdepot whether a potential customer can be served. The same applies to drones launched from
trucks, but then the total available travel time for drones is considered within the maximum time
limit for truck tours, QT

time. Furthermore, each microdepot i ∈ NM and each truck t ∈ T has a
limited capacity of at most KM

i and KT
t drones, respectively.

1.4.2 MILP formulation

In the following, we first introduce the objective function and then the constraints. The constraints
are split into five parts: first, the assignment of customers to one of the delivery options. Second, the
contraints regarding truck tours including the service of microdepots are presented. Third, we show
constraints regarding drones launched from microdepots or the CDC including the synchronization
between trucks and microdepots. Fourth, constraints regarding drones launched from trucks, and
fifth constraints regarding the synchronization of trucks and drones are introduced.
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1.4.2.1 Objective function

min
∑
t∈T

(
cT

fix · yT
t + cTmod

fix · yTmod
t + cD2

fix · z
D2
t

)
+
∑
d∈D

cD1
fix · y

D1
d +

∑
i∈N M

cM
fix · yM

i

+
∑

(i,j)∈A0, t∈T
cT

i,j · ui,j,t +
∑

i∈N M
0 , c∈N C

D , d∈D

2 · cD1
i,c · vi,c,d +

∑
i∈N M

0 , c∈N C
D , t∈T

cD2
i,c · (wi,c,t + xc,i,t)

+
∑

i,j∈N , t∈T
cwait · ϕT

i,j,t +
∑

j∈N , t∈T
cT

serv · χj,t +
∑

c∈N C
D

cD1
serv · ψc +

∑
c∈N C

D , t∈T

cD2
serv · ωc,t (1.1)

The objective function minimizes the fixed, variable, synchronization and service costs. The first
row describes all fixed costs including costs for each truck, each drone launching station per truck,
each drone, and each microdepot. The second row defines all variable costs for trucks and drones
traveling an arc. The third row indicates possible waiting costs if trucks are waiting for drones to
return, and service costs for all customers and microdepots served by trucks and customers served
by drones.

1.4.2.2 Constraints

∑
t∈T

χc,t +


∑

t∈T
ωc,t + ψc , c ∈ NC

D

0 , else

 = 1 ∀c ∈ NC (1.2)

∑
t∈T

χc,t ≤ 1 ∀c ∈ NM (1.3)

χi,t, ωk,t, ψk ∈ {0, 1} ∀i ∈ N , c ∈ NC , k ∈ NC
D , t ∈ T (1.4)

Constraints (1.2) ensure that each customer c ∈ NC is visited exactly once by one delivery option
while Constraints (1.3) guarantee that each microdepot might be served at maximum of once by a
truck. Next, we will introduce the constraints for each of these options.

Trucks

∑
i∈N0

uj,i,t −
∑

i∈N0

ui,j,t = 0 ∀j ∈ N0, t ∈ T (1.5)

∑
i∈N0

ui,c,t = χc,t ∀c ∈ N , t ∈ T (1.6)

κi +


∑

k∈N M

λk,t , i ≤ |NM |

1 , else

+
∑

c∈N C
D

wi,c,t ≤ κj +Q · (1− ui,j,t) ∀(i, j) ∈ A, t ∈ T (1.7)

∑
j∈N0

u0,j,t ≤ yT
t ∀t ∈ T (1.8)

ui,j,t, y
T
t ∈ {0, 1} ∀(i, j) ∈ A0, t ∈ T (1.9)

wi,c,t ∈ {0, 1} ∀i ∈ N0, c ∈ NC
D , t ∈ T (1.10)

κi ∈ R ∀i ∈ N (1.11)
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λi,t ∈ N ∀i ∈ NM , t ∈ T (1.12)

Constraints (1.5) to (1.8) are VRP-related restrictions for the truck. Constraints (1.5) and (1.6)
conserve flow. Constraints (1.7) are the subtour elimination constraints by Miller et al. (1960),
including both the set of microdepots and customers, since trucks may deliver both in one route.
The constraints also consider the maximum payload Q of each truck t ∈ T by taking into account
the demand of one unit per customer, the demand λk,t per microdepot k ∈ NM served per truck
t ∈ T , and the total service of all drones launched from that truck. The variable λk,t is restricted in
Constraints (1.21), since the service of microdepots is taken into account. Constraints (1.8) ensure
both that there is a maximum of one tour per truck t ∈ T and whether truck t ∈ T is used or not.
Lastly, the domains of the decision variables are defined.

Drones launched from the CDC or microdepots

vi,c,d ≤ yM
i ∀i ∈ NM , c ∈ NC

D , d ∈ D (1.13)∑
i∈N M

0 ,d∈D

vi,c,d = ψc ∀c ∈ NC
D (1.14)

∑
c∈N C

D

(2 · di,c

aD1
+ sD1

c

)
· vi,c,d ≤ QD

time · ξi,d −
∑

j∈N0, t∈T
τj,i,t ∀i ∈ NM , d ∈ D (1.15)

∑
c∈N C

D

(2 · di,c

aD1
+ sD1

c

)
· vi,c,d ≤ QD

time · ξi,d ∀i ∈ {0}, d ∈ D (1.16)

ξi,d ≤ yD1
d ∀i ∈ NM

0 , d ∈ D (1.17)∑
d∈D

ξi,d ≤ KM
i ∀i ∈ NM (1.18)

2 · di,c

aD1
· vi,c,d + sD1

c · ψc ≤ eD1 ∀i ∈ NM
0 , c ∈ NC

D , d ∈ D (1.19)

vi,c,d ≤ ξi,d ∀i ∈ NM
0 , c ∈ NC

D , d ∈ D (1.20)

λi,t ≥
∑

c∈N C
D , d∈D

vi,c,d −M big
1 ·

(
1−

∑
j∈N0

uj,i,t

)
∀i ∈ NM , t ∈ T (1.21)

∑
i∈N0, t∈T

ui,j,t = yM
j ∀j ∈ NM (1.22)

vi,c,d, y
M
i , yD1

d , ξi,d ∈ {0, 1} ∀i ∈ NM
0 , c ∈ NC

D , d ∈ D (1.23)

τi,j,t ∈ R+ ∀(i, j) ∈ A0, t ∈ T (1.24)

Constraints (1.13) to (1.22) are restrictions related to drones launched from the CDC or micro-
depots. Constraints (1.13) ensure that drones can only launch and return from a microdepot if the
microdepot has been opened and thus been supplied by a truck. Constraints (1.14) define whether
a customer is served by a drone launched from the CDC or microdepots. Constraints (1.15) and
(1.16) ensure that each drone d ∈ D may not exceed its total maximum service time QD

time per
time period. This time is reduced by the accumulated travel time τj,i,t of the supply truck until
the truck arrives at the microdepot. Auxiliary variables τj,i,t, (j, i) ∈ A0, t ∈ T are defined in

15



1 VFP with trucks and drones

Constraints (1.38) and (1.39) since waiting times for drones launched from trucks are taken into
account (Note, τj,i,t is adapted from the load-based subtour elimination constraint). The later the
truck arrives at the microdepot the less total time drones have left to serve customers. If drones
are launched from the CDC there is no decrease of a drone’s maximum service time since the CDC
does not need to be served first (Constraints (1.16)). Constraints (1.17) determine, if drone d ∈ D
can be launched from a microdepot. Constraints (1.18) ensure that there is a maximum number of
KM

i drones per microdepot i ∈ NM and Constraints (1.19) guarantee that only customers in range
are served by drones. Constraints (1.20) ensure that each drone d ∈ D can only serve customers
if it is assigned to microdepot or CDC i ∈ NM

0 . The demand λi,t of microdepot i ∈ NM to serve
all its customers is determined by Constraints (1.21). Truck t ∈ T must transport this quantity to
the microdepot. M big

1 can be set as the truck payload Q. Constraints (1.22) define, if drone d ∈ D
is used and microdepot j ∈ NM is opened. Lastly, decision variables and auxiliary variables are
defined.

Drones launched from trucks For all trucks t ∈ T , the following constraints restrict drones
launched from trucks:

πi,j,t ≤
∑

k∈N0: k ̸=i

πk,i,t +
∑

c∈N C
D

(
xc,i,t − wi,c,t

)
∀(i, j) ∈ A0 : i ̸= j (1.25)

πi,j,t ≤ KT
t · ui,j,t ∀(i, j) ∈ A0 (1.26)∑

i∈N
π0,i,t +

∑
c∈N C

D

w0,c,t = zD2
t (1.27)

πi,j,t +
∑

c∈N C
D

(
wi,c,t − xc,i,t

)
≤ zD2

t ∀(i, j) ∈ A0 : i ̸= 0 (1.28)

∑
c∈N C

D

wi,c,t ≤ zD2
t ≤ KT

t ∀i ∈ N0 (1.29)

wj,c,t + xc,j,t ≤ 2 ·
∑

i∈N0

ui,j,t ∀c ∈ NC
D , j ∈ N (1.30)

( ∑
f∈N0

τf,j,t − τf,i,t

)
·M big

2 ≥ wi,c,t + xc,j,t

−M big
3 · (2− wi,c,t − xc,j,t) ∀(i, j) ∈ A0, i ̸= j, c ∈ NC

D (1.31)∑
j∈N0

xc,j,t =
∑

i∈N0

wi,c,t = ωc,t ∀c ∈ NC
D (1.32)

1
aD2
·
(
di,c · wi,c,t + dc,j · xc,j,t

)
+ ϕD

c,j,t + sD2
c · ωc,t ≤ eD2 ∀(i, j) ∈ A0, c ∈ NC

D (1.33)

wi,c,t ≤ yTmod
t ∀i ∈ N0, c ∈ NC

D (1.34)

xc,i,t, y
Tmod
t ∈ {0, 1}, ϕD

c,i,t ∈ R+ ∀i ∈ N0, c ∈ NC
D (1.35)

zD2
t , πi,j,t ∈ N ∀(i, j) ∈ A0, c ∈ NC

D (1.36)

Constraints (1.25) determine the number of drones on each truck traveling an arc. This number
is less than or equal to the number of drones that have been carried by the truck on its previous arc
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plus returning minus leaving drones at the node it visited. There may only be drones on a truck,
if the arc has been traveled by a truck (Constraints (1.26)). Moreover there are a maximum of KT

t

drones traveling the arc from truck t ∈ T . Constraints (1.27) to (1.29) ensure that there is always a
sufficient number of drones on truck t ∈ T . The number of drones when leaving the CDC is defined
in Constraints (1.27), which is reduced by the number of drones released from the truck at the
CDC. During each trucks’ tour additionally returning drones are considered (Constraints (1.28)).
The number of drones that can be launched at each node is limited in Constraints (1.29) to the
number of drones the truck carries at that node. Moreover, the number of drones per node is limited
to a maximum of KT

t drones (Constraints (1.29)).
Constraints (1.30) ensure that each drone can only launch from or return to a node that the

associated truck t ∈ T also visits on its tour. The cumulative truck travel time is included in
Constraints (1.31) to ensure that the drones return to the same or any later truck position than the
drone was initially launched. M big

2 can be set as reciprocal of the closest two customers’ delivery
time by truck. To ensure that the inequality also applies to arcs that are not traveled by the truck,
the right side of the inequality is reduced by M big

3 in these cases, which can be set as the maximum
travel time. Constraints (1.32) are flow conservation constraints for drones launched from trucks.
Constraints (1.33) ensure that the flight time of a drone tour does not exceed the drone-specific
endurance. The flight time of a drone includes the regular times for covering the arcs (i, c) and (c, j),
the service time at the customer’s site, sD2

c and a potentially extended flight time ϕD
c,j,t realized by

speed reduction so that the drone does not arrive at the return node j before its associated truck.
Note that the speed can only be reduced up to a certain minimum speed for aerodynamic reasons.
Constraints (1.33) also reflect this fact. Constraints (1.40) set the potentially extended flight times
ϕD

c,j,t.
Constraints (1.34) define whether a truck needs to be equipped with a drone launching station.

Finally, decision variables and auxiliary variables are defined.

Synchronization of trucks and drones For all trucks t ∈ T , the following constraints ensure the
synchronization of trucks, microdepots, and drones launched from trucks:

ϕT
i,j,t ≥

1
aD2
·
(
di,c · wi,c,t + dc,j · xc,j,t

)
+ sD2

c · ωc,t −M big
4

· (2− wi,c,t − xc,j,t)−


∑

h∈N0

(
τh,j,t − τh,i,t

)
, i ̸= j

0 , else

∀(i, j) ∈ A0 : j ̸= 0, c ∈ NC
D (1.37)

τi,j,t ≥
(
di,j

aT
+ sT

j

)
· ui,j,t

+


∑

k∈N0

(
τk,i,t + ϕT

k,i,t

)
−M big

4 · (1− ui,j,t) , i ̸= 0

0 , else

∀(i, j) ∈ A0 (1.38)

τi,j,t ≤ QT
time · ui,j,t ∀(i, j) ∈ A0 (1.39)
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ϕD
c,j,t ≥

∑
h∈N0

(
τh,j,t − τh,i,t

)
− 1
aD2
·
(
di,c · wi,c,t

+ dc,j · xc,j,t

)
− sD2

c · ωc,t − (2− wi,c,t − xc,j,t) ·M big
4 ∀(i, j) ∈ A0 : j ̸= 0, c ∈ NC

D (1.40)

ϕT
i,j,t ∈ R+ ∀(i, j) ∈ A0 (1.41)

Constraints (1.37) to (1.40) ensure the synchronization of trucks, microdepots, and drones laun-
ched from trucks by computing the waiting times in (1.37) and adding these times to the accumu-
lated travel time in (1.38). Constraints (1.37) determine the possible waiting times for each truck
after traveling an arc (i, j) and for each customer note c that can be supplied by drone, c ∈ NC

D . To
compute the waiting times for an arc, the accumulated travel time τi,j,t for truck t ∈ T for traveling
up to node j ∈ N0 is compared to the drone’s travel and service time. A truck is waiting at a node
j ∈ N0 if a drone that returns to j is launched at the same node j. In this case waiting times only
arise, if the truck’s service at node j needs less time than the drone tour to serve customer c ∈ NC

D .
Constraints (1.38) define τi,j,t during the tour. At the beginning of a truck’s tour (i = 0) no

previous travel and waiting times are taken into account, but the time traveling the first arc
and a first service time are. Otherwise, previous travel times and waiting times are added to the
accumulated travel time. M big

4 ensures that the accumulated travel time is not greater than zero
if an arc is not traveled, and can be set as the truck’s total travel time QT

time. Constraints (1.39)
limit the maximum cumulative travel time of a truck on arc (i, j), τi,j,t by QT

time and set τi,j,t to 0
if a truck does not travel arc (i, j).

Constraints (1.40) quantifies the potentially extended flight time ϕD
c,j,t so that a drone does not

arrive at the return node j before its associated truck. This is realized by speed reduction of the
drone and satisfies the endurance constraint for each drone flight. Finally, the auxiliary variables
ϕT

i,j,t are defined.
As a generalization of the 2E-LRP and the VRPD, the 2E-LRPD is NP-hard (e.g., Sacramento

et al. 2019) and only small instances can be solved optimally using the MILP. To solve larger
instances, we introduce an ALNS in the following section.

1.5 Adaptive large neighborhood search

The ALNS was first introduced in Ropke and Pisinger (2006) and Pisinger and Ropke (2007) and
has also been widely used for both truck and drone routing problems (Sacramento et al. 2019)
as well as two-echelon routing problems (Mühlbauer and Fontaine 2021, Voigt et al. 2022). The
basic concept of our ALNS approach is adapted from Ropke and Pisinger (2006) and Pisinger
and Ropke (2007). However, we modify the operators significantly with respect to the specifics
of our problem setting. They differ from classical truck operators (e.g., Ropke and Pisinger 2006,
Pisinger and Ropke 2007), typical drone operators (e.g., Sacramento et al. 2019), and two-echelon
operators (e.g., Hemmelmayr et al. 2012) suggested in literature in terms of three aspects. First,
we consider more general assumptions regarding the vehicle fleet and drone flights. Second, our
operators directly factor in the impact on the vehicle fleet. And, third, we have additional problem
specific mixed operators, which assess the benefits of different delivery methods or mix of methods.
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In the following we first describe the solution representation and then detail the ALNS in general.
In the third subsection we introduce the destroy and repair operators used. In the fourth subsection
the local search within the ALNS is explained in detail.

1.5.1 Solution representation and penalized costs

The 2E-LRPD is a set partitioning problem regarding customers. Thus, it allocates each customer
exactly once to either a route of trucks, a route of drones launched from microdepots or the CDC,
or a route of drones launched from trucks. Therefore, a solution R is represented by the following
three subsets:

1) RT : Truck routes that serve customers and microdepots directly.

2) RD
M0

: Drone routes launched from microdepots or the CDC.

3) RD
T : Drone routes launched from trucks including both the launch and return node of drones.

Each customer is assigned to exactly one route. Once a microdepot is included to serve customers
via drones, it also becomes part of the set RT and decreases the remaining payload of a truck in RT

accordingly. Thus, while a route r ∈ RD
M0

or RD
T only contains the sequence of customers, a route

r ∈ RT further includes visits at microdepots. Therefore, the three routes determine the vehicle
fleet and the design of the distribution system. That is, which of the microdepots to open, the
truck types used and their respective numbers, as well as the number and types of drones. For the
example illustrated in Figure 1.2 the associated design setting is represented by the three sets RT ,
RD

M0
, and RD

T as follows.

1) RT = {CDC,M1, C6, C9, CDC}. The order of the elements in the set defines the route sche-
dule. The sequence “CDC, · · · , CDC” is repeated when multiple trucks are used.

2) RD
M0

= {C1(M1), C2(M1), C3(M1), C4(M1), C5(M1), C11(CDC)}. The node identifier in the
brackets provides information, on which microdepot or CDC the respective drone is assigned
to.

3) RD
T = {C7(C6, C9), C8(C6, C9), C10(C9, CDC)}. The node identifiers in the brackets provide

information on the launch and return node of a drone.

Following the scheme of Vidal et al. (2013), we allow infeasible solutions and penalize the infea-
sibility by adding a penalty term to the objective function of the MILP. Infeasibility may occur in
five different cases. First, the load of a truck exceeds its payload. Second, a truck route exceeds its
total maximum delivery time. Third, the maximum number of drones per truck is violated. Fourth,
a drone route exceeds its maximum endurance. Fifth, drones launched from microdepots or the
CDC exceed their delivery day’s total running time.
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1.5.2 ALNS algorithm

Algorithm 1 presents the general outline of the ALNS. In the beginning, the best found solution
Rglobal, the current solution R and the initial temperature Temp for the simulated annealing process
are initialized. For a starting solution all customers that can be supplied by drones and are in range
of the CDC are served by drones launched from the CDC. The remaining customers are allocated
to truck routes in the greedy best way taking both variable and fixed costs for each truck used into
account. The while-loop starts with randomly choosing one destroy and one repair operator based
on weights (line 4). This destroy operator removes customers of one or possibly more routes (line 5)
and inserts them in a RemovedCustomers set. The removed customers are reinserted by applying
the chosen repair operator (line 6). At this stage, a drone insertion operator could potentially be
selected. In this case, it is necessary to check whether customers to be reassigned are eligible for
drone deliveries at all. If this is not the case, another repair operator must be chosen that inserts
these customers to truck routes. The same holds true when a new microdepot is opened.

A local search is then executed (lines 7 - 9) if the new solution R̂ has potential for a new global
best solution, i.e., the costs of the new solution found f(R̂) are lower than the costs of the global
best solution f(Rglobal) adjusted by a factor µ.

Algorithm 1: ALNS framework for vehicle fleet planning
1 R, Rglobal ← Initial Solution;
2 Temp ← GetInitialTemp();
3 while Time < MaxTime do
4 ChooseOperator();
5 (R̂, RemovedCustomers) ← RemoveCustomers(R);
6 R̂ ← RepairCustomers(R̂, RemovedCustomers);
7 if f(R̂) < (1 + µ)· f(Rglobal) then
8 R̂ ← Local Search(R̂);
9 end

10 if f(R̂) < f(Rglobal) then
11 R, Rglobal ← R̂;
12 else if accept(f(R̂), f(R), Temp) then
13 R ← R̂;
14 Temp ← UpdateTemp(Temp);
15 UpdateWeights();
16 end

Lines 10 - 14 specify the simulated annealing process that updates both global and current
solution depending on Temp and if a new global best solution is found. At the end of each iteration,
the weights of the operators are updated based on the performance of the chosen operator. The
weight ηi,j for operator i at iteration j is updated analogous to Sacramento et al. (2019): ηi,j+1 =
ζηi,j + θ(1− ζ), where ζ is the reaction factor for the learning curve and θ are values dependent of
the performance of the operator. The algorithm runs until a maximum time is reached (line 3).
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1.5.3 Operators

The destroy and repair operators base on the operators suggested by Ropke and Pisinger (2006),
Hemmelmayr et al. (2012), and Sacramento et al. (2019). However, we modify these operators with
respect to the specifics of our problem setting, as explained below. In general, we consider either
inter-route or intra-route operators.

1.5.3.1 Destroy operators

We consider five destroy operators that remove α customers. The number of removed customers
is randomly drawn from a descending exponential distribution that is further limited by an upper
bound and therefore favors a small number of customers which reduces the computation time within
each iteration of the ALNS. As suggested by Sacramento et al. (2019), the corresponding customers
in RD

T are removed only if a node in the truck routes RT is removed from which drones launch or
return. If the node removed in RT is a microdepot, all its customers are removed from RD

M0
. The

operators applied possibly reduce the vehicle fleet of trucks and drones and/or close microdepots.
Random customer removal – The random customer removal operator removes α customers

from one specific route.
Random microdepot removal – The random microdepot removal operator removes one ran-

dom microdepot from the truck route and all its connected customers.
Closest customer removal – The closest customer removal operator removes a random cu-

stomer from one route and α − 1 closest customers from the same route. The closest operator is
chosen since it generally generates good results within a short run time.

Random any removal – The random any removal operator selects one random customer and
removes it from the one of the three routes that includes it.

Closest any removal – This operator works in a similar way as the closest removal operator,
but removes the closest customers from any of the three routes.

1.5.3.2 Repair operators

We consider 15 repair operators that reinsert the removed customers in one of the three or multiple
route types. Trucks or drones might be added to the vehicle fleet or a new microdepot might be
opened by applying these operators. In the following, we cluster these operators according to the
related route.

For the truck routes RT , five operators are used:
Random customer to truck insertion - This operator adds customers one by one to a random

place in RT . It is checked first whether a customer might fit in a route.Otherwise a new route is
created.

Closest customer to truck insertion - Customers are added to a truck’s route one by one
after their closest node. If the customer does not fit in a truck’s route, the next closest node in a
different route is chosen.

Greedy customer to truck insertion - The greedy truck insertion operator adds a customer
to the truck’s route in the greedy best place. For this it is for each node within a route checked,
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which costs arise, if the customer is added after this node. For this fixed, variable, synchronization,
and penalty costs for upcoming infeasibility are considered. Moreover, it is checked whether adding
a truck to the fleet might be more cost effective.

Greedy customer to truck insertion - new route - All customers are added one by one to
the greedy best place in one new route only. Thus, exactly one truck is added to the fleet, always.

Greedy customer to truck insertion - existing routes - This operator places all customers
in a truck’s route greedy best place. It is not checked, if the customer might fit better in a new
tour. Thus, no trucks are added to the fleet.

For the drone routes that are launched from trucks RD
T , three operators are used:

Random customer to drone launched from truck insertion - This operator chooses a
random launching position for a drone from a truck route. The drone afterwards returns to the
next truck’s position. We expect that in most cases the drone returns to the next truck position,
since the drone can be used frequently in this manner, but the truck only rarely has to wait. If a
later return node would improve the solution, the local search implements the necessary changes.

Closest customer to drone launched from truck insertion - The closest operator works in
a similar way to the previous random insertion operator, but it chooses the closest truck position
for the launch node of the drone. The drone returns again to the next truck’s position. Since fixed
costs are neglected in this operator, this operator typically results in adding new drones to the fleet
early in an iteration rather than trying to serve all customers with the existing number of drones.

Greedy customer to drone launched from truck insertion - It is checked which is the best
launch and return node for the drone to serve the customer. Account is taken of variable, fixed,
and penalty costs, as well as an estimate of synchronization costs.

For the drone routes that are launched from microdepots RD
M0

, five operators are used.
Random customer to microdepots insertion - A random microdepot or the CDC in range

of the customer is chosen and opened if it is not in use yet. The customer gets served by a drone
launched from that microdepot.

Closest customer to microdepots insertion - This operator works in a similar way to the
previous random insertion operator, but the closest microdepot or CDC is chosen.

Greedy customer to microdepots insertion - It is checked, which microdepot can serve
as launching node for drones at lowest total costs. All microdepots and the CDC are taken into
account.

Closest customer to open microdepots insertion - This operator works in a similar way
to the closest customer to microdepot insertion operator, but only takes into account microdepots
or the CDC that are already in use.

Greedy customer to open microdepots insertion - This operator works in a similar way
as the greedy customer to microdepot insertion operator, but only takes into account microdepots
or the CDC that are already in use.

Last, two operators combine all routes:
Greedy customer insertion - This operator combines the operators greedy customer to truck

insertion, greedy customer to drone launched from truck insertion and greedy customer to micro-
depots insertion. One by one it is checked, where a customer can be added in any route best. This
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operator might extend the vehicle fleet by trucks and drones launched from trucks, microdepots,
or the CDC or open new microdepots.

Greedy customer insertion - existing trucks and microdepots - This operator works in
a similar way as the previous operator, but the vehicle fleet might only be increased by drones and
neither trucks are added to the fleet nor microdepots are opened.

1.5.4 Local search

We apply a local search procedure independently for each of the three route types if the current
solution is within a threshold µ of the global best solution. The changes have no or only little
impact on both other routes as these changes are only for route optimization and do not aim to
optimize the drone location or vehicle fleet. Our destroy and repair operators, on the other hand,
are developed to vary and optimize the drone location and the vehicle fleet. The local search for
the three routes work as follows:

RT The local search for the truck routes RT is a two-opt that reconnects each two arcs within a
tour, if drones are not launched from the affected nodes. This procedure results in swapping
two nodes in RT that are not microdepots or customers from which drones are launched since
this would have a sufficient impact on RD

M0
and RD

T .

RD
M0

For the drone routes RD
M0

, a two-opt with no restrictions on the node is used. The local search
swaps the microdepots or CDC, from which the corresponding drones launch and return for
two customers. This swap has no impact on RT as the same delivery volumes continue to be
transported to the microdepots.

RD
T The local search for RD

T first identifies the cost-optimal starting node for each customer and
secondly the landing position on the same truck. The number of drones per truck can be
changed by this swap.

All local searches apply a first-improvement strategy and execute the change if an improvement
in costs is achieved. Smaller dependencies between the three routes are still considered if a truck
arrives at a microdepot or a return node for a drone at an earlier or later date. This is the case
if the route of the truck or its waiting time at a previous node is adjusted before arrival at the
microdepot or at the return node. These variation of arrival lead to an adjustment of remaining
time for drones of the microdepots to serve customers or drone flight time for drones launched from
trucks. Thus, the local searches may only vary penalty costs.

1.6 Numerical experiments

In this section we first introduce the numerical setup. We then evaluate the performance of the
proposed ALNS before showing managerial insights. The MILP is implemented in OPL and solved
using CPLEX v12.10. The ALNS is implemented in C++. All experiments are conducted on an
AMD Ryzen 9 3950X with 32 GB RAM.
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1.6.1 Instance generation

1.6.1.1 Network

We consider a network that states a rural area with random CDC location and five randomly located
demand areas within a 60km × 60km map. In each demand area, there is a potential microdepot
location at its center. This means that we assume five potential microdepots.

We generate demand settings with 50 to 200 customers. 70-100% of all customers are randomly
placed in demand areas and the remaining customers across the entire map. Three (two) demand
areas comprise 80% (20%) of the total demand allocated to all five demand areas. 25% of all
customers cannot be served by drones on average.

1.6.1.2 Parameter settings

Table 1.3 presents truck, drone, and microdepot parameters that are specified for a period of one
day. The column T represents parameter settings for trucks, Tmod additional parameter settings if
a truck is equipped by a docking station for drones, DT parameter settings for drones launched
from trucks, DM0 parameter settings for drones launched from microdepots or the CDC, and M

parameter settings for microdepots (Campbell et al. 2017, Keeney 2015, Murray and Raj 2020). In
the calculation of the drone variable costs, personnel costs for the flight control of drones by an
external employee are already included, who can supervise an average of 10-12 drones in parallel
(Keeney 2015).

We assume two different sizes of drones, small drones launched from trucks and large drones
launched from microdepots and the CDC. Large drones have the advantage that they can travel
faster and longer distances, but involve higher fixed costs than small drones. We correct the eucli-
dean distances of trucks and drones by a vehicle-specific detour factor since drones can travel a
more direct path than delivery trucks.

Parameter T Tmod DT DM0 M

Q 100 - 1 1 100
Qtime 8 - - 14 -
detour factors 1.2 - 1.1 1.1 -
a 35 - 50 100 -
eD - - 0.49 0.66 -
K - 4 - - 4
s 0.05 - 0.01 0.01 -
c 0.70 - 0.03 0.03 -
cwait 13.00 - - - -
cservice 0.65 - 0.13 0.13 -
cfix 23.00 3.00 3.61 5.37 14.07

Table 1.3: Parameter settings.

The ALNS parameters are based on pre-testing. A maximum of eight customers can be removed
from a tour per iteration. The reaction factor ζ for the learning curve of the ALNS is set to 0.7.
Starting with an initial weight ηi,0 of 100 per operator i, the weights are changed by θ = 330 for a
global best new solution, by θ = 130 for a local best new solution, by θ = 90 for a local worse new
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solution but accepted in Simulated Annealing, and by θ = 0 for a worse new solution. The local
search parameter µ is set to 0.02. The initial temperature factor for the simulated annealing is set
to 100 and cools down by a cool rate dependent on the remaining run time of the ALNS.

1.6.2 Performance evaluation

1.6.2.1 Small instances

The ALNS is compared to the solutions obtained using CPLEX for the MILP. The run time limit
was set to 60 minutes and the ALNS was executed five times. Table 1.4 shows the results for 20
scenarios assuming a certain number of customers (9 to 15) and microdepots (1 to 3) within a
10km × 10km, 20km × 20km, 30km × 30km, or 60km × 60km map. Each Scenario is denoted in
the form of [#customers].[#microdepots].[#non-eligible customers for drone delivery]. The column
labeled Map indicates the size of the delivery area in km2. CBKS quantifies the costs for the best-
known solution, i.e., the optimal solution or upper bound found by CPLEX. Column Gap shows
the optimality gap reported by CPLEX in % in the event that optimality has not yet been proven.
The columns Cbest

ALNS and Cavg
ALNS describe the costs for the best and average solution out of five

runs. Finally, the run time in seconds of both the average of five runs for the ALNS (tavg
ALNS) and

CPLEX (topt) are reported. The results show that CPLEX was not able to find or prove the optimal
solution in four cases within the time limit of 60 minutes. On the contrary, the ALNS always found
this solution with a maximum average run time of less than one second.

Scenario Map CBKS Gap [%] Cbest
ALNS Cavg

ALNS tavg
ALNS [s] topt[s]

10.01.04 10 x 10 46.3∗ 0 46.3 46.3 0.0024 386
10.03.02 10 x 10 38.3∗ 0 38.3 38.3 0.0000 70
11.02.05 10 x 10 52.3 14 52.3 52.3 0.0036 3600
13.02.03 10 x 10 50.2 37 50.2 50.2 0.0104 3600
13.03.02 10 x 10 53.4 48 53.4 53.4 0.0026 3600
09.01.03 20 x 20 59.3∗ 0 59.3 59.3 0.0008 47
10.03.01 20 x 20 56.3∗ 0 56.3 56.3 0.0022 19
11.01.03 20 x 20 65.3∗ 0 65.3 65.3 0.0010 3580
11.01.06 20 x 20 82.7∗ 0 82.7 82.7 0.2668 482
13.02.03 20 x 20 77.8 34 77.8 77.8 0.0098 3600
09.03.05 30 x 30 112.2∗ 0 112.2 112.2 0.0094 12
10.01.04 30 x 30 86.8∗ 0 86.8 86.8 0.0064 39
11.01.05 30 x 30 93.5∗ 0 93.5 93.5 0.0020 76
11.01.06 30 x 30 103.3∗ 0 103.3 103.3 0.0028 119
11.02.04 30 x 30 94.7∗ 0 94.7 94.7 0.0938 3296
11.01.03 60 x 60 155.3∗ 0 155.3 155.3 0.0182 7
12.02.05 60 x 60 150.1∗ 0 150.1 150.1 0.0312 23
13.03.06 60 x 60 169.4∗ 0 169.4 169.4 0.0126 9
14.03.06 60 x 60 190.0∗ 0 190.0 190.0 0.0988 568
15.02.07 60 x 60 200.0∗ 0 200.0 200.0 0.0628 382

Table 1.4: Results for small instances (∗ optimal solution).
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1.6.2.2 VRPD benchmark

Next, we compare the performance of the ALNS introduced to the benchmark instances from
Sacramento et al. (2019) for the VRPD, which have also been used by Euchi and Sadok (2021)
to test the solution approach they developed. The VRPD instances consider a problem setting
with one drone per truck. For this, our operators concerning drones launched from microdepots
or the CDC are omitted and customers are supplied by trucks or drones launched from trucks.
Additonally, as Sacramento et al. (2019) forbid drones to return to the same node, they have been
launched, our operators have been modified in the same way.

The results for the ALNS are compared to those of the best solutions by Sacramento et al. (2019)
and Euchi and Sadok (2021) for the same run time of five minutes and ten runs, Sacramento et al.
(2019) used. For this purpose, the deviation σ̄ of the best found C̄best compared to the average
found solution C̄avg for the ALNS of Sacramento et al. (2019), the hybrid genetic algorithm of
Euchi and Sadok (2021), and our ALNS and the percentage deviation of our best found solution to
the existing global best-known-solution σ̄BKS are computed. Table 1.5 shows the aggregated results
for the 112 instances for different demand classes, i.e., the average results obtained for scenarios of
the same demand class. Table A.2 in the appendix shows detailed results for all 112 instances.

Our ALNS has on average a lower σ and is more stable than both the heuristics developed
by Sacramento et al. (2019) and Euchi and Sadok (2021). Moreover, we find best solutions for
instances with 200 customers on average and our ALNS outperforms the approach by Sacramento
et al. (2019) in 30 and the approach by Euchi and Sadok (2021) in 23 instances. In addition, we find
17 new best-known solutions. Sacramento et al. (2019) optimally solve small instances with up to
12 customers. Our ALNS approach also finds these optimal solutions. For larger instances with 20,
50, 100, and 150 customers our approach performance slightly worse than the approaches suggested
by Sacramento et al. (2019) and Euchi and Sadok (2021). However, this can be explained by the
short run time of five minutes and that our operators are designed for multiple drones per truck
and a possible return to the same location from which the drone takes off. Nevertheless, the results
confirm the quality of the procedure we have developed, also because our method is designed for
tactical fleet and drone location planning and does not only consider route planning with trucks,
each equipped with a single drone.

Demand Sacramento et al. (2019) Euchi and Sadok (2021) Own results

class C̄best C̄avg σ̄[%] C̄best C̄avg σ̄[%] C̄best C̄avg σ̄[%] σ̄BKS [%]

6-12 2.8762 2.8762 0.00 2.8762 2.8762 0.00 2.8762 2.8766 0.01 0.00
20 4.1111 4.1152 0.09 3.8832 4.0331 5.46 4.0890 4.0905 0.02 7.47
50 13.4792 13.6293 1.03 13.2746 13.4606 1.46 13.4845 13.6678 1.54 2.21
100 18.3439 18.6604 1.59 18.0009 18.1871 1.24 18.4121 18.6450 1.29 3.79
150 21.7796 22.5680 3.36 21.5250 22.5542 4.39 21.8360 22.2623 1.83 2.15
200 26.3185 26.9347 2.29 25.9771 26.0861 0.51 25.9569 26.4741 1.60 0.40
Average 1.19 1.67 0.90 2.02

Table 1.5: Approach suggested by Sacramento et al. (2019) and Euchi and Sadok (2021) vs. our
approach for VRPD instances from Sacramento et al. (2019).
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1.6.2.3 Large instances

We further show the performance and the solution stability of the fleet mix and microdepot loca-
tions generated by the ALNS introduced for 30 different demand settings. Table 1.6 presents the
aggregated results for different demand classes and gives information on the average of the best fleet
mix (T , DT , DM , DCDC) and the microdepots used within the demand class. Further, the average
of the best costs (C̄best), and its deviation (σ̄) from average costs (C̄avg) are reported. Table A.1 in
the appendix shows detailed results for all scenarios tested. We limit the computational time per
run to 60 minutes and perform five runs to solve a scenario.

Demand class T DT DM DCDC Microdepots used C̄best C̄avg σ̄[%]

50− 57 1 2.5 0 0 216.14 216.33 0.09
58− 63 1 2.5 1 0 M3 229.35 230.87 0.66
64− 79 1 1.5 2 0 M2, M5 244.71 245.96 0.51
80− 114 1 0 2 1 M2, M5 286.06 286.17 0.04
115− 129 1.3 0 3 1 M2, M3, M5 308.49 309.05 0.16
130− 178 2 0 4 0.1 M1, M2, M3, M5 383.38 383.98 0.15
179− 200 2 0 4 1 M1, M2, M3, M5 433.20 434.80 0.36

Table 1.6: Results for large instances.

The results show that the ALNS finds solutions with an average deviation to the best found
solution (σ) of less than 1% for all scenarios. The fleet mix found and the microdepots used are
stable within each demand class, but varies with increasing demands in this network. Moreover,
the table indicates that also both the fleet mix and the selected locations of the microdepots are
stable. Microdepot 4 is never opened, for instance.

1.6.3 Sensitivity analysis

1.6.3.1 Experiments with varying network structure

In this subsection, we analyze the potential cost savings of different fleet mix modeling approaches
relative to sole truck deliveries assuming a classical VRP context. The analysis varies the size and
overall structure of the delivery area, i.e., the number of demand areas (four, six, eight, and ten),
the location of the CDC, i.e., a remote (A) and a more central (B) location within the delivery area
and the number of customers served.
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Figure 1.3: Cost savings of our fleet mix modeling approach (2E-LRPD) compared to a sole truck
delivery for different networks, if the CDC is remote (A) or more central located (B).
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Figure 1.3 shows the cost savings of our fleet mix and microdepot location modeling approach
(2E-LRPD) compared to the sole truck delivery approach (note, we aggregate 160 different demand
classes in this study). The results lead to the following observations. Average cost savings of 2E-
LRPD decrease if the CDC is remotely located. A centrally located CDC allows the deployment of
more drones than a CDC that is located at a greater distance to potential customers. This saves
trucks and travel distances for trucks and drones. The differences in cost savings between a centrally
and remotely located CDC diminish assuming more demand areas (eight and ten). In these cases
the CDC has less relevance as a potential drone location.

Next we consider different fleet mix modeling approaches and analyze the respective cost savings
in comparison to sole truck delivery. In this analysis, we distinguish different demand classes (50 to
100, 101 to 150, and 151-200 customers) but aggregate the results for both CDC locations and for
the respective number of demand areas. The different fleet mix modeling approaches considered are
as follows. The VRPD approach assumes a vehicle mix that consists of trucks and drones launched
from trucks. The 2E-LRP approach assumes a vehicle mix that consists of trucks and drones, but
drones are only launched from microdepots and the CDC. It also decides on the number and the
location of microdepots. Finally, our 2E-LRPD approach allows the selection of the best fleet mix
from the two previously mentioned approaches or a combination of both modeling approaches.
Figure 1.4 shows the results.

VRPD 2E−LRP 2E−LRPD VRPD 2E−LRP 2E−LRPD VRPD 2E−LRP 2E−LRPD
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Figure 1.4: Cost savings of drone delivery compared to sole truck delivery for three demand
classes considering different delivery methods.

Both the truck-drone concept (VRPD) and drones launched from microdepots (2E-LRP) lead
to sufficient cost savings compared to truck-only deliveries in all scenarios for all demand classes.
Moreover, we can observe, that the cost savings potential of drones is relatively constant for all
demand classes and increases only slightly at higher demands for microdepots or the mix. The
VRPD approach achieves average cost savings of 19.2% compared to sole truck delivery. These
savings increase to 31.1% by following the 2E-LRP approach. The average cost savings can however
be further increased by 14.1% and 2.2%, respectively, if the best delivery method or mix of methods
is chosen (2E-LRPD approach). Note that in 58% of all scenarios a mix of drones launched from
trucks (VRPD) and drones launched from the CDC or microdepots (2E-LRP) is best. This shows
that it is insufficient to choose only the best solution from both approaches. An integrated modeling
and solution approach is needed that also models and possibly selects the respective combinations.

Summary. The size and overall structure of the delivery area, especially the location of the
CDC, has a significant influence on the vehicle fleet. Launching drones from microdepots instead

28



1 VFP with trucks and drones

of trucks leads to higher cost savings compared to sole truck delivery. A mix of drone delivery
methods may even increase these cost savings.

1.6.3.2 Experiments with varying deliverability of drones

In this subsection the impact of varying the deliverability by drones is analyzed. We perform a
sensitivity analysis with a variation of the average customer share β that cannot be served by
drones, but by trucks. Fewer customers may be served by drones, for example, if there is less
acceptance of drones in a network or if packages tend to be particularly heavy or numerous. Drones
may serve more customers, for example, if more smaller products are supplied due to increasing
e-commerce (Keeney 2015).

Table 1.7 presents the development of the average number of deployed vehicles within the demand
classes of 50 to 100 customers, 101 to 150 customers and 151 to 200 customers for varying β ceteris
paribus.

β = 50% β = 25% β = 0%

Demand class T DT DM DCDC T DT DM DCDC T DT DM DCDC

50-100 1.8 2 1.1 0.2 1 1.3 1.4 0.4 1 0.1 2.4 0.9
101-150 2 2.8 1.5 0.6 1.5 0 3.2 0.6 1 0 2.8 1.5
151-200 2.7 2.3 2.2 0.7 2 0 4 0.4 1.4 0 3.4 1.6

Table 1.7: Average vehicle fleet, depending on the respective share of their eligibility for drone
delivery β for three different demand classes.

As drone deliverability increases, stationary drones become more profitable compared to a truck-
drone concept. Moreover, we can observe that stationary drones reduce the number of trucks used.
Up to three trucks are still necessary if only every second customer can be supplied by drones.
With increasing deliverability, a maximum of only two trucks is necessary. The strongest limitation
for trucks is no longer the delivery time but the maximum payload. Due to increased deliveries
by drones, the CDC is more frequent equipped with more than one drone from medium demand
onwards, on average.

Summary. The vehicle fleet mix is sensitive to drone deliverability. In cases with low eligibility
of customers for drone delivery, it is more profitable to launch drones from both delivery trucks
and stationary depots, even if demand is high. On the other hand, the concept of stationary drone
delivery becomes relevant when more customers agree to receive their deliveries by drone.

1.6.3.3 Experiments with drone properties.

Lastly, the impact of drone property changes is analyzed. Due to technological progress, drones
are expected to travel faster and with a greater endurance (Wingcopter GmbH 2020). Thus, two
linearly increased speeds and endurance of drones by a factor γ are considered ceteris paribus.
Table 1.8 presents the development of the average number of vehicles for the demand classes of 50
to 100 customers, 101 to 150 customers and 151 to 200 customers for improved drone properties.
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γ = 25% γ = 50%

Demand class T DT DM DCDC T DT DM DCDC T DT DM DCDC

50-100 1 1.3 1.4 0.4 1 2.5 0.3 0 1 3.4 0.1 0
101-150 1.5 0 3.2 0.6 1 1.9 1.5 1 1 2.7 1.2 1
151-200 2 0 4 0.4 1.7 1.6 2.6 0.9 1.7 4.6 1 0.8

Table 1.8: Average vehicle fleet, depending on improved speed a and endurance e by factor γ.

With increasing drone properties, drones launched from trucks become more advantageous to-
wards drones launched from stationary depots, especially for low and high demands proportionally
more drones are launched from trucks than from microdepots or CDC. As distances increase, drones
launched from trucks become more and more capable of delivering to individual dispersed custo-
mers. This leads to substantial cost savings compared to the truck or stationary drone delivering
to these customers instead since synchronization efforts reduce with increasing speed and drones
launched from microdepots are already technologically mature in the numerical setup.

Summary. The synchronized truck-and-drone delivery method is more restricted by the drone
properties flight distance and speed than the microdepot method. Improving drone properties thus
leads to greater competition of the two delivery methods, resulting in a mix of mobile and stationary
drones becoming even more cost effective.

1.7 Conclusion

This paper considers tactical vehicle fleet and microdepots planning for commercial parcel delivery
using different delivery methods and mixes of methods with trucks and aerial drones. We introduced
the two-echelon location routing problem with drones denoted as 2E-LRPD that defines the cost-
optimal fleet mix of trucks and drones as well as the number and locations of microdepots. We
developed a problem-specific ALNS that generates near-optimal solutions.

The numerical study shows that a combination of trucks and drones in delivery always leads to
significant cost savings compared to sole truck delivery. We further demonstrate that the best fleet
mix often combines all the different delivery methods, so that customers in the delivery area can be
served by drones launched from the CDC, microdepots, and trucks as well as by direct truck delivery.
While we observed that it is mostly profitable to launch drones from stationary depots (microdepots
and/or CDC) instead from trucks, drones launched from trucks are increasingly preferred as the
drone range increases or customer eligibility for drone deliveries decreases. The study also shows
that under certain circumstances only a subset of all possible delivery methods is cost-optimal.
Nevertheless, it is insufficient to choose only the best solution from the VRPD and the 2E-LRP
approach. A combination of both approaches turns out to be best in 58% of all cases analyzed. This
result justifies the increased effort involved in fleet mix, microdepot and delivery planning using
the integrated modeling and solution approach (2E-LRPD) proposed in this paper.

Future research possibilities could include the impact of weather information on the vehicle fleet
since drones are more vulnerable to weather, especially precipitation and wind, compared to delivery
trucks. In addition, some assumptions could be extended, such as the possibility that drones can
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transport multiple packages instead of only one. It can also be considered that drones return to a
different stationary depot than the one they started from, or different demand distributions can be
assumed in each period of a planning horizon (e.g., each day of a week). However, the latter two
extended assumptions lead to a multi-period problem that makes the problem even more difficult
to solve.
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2 Two-indexed formulation of the traveling salesman
problem with multiple drones performing sidekicks and
loops

Alexander Rave

Abstract Aerial drone delivery has great potential to improve delivery time in package delivery, as
drones can fly autonomously over obstacles at a possibly higher speed than trucks. The benefits of
drones in delivery can even be increased in a truck-and-drone tandem where a truck carries one or
multiple drones and releases them at advantageous places. This problem is known as the traveling
salesman problem with multiple drones (TSPmD). We focus on a variant of this problem, where
the drones have two options after serving the customer: they can return to a node the truck visits
at a later stage (sidekick) or return to the same node they were launched from (loop).

While several variants of the TSPmD have been studied, considering sidekicks and loops in com-
bination with minimizing the makespan is not represented so far. We fill this gap and introduce
an efficient two-indexed mixed-integer linear program (MILP) formulation that provides new op-
timal solutions for instances with up to 28 nodes for benchmark purposes. Our MILP formulation
outperforms two state-of-the-art MILP formulations from the literature considering one drone. In
a case study, we analyze the impact on the minimization of the makespan when allowing drones
to perform loops. Loops mainly become relevant when drones travel faster than trucks resulting in
average makespan savings of up to 2.7%.

URL (working paper): http://dx.doi.org/10.2139/ssrn.4431738
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2 Two-indexed formulation of the TSPmD

(a) Performed sidekick by a drone. (b) Performed loop by a drone.

Figure 2.1: Illustration of drone routes.

2.1 Introduction

Parcel delivery via aerial drones is much considered in academia (e.g., Murray and Chu 2015) and
also in practice (e.g., Gartner 2016). One known delivery option is the interaction of one or more
drones with a delivery truck. The routing of both a truck and one drone is known in the literature
as traveling salesman problem with drone (TSPD). In the case of multiple drones, the problem
is called traveling salesman problem with multiple drones (TSPmD) (e.g., Seifried 2019). Initially
introduced by Murray and Chu (2015), many publications on the truck-and-drone tandem only
consider drones performing sidekicks, which means that they return to a node the trucks visits at
any later stage in its tour (see Figure 2.1a). However, only a few publications consider additionally
drones performing loops, meaning drones return to the same node they are launched from (see
Figure 2.1b). Thereby, (Schermer et al. 2019) already found that drones perform loops in the final
found routing if these are allowed.

Considering multiple drones that can perform both sidekicks and loops while minimizing the
makespan is not represented in the literature, and thus, the literature also lacks suitable benchmark
instances. We fill this gap and introduce a compact two-indexed mixed-integer linear program
(MILP) formulation of this TSPmD. This MILP formulation is easily implemented and outperforms
MILP formulations for the single drone case from the literature for larger instances, i.e., it finds
the optimal solution faster.

This paper contributes to the literature as follows: First, we introduce the TSPmD with drones
performing both sidekicks and loops while minimizing the makespan. Second, we formulate the
problem as MILP with only two-indexed variables that outperforms MILP formulations from the
literature for the single drone case. Third, we present new optimal solutions for the instances of
Murray and Chu (2015) and Bouman et al. (2018) for up to 28 nodes for benchmark purposes.
Fourth, in a numerical study, we analyze the impact of allowing drone loops for different numbers
of drones on minimizing the makespan and the runtime of a MILP solver and present managerial
insights.

The structure of this paper is as follows. In Section 2.2, we describe the decisions and assumptions
in detail. In Section 2.3, we present the relevant literature and delimit our paper to this literature.
Next, we introduce the MILP in Section 2.4. In Section 2.5, we describe the instances for which
we present benchmark results, analyze the runtime, and give managerial insights on allowing drone
loops. Last, in Section 2.6, we summarize the results and give a brief outlook.
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2.2 Problem setting

We decide on the routing of one truck and its equipped multiple drones that need to visit certain
nodes, i.e., customers. Additionally, we also decide if a customer is served by a truck or else by
drone. For this, we minimize the makespan, i.e., the time until the last vehicle has returned to the
depot, starting with the first release at time zero. The peculiarity of the considered problem setting
is that we consider multiple drones and these can both perform sidekicks and loops. Additionally,
we make the following assumptions:

• Traveling times of the truck and the drones generally differ and thus, different speeds and
distance metrics can be considered.

• Drones have an endurance limit, i.e., maximum flight time per flight.

• Assumptions regarding customers:

– All customers must be served once by truck or by drone.

– Some customers cannot be served by drones, but all by truck (e.g., Murray and Chu
2015).

– The truck has a sufficient high payload to serve all customers in one tour.

– A drone can serve one customer per trip and has to return to the truck afterwards.

• Assumptions regarding synchronization:

– If drones return to a node, the truck continues its tour at this node as soon as all
returning drones have landed.

– Drones do not wait for the truck but reduce their speed instead to a certain extent (e.g.,
Murray and Chu 2015, Rave et al. 2023b). This allows to avoid unrealistic routes where
the drone has to wait for almost the complete truck’s tour at a node, for example, at
the end of the tour.

– Drones only return to the truck at a node the truck visits. This node must be the same
node they are launched from (loop) or a node the truck visits later in its tour (sidekick).

– Drones can perform loops at the depot, but these are only allowed at the end of the
truck’s tour, which results in waiting times at the end of the tour (e.g., Dell’Amico et al.
2021a).

– Each drone can only perform at maximum one loop at a node.

• There are no service, preparation, or rendezvous times for trucks and drones.

• There are no loading or battery change times for drones.

Exemplary routing plan For a better understanding of the problem setting, Figure 2.2 pres-
ents an example routing of the truck equipped with two drones serving ten customers. Customers
(C1,...,C10) are numbered in the order of serving. Starting at the depot, C1 is served by the truck
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first, where one drone is launched to perform a sidekick to serve C2. The truck and the drone meet
again at C3, where a second drone performs a loop and serves C4. Note that the truck continues its
tour as soon as both drones have returned from serving C2 and C4. Next, the truck serves customer
C5 and launches a drone to perform a sidekick to serve C7. Note that the drone can return to any
node, the truck visits at a later stage as long as the flight time is within the endurance limit. At
C6, the second drone is launched to perform a sidekick to serve C8. Both drones return to the truck
at C9. The truck and its drones return to the depot afterwards, where again, one drone is launched
to serve C10 in a loop. The tour is finished as soon as this drone returns. Thus, the truck waits at
the depot for the drone to return.

Depot

Customer (Truck)

Customer (Drone)

Truck tour

Drone tour

𝐶𝐶1

𝐶𝐶4

𝐶𝐶2

𝐶𝐶3
𝐶𝐶5

𝐶𝐶6

𝐶𝐶7

𝐶𝐶8

𝐶𝐶9

𝐶𝐶10

Figure 2.2: Exemplary routing plan for ten customers served by one truck equipped with two drones.

2.3 Related literature

In this section, we differentiate this paper to the relevant literature regarding truck-and-drone
tandems, where one or multiple trucks are equipped with at least one drone. Especially, we only
focus on literature that includes a MILP formulation without special assumptions like, e.g., battery
consumption or a sole supply of drones where the truck only has auxiliary means to launch drones
at advantageous locations. First, we present the literature where drones only perform sidekicks,
and second, we present the literature where drones can perform both sidekicks and loops. We
recommend the paper of Otto et al. (2018) for an extensive review of drone operations and Boysen
et al. (2021) for a more recent literature review.

Sidekicks The truck-and-drone tandem is initially introduced by Murray and Chu (2015) who
present a three-indexed MILP formulation with makespan minimization, which has difficulties to
be solved to optimality, if instances with eleven nodes are considered. As a result, Dell’Amico
et al. (2021b) and Freitas et al. (2023) published new and improved modelling approaches, which
accelerate a standard solver. Further, multiple publications consider close problem settings with
either a different objective or extensions like an increased number of trucks or drones. So Seifried
(2019) and Cavani et al. (2021) consider multiple drones and Murray and Raj (2020) and Tamke
and Buscher (2021) additionally multiple trucks. Cost minimization is considered by Ha et al.
(2018) (single truck) and Sacramento et al. (2019) (multiple trucks) who present heuristic solution
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approaches.

Sidekicks and loops Drone loops are rarely represented in the literature, however, Schermer et al.
(2019) show that the final found routing might include drone loops as well. The authors analyze –
among other things – the number of loops and sidekicks performed in a truck-and-drone tandem
with multiple trucks and drones. Drones’ speed was found to be a significant influencing factor
on performed loops. Tiniç et al. (2023) propose two MILP formulations and analyze – among
other things – the impact of loops on the objective of cost minimization, if the truck is equipped
with an unlimited number of drones. The authors find that allowing drones to perform loops can
significantly reduce routing costs. However, an analysis of the impact on minimizing the makespan
when permitting loops and for different numbers of drones is missing. Kitjacharoenchai et al. (2019)
present a multiple TSPD problem where the assumption that a drone might only return to the same
truck is relaxed and thus drones can return to a different truck. The authors consider loops but
only if performed at the depot. Dell’Amico et al. (2021a) derive several benchmark results for the
instances of Murray and Chu (2015) for different drone settings including loops, however, multiple
drones are missing. Roberti and Ruthmair (2021) and El-Adle et al. (2021) present a two-indexed
formulation of a TSPD. While Roberti and Ruthmair (2021) additionally introduce an exact branch-
and-price approach, El-Adle et al. (2021) accelerate the solver by adding upper and lower bounds
by, e.g., starting with an initial solution that is generated by a greedy insertion heuristic, and
additionally assess the data in a pre-processing step to reduce the number of possible drone arcs.
Considering multiple drone delivery options, Rave et al. (2023b) present both a MILP formulation
and heuristics solution approach for a problem setting where drones may launch from trucks and
additionally from the depot or microdepots.

Differentiation to the literature Table 2.1 summarizes the major assumptions, the objective,
the largest number of variables’ indices in the MILP formulation, and the largest instance size
(including the depot once) solved to optimality with the MILP formulation. While there are three
two-indexed formulations for the TSPD (El-Adle et al. 2021, Dell’Amico et al. 2021b, Roberti and
Ruthmair 2021), there is one publication with a two-indexed formulation for the TSPmD (Seifried
2019). However, among other things, the author does not consider loops for drone delivery.

Assumptions Objective

# Trucks # Drones Loops Costs Make- # Variables’ Instance
(per truck) span indices size

Murray and Chu (2015) 1 1 ! 3 -
Ha et al. (2018) 1 1 ! 3 11
Dell’Amico et al.
(2021b)

1 1 ! 2 14

Freitas et al. (2023) 1 1 ! 5 11
Sacramento et al. (2019) n 1 ! 3 13

Continued on next page
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Seifried (2019) 1 m ! 2 14
Cavani et al. (2021) 1 m ! 3 25
Murray and Raj (2020) n m ! 4 9
Tamke and Buscher
(2021)

n m ! 5 9

El-Adle et al. (2021) 1 1 ! ! 2 32∗

Dell’Amico et al. (2021a) 1 1 ! ! 3 11
Roberti and Ruthmair
(2021)

1 1 ! ! 2 10

Tiniç et al. (2023) 1 m ! ! 3 20
Schermer et al. (2019) n m ! ! 3 11
Kitjacharoenchai et al.
(2019)

n m !∗∗ ! 3 10

Rave et al. (2023b) n m ! ! 3 15
This paper 1 m ! ! 2 28

Table 2.1: Comparison of the relevant literature on truck-and-drone tandems. Note that each
publication considers drones performing sidekicks.

∗ The authors added lower and upper bounds and a pre-processing step before running
the MILP, ∗∗ drone loops only allowed at the depot.

The truck-and-drone tandem presented in this paper extends the one of Rave et al. (2023b). In
contrast to their paper, we minimize the makespan, have additional assumptions (e.g., the return
time of drones to the depot is sufficient), and an enhanced modelling version of some constraints
accelerating the runtime of the solver.

To sum up, this paper introduces the first TSPmD considering both loops and sidekicks while
minimizing the makespan. Moreover, we present a two-indexed MILP formulation that can solve
instances with more nodes.

2.4 Two-indexed TSPmD formulation

In this section, we present the MILP formulation for the TSPmD. First, in Section 2.4.1, we describe
the proceeding of creating the two-indexed formulation. Second, in Section 2.4.2, the used index
sets, parameters, and variables are introduced. Third, in Section 2.4.3, the MILP formulation is
presented, and last, in Section 2.4.4, the adjustment for preventing loops is described, as this is
needed in the numerical study to show the impact of loops.

2.4.1 Proceeding of the two-indexed formulation

A full flight of a drone can be interpreted as a three-node sortie (i, c, j) including the launch node i,
the served customer c, and the landing node j (Murray and Chu 2015), and thus consisting of the
outbound flight to the customer and the return flight to the truck. To formulate a TSPD using only
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two-indexed variables, the drone’s flights are split up into two variables instead of one: one for the
outbound −→y i,c and one for the return flights ←−y c,j and these flights are matched in the constraints
(e.g., Dell’Amico et al. 2021b).

Considering multiple drones per truck, each vehicle is typically represented in an index set for
vehicles (e.g., Murray and Raj 2020), which is, however, not necessary, i.e., the TSPmD can be
formulated without the index set for vehicles. Each drone flight can be defined over the same
variables −→y i,c and←−y c,j with a flow formulation (Seifried 2019). For this, an auxiliary variable (πi,j)
is introduced to monitor the number of drones on the truck traveling from i to j.

To also include loops in the MILP, which only affect the truck’s waiting time, a variable for the
truck’s waiting time ϕi,j is defined with two indices. ϕi,j determine the truck’s waiting time at node
j for each node i where a drone is launched, and thus the variable includes sidekicks (i ̸= j) and
loops (i = j). The truck’s waiting time at node j results from the variable ϕi,j for each i. Thus,
in contrast to the literature for the TSPD (e.g., El-Adle et al. 2021, Roberti and Ruthmair 2021),
there is no need for variables that track drones traveling an arc while staying on the truck, i.e., the
drone is not flying.

2.4.2 Decisions and relevant parameters

We consider the index set for customers I, customers including the depot I0, and customers that
can be served by both the truck and drones ID. In contrast to, e.g., Dell’Amico et al. (2021a), we
include the depot only once in the index set I0. Therefore, constraints regarding a launch or return
at the depot are handled differently.

The decisions taken are the routing of the truck (xi,j) and the routing of the drones (−→y i,c,←−y c,j).
Additionally, the model decides on the customers served by truck (zT

c ) and drones (zD
c ).

The truck is equipped with m drones, each with an endurance e per flight. Similar to, e.g.,
Dell’Amico et al. (2021a), the different speeds or distance metrics of the truck and drones are also
considered in tTi,j , and tDi,j , respectively.

Index sets

I, I0, ID Node sets for customers, customers and the depot, and customers that can be served by
drones.

Parameters

e Endurance time for each drone flight.
m Number of drones on the truck.
Mbig

l Big M for l = 1, 2, 3, 4.
tTi,j , tDi,j Truck’s (drones’) traveling time from node i ∈ I0 to node j ∈ I0.

Decision variables

xi,j Binary variable indicating if the truck travels from node i to j (i, j ∈ I0).
−→y i,c Binary variable indicating if a drone is launched at node i ∈ I0 to serve customer c ∈ ID.
←−y c,j Binary variable indicating if a drone returns from customer c ∈ ID to node j ∈ I0.

Continued on next page
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zT
c , zD

k Binary variable indicating if customer c ∈ I (k ∈ ID) gets served by truck (drone).

Auxiliary variables

uc Real-value variable for subtour elimination by Miller et al. (1960) (c ∈ I).
λi,c Binary variable indicating if customer c ∈ ID is served in a drone loop launched at node

i ∈ I0.
πi,j Positive integer variable monitoring the number of drones that travel on the truck from

node i to j (i, j ∈ I0) and thus do not serve a customer at that time.
τi,j Positive real-value variable indicating the accumulated travel time of the truck traveling

from node i to j including the waiting times for drones at node j ∈ I. Note that waiting
times at the depot are excluded and must be considered separately in the objective function.

τ∗ Positive real-value variable indicating the makespan.
ϕi,j Positive real-value variable indicating the waiting times of the truck on the last returning

drone at node j, if the drone performs a sidekick (i ̸= j) or a loop (i = j).

Table 2.2: Index sets, parameters, and decision and auxiliary variables.
Note that binary variables have a value of 1, if they are true, and 0 otherwise.

Table 2.2 describes index sets, parameters, and decision and auxiliary variables in detail.

2.4.3 MILP

Objective function The objective is to minimize the makespan.

min τ∗ (2.1)

Definition of the makespan τ∗ is defined in Constraint (2.2) as the truck’s accumulated travel
time τi,0 when arriving at the depot plus the truck’s waiting time for returning drones at the
depot, as these are not included in τi,0 when returning to the depot. This objective function results
in runtime issues, as a solver has a severe problem finding a lower bound (Seifried 2019). To
overcome this issue, we add another definition of the makespan, which helps to find strong lower
bounds, particularly in initial iterations (Constraint (2.3)). Note that either Constraint (2.2) or
Constraint (2.3) can be chosen. The solver has the best runtime if both constraints are chosen.

τ∗ =
∑
i∈I0

(
τi,0 + ϕi,0

)
(2.2)

τ∗ =
∑

i,j∈I0

(
tTi,j · xi,j + ϕi,j

)
(2.3)

Set partitioning problem Constraints (2.4) ensure that the problem is a set partitioning problem.
Constraints (2.5) determine the customers that are served by truck and Constraints (2.6) the
customers that are served by drones.
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zT
i +

{
zD

i , i ∈ ID

0 , else

}
= 1 ∀i ∈ I (2.4)

∑
i∈I0

xi,j = zT
j ∀j ∈ I (2.5)

∑
i∈I0

−→y i,c =
∑
j∈I0

←−y c,j = zD
c ∀c ∈ ID (2.6)

Truck related constraints Constraints (2.7) conserve the truck’s flow. Subtours are eliminated by
Constraints (2.8) (Miller et al. 1960). M big

1 can be set as the number of nodes |I0|. The truck is
launched at maximum once from the depot (Constraint (2.9)). Note that a solution might be that
all customers are served by drones that perform a loop at the depot and thus the truck does not
leave the depot. Constraints (2.10) ensure that the truck only travels to a different node.

∑
i∈I0

xj,i −
∑
i∈I0

xi,j = 0 ∀j ∈ I0 (2.7)

ui + 1 ≤ uj +M big
1 · (1− xi,j) ∀i, j ∈ I (2.8)∑

j∈I0

x0,j ≤ 1 (2.9)

∑
i∈I0

xi,i = 0 (2.10)

Drone related constraints Constraint (2.11) defines the number of drones the truck carries star-
ting from the depot. Constraints (2.12) are balance constraints during the tour to ensure that the
number of drones on the truck that leaves a node is equal to the number of drones that were pre-
viously on the truck minus launching plus landing drones. The number of drones carried by truck
in its complete tour is limited in Constraints (2.13).

Drones may only launch and land on nodes, the truck has visited (Constraints (2.14)). Drone
flights must not exceed an endurance (Constraints (2.15)). Additionally, the truck must pick up
the drone within the considered endurance limit (Constraints (2.16), if launched at node i ∈ I and
Constraints (2.17), if launched at the depot). M big

2 can be set as the truck’s maximum possible tour
length.

∑
j∈I

π0,j +
∑

c∈ID

(−→y 0,c − λ0,c
)

= m (2.11)

∑
j∈I0:i̸=j

πi,j =
∑

k∈I0:k ̸=i

πk,i +
∑

c∈ID

(←−y c,i −−→y i,c

)
∀i ∈ I (2.12)

πi,j ≤ m · xi,j ∀i, j ∈ I0 : i ̸= j (2.13)
−→y j,c +←−y c,j ≤ 2 ·

∑
i∈I0

xi,j ∀c ∈ ID, j ∈ I (2.14)

tDi,c · −→y i,c + tDc,j · ←−y c,j ≤ e ∀i, j ∈ I0, c ∈ ID (2.15)
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∑
f∈I0

(
τf,j − τf,i

)
−M big

2 · (2−−→y i,c −←−y c,j) ≤ e ∀i ∈ I, j ∈ I0, c ∈ ID (2.16)

∑
f∈I0

τf,j −M big
2 · (2−−→y 0,c −←−y c,j) ≤ e ∀j ∈ I0, c ∈ ID (2.17)

Setting up the truck’s travel time The truck’s accumulated travel times at the beginning of the
tour are defined in Constraints (2.18). Constraints (2.19) defines the lower and Constraints (2.20)
the upper bound for the accumulated travel times during the truck’s tour. These are equal if the
truck travels from node i to node j. The accumulated travel time is zero, if the truck does not
travel from i to j (Constraints (2.21)).

τ0,j = tT0,j · x0,j ∀j ∈ I (2.18)

τi,j ≥ tTi,j · xi,j +
∑

f∈I0

(
τf,i + ϕf,i

)
−M big

2 · (1− xi,j) ∀i ∈ I, j ∈ I0 (2.19)

τi,j ≤ tTi,j · xi,j +
∑

f∈I0

(
τf,i + ϕf,i

)
+M big

2 · (1− xi,j) ∀i ∈ I, j ∈ I0 (2.20)

τi,j ≤M big
2 · xi,j ∀i, j ∈ I0 (2.21)

Sidekicks Constraints (2.22) (at the beginning of the tour) and Constraints (2.23) (during the
tour) ensure that drones do not return to a node that was visited by the truck previously on its
tour. M big

3 can be set as twice the reciprocal value of the truck’s shortest travel time tTi,j between
two nodes. M big

4 is dependent on the values of M big
2 and M big

3 and has to be at least M big
2 ·M big

3 .
There are at maximum m sidekicks per node (Constraints (2.24)). The lower bound of the truck’s
waiting time arriving at node j is presented in Constraints (2.25) at the beginning of the tour and
in Constraints (2.26) during the tour. The inequality exists since the truck waits at a node until
the last drone has returned.

−→y 0,c +←−y c,j ≤M big
3 ·

∑
f∈I0

τf,j

+M big
4 · (2−−→y 0,c −←−y c,j) ∀j ∈ I, c ∈ ID (2.22)

−→y i,c +←−y c,j ≤M big
3 ·

∑
f∈I0

(
τf,j − τf,i

)
+M big

4 · (2−−→y i,c −←−y c,j) ∀i ∈ I, j ∈ I0, i ̸= j, c ∈ ID (2.23)∑
c∈ID

(−→y i,c − λi,c
)
≤ m ∀i ∈ I0 (2.24)

ϕ0,j ≥ tD0,c · −→y 0,c + tDc,j · ←−y c,j

−
∑

f∈I0

τf,j −M big
2 · (2−−→y 0,c −←−y c,j) ∀j ∈ I, c ∈ ID (2.25)

ϕi,j ≥ tDi,c · −→y i,c + tDc,j · ←−y c,j
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−
∑

f∈I0

(
τf,j − τf,i − ϕf,i

)
−M big

2 · (2−−→y i,c −←−y c,j) ∀i ∈ I, j ∈ I0, c ∈ ID : i ̸= j (2.26)

Loops The truck waits at node i until all drones planned to return have returned to node i

(Constraints (2.27)). Constraints (2.28) ensure that drones are only launched to perform loops if
there is a sufficient number of drones on the truck at node j. Constraints (2.29) set up λi,c, if a
customer is supplied in a loop. If a drone starts from node i to serve customer c and returns to
node i, λi,c must be set to 1 (left side). If λi,c is set to 1, a drone must start from and return to
node i (right side).

ϕi,i ≥ 2 · tDi,c · λi,c ∀i ∈ I0, c ∈ ID (2.27)∑
i∈I0

πi,j +
∑

c∈ID

(←−y c,j − 2 · λj,c
)
≥ 0 ∀j ∈ I0 (2.28)

−→y i,c +←−y c,i

2 ≥ λi,c ≥ −→y i,c +←−y c,i − 1 ∀i ∈ I0, c ∈ ID (2.29)

Definition of variables Last, decision and auxiliary variables are defined.

xi,j ,
−→y i,c,

←−y c,j , λi,c ∈ {0, 1}, πi,j ∈ N, ϕi,j , τi,j , τ
∗ ∈ R+ ∀i, j ∈ I0, c ∈ ID (2.30)

zT
i , z

D
c ∈ {0, 1}, ui ∈ R ∀i ∈ I, c ∈ ID (2.31)

2.4.4 Adjustment for preventing drone loops

Variable structures are generally chosen such that drones might perform loops. Thus, to prevent
drone loops the variable λi,c needs to be removed from the Constraints (2.11), (2.24), and (2.30),
and the Constraints (2.32) need to replace Constraints (2.27), (2.28), and (2.29). These constraints
prevent drones to launch and return to the same node.

−→y i,c +←−y c,i ≤ 1 ∀i ∈ I0, c ∈ ID (2.32)

2.5 Numerical experiments

In this section, we describe the instances for which we present new benchmark solutions (Secti-
on 2.5.1). Next, we analyze the runtime solving the MILP and compare the runtime of our MILP to
MILPs for the TSPD from the literature (Section 2.5.2). Last, we show the impact of considering
drone loops on minimizing the makespan and the solver’s runtime for different drone speeds and
endurance limits (Section 2.5.3).

The MILP is implemented in OPL, solved using CPLEX v12.10., and executed on an AMD
Ryzen 9 3950X with 32 GB of RAM (single thread). Each instance has a runtime limit of 3600
seconds.
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2.5.1 Benchmark instances

In the following, we describe two published instance sets. Detailed solutions of each individual
instance for benchmark purposes can be found in Appendix B.1 for the instances of Murray and
Chu (2015) and in Appendix B.2 for the instances of Bouman et al. (2018). We present results for
these instances, if one (m = 1), three (m = 3), and a theoretically unlimited number of drones
(m =∞) are considered.

Instances of Murray and Chu (2015) Murray and Chu (2015) published twelve instances with
eleven nodes (ten customers and the depot) whose locations are uniformly distributed in an 8× 8
mile region. The authors consider two endurance limits of 20 and 40 minutes and three different
drone-to-truck speed ratios α ∈ {0.6, 1.0, 1.4}. Thus, there are 72 instances for which we present
results for benchmark purposes. Within the instances, the truck follows a Manhattan distance,
while the drone flies the Euclidean path. 80 - 90% of all customers can be served via drones.

Instances of Bouman et al. (2018) Bouman et al. (2018) published instances with 20 and 50
customers that are uniformly distributed with coordinates from 0 to 100. From these instances, we
consider 16, 20, 24, 28, and 32 nodes as in El-Adle et al. (2021). These are drawn by taking the
first 16, 20, 24, 28, and 32 nodes from the instance with the next-largest number of nodes, i.e., 16
and 20 nodes from instances with 20 nodes, and 24, 28, and 32 nodes from instances with 50 nodes.
The endurance limit is set to 30, and drones have the same speed as the truck. Both drones and
the truck travel the Euclidean path. All customers can be served by drones.

2.5.2 Runtime analysis

For the runtime analysis, the instances are aggregated by the number of nodes |I0| and the endu-
rance e. Table 2.3 presents for each number of drones (m = 1, m = 3, and m =∞) the number of
instances solved to optimality, the average runtime needed in seconds and the average optimality
gap, if the solver could not find the optimal solution within 3600 seconds.

Findings: For the instances of Murray and Chu (2015), we could find all optimal solutions
except three if one drone is considered. In particular, it is noticeable for all these instances that
the optimal solution is found much faster when multiple drones are considered.

m = 1 m = 3 m =∞

|I0| e Opt CPU [s] Gap Opt CPU [s] Gap Opt CPU [s] Gap

Murray 11 20 36/36 104 0% 36/36 6 0% 36/36 4 0%
and Chu 11 40 33/36 880 1% 36/36 16 0% 36/36 4 0%
(2015) Summary 69/72 492 72/72 11 72/72 4

16 30 10/10 11 0% 10/10 6 0% 10/10 11 0%
Bouman 20 30 10/10 247 0% 10/10 299 0% 10/10 319 0%

et al. 24 30 8/10 1327 1% 8/10 1319 1% 8/10 1387 1%

Continued on next page
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(2018) 28 30 1/10 3294 4% 1/10 3305 4% 2/10 3237 4%
32 30 0/10 3600 12% 0/10 3600 10% 0/10 3600 11%
Summary 29/50 1696 29/50 1706 30/50 1711

Table 2.3: Aggregated results for instances of Murray and Chu (2015) and Bouman et al. (2018).

For the instances of Bouman et al. (2018), we could find all optimal solutions for instances with
16 and 20 nodes, eight of ten optimal solutions for instances with 24 nodes, and up to two optimal
solutions for instances with 28 nodes when considering one, three, and an infinite number of drones.
In contrast to the instances of Murray and Chu (2015), there is no significant change in runtime if
multiple drones are considered.

Runtime comparison to the literature The two-indexed MILP formulation of the TSPmD pre-
sented in this paper can solve instances with more nodes than the literature (see also Table 2.1).
So, Murray and Chu (2015) could not solve one of the 72 instances with eleven nodes to optimality.
Considering the instances of Bouman et al. (2018), El-Adle et al. (2021) could find optimal solutions
for up to two out of the ten instances with 24 nodes.

MILP of Roberti MILP of El-Adle This paper
and Ruthmair (2021) et al. (2021)

|I0| e Opt CPU [s] Gap Opt CPU [s] Gap Opt CPU [s] Gap

Murray 11 20 24/24 238 0% 24/24 93 0% 24/24 148 0%
and Chu 11 40 24/24 76 0% 23/24 399 1% 21/24 870 2%
(2015) Summary 48/48 157 47/48 246 45/48 509

16 30 0/10 3600 19% 10/10 27 0% 10/10 11 0%
Bouman 20 30 0/10 3600 28% 10/10 576 0% 10/10 247 0%

et al. 24 30 0/10 3600 30% 5/10 2165 4% 8/10 1327 1%
(2018) 28 30 0/10 3600 36% 0/10 3600 9% 1/10 3294 4%

32 30 0/10 3600 42% 0/10 3600 17% 0/10 3600 12%
Summary 0/50 3600 25/50 1994 29/50 1696

Table 2.4: Aggregated results running the MILPs of Roberti and Ruthmair (2021), El-Adle et al.
(2021), and from this paper for the instances of Murray and Chu (2015) and Bouman
et al. (2018). All MILP formulations represent a TSPD (single drone) with the same

objective and assumptions.

However, it is difficult to compare the MILPs based on results in the literature, as they have
slightly different assumptions, a different solver (or version of solver) is used, and they were run on a
computer with different RAM. Thus, to show the efficiency of our MILP formulation in comparison
to the literature, we implemented the MILPs of Roberti and Ruthmair (2021) and El-Adle et al.
(2021) in OPL. Roberti and Ruthmair (2021) have an arc-based formulation and El-Adle et al.
(2021) a node-based formulation of the TSPD, where additional variables track the drone’s tour,
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even if it is carried on the truck. Both MILP formulations are chosen for comparison, as they are
efficient two-indexed MILP formulations for the TSPD and include loops while minimizing the
makespan.

We tested both MILP formulations for the instances of Murray and Chu (2015) and Bouman
et al. (2018). However, only a subset of the instances of Murray and Chu (2015) is suitable, because
both MILP formulations require a drone speed that is at least the same as the truck’s speed.
Thus, only 48 of the 72 instances, but all of Bouman et al. (2018) are considered. The MILP of
El-Adle et al. (2021) is additionally adjusted by endurance constraints that limit the waiting times
of drones (similar to Constraints (2.16) and (2.17)). This is already considered by Roberti and
Ruthmair (2021). Note that for implementing the MILPs, we also consider the enhanced modelling
assumptions to accelerate the MILP solver presented in the papers (similar to Constraints (2.3)),
but no lower or upper bounds or any pre-processing steps as in El-Adle et al. (2021). Table 2.4
presents the aggregated results solving the three MILPs. The column gap shows the gap to the own
lower bound of the respective model. Note that all MILP formulations represent the same problem
setting of the TSPD with one drone that can perform both sidekicks and loops.

Findings: The MILP of Roberti and Ruthmair (2021) works best for the instances of Murray
and Chu (2015), as all 48 instances could be solved optimally with the lowest runtime on average,
but, on the other hand, not one instance with 16 or more nodes could be solved. Running the MILP
of El-Adle et al. (2021), optimal solutions for all ten instances with 16 and 20 nodes and five out of
ten instances with 24 nodes could be found. In contrast, our MILP formulation could additionally
be solved to optimality for three more instances with 24 nodes and one instance with 28 nodes.
Moreover, the average runtime and the optimality gap are significantly lower. Thus, the MILP
presented in this paper outperforms the literature for larger instances. Additionally, it should be
noted that our MILP formulation is a more general formulation as drones might have lower speeds
than trucks and multiple drones can be considered without any increase in runtime.

2.5.3 Impact of drone loops

Drone loops as an additional routing option for drones might reduce the makespan τ∗, but on
the other hand, considering loops might increase the solver’s runtime on average, which in turn
can be problematic, as truck-and-drone tandems are difficult to solve even for heuristic solution
approaches (e.g., Sacramento et al. 2019). So, Schermer et al. (2019) already found that drones
perform loops in the solutions, and Tiniç et al. (2023) found that loops might reduce total routing
costs. However, in the solutions presented by Dell’Amico et al. (2021a) drones do not perform a
single loop. Thus, in the following, we give detailed insights on the makespan reduction and the
runtime increase when allowing loops compared to prohibiting loops for the instances of Murray
and Chu (2015) and Bouman et al. (2018) with a varying number of drones m, endurance limits
e, and truck-to-drone speed ratios α. For this, we only compare instances solved optimally for the
case with and without drone loops.

Instances of Murray and Chu (2015) Table 2.5 presents the reduction of the makespan τ∗ and
the increase in runtime of the MILP solver in percent if drones can perform loops. For this, the
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makespan considering loops is compared to the makespan, if loops are forbidden. We generate
results for three different numbers of drones (m = 1, m = 3, m = ∞), two endurance limits
(e = 20, e = 40), and five speed factors (α = 0.6, α = 1.0, α = 1.4, α = 2.0, α = 2.8). These are
two additional speed factors (α = 2.0, α = 2.8) compared to the data considered in Murray and
Chu (2015) as the speed has a significant impact on the number of performed loops (Schermer et al.
2019). Each entry presents the average τ∗ reduction or runtime increase of up to twelve instances.
Note that there might be less than twelve instances considered if they are not solved to optimality.
A negative entry in column “Runtime increase [%]“ means there is a decrease in runtime.

Findings. Considering instances of Murray and Chu (2015) with eleven nodes, loops can reduce
the makespan τ∗ by up to 1.9% on average. For these instances it can be stated that there are
only improvements in the objective considering loops if drones travel faster than trucks (α > 1).
Note that in these instances, the drone follows a Euclidean path contrary to the truck that travels
the Manhattan distance. The improvements considering loops occur especially when few drones
are considered. However, slow-traveling drones are more likely to perform loops when the truck is
equipped with multiple drones. If the truck is equipped with an unlimited number of drones, there
are nearly no reductions of τ∗. Moreover, endurance does not have an impact on performed loops.
The runtime, on the other hand, increases significantly by up to 113%, considering loops as an
additional routing option. The runtime increase is significantly higher if the truck is equipped with
only one drone.

m = 1 m = 3 m =∞

τ∗ reduc- Runtime τ∗ reduc- Runtime τ∗ reduc- Runtime
|I0| e α tion [%] increase [%] tion [%] increase [%] tion [%] increase [%]

11

20

0.6 - 62.2 - -2.2 - 7.3
1.0 - 23.4 - 33.5 - -11.7
1.4 - -4.8 0.1 16.5 0.6 18.8
2.0 0.6 79.1 0.1 9.4 - 3.8
2.8 1.7 57.4 0.5 4.5 - 5.9

40

0.6 - 48.7 - 34.4 - 37.8
1.0 - 23.2 - 14.4 - 10.7
1.4 - 29.1 0.3 -6.0 - 7.2
2.0 0.6 113.3 0.1 46.2 - -0.4
2.8 1.9 5.0 0.5 32.0 - 1.6

Average 0.5 43.7 0.2 18.3 0.1 8.1

Table 2.5: Makespan reduction and the solver’s runtime increase, if drones can perform loops, for
the instances of Murray and Chu (2015).

Instances of Bouman et al. (2018) Similar to the previous table, Table 2.6 presents the results
for 16 considered nodes for two different endurance limits (e = 30, e = 60) and three speed factors
(α = 1, α = 2, α = 3). The additional endurance limit and speed factors are similar as in El-Adle

47



2 Two-indexed formulation of the TSPmD

et al. (2021). An analysis of instances with 20 or more nodes is not meaningful, as there are only
a few instances solved to optimality for both the consideration and the ban of loops. Each entry
presents the average τ∗ reduction or runtime increase of up to 10 instances.

Findings Both the makespan reduction and runtime increase are on average larger for these
instances compared to the instances of Murray and Chu (2015). So, allowing drones to perform
loops may reduce τ∗ by up to 2.7%. Again, the endurance e has no significant impact on τ∗, but
a larger drone-to-truck speed ratio α has. Contrary to the results for the instances of Murray and
Chu (2015), a larger number of drones now results in a larger reduction of τ∗. Additionally, if drones
and trucks have the same speed (α = 1), there is even an instance where one loop is performed in
the optimal solution resulting in slight reductions of τ∗. Note that drones and trucks follow both
the Euclidean path. The runtime increases significantly by up to 194.4% and is especially high if
one drone is considered. However, considering an infinite number of drones, there is no significant
runtime increase, but the impact on τ∗ is high.

m = 1 m = 3 m =∞

τ∗ reduc- Runtime τ∗ reduc- Runtime τ∗ reduc- Runtime
|I0| e α tion [%] increase [%] tion [%] increase [%] tion [%] increase [%]

16

30
1 - 57.8 0.1 41.9 0.1 44.5
2 1.0 63.8 1.5 -14.4 2.0 -24.6
3 0.3 194.4 1.7 6.3 1.3 -11.4

60
1 - 99.1 - 44.3 - 26.1
2 ./. ./. - 19.2 1.7 9.5
3 ./. ./. - -2.7 2.7 -33.0

Average 0.3 103.8 0.6 15.8 1.3 1.9

Table 2.6: Makespan reduction and the solver’s runtime increase, if drones can perform loops, for
the instances of Bouman et al. (2018). Entry ./. indicates that no instance was solved

to optimality for both the consideration and the ban of loops.

2.6 Conclusion

This paper considers the TSPmD with drones performing sidekicks and loops while minimizing the
makespan. We introduce the problem as a two-indexed MILP formulation that outperforms MILP
formulations for the single drone case from the literature. We present new benchmark solutions for
instances of Murray and Chu (2015) and Bouman et al. (2018), which we could solve to optimality
for up to 28 nodes. Additionally, we generate managerial insights on the impact of allowing drone
loops on makespan minimization.

We can find that makespan savings of up to 2.7% can be achieved by allowing drones to perform
loops. The savings are essentially dependent on the drone-to-truck speed ratio, but not on the
endurance. It follows that there are no drone loops if the drones’ speeds are too slow. On the other
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hand, drone loops make the problem significantly harder to solve, even if in the optimal solution
drones do not perform loops. Therefore, for the TSPmD with any number of drones, drone loops
should only be considered if drones have at least the truck’s speed.

Compact and efficient MILP formulations for truck-and-drone tandems are good competitors to
exact algorithms. However, an efficient optimal solution approach is still required for the TSPmD
that can solve instances with more than 28 nodes to optimality.
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3 Cyclic stochastic inventory routing with reorder points
and recourse decision for an application in medical supply

Alexander Rave, Pirmin Fontaine, Heinrich Kuhn

Abstract The drug availability in clinics is essential for patient services, whose demand for me-
dication, on the other hand, is uncertain. Thus, clinics must have a variety of drugs available,
leading to high inventory holding costs. In Germany, it is common for a larger central clinic to take
over the procurement of drugs and distribute them to smaller surrounding clinics, which results in
a two-echelon network structure. The clinics, however, operate according to their own inventory
policy as they plan independently of each other. Additionally, these inventory policies include in-
stant replenishment orders to avoid shortages. As these instant replenishment orders only include
a few medications, they can be performed by various vehicle types, including vans, cabs, and aerial
drones.

We present a two-stage stochastic program for a multi-product two-echelon inventory routing
problem with stochastic demands under consideration of inventory policies. We decide on the cost-
optimal cyclic delivery patterns and reorder points for the clinics with instant replenishment orders
performed by drones as recourse decision in case of shortages. Due to the problem’s complexity
caused by the interdependencies of inventory policies in the two echelons, we develop a specialized
adaptive large neighborhood search that includes an algorithm for determining local optimal reorder
points for the routing in each iteration. We present a case study at a large German clinic, which is
responsible for supplying surrounding clinics and plans to integrate drone instead of van deliveries
as an emergency resupply decision. Our integrated approach not only leads to cost savings of 58.4%
for the surrounding clinics but also 15.9% for the central clinic. Using drone delivery compared to
van delivery, the average stock of medication at surrounding clinics can be reduced by 1.7% to
100% for expensive and rarely needed medication, resulting in a total cost decrease of 29.8% while
maintaining medication availability.

URL (working paper): http://dx.doi.org/10.2139/ssrn.4421477
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3 Cyclic SIRP with reorder points and recourse decision

3.1 Introduction

Clinics are obligated to care for patients. To guarantee this treatment, each clinic has a pharmacy
that is appropriately equipped with medication. The pharmacy is under pressure to operate cost-
effectively while providing full medical care to patients. This is particularly important since a clinic
spends about 10 to 18% of its total expenses on medications (Nicholson et al. 2004, Volland et al.
2017). A way to reduce inventory costs is to make use of pooling effects. This means that inventory
is stored more centrally to exploit the stochastic balancing effect between the independent demands
in the individual clinics. As a consequence, however, additional transports are necessary. An aerial
drone is an option to perform these transports since the drone has the particular advantage that
it can carry a few medications to clinics faster and at lower costs than vans (Otto et al. 2018).
In Ghana, for example, medicine is pooled in a central warehouse and then transported by drones
to increase the overall availability of medication (Asadi et al. 2022). A similar situation exists
in Germany, a larger central clinic is typically responsible for procuring medications and then
distributing them to surrounding small clinics in a cycling repeating manner (Quantum Systems
2020).

For the latter example, two key questions arise. How many medications should be delivered
to which clinic at what period, and what tours for delivery should be taken? This simultaneous
inventory and supply optimization is known in the literature as the Inventory Routing Problem
(IRP) (e.g., Archetti and Ljubić 2022). The delivery amount for the supply of clinics, however,
depends on the inventory policy, which is planned individually by each clinic. The clinics make use
of inventory policies as inventory can thus be planned over a longer planning horizon. In particular,
clinics have economic advantages when choosing cyclic delivery patterns, e.g., they can improve the
organization of their own clinic’s supply chains. To avoid shortages, the additional supply of clinics
is ensured via emergency deliveries. The standard deliveries include a high transport volume and
thus are usually made with vans. The emergency deliveries, however, only include a few medications
and can be performed by various vehicle types, for example, by drones (Quantum Systems 2020).
So far, the use of drones has not occurred in practice. Hence this paper aims to assess the impact
of drones as a new transportation option for instant replenishment orders.

Motivated by the previously introduced healthcare application, we develop a two-stage stochastic
program for a cyclic multi-product two-echelon IRP with stochastic demand and inventory policies
(2E-SIRP) that determines cost-optimal reorder points for both the central and the surrounding
clinics. In addition, it determines the delivery periods and routes for supplying the surrounding
clinics. While these are decisions on the tactical plan of the first stage, in the second stage, instant
replenishment orders performed by drones occur if the demand exceeds the inventory. Within this
two-stage stochastic program, we take decisions that minimize the transport, expected inventory,
and expected emergency delivery costs. To solve larger instances with a greater variety of products
and scenarios, we develop a specialized adaptive large neighborhood search (ALNS). In each iterati-
on of the ALNS, the locally optimal reorder points are determined for the routing that is modified
by removal or insertion operators. We benchmark the performance of the ALNS with optimally
solved instances for the two-stage stochastic program and with instances of Archetti et al. (2007).
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Further, we generate managerial insights for a novel case study based on a large clinic in Germany.
We present both the benefits of our integrated planning approach as well as the influence of drones
as new vehicle types for emergency deliveries on the inventory levels of different products and total
cost reduction. Moreover, we show the value of a multi-product optimization and the impact of a
limited vehicle fleet on the resulting routing and reorder points.

We contribute to the literature as follows: First, our paper is the first that combines two different
inventory policies with routing decisions. Second, we formulate this problem setting as a two-stage
stochastic program. Third, we derive an ALNS that determines local optimal reorder points in each
iteration after taking changes on the routing to clinics. Fourth, we present a novel case study based
on a large clinic in Germany.

In the following, we describe the problem setting in detail (Section 3.2) and give a short literature
review on inventory and routing planning (Section 3.3). We present the decision problem as a two-
stage stochastic program in Section 3.4 and describe the ALNS in Section 3.5. In Section 3.6, we
benchmark the performance of the ALNS and present the case study and managerial insights. Last,
in Section 3.7, we summarize the results.

3.2 Problem setting

In this section, we first introduce the network structure of clinics in detail. In the second subsection,
we present the inventory policy of clinics, and last, we describe the decision problem.

3.2.1 Network structure

The central clinic - which has its own need for medications - procures all kinds of medical goods
like medicines, antibiotics, infusions, etc., from the central distributor of these products, who is
assumed to have sufficient inventory at all times. The demand for these medical goods for each
clinic is independent of each other and uncertain but can be assumed to follow a known distribution
(e.g., Johansson et al. 2020). Thus, shortages may arise if the inventory at the central clinic is too
low. Due to the characteristics of the treatment of patients, these have to be satisfied through
emergency deliveries ordered from and supplied by a wholesaler. Note that emergency deliveries
only have the purpose of satisfying urgent demand and do not additionally replenish inventories
since standard deliveries are ordered from the central distributor. Standard deliveries from the
distributor and emergency deliveries from the wholesaler are performed in commuting tours. Within
these deliveries, different products are consolidated if they are ordered on the same day.

The central clinic supplies several surrounding clinics with the medical goods they need. The
clinics are supplied by multiple homogeneous vans on predefined days within a recurring supply
period. The vans are considered to have a limited capacity, and the supply is performed by a
third-party logistics service provider. Therefore, it is not necessary to balance the workload of
drivers between each day. Determining the respective delivery pattern for each clinic is part of the
planning problem under consideration. In addition, the central clinic sets up an emergency delivery
if shortages occur in the surrounding clinics. These deliveries are performed by vehicles specialized
for fast deliveries. In our case, the fast deliveries are performed by drones (Quantum Systems 2020).
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These drones are less expensive than delivery trucks in terms of a single delivery trip, but they
can only carry a few medications per flight due to limited capacity (Otto et al. 2018) - which is,
however, mostly the case in emergency deliveries.

The standard delivery for all clinics is only allowed during weekdays since a clinic’s pharmacy
is only staffed for emergency operations at the weekend. Contrary, emergency deliveries can be
conducted every day but are costlier at the weekend. Note that these are case-related assumptions,
which can be easily relaxed and do not change our introduced algorithm.

We assume an unlimited fleet of vans and drones. The vans and drones which visit the surrounding
clinics have a limited capacity. On the other hand, the vans of the central distributor that supply the
central clinic are assumed to have an unlimited capacity. If a surrounding clinic’s demand exceeds
the capacity in emergency delivery, the drone might visit the same clinic multiple times within a
period. In a variation of the problem, we further consider a limitation of the vehicle fleet, i.e., we
limit the maximum number of routes in standard delivery and the maximum number of emergency
deliveries per day.

Central distributor

Wholesaler

Central clinic

Surrounding clinics

Standard delivery

Emergency delivery

Truck delivery

Drone delivery

Period 1   Period 2

Figure 3.1: Delivery system of medicine.

Figure 3.1 presents an example network structure where the central clinic is fully responsible
for delivering medication to six surrounding clinics. Three clinics are supplied in period 1 and the
other three clinics in period 2 in standard delivery. Moreover, two emergency deliveries are carried
out via drone due to shortages. The central clinic itself is supplied in period 1 via standard delivery
by the central distributor and in period 2 via emergency delivery from the wholesaler.

3.2.2 Inventory policies

For each product p ∈ P , the central clinic ĉ operates an (sp,ĉ, Qp) inventory policy with additional
emergency resupply to avoid shortages. An order is placed at the central distributor for product
p ∈ P with an amount of Qp, if the inventory level is below the reorder point sp,ĉ.

The replenishment quantity Qp is assumed to be given. This quantity is typically based on
long-term contracts between the central clinic and distributor, including total demand forecasts,
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minimum order quantities, quantity discounts, and ordering and delivery costs. If the demand
exceeds the current inventory level, additional emergency delivery costs arise as fast delivery is
conducted. In this case, the delivery quantity equals the resulting shortages, i.e., only the missing
quantity.

Surrounding small clinics c ∈ C operate an (Tc, sp,c, np,c · qp) inventory policy with additional
emergency resupply to prevent shortages. In periods Tc in a cyclic repeating pattern, the inventory
is refilled by an order of np,c packages á qp consumer units, e.g., pills, if the inventory is below
the reorder point sp,c. The inventory is then replenished so that the inventory exceeds the reorder
points sp,c if no additional demand occurs between ordering and delivery. Note that all subsets Tc

of periods of T can be selected (e.g., delivery on Monday and Thursday). If there is not enough
medication in stock, this demand is satisfied by an emergency delivery. This is a special case of
back-ordering (Coelho et al. 2014) because the corresponding demand is served directly and not at
a later stage. Note that the (Tc, sp,c, np,c · qp) inventory policy with emergency resupply includes
the case of sp,c = 0, where nothing is stored in general and delivered in standard delivery and
all demand is fulfilled via emergency deliveries. A characteristic of this problem with the focus on
clinics is that the products are extremely varied, i.e., both daily and rarely needed (e.g., once every
six months) drugs.

The demand for medication is any portion of a complete package, i.e., consumer units, but in
a standard replenishment process, only complete packages are delivered. The emergency delivery,
however, transports any package share since an emergency delivery is executed when the exact
shortage is already known. In contrast, the target reorder points sp,c are quantified in complete
packing units for practicability reasons.

Sequence of events for the replenishment cycle - central clinic At the beginning of each period,
the inventory position equals the inventory on hand. In the first step, the demand of the surrounding
clinics and the central clinic are known, which changes the inventory position. If the inventory
position falls below the reorder point sp,ĉ during weekdays (Monday to Friday), an order of Qp is
triggered in the second step, which includes whole packing units. The inventory position is adjusted
accordingly. If this results in a negative inventory position, the third step is to additionally place
an emergency order to prevent a negative inventory on hand. Then, in the fourth step, the regular
order quantity Qp and emergency orders, if triggered, arrive in the central clinic. Next, in the
fifth step, the surrounding and central clinics’ demands are physically fulfilled. Inventory position
and inventory on hand are then equivalent again and denote the inventory level at the end of the
period, which is then used to quantify the inventory holding cost in the central clinic. The described
disposition, supply, and delivery scheme of the central clinic allows for fulfilling the demand of the
surrounding clinics and the central clinic itself in all periods considering a situation-related delivery
time.

Sequence of events for the replenishment cycle - surrounding clinics Inventory on hand and
inventory position are identical at the beginning of each period. Subsequently, the surrounding
clinics’ disposition and supply (delivery) are differentiated according to whether a standard delivery

55



3 Cyclic SIRP with reorder points and recourse decision

Time

Inventory

,

Inventory

Period 1 Period 2

(a) (sp,ĉ, Qp) policy at the central clinic.

Time

Inventory

𝑠𝑠𝑝𝑝, ̂𝑐𝑐

𝑄𝑄𝑝𝑝

Time

Inventory

𝑠𝑠𝑝𝑝,𝑐𝑐

Period 1

*

Period 2 Period 1 Period 2
*

(b) (Tc, sp,c, np,c · qp) policy at surrounding clinics.
* emergency resupply

Figure 3.2: Replenishment policies of clinics.
The solid line represents the inventory on hand and the dashed line the inventory

position.

is planned in the period. Note that the routing of the standard delivery affects the inventory policy,
and therefore the routing sets Tc. Thus, reordering only takes place if routing is planned and a clinic
gets visited in a period. It first checks whether the inventory position is below the reorder point
sp,c. If so, an order is placed for this product that includes whole packaging units and increases the
inventory position at least to the level sp,c. The further events are then identical for all periods. The
clinic’s demand becomes known, and the inventory position is adjusted. If this results in a negative
inventory position, an emergency order is placed (additionally to a standard delivery, if necessary),
which balances the inventory position to zero. Subsequently, any triggered deliveries (standard and
emergency) arrive at the considered clinic. Next, the clinic’s demand is fulfilled. Inventory position
and inventory on hand are equal again. The resulting inventory level is used to quantify the clinic’s
inventory holding costs. The described scheduling and supply scheme of the clinics enables them
to completely fulfill the respective demands of each clinic in all periods. Note that an efficient
routing also affects the inventory policies by reducing the transportation costs when the inventory
is replenished, and, thus, reorder points and routing must be optimized simultaneously.

Example inventory level Figure 3.2 presents an example inventory level of a drug for the central
clinic (Figure 3.2a) and one surrounding clinic (Figure 3.2b) for two periods. For the central clinic,
orders are set as soon as the inventory position is below the reorder point sp,ĉ, which is the case in
period 1. The inventory on hand is then increased by the delivery quantity Qp and reduced by both
the demand of clinics and the central clinic’s own demand. In period 2, the inventory position and
the inventory on hand are decreased, but no order is placed, as the remaining inventory position
is above the reorder point. The large points on the lines mark the time when inventory is assessed
for the subsequent period.

For the surrounding clinics, standard delivery replenishes the inventory in period 1 by the miss-
ing inventory on hand at the end of the previous period compared to sp,c in complete packages.
Afterwards, the inventory on hand is reduced by the demand. In period 2 there is no standard de-
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livery, but demand exceeds the inventory position, and thus an emergency order is placed (∗). The
emergency delivery only contains the missing inventory to fulfill the demand. Thus, the inventory
on hand equals 0 afterwards. Note that an emergency delivery might occur in the same delivery
period a standard delivery is conducted.

3.2.3 Decision problem

We determine cost-optimal reorder points sp,ĉ for the inventory policy of the central clinic and
reorder points sp,c, delivery days Tc, and the corresponding routing for the inventory policy of the
surrounding clinics. Then, emergency deliveries result from routing and reorder point decisions
to prevent unmet demand at one of the clinics. The inventory and supply of the central and
surrounding clinics are optimized simultaneously as the inventory decisions of surrounding clinics
affect the inventory of the central clinic.

We minimize routing costs as well as expected inventory and emergency delivery costs. Due to
stochastic demand, this methodically leads to a static stochastic program with a recourse decision
in the form of emergency deliveries, which we formulate dependent on the scenario. We present a
two-stage stochastic program that combines a two-echelon IRP with a (Tc, sp,c, np,c · qp) inventory
policy for surrounding clinics and a (sp,ĉ, Qp) inventory policy for the central clinic.

The planning decision is made once for cyclic planning periods (in our case: one week) and then
carried out over a longer planning horizon, e.g., three months, as long as there are no structural
changes. Therefore, the cyclic inventory policy offers the advantage for clinics that the problem
only has to be solved once, as long as no parameter values change structurally (e.g., seasonal
fluctuations in demand). This is particularly advantageous for the smaller clinics, as there is a lack
of personnel for extensive planning of, e.g., inventory. It follows that the considered problem setting
is on a tactical level but includes operational aspects as well. This is common for tactical planning
problems (e.g., Arslan 2021, Malicki and Minner 2021, Rave et al. 2023b).

We consider multiple products, as delivery patterns differ significantly from one another due
to their differences in demand and holding costs. Moreover, different products are consolidated
in standard and emergency delivery for both the surrounding and the central clinic and, thus,
reduce the capacity of the respective vehicle. It follows that the simultaneous consideration of
multiple products leads to a different solution than the consideration of each product separately.
In Section 3.6.3.2, we show the impact of considering multiple products instead of each product
separately. We neglect the limited shelf life of the products, as the inventory range of the given
order quantity is well below the shelf life horizon of about two years. In addition, a strict first-in,
first-out policy is followed in the clinics for inventory removal. The initial inventory of each product
has a significant influence on the decisions to take in the cyclic planning and is thus dependent on
the last delivery for surrounding clinics (e.g., Malicki and Minner 2021). Since the central clinic has
no cyclical supply patterns, the initial stock is estimated as the average inventory level.
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3.3 Literature review

Originally introduced by Bell et al. (1983), there is a variety of publications on the IRP. For an
extensive review on inventory routing, we recommend the paper of Coelho et al. (2014) and Roldán
et al. (2017), and for an overview on inventory management in hospitals, the paper of Volland et al.
(2017).

The problem considered also belongs to the class of periodic vehicle routing problems (PVRP).
A wide range of publications are available concerning the PVRP (Campbell and Wilson 2014).
However, in our case, the clinics define clinic-specific delivery patterns (DP), and the central clinic
cyclically supplies clinics with their requirements for medical goods. The DPs constitute a defined
combination of weekdays on which the individual clinics are supplied. Defining the DPs also means
determining the delivery frequency. The delivery frequency, however, impacts the volume per clinic
delivery, affecting the associated cycle and safety stock in the central clinic and the surrounding
clinics. Some recent publications quantify optimal delivery patterns in the area of grocery retailing.
These approaches consider the supply of stores from a distribution center taking inventory holding
costs and joint delivery costs into account (e.g., Frank et al. 2021). However, these approaches
neglect the two-echelon structure and only implicitly model stochastic demand. Taube and Minner
(2018) also quantifies DPs in the area of grocery retailing. They consider a classical joint replenis-
hment problem with stochastic demand. In the following, we concentrate our literature review on
contributions to inventory routing that focus in particular, on problems with stochastic demand
and also consider time-based shipment consolidation.

Stochastic inventory routing - single product When considering stochastic demands, there are
either lost sales or back-ordering, which state that unfulfilled demand can be met in a later period
(Coelho et al. 2014). In our problem setting, additional emergency deliveries in the form of back-
ordering occur. The difference between this emergency back-ordering and lost sales is that shortages
from one clinic lead to inventory changes in the central clinic since the latter releases an emergency
delivery in this case. Additionally, lost sales lead to penalty costs per patient and back-ordering to
penalty costs per delivery.

IRPs with stochastic demands (SIRP) are considered by Campbell et al. (1998) and Campbell
and Savelsbergh (2004). The authors focus on a heuristic solution method and decompose the
decisions in two phases: first, the delivery period and quantities are determined, and second, an
insertion heuristic creates routes. Nolz et al. (2014) consider stochasticity in their SIRP through
recourse decisions and propose an ALNS and two versions of an LNS for a bi-objective IRP. Cui
et al. (2023) choose a robust optimization approach for a SIRP that is modelled with demand
scenarios.

Yadollahi et al. (2017) and Malicki and Minner (2021) choose a representation with chance
constraints considering certain service levels for safety stock calculation. To solve the problem,
Malicki and Minner (2021) present a multi-start adaptive local search heuristic that runs multiple
instances of an adaptive local search simultaneously and an ALNS for a cyclic IRP with stochastic
demands. They show that setting the initial inventory endogenously in cyclic IRPs is sufficient. Raa
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and Aouam (2023) also consider a cyclic IRP with lost sales, but the delivery quantity depends
on a base-stock unless the capacity is insufficient (shortfall). The authors develop a metaheuristic
based on a first routing, second scheduling heuristic. Zheng et al. (2019) propose an exact algorithm
based on the generalized benders decomposition for a SIRP, including an (T, S) inventory policy at
the depot. Every cycles T , the inventory of the one considered product is replenished to an amount
of S.

Stochastic inventory routing - multiple products Niakan and Rahimi (2015) and Rahimi et al.
(2017) propose a formulation with fuzzy variables for the stochastic IRP in healthcare applications.
Another healthcare application is considered by Jafarkhan and Yaghoubi (2018), who consider a
SIRP for distributing blood cells, which are not in stock but can be substituted by other products.
The authors propose a metaheuristic that makes use of two local searches in each iteration.

Time-based consolidation of customers Time-based consolidation of customers, which means
that orders are collected in a vehicle first until it departures, is considered first by Higginson and
Bookbinder (1995). The vehicle departs if it is fully loaded, but it may leave earlier for cost reasons.
This problem setting does not include a routing decision. (Çetinkaya and Bookbinder 2003) extend
this problem setting by deriving both a time-based and quantity-based consolidation policy. Stenius
et al. (2016) derive an optimal solution framework for determining shipment intervals and reorder
points for the time-based consolidation. Johansson et al. (2020) extend the article of Stenius et al.
(2016) by deriving two approximation heuristics for large scale instances.

Table 3.1 differentiates our assumptions, decisions, and methodology chronologically from the
publications described before. Our paper adds to the available literature, particularly with respect
to the following issues.

1. Presenting a 2E-SIRP with the novel configuration of assumptions and decisions, especially:

a) Combining both an (Tc, sp,c, np,c · qp) and an (sp,ĉ, Qp) inventory policy in a two-echelon
IRP.

b) Depot has its own demand.

c) Instant replenishment orders as recourse decision.

2. Formulating a two-stage stochastic program and developing a specialized ALNS for solving
larger instances.

3. Presenting a novel and real-life case study of a large German clinic.

3.4 Two-stage stochastic program

In this section, we introduce the mathematical model as a two-stage stochastic program for the
2E-SIRP. In Section 3.4.1, we describe the general problem setting, including notation and relevant
sets, parameters, and variables, and in Section 3.4.2, we present the mathematical model.
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3 Cyclic SIRP with reorder points and recourse decision

3.4.1 Sets, parameters, and decision variables

We consider a set of |Ĉ| nodes consisting both of the central clinic ĉ as well as the set of surrounding
clinics C with Ĉ = {ĉ} ∪ C. Moreover, we assume |P| products. T0 = 0...T is the index set for the
periods, including the initialization period 0. The standard delivery is permitted for all clinics in
periods T̄ ⊆ T . Set Ω defines the demand scenarios.

General problem structure We present the mathematical model in the form of a two-stage sto-
chastic program. In the first stage, tactical decisions are taken on routing and reorder points. In the
second stage, emergency deliveries as recourse decisions are executed for each scenario, individually.
The emergency deliveries result from the tactical decisions in the first stage and are only executed
to prevent a clinic from running out of stock.

Parameters The total costs are composed out of travel costs kS
i,j per arc for standard delivery

visiting the surrounding clinics, k̂S for visiting the central clinic, kem.
c,t for emergency delivery as

well as inventory holding costs kI
p per period and product p ∈ P .

For supply of surrounding clinics, each van has a capacity of KS and each drone of Kem.. For
this, the volume vp for each product is considered. Qp equals the fixed delivery quantity for product
p ∈ P at the central clinic. Clinics c ∈ Ĉ have a demand of dp,c,t,ω for each product p ∈ P , in period
t ∈ T , and scenario ω ∈ Ω.

Index sets

C, Ĉ Index set for clinics (including the central clinic ĉ)
P Index set for products
T , T0 Index set for considered time periods (including period 0)
T̄ Index set for time periods in which standard delivery is permitted
Ω Index set for scenarios

Parameters

kS
i,j Costs traveling from clinic i ∈ Ĉ to j ∈ Ĉ in standard delivery
k̂S Costs visiting the central clinic in standard delivery
kem.

c,t emergency delivery costs visiting clinic c ∈ C at time t ∈ T
kI

p Inventory holding costs for product p ∈ P per time period
dp,c,t,ω Demand of product p ∈ P in clinic c ∈ Ĉ at time t ∈ T and scenario ω ∈ Ω
ε sufficient small number
KS Maximum capacity for supply of surrounding clinics in standard delivery in volume equiv-

alents
Kem. Maximum capacity for supply of surrounding clinics in emergency delivery in volume equiv-

alents
Ml Big M for l = 1, ..., 9
nS , nem. Number of routes per day that are allowed for standard and emergency delivery
Qp Delivery quantity of product p ∈ P for the central clinic in the standard delivery, quantified

in entire packaging units

Continued on next page
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3 Cyclic SIRP with reorder points and recourse decision

Continued from previous page

vp Volume of a package of product p ∈ P

First stage decision variables

sp,c Integer variable, indicating the reorder point (entire packaging units) of each product p ∈ P
at clinic c ∈ Ĉ

yi,j,t Binary variable∗, indicating, if a van travels from clinic i ∈ Ĉ to clinic j ∈ Ĉ for resupply at
time t ∈ T

First stage auxiliary variables

ui,t Subtour-elimination variable for node i ∈ C at time t ∈ T̄ by Miller et al. (1960)
IInit

p,c Initial inventory of product p ∈ P at clinic c ∈ Ĉ
ηp,c,t, θp,c,t, ζp,c,t Binary∗, binary∗, and real-value variables to ensure cyclic planning

Second stage auxiliary variables

Ip,c,t,ω Positive real-value variable, indicating the inventory level of product p ∈ P for clinic c ∈ Ĉ
at the end of period t ∈ T0 and scenario ω ∈ Ω

qS
p,c,t,ω Integer variable, indicating transported amount of packages of product p ∈ P to clinic c ∈ C

at time t ∈ T̄ and scenario ω ∈ Ω in a standard delivery
ϕS

i,j,t,ω Positive real-value variable, indicating accumulated transport volume from clinic i ∈ Ĉ to
clinic j ∈ Ĉ at time t ∈ T̄ and scenario ω ∈ Ω in a standard delivery

qem.
p,c,t,ω Positive real-value variable, indicating transported amount of product p ∈ P to clinic c ∈ Ĉ

at time t ∈ T and scenario ω ∈ Ω via emergency delivery
rt,ω Binary variable∗, indicating, if there is a standard resupply of the central clinic at time

t ∈ T̄ and scenario ω ∈ Ω
wc,t,ω Integer variable, indicating the number of emergency resupplies for a clinic c ∈ Ĉ at time

t ∈ T and scenario ω ∈ Ω
xp,c,t,ω Binary variable∗, indicating, if there are emergency resupplies for product p ∈ P at clinic

c ∈ Ĉ at time t ∈ T and scenario ω ∈ Ω
zp,t,ω Binary variable∗, indicating, if there is a standard resupply of the central clinic at time

t ∈ T̄ for product p ∈ P and scenario ω ∈ Ω
ξp,c,t,ω, κp,c,t,ω,
ιp,c,t,ω

Binary∗, real-value, and real-value variable for soft constraints

Table 3.2: Index sets, parameters, first stage decision variables, and first and second stage
auxiliary variables.

∗ binary variables have a value of 1, if they are true, 0 else

Decision variables The following decisions are taken for all demand scenarios consolidated and
thus are first stage decisions. The main decision variables determine the reorder points sp,c for
product p ∈ P and clinic c ∈ Ĉ and the routing yi,j,t, i.e., if a van travels from clinic i ∈ Ĉ to clinic
j ∈ Ĉ in period t ∈ T̄ . Thus, yi,j,t gives information on the delivery days a clinic j ∈ C is visited.

The second stage defines the following directly related variables. For period t ∈ T and scenario
ω ∈ Ω, Ip,c,t,ω defines the inventory levels for each product p ∈ P in clinic c ∈ Ĉ, qS

i,j,t,ω the delivery
amount by standard delivery, wc,t,ω the number of emergency deliveries, and qem.

p,c,t,ω the transported
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3 Cyclic SIRP with reorder points and recourse decision

amount in emergency deliveries. Moreover, zp,t,ω determines if the central clinic is supplied in period
t ∈ T̄ with product p ∈ P , as the delivery days of the central clinic are not fixed and dependent on
the reorder points.

3.4.2 Mathematical model

In this subsection, we present our two-stage stochastic program for the 2E-SIRP as a mixed-integer
linear program. We decomposed the two-stage stochastic program into the objective function and
different constraints for better reading.

Objective function

minZtotal =
∑

i,j∈Ĉ,t∈T̄

kS
i,j · yi,j,t

+ Eω∈Ω

{∑
t∈T̄

k̂S · rt,ω +
∑

c∈Ĉ,t∈T

kem.
c,t · wc,t,ω +

∑
p∈P,c∈Ĉ,t∈T

kI
p · Ip,c,t,ω

}
(3.1)

The objective function (3.1) minimizes the total expected logistics costs in the time periods
considered. It contains two major cost terms. The first applies to all scenarios and quantifies the
delivery costs for standard deliveries in the first stage. The second term approximates expected
costs, which are the average of additional delivery and inventory costs for all scenarios evaluated,
i.e., standard delivery costs in the first echelon and emergency delivery costs in the second echelon,
and inventory holding costs for all clinics.

Routing constraints

∑
i∈Ĉ

yj,i,t =
∑
i∈Ĉ

yi,j,t ∀j ∈ Ĉ, t ∈ T̄ (3.2)

∑
i,j∈Ĉ

yi,j,t ≤M1 ·
∑
j∈C

yĉ,j,t ∀t ∈ T̄ (3.3)

∑
i∈Ĉ

yi,j,t ≤ 1 ∀j ∈ C, t ∈ T̄ (3.4)

ui,t + 1 ≤ uj,t +M2 · (1− yi,j,t) ∀i, j ∈ C, t ∈ T̄ (3.5)∑
j∈Ĉ

(
ϕS

j,c,t,ω − ϕS
c,j,t,ω

)
=
∑
p∈P

vp · qS
p,c,t,ω ∀c ∈ C, t ∈ T̄ , ω ∈ Ω (3.6)

ϕS
i,j,t,ω ≤ KS · yi,j,t ∀i, j ∈ Ĉ, t ∈ T̄ , ω ∈ Ω (3.7)∑

i∈Ĉt∈T̄

yi,j,t ≥ 1 ∀j ∈ C (3.8)

yi,j,t ∈ {0, 1} ∀i, j ∈ Ĉ, t ∈ T̄ (3.9)

ϕS
i,j,t,ω ∈ R+ ∀i, j ∈ Ĉ, t ∈ T̄ , ω ∈ Ω (3.10)

qS
p,c,t,ω ∈ N ∀p ∈ P , c ∈ C, t ∈ T̄ , ω ∈ Ω (3.11)

ui,t ∈ R ∀i ∈ C, t ∈ T̄ (3.12)
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3 Cyclic SIRP with reorder points and recourse decision

Constraints (3.2) to (3.12) restrict the routing of the standard delivery in each period t ∈ T̄ .
Constraints (3.2) conserve the flow, and Constraints (3.3) ensure that the van that visits the clinics
in the second echelon always starts at the central clinic. M1 can be set as |Ĉ| since each clinic is
visited maximum once per period (Constraints (3.4)). Subtours are eliminated by Constraints (3.5)
(Miller et al. 1960). M2 can be set as |Ĉ|. Constraints (3.6) define the accumulated transported
volume of each van’s tour. This accumulated transported volume must be less than the van’s
capacity (Constraints (3.7)). Constraints (3.8) ensure that each surrounding clinic is visited at
least once in the considered periods. Last, variables are defined.

Reorder point constraints for the central clinic

Ip,ĉ,t,ω −Qp · zp,t,ω ≥ 0 ∀p ∈ P , t ∈ T̄ , ω ∈ Ω (3.13)

Ip,ĉ,t,ω −Qp ≤ sp,ĉ ≤ Ip,ĉ,t,ω − ε ∀p ∈ P , t ∈ T̄ , ω ∈ Ω (3.14)∑
p∈P

zp,t,ω ≤ |P| · rt,ω ∀t ∈ T̄ , ω ∈ Ω (3.15)

rt,ω ∈ {0, 1} ∀t ∈ T̄ , ω ∈ Ω (3.16)

sp,c ∈ N ∀p ∈ P , c ∈ Ĉ (3.17)

Ip,c,t,ω ∈ R+ ∀p ∈ P , c ∈ Ĉ, t ∈ T0, ω ∈ Ω (3.18)

zp,t,ω ∈ {0, 1} ∀p ∈ P , t ∈ T̄ , ω ∈ Ω (3.19)

Constraints (3.13) to (3.19) define the reorder points for the central clinic. There are emergency
deliveries only if the inventory at the end of the previous period is not sufficiently high to meet all
demand (Constraints (3.13)). Constraints (3.14) (right side) ensure that there is only a delivery if
inventory is below the reorder point. Standard delivery must be carried out if inventory is below
the reorder point (left side of Constraints (3.14)). Constraints (3.15) ensure that the products are
consolidated in delivery. Last, variables are defined.

Reorder point constraints for surrounding clinics

qS
p,c,t,ω ≤ sp,c − Ip,c,t−1,ω + 1− ε ∀p ∈ P , c ∈ C, t ∈ T̄ , ω ∈ Ω (3.20)

qS
p,c,t,ω ≥ sp,c − Ip,c,t−1,ω −M3 ·

(
1−

∑
i∈Ĉ

yi,c,t

)
∀p ∈ P , c ∈ C, t ∈ T̄ , ω ∈ Ω (3.21)

qS
p,c,t,ω ≤M3 ·

∑
i∈Ĉ

yi,c,t ∀p ∈ P , c ∈ C, t ∈ T̄ , ω ∈ Ω (3.22)

Constraints (3.20) to (3.22) define the reorder points sp,c and the resulting delivery quantities
qS

p,c,t,ω for the surrounding clinics. Constraints (3.20) and (3.21) ensure that the delivery quantities
- which have an integer value - fill up the inventory to the reorder point sp,c. M3 can be set as the
fraction of the van’s capacity and the smallest volume of any product, e.g., one pill. Medicine is
only delivered in a period to a clinic if there is a standard delivery for this clinic in the considered
period (Constraints (3.22)).
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3 Cyclic SIRP with reorder points and recourse decision

Emergency delivery constraints

∑
p∈P

qem.
p,ĉ,t,ω ≤M4 · wĉ,t,ω ∀t ∈ T , ω ∈ Ω (3.23)

qem.
p,c,t,ω ≤ dp,c,t,ω − Ip,c,t−1,ω +M5 ·

(
1− xp,c,t,ω

)
−

 qS
p,c,t,ω , t ∈ T̄

0 , else
∀p ∈ P , c ∈ C, t ∈ T , ω ∈ Ω (3.24)

qem.
p,ĉ,t,ω ≤ dp,ĉ,t,ω − Ip,ĉ,t−1,ω +M5 ·

(
1− xp,ĉ,t,ω

)
+
∑
k∈C

qem.
p,k,t,ω +


∑

k∈C
qS

p,k,t,ω , t ∈ T̄

0 , else
∀p ∈ P , t ∈ T , ω ∈ Ω (3.25)

wc,t,ω ≤M6 ·
∑
p∈P

xp,c,t,ω ∀c ∈ Ĉ, t ∈ T , ω ∈ Ω (3.26)

qem.
p,c,t,ω ≤M6 · xp,c,t,ω ∀p ∈ P , c ∈ Ĉ, t ∈ T , ω ∈ Ω (3.27)∑

p∈P
vp · qem.

p,c,t,ω ≤ Kem. · wc,t,ω ∀c ∈ C, t ∈ T , ω ∈ Ω (3.28)

wc,t,ω ∈ N ∀c ∈ Ĉ, t ∈ T , ω ∈ Ω (3.29)

xp,c,t,ω ∈ {0, 1}, qem.
p,c,t,ω ∈ R+ ∀p ∈ P , c ∈ Ĉ, t ∈ T , ω ∈ Ω (3.30)

Constraints (3.23) to (3.30) define the emergency delivery constraints for all clinics. Constraints
(3.23) determine if there is an emergency delivery for the central clinic. M4 must be set sufficient-
ly high, as the capacity of the emergency delivery to the central clinic is unlimited. Constraints
(3.24) and (3.25) restrict the delivery quantity to the unsatisfied demand of the current period to
avoid emergency deliveries enabling stockpiling. M5 needs to be greater than each clinic’s possible
maximum inventory capacities. Constraints (3.26) consolidate multiple products in one emergency
delivery. Constraints (3.27) ensure that medicine is only delivered if there is an emergency delivery.
M6 can be set as a maximum reasonable amount of transported volume in emergency deliveries.
Constraints (3.28) restrict the capacity of emergency deliveries for surrounding clinics. Last, auxi-
liary variables are defined.

Inventory constraints

Ip,c,t,ω = Ip,c,t−1,ω − dp,c,t,ω + qem.
p,c,t,ω +

 qS
p,c,t,ω , t ∈ T̄

0 , else
∀p ∈ P , c ∈ C, t ∈ T , ω ∈ Ω (3.31)

Ip,ĉ,t,ω = Ip,ĉ,t−1,ω − dp,ĉ,t,ω + qem.
p,ĉ,t,ω −

∑
k∈C

qem.
p,k,t,ω

+


Qp · zp,t,ω −

∑
k∈C

qS
p,k,t,ω , t ∈ T̄

0 , else
∀p ∈ P , t ∈ T , ω ∈ Ω (3.32)

IInit
p,c + ζp,c,τ = sp,c +M7 ·

∑
t=τ+1..|T̄ |,i∈Ĉ

yi,c,t
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3 Cyclic SIRP with reorder points and recourse decision

−
∑

t=τ..|T |
Eω∈Ω

{
dp,c,t,ω

}
∀p ∈ P , c ∈ C, τ ∈ T (3.33)

M8 · (θp,c,t − 1) ≤ ζp,c,t ≤M8 · ηp,c,t ∀p ∈ P , c ∈ C, t ∈ T (3.34)∑
t∈T

ηp,c,t = |T | − 1 ∀p ∈ P , c ∈ C (3.35)

ζp,c,τ ≥ sp,c +M7 ·
∑

t=τ+1..|T̄ |,i∈Ĉ

yi,c,t

−
∑

t=τ..|T |
Eω∈Ω

{
dp,c,t,ω

}
−M9 · θp,c,τ ∀p ∈ P , c ∈ C, τ ∈ T (3.36)

IInit
p,ĉ = sp,ĉ +Qp

2 ∀p ∈ P (3.37)

Ip,c,0,ω = IInit
p,c ∀p ∈ P , c ∈ Ĉ, ω ∈ Ω (3.38)

IInit
p,c ∈ R+ ∀p ∈ P , c ∈ Ĉ (3.39)

ηp,c,t, θp,c,t ∈ {0, 1}, ζp,c,t ∈ R ∀p ∈ P , c ∈ C, t ∈ T (3.40)

Constraints (3.31) to (3.40) are inventory constraints for all clinics. Constraints (3.31) are the
inventory balancing constraints for surrounding clinics for periods t ∈ T defining the inventory at
the end of each period t ∈ T by reducing the inventory of the previous period by the demand and
adding delivery quantities. The same is applied to the central clinic, but the inventory is additionally
reduced by the total quantity delivered to clinics in the second echelon in standard and emergency
deliveries (Constraints (3.32)). Constraints (3.33) are the cyclic formulations for the surrounding
clinics. The initial inventory depends on the last replenishment in the cyclic planning periods, i.e.,
the reorder points are reduced by the expected demand from the last delivery on. M7 can be set as
the maximum reasonable inventory of a product. ηp,c,t and ζp,c,t are auxiliary variables that ensure
equality holds. Only for one period ζp,c,t is set to zero (Constraints (3.34) and (3.35)). M8 can
be set as the expected demand. Constraints (3.36) ensure that ζp,c,t might have negative values
if the reorder points are lower than the expected demand. M9 can be set as twice the maximum
reasonable inventory of a product. Constraints (3.37) set the initial inventory for the central clinic
as half of both the reorder point plus the order quantity. Constraints (3.38) define the inventory at
period 0 for all scenarios. Last, auxiliary variables are defined.

Problem variant: limited number of vehicles We further consider a problem variant, where the
number of vehicles for both standard and emergency delivery is limited. In accordance with Archetti
et al. (2007), we model this by limiting the number of routes on a day to nS (Constraints (3.41))
or nem. (Constraints (3.42)), respectively.

∑
j∈Ĉ

y0,j,t ≤ nS ∀t ∈ T (3.41)

∑
c∈C

wc,t,ω ≤ nem. ∀t ∈ T , ω ∈ Ω (3.42)
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3 Cyclic SIRP with reorder points and recourse decision

These constraints are assumed in Section 3.6.2.2 for benchmark tests and in Section 3.6.3.4 to
show the impact of a limited vehicle fleet.

3.5 Adaptive large neighborhood search

To solve the 2E-SIRP, we decompose the problem in its two echelons. We develop a problem-specific
ALNS to generate routes and delivery days. Using this routing, we determine optimal reorder points
in each iteration. Thus, this approach leads to a focus of the ALNS on the second echelon of the
problem. The particularity of the presented ALNS is the inclusion of a reorder point algorithm
as an additional step after executing operators that vary the routing. This simple and efficient
separation of delivery quantities from routing allows any widely used ALNS for IRPs (e.g., Aksen
et al. 2014) to be adapted for the problem at hand.

The structure of this section is as follows: First, we introduce the ALNS and describe the solution
representation in Subsection 3.5.1, the pseudocode of our ALNS in Subsection 3.5.2, our routing-
specific operators in Subsection 3.5.3, and the algorithm to find local optimal reorder points in
Subsection 3.5.4.

3.5.1 Solution representation

The ALNS was first introduced in Ropke and Pisinger (2006) and Pisinger and Ropke (2007) for
the class of vehicle routing problems and has been extended for inventory routing problems (e.g.,
Aksen et al. 2014). Our ALNS is specialized for the (Tc, sp,c, np,c · qp) inventory policy of clinics
on the second echelon and the (sp,ĉ, Qp) inventory policy of the central clinic on the first echelon,
which means that the delivery quantities are dependent on the inventory policies.

A solution is represented by the routing of the standard delivery (R), including information on
delivery days within the cyclic planning horizon and the reorder points for the clinics (sp,c). In each
iteration, operators are chosen that take changes on just the routing R (see Section 3.5.3). After-
wards, the reorder points sp,c are optimized depending on the created routing R (see Section 3.5.4).

Within these changes, infeasible solutions are accepted but penalized in the objective function
dependent on the degree of infeasibility (e.g., Vidal et al. 2013, Rave et al. 2023b). Infeasibility
may occur in two different ways: first, a van may exceed its capacity in a scenario, and second,
not all clinics are visited at least once. Additionally, when limiting the fleet size, violations of
Constraints (3.41) and (3.42) are penalized, too.

3.5.2 ALNS algorithm

The general outline of the ALNS is presented in Algorithm 2. The algorithm begins with an initial
solution (line 1) and a temperature Temp for the simulated annealing process (line 2). The initial
solution is generated by visiting all clinics once and only in the first period of the cyclic planning
periods. The clinics are inserted one by one in the greedy best way in one tour. This initial solution
is not necessarily feasible. The while-loop in line 3 stops after a maximum time. At the beginning
of each iteration, operators and a delivery day T for the repair operator are chosen adaptively
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3 Cyclic SIRP with reorder points and recourse decision

(line 4). In line 5, operators modify the routing R. Local optimal reorder points s̄p,c for this routing
R̄ are computed afterwards in our reorder point algorithm (lines 6), see Algorithm 3, and delivery
quantities, inventories, and emergency deliveries are updated.

The simulated annealing process is described in lines 7 - 10. The costs f are based on changes
made by operators and Algorithm 3. The solution is always accepted if it is better than the previous
global solution (lines 7 - 8). Depending on the temperature Temp, the new solution (R̄, s̄p,c) is
accepted (lines 9 - 10) if it is worse than the global best solution. Last, the temperature and the
weights of the operators and delivery days are updated, dependent on the performance of this
iteration.

Algorithm 2: ALNS framework for the cyclic inventory and routing planning.
1 (R, Rglobal, sp,c, sglobal

p,c ) ← Initial Solution;
2 Temp ← GetInitialTemp();
3 while Time < MaxTime do
4 Choose(Operator, T );
5 R̄ ← Operator(R);
6 s̄p,c ← Optimize(sp,c); //see Algorithm 3
7 if f(R̄, s̄p,c) < f(Rglobal, sglobal

p,c ) then
8 (R, Rglobal, sp,c, sglobal

p,c ) ← (R̄, s̄p,c);
9 else if accept(f(R̄, s̄p,c), f(R,sp,c), Temp) then

10 (R,sp,c) ← (R̄, s̄p,c);
11 Temp ← UpdateTemp(Temp);
12 UpdateWeights();
13 end

3.5.3 Operators

The used removal, selection, and insertion operators are extensions of the operators of Ropke and
Pisinger (2006), Pisinger and Ropke (2007), Aksen et al. (2014), and Rave et al. (2023b). A selection
operator only chooses clinics for insertion, in contrast to a removal operator that removes these
clinics. In each iteration, operators are chosen in the following way, as the removal of customers
decreases and the insertion of clinics increases the number of servings per clinic, which, however,
is variable.

1. Remove clinic, insert clinic (two operators chosen)

2. Select clinic, insert clinic (two operators chosen)

3. Remove clinic (one operator chosen)

4. Shift delivery day of one route (one operator chosen)

We consider two operators that remove or select α clinics, three operators that insert these
removed or selected clinics, and one operator that shifts the delivery day. α is randomly drawn
(uniform) with a limited number of clinics.
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Random removal/selection - The random removal/selection operator removes/selects α cli-
nics from any route and delivery day.

Closest removal/selection - The closest removal/selection operator removes/selects a random
clinic and at maximum α− 1 closest clinics of all or one specific route/s within the same period.

Greedy insertion - This operator adds clinics one by one to existing van tours at day T in a
greedy best way taking traveled distances into account. If there has not been a route on this day,
a new route is created. Clinics might be inserted in any routes, as in the next step in the ALNS,
the delivery quantity is adjusted.

Random insertion - This operator works in a similar way as the previous operator but adds
clinics to a random place within the route.

Greedy insertion - new route - Similar to the previous operator, this operator inserts clinics
always in one new route at the selected day T .

Delivery day shift - The delivery day of one route is shifted to the selected day T . If clinics
have already been visited at that day, these clinics are removed from this shifted route.

3.5.4 Reorder point algorithm

Algorithm 3 describes the pseudo-code of the reorder point algorithm for calculating the reorder
points sp,c and is executed for each clinic separately. For this, we use the integrality of sp,c to compute
local optimal reorder points sp,c in each iteration of the ALNS. In the beginning, a reorder point
snew

p,c , the best reorder point sp,c found so far, and the considered routing R are initialized (line 1).
As the initial reorder point, the reorder point of the routing before modification by operators is
chosen. While there are still cost improvements (line 2) by adjusting snew

p,c , sp,c is updated (line 3),
and snew

p,c is either increased or decreased by one dependent on which change has a larger benefit
(line 4).

Algorithm 3: Reorder point algorithm to determine sp,c on a given R.
1 Initialize (snew

p,c , sp,c, R);
2 while f(R, snew

p,c ) < f(R, sp,c) do
3 sp,c ← snew

p,c ;
4 snew

p,c ← adjust(snew
p,c );

5 end

The calculation of sp,c for a clinic and product requires a complex evaluation of the objective
function and also has dependencies with the reorder points of both the central clinic and even other
surrounding clinics because the capacity in standard delivery is limited. These dependencies are
circumvented by randomly selecting the sequence of clinics and products the algorithm is applied
to. Thus, the found reorder points are locally optimal and not necessarily globally optimal.

69



3 Cyclic SIRP with reorder points and recourse decision

3.6 Numerical Study

In this section, we show the performance of our ALNS and present a case study based on the project
MEDinTime (Quantum Systems 2020). First, in Section 3.6.1, we describe the numerical setup in
detail. In Section 3.6.2, we show the performance of our ALNS compared to optimal results solving
the two-stage stochastic program in CPLEX and to optimal solutions for IRP instances of Archetti
et al. (2007). In Section 3.6.3, we present results for the case study and perform multiple sensitivity
analysis. The mathematical model is implemented in OPL and solved using CPLEX v12.10. and
the ALNS is implemented in C++. All experiments are conducted on an AMD Ryzen 9 3950X with
32 GB. The used instances are available at: https://github.com/FontainePirmin/2E-SIRP.

3.6.1 Numerical setup

Location and number of clinics The central clinic, Ingolstadt Hospital, supplies nine surrounding
clinics located between 3 and 75 km (euclidean distance) from the central clinic. The surrounding
clinics are supplied in a weekly repeating manner, and all clinics are in the range of drone delivery.

For a performance analysis (small instances), we also consider three random locations of clinics
within a 100km × 100km map and the five locations as in Archetti et al. (2007) for 15 clinic
locations, which are also conducted by, e.g., Cui et al. (2023). For the instances by Archetti et al.
(2007), we assume similar demands as in Archetti et al. (2007) and Cui et al. (2023), i.e., daily
demands with randomly chosen integer values between one and five for each clinic that are constant
over time. For a performance analysis (large instances), we consider the 30 instances of Archetti
et al. (2007) with up to 30 surrounding clinics and |T | = 6 delivery days, clinic-dependent inventory
holding costs of kI

c ∈ [0.1, 0.5] for clinic c ∈ C, kI
0 = 0.3, and the constant demands of dp,c,t,ω ∈

[10, 100].

Cost structure Various medications are needed for patient care, which we categorize by their sales
price. The annual inventory holding costs kI

p are approximated by 20% of the average sales price
of the corresponding category.

Based on the information given in our case study, standard delivery costs kS are assumed to be
1.4e per km while drone delivery is 52% cheaper and thus equals 0.672e per km. Each inventory
replenishment at the central clinic is assumed to have delivery costs of 168e for a standard delivery
(k̂S) and twice as high for an emergency delivery (k̂em.). Due to weekend emergency staffing at all
clinics, emergency delivery costs are always increased by a factor of three at this time.

A standard supply for surrounding clinics includes approximately 200 different products, for
which the transportation costs are total. Thus, these costs are ”fixed” costs and are reduced to the
considered number of products, as we only consider a portion of the products. Considering only
a share of these products leads to similar decisions but can save sufficient run time (e.g., Rahimi
et al. 2017). This proportional cost adjustment is applied to all standard delivery and emergency
delivery costs, as in each delivery, different products might be consolidated.
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Demand The demand for medication is assumed to be gamma-distributed with varying mean
and variance for each product and clinic as the demand is not negative and can be any share of
a product. However, the demand is rounded to two decimal places as consumer units cannot be
divided arbitrarily. The variance is assumed to be five times as high as the mean of the distribution
(Johansson et al. 2020). Additionally, the demand for medications varies for each weekday, with
its peak on Wednesday, and is especially lower at the weekend, as clinics have a 30% lower bed
occupancy at the weekend. This is because patients in Germany are increasingly discharged at the
weekend, and new patients mostly arrive at the beginning of the week.

Due to multiple products, the distribution of the scenarios is potentiated. Thus, to reduce this
probability space, we use the latin hypercube sampling by McKay et al. (1979) to generate demands:
the normal distribution for each product is divided into |Ω| intervals of equal size and then displayed
in a hypercube. From this hypercube, |Ω| random demands are drawn for each product so that rows
and columns do not overlap. This procedure is repeated for all hospitals and time periods.

Delivery quantities and capacities We assume that drugs that are high in demand are delivered
in larger packages, which results in larger volume equivalents per package.

The van’s capacity is based on the Mercedes Sprinter (Mercedes-Benz AG 2022) and reduced
proportionally to the drugs under consideration so that the total average weekly demand of up
to five clinics can be carried in each van’s tour. This means that the van’s capacity KS depends
on the considered drugs (e.g., KS = 138.7 volume equivalents if one product of each category is
considered). The considered drone has a capacity of 3.765 volume equivalents (Kem.).

Table 3.3 presents the parameter settings for the seven different products categorized by their
price ranges, the resulting inventory holding costs per day kI

p, the delivery quantity for the central
clinic Qp, their volume vp, and their average mean and variance, which need to be adjusted based
on the size, i.e., the bed number, for each clinic.

Price Average mean Average variance
p ∈ P ranges [e] kI

p [e] Qp vp of demand of demand

1 < 12 0.0033 100 2 1.29 6.43
2 12 - 58 0.0193 30 2 0.21 1.07
3 59 - 129 0.0514 20 1 0.09 0.43
4 130 - 291 0.1153 15 1 0.06 0.32
5 292 - 778 0.2933 10 1 0.04 0.21
6 779 - 1758 0.6951 5 0.4 0.02 0.11
7 > 1759 2.4644 3 0.4 0.01 0.06

Table 3.3: Parameter values for product categories.

ALNS parameter The ALNS parameters are based on pre-testing. In each iteration, a randomly
drawn number of one to all clinics is selected/removed if a selection/removal operator is chosen.
The reaction factors for the learning curve and the weight adjustment are set similarly to Rave
et al. (2023b). The initial temperature factor for the simulated annealing equals 1% of the costs
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of the initial solution and cools down by a cool rate dependent on the remaining run time of the
ALNS.

3.6.2 Performance analysis

In this section, we first benchmark our ALNS to solutions generated by CPLEX (Section 3.6.2.1),
then to optimally solved IRP instances of Archetti et al. (2007) (Section 3.6.2.2), and last, we
demonstrate the stability of the found solution (Section 3.6.2.3).

3.6.2.1 Small instances

The performance of the ALNS is compared to the solutions obtained using CPLEX for the two-stage
stochastic program. The run time limit for the two-stage stochastic program was set to 60 minutes
and for the ALNS to five minutes. The ALNS is executed five times. Table 3.4 presents aggregated
results for 78 instances. Detailed results are provided in Table C.1 in Appendix C.1. Column |Ĉ|
describes the number of clinics, column |P| number of considered products, and column |Ω| the
number of demand scenarios. The next four columns describe the best cost CPLEX found, the best
cost the ALNS found, the average cost found, and the deviation between the best and average costs
(σ). Columns eight and nine describe the number of optimal solutions found by CPLEX and the
average gap of the not-to-optimality solved instances. Finally, the last two columns show the run
time.

Cost objective CPLEX Run time (s)

|Ĉ| |P| |Ω| CPLEX ALNS best ALNS avg ALNS σ [%] Opt GAP [%] CPLEX ALNS
4 1 5 4.45 4.45 4.46 0.59 12 / 12 - 82 78
4 2 5 8.37 8.27 8.28 0.23 3 / 4 28 1465 183
4 3 5 16.70 16.50 16.51 0.12 1 / 4 21 2794 225
7 1 2 6.27 6.22 6.24 1.02 6 / 12 21 1940 207
7 2 2 14.47 12.49 12.51 0.12 0 / 4 42 3600 300
7 3 2 40.27 22.85 22.93 0.34 0 / 4 63 3600 300
10 1 1 13.51 13.46 13.49 1.01 17 / 28 24 1192 136
15 1 1 23.36 20.93 21.21 1.34 2 / 10 27 3083 278
Avg 13.59 12.24 12.30 0.38 43 / 78 23 1722 180

Table 3.4: Performance analysis for small instances.

Findings: The results show that CPLEX can only solve 43 out of the 78 small instances to
optimality. For the other 35 instances, the gaps are rather large. The ALNS, on the other hand,
finds for all clusters the same or better costs on average with up to 56% fewer costs by using only
10% of the run time. The results of the ALNS are stable as σ has a value of 0.38% on average for
all instances.

3.6.2.2 Large instances

In this section, we benchmark the performance of our ALNS on the 30 instances of Archetti et al.
(2007), which have also been considered by, e.g., Archetti et al. (2012). We consider these IRP
instances because there is no similar problem setting in the literature so far, and for these instances,
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the corresponding problem setting is closest to our problem setting. In comparison to our problem
setting, Archetti et al. (2007) consider the following simplifications: The authors consider a single
product whose demand is deterministic, constant, and known for the planning horizon of 6 periods,
i.e., there is only a single scenario and no recourse decision. Moreover, the central clinic has no
demand and its inventory is replenished in each period with a constant amount. All clinics’ initial
inventory is a given parameter; thus, no cycle is considered. The inventory is always replenished to
an order-up-to-level, which is a parameter. In addition, there are no reduced quantities delivered
if the van’s capacity would exceed. Note that there is only a single vehicle. Last, the inventory
holding costs arise per clinic instead of per product hc (c ∈ Ĉ). It follows that running the ALNS,
the reorder point algorithm is not executed.

Table 3.5 shows the consolidated results of these instances. Detailed results can be found in
Table C.2 in Appendix C.2. The first column describes the number of considered surrounding
clinics, and the next column the proven optimal solution by Archetti et al. (2007). Columns three
and four present our best found solution of five runs and the average found solution. Columns five
and six give information on the number of solved instances to optimality and the average gap to
optimality (∆). Last, column seven shows the gap from best to average (σ). We chose a run time
of 60 minutes for running the ALNS.

Our ALNS

|C| Opt. costs Best costs Avg. costs Opt ∆ [%] σ [%]
5 5538.02 5538.02 5572.80 5/5 0.00 0.67
10 8872.41 8903.47 9197.99 2/5 0.35 3.18
15 11721.83 11811.86 12114.40 0/5 0.78 2.47
20 14863.85 15006.32 15219.32 0/5 0.95 1.40
25 17170.81 17479.36 17768.22 0/5 1.81 1.63
30 20657.29 20923.60 21243.02 0/5 1.27 1.53

Avg 13137.37 13277.10 13519.29 7/30 0.86 1.81

Table 3.5: Performance analysis for benchmark instances of Archetti et al. (2007).

Findings: Our ALNS solves 7 of the 30 instances to optimality with an average gap of 0.86%.
Moreover, we observe that the solution is stable with an average σ of 1.81%. Especially the perfor-
mance does not decrease monotonously with a larger number of considered clinics. These results
show the performance, especially since our ALNS was not designed for this operational problem
setting that has large differences, as mentioned above, but for a tactical problem setting with mul-
tiple products and stochastic demands that also includes the optimization of reorder points for
cyclic delivery patterns.

3.6.2.3 Stability tests

In this section, we demonstrate the stability of the solutions of our ALNS. For this, we compare the
routing for ten instances for the location of clinics as in our case study. We choose a number of 100
varying scenarios and one product of each product category. Thus, the instances only vary in their
demand scenarios. The number of scenarios is sufficient as a maximum desired deviation of 10% is
not exceeded for a confidence interval of 95%. It is tested for the total costs, number of emergency
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deliveries, and average amount of reorder points. The ALNS is executed five times with a run time
limit of 60 minutes in each run, as the solution is used for a tactical planning problem (Rave et al.
2023b). Table 3.6 presents for each instance the best routing found on the corresponding day, the
best costs, the average costs, and the deviation from average to best costs (σ). The routing always
starts and ends with the central clinic. The driving order equals the order of the numbered clinics
in the squared brackets. If a second route is on the same weekday, the routing is presented in a
second row.

Best found routing at weekdays

Instance Mo. Tu. We. Th. Fr. Best costs Avg. costs σ [%]

1 [8]-[3]-[5] [1]-[6]-[2]-[4]-[9] 167.70 168.52 0.49
[7]

2 [8]-[3]-[5]-[7] [1]-[6]-[2]-[4]-[9] 167.78 168.53 0.44
3 [8]-[3]-[5] [7]-[1]-[6]-[2] 171.58 172.58 0.58

[4]-[9]
4 [8]-[3]-[5] [7]-[1]-[6]-[2]-[4]-[9] 166.48 167.81 0.79
5 [8]-[3]-[5] [7]-[1]-[6]-[2] 172.77 173.58 0.46

[4]-[9]
6 [8]-[3]-[5]-[7] [1]-[6]-[2]-[4]-[9] 171.84 173.08 0.72
7 [9]-[8]-[3]-[5]-[7] [1]-[6]-[2]-[4] 170.43 171.51 0.63
8 [8]-[3]-[5]-[7] [1]-[6]-[2]-[4]-[9] 166.63 167.74 0.67
9 [8]-[3]-[5] [7]-[1]-[6]-[2] 173.63 174.69 0.61

[4]-[9]
10 [8]-[3]-[5]-[7] [1]-[6]-[2]-[4]-[9] 167.43 168.19 0.45

Table 3.6: Performance analysis for large instances.

Findings: The results are stable in costs as σ always has values below 1%, and each clinic is
visited once, either on Thursday or on Friday. The supply is just after the weekly demand peak
in clinics to prevent additional emergency delivery costs at the weekend. Clinics [8],[3], and [5] are
always visited in the same order and day. The same holds for clinics [1], [6], and [2]. Clinics [4],
[7], and [9] are added to different routes, or even new routes, in the instances under consideration.
However, this variation does not lead to large cost differences. Clinic [7] is mainly visited on Thurs-
day, and [4] and [9] mainly on Friday. The results appear very satisfactory as the costs are stable,
and the best routing has little variation.

3.6.3 Numerical results

In this section, we present the results of the case study and multiple sensitivity analysis.

3.6.3.1 Case study

We demonstrate the advantages of an optimization of reorder points and routing compared to the
status quo of clinic supply. The status quo is as follows: Each surrounding clinic determines its
delivery days and reorder points on its own. There are in total about 250 emergency deliveries per
year, as emergency deliveries are avoided if possible due to their extra costs. Subsequently, the
central clinic plans the routing on the respective days and its own inventory management based on
the given information.
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Our integrated approach not only optimizes the inventory of all clinics consolidated but also the
routing simultaneously. Therefore, in the following, first, the reorder points for the central clinic
and the surrounding clinics are optimized for the same routing as the status quo, and then the
results are compared to the status quo. This is done by applying our reorder point algorithm to
the routing of the status quo. Second, additionally, the routing is optimized, and the results are
again compared to the status quo. This is done by executing the ALNS. For both, we consider 50
instances á one product of each product category, 100 scenarios, and the clinic location as in our
case study, and we set the run time limit of the ALNS again to 60 minutes. We obtain the status
quo results by running the reorder point algorithm that chooses reorder points so that there are
250 emergency deliveries for surrounding clinics per year.

The following KPIs are compared in Table 3.7 all in comparison to the status quo in percent: total
costs for the central clinic and for surrounding clinics (1. row), the average number of standard
delivery visits per week for the surrounding clinics (2. row), the average number of emergency
deliveries per week for surrounding clinics (3. row), and last the reorder points for each product
category. Each KPI consolidates all nine surrounding clinics.

Inventory optimization [%] Inventory & routing optimization [%]

Central Surrounding Central Surrounding
clinic clinics clinic clinics

Costs − 16.0 − 45.7 − 15.9 − 58.4

# Standard del. ± 0.0 − 47.1
# Emergency del. + 185.9 + 160.9

Reorder points
Product category 1 + 3.7 − 9.7 + 46.6 − 1.9
Product category 2 + 4.6 − 42.4 + 19.8 − 32.4
Product category 3 + 3.8 − 64.4 + 16.8 − 56.7
Product category 4 − 14.0 − 76.6 + 4.5 − 64.1
Product category 5∗ − 60.0 − 99.2 − 59.3 − 88.9
Product category 6∗ − 53.6 − 100.0 − 41.7 − 100.0
Product category 7∗ − 100.0 − 100.0 − 100.0 − 100.0

Table 3.7: Percentage change from status quo with cost-optimal inventory (2nd and 3rd column)
and with simultaneous route and inventory optimization (4th and 5th column).

∗ Smaller clinics do not have any inventory of this product category already in the
status quo.

Findings: The inventory optimization leads to cost savings of 16.0% for the central clinic and
45.7% for the surrounding clinics, as demand peaks are eliminated. Additional cost savings of 12.7
percentage points can be reached for the surrounding clinics if the routing is planned simultaneously.
However, this additional routing optimization does not impact costs for the central clinic.

The cost savings are mainly achieved by applying the following: First, clinics make use of pooling
effects, i.e., less inventory to be stored in surrounding clinics but more in the central clinic. The
following applies in particular: The more expensive a product, the stronger the pooling effect.
Even after inventory optimization, the reorder points for product category 7 are set to zero for
all clinics, which means that all demand is satisfied via emergency deliveries. Storing more in the
central clinic may not even be necessary when only split drugs are transported. Second, surrounding
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clinics decrease the number of standard deliveries to one visit per clinic per week but increase the
number of emergency deliveries by 185.9% or 160.9%, respectively.

3.6.3.2 Value of multi-product optimization

In this section, we compare our multi-product approach, where reorder points for multiple products
and the routing are optimized simultaneously, to the following sequential procedure: we first deter-
mine order intervals and reorder points for each product individually and, second, the routing that
covers all products. Thus, our ALNS is executed for the single-product case in the first step. In the
second step, we use the resulting reorder points for all product categories as input parameters and
optimize the routing by executing our ALNS without the reorder point algorithm. Table 3.8 presents
the percentage change of this sequential procedure to the multi-product approach in percent.

Separated reorder point and routing optimization [%]

Central clinic Surrounding clinic
Costs + 5.3 + 2.2

# Standard del. ± 0.0
# Emergency del. + 9.5

Reorder points
Product category 1 − 19.4 + 4.7
Product category 2 − 19.9 + 0.7
Product category 3 + 0.5 − 4.0
Product category 4 − 11.5 − 28.9
Product category 5 ± 0.0 − 59.5
Product category 6 − 18.4 ± 0.0
Product category 7 ± 0.0 ± 0.0

Table 3.8: Percentage change from the multi-product approach when optimizing reorder points for
each product separately.

Findings: We observe that costs increase for both the central clinic and the surrounding clinics
significantly by 5.3% and 2.2% on average. This is mainly caused by a variation of reorder points
and resulting in an increase in emergency deliveries. For surrounding clinics, the reorder points
increase for product categories 1 and 2 and decrease for product categories 3 to 5. For product
categories 6 and 7, there is no change as the reorder points are already zero when considering all
products consolidated. In contrast, for the central clinic, nearly all reorder points decrease. The
changes in reorder points can be predominantly attributed to the adjusted capacity ratios for each
product in standard and emergency delivery, which have a direct impact on the transportation cost
per delivery.

3.6.3.3 Impact of drone delivery

In this section, the influence of drone delivery as instant replenishment orders on total costs and
inventory pooling effects is analyzed. Thus, in Table 3.9, we compare the results for the case if the
emergency delivery is carried out by drones to the results for the case if the emergency delivery is
carried out by the same vans as for standard delivery. Van delivery, on the one hand, has higher
costs than drone delivery, but on the other hand, it has an unlimited capacity such that there is at

76



3 Cyclic SIRP with reorder points and recourse decision

maximum one emergency delivery per clinic per day. We first consider costs for drone delivery as
in our case study (Columns 52%), and second, drone delivery costs are reduced by a factor of two
(Columns 76%).

Cost advantage of emergency delivery by drones

52% [%] 76% [%]

Central Surrounding Central Surrounding
clinic clinics clinic clinics

Costs − 0.6 − 29.8 − 0.6 − 49.8

# Standard del. − 0.7 − 0.7
# Emergency del. + 22.5 + 53.5

Reorder points
Product category 1 − 0.2 − 1.7 − 3.0 − 9.3
Product category 2 − 0.1 − 12.0 − 4.5 − 36.1
Product category 3 − 0.5 − 30.7 − 1.8 − 48.2
Product category 4 − 4.9 − 33.3 − 22.2 − 67.2
Product category 5 − 10.9 − 63.2 − 4.7 − 100.0
Product category 6 + 2.1 − 100.0 + 6.3 − 100.0
Product category 7 ± 0.0 ± 0.0 ± 0.0 ± 0.0

Table 3.9: Percentage change from van delivery as an emergency delivery option with drone
delivery when drone delivery is 52% and 76% more cost efficient.

Findings: Drones as emergency delivery options lead to cost savings of 29.8% for surrounding
clinics but have nearly no impact on the costs for the central clinic. The cost savings for surrounding
clinics increase to 49.8% when drone delivery is more cost-efficient. These cost savings can be
achieved by reducing the stored inventory at the surrounding clinic if emergency deliveries are used
more frequently instead. Once again, the more expensive a product, the stronger the pooling effects.
This has no effect on product category 7, as this already has a reorder point of 0 at van delivery
for all clinics. For each product category, the pooling effects are stronger if the emergency delivery
is more cost-efficient. The inventory of the central clinic also decreases slightly for some product
categories, as there is an increase in the delivery of only individual consumer units to surrounding
clinics so that whole packs are not stored, and the increased use of emergency deliveries leads to a
distribution of delivery quantities over several days, thus avoiding demand peaks.

3.6.3.4 Impact of limited vehicle fleet

In this section, we show the impact of limiting the vehicle fleet for standard and emergency delivery
as in Constraints (3.41) and (3.42). For this, we first limit the number of vans for standard delivery
to one per day (nS = 1, nem. =∞), and in a second analysis, we additionally limit the number of
drone flights to five per day (nS = 1, nem. = 5). Table 3.10 shows the percentage change considering
the limited fleet to the case when the vehicle fleet is unrestricted.

Findings: We observe that limiting the number of vans in standard delivery to one has no
significant impact on the solution. The number of visits increases slightly on average, and emergency
deliveries decrease. These changes result in a cost increase of 1.1% for surrounding clinics but, on
the other hand, a minor cost reduction of 0.2% for the central clinic. There are only small changes
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as the final found solution previously only contains multiple routes per day on rare occasions.
Limiting also the number of drone deliveries results in significant changes in costs, routing,

number of emergency deliveries, and reorder points. The number of visits in standard delivery
increases by 5.7%, but the number of emergency deliveries decreases by 7.4%. More products are
stored in surrounding clinics with a reorder point increase of up to 17.7% (except product category
6, where nothing was stored previously), but fewer products are stored in the central clinic with a
reorder point decrease of up to 17.9%. These changes result in a cost increase of 6.7% for surrounding
clinics. However, costs for the central clinic are slightly reduced by 0.8%. This can be explained
by the reduced use of pooling effects at the central clinic. It follows that limiting the number of
emergency deliveries via drones has a greater impact on the solution than limiting the number of
van routes in standard delivery.

nS = 1, nem. =∞ [%] nS = 1, nem. = 5 [%]

Central Surrounding Central Surrounding
clinic clinics clinic clinics

Costs − 0.2 + 1.1 − 0.8 + 6.7

# Standard Del. + 1.2 + 5.7
# Emergency Del. − 1.5 − 7.4

Reorder points
Product category 1 − 1.0 + 1.2 − 10.6 + 11.3
Product category 2 + 1.8 + 0.6 − 11.3 + 15.5
Product category 3 + 2.1 + 0.1 − 9.4 + 17.3
Product category 4 + 0.4 + 0.3 − 6.2 + 17.7
Product category 5 + 1.8 + 25.6 + 2.3 + 6.3
Product category 6 ± 0.0 ± 0.0 − 17.9 +∞
Product category 7 ± 0.0 ± 0.0 ± 0.0 ± 0.0

Table 3.10: Percentage change from an unlimited vehicle fleet, when there is one van, and when
there are in addition just five drone flights per day.

3.7 Conclusion

This paper considers a cyclic routing planning combined with inventory policies and drones as
emergency delivery options for recourse decision for the medical supply of clinics. We introduce
a two-echelon IRP that takes a cyclic (Tc, sp,c, np,c · qp) inventory policy for surrounding clinics in
the second echelon and a (sp,ĉ, Qp) policy for the central clinic in the first echelon into account.
We present the problem as a two-stage stochastic program and develop a specialized ALNS that
determines local-optimal reorder points sp,c in each iteration. In a performance analysis, we show
the solution quality and stability of the ALNS on IRP instances of Archetti et al. (2007).

The case study shows that the use of pooling effects leads to total cost savings of 16.0% for the
central clinic and 45.7% for surrounding clinics. The cost savings for surrounding clinics can even
be increased by additional 12.7 percentage points if the routing is optimized simultaneously. We
have also analyzed that a multi-product optimization significantly decreases costs. The study also
shows that drones as a more cost-efficient emergency delivery option reduce costs for surrounding
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clinics by 29.8% compared to an emergency delivery option via van. However, drones have nearly
no impact on the costs of the central clinic.

Future research could include possible transshipments between the surrounding clinics. The trans-
shipments are, for example, a pick-up of medications at one clinic during standard delivery and
taken to the next or an emergency delivery launched from a closer surrounding clinic. Extensions
of our problem setting, like consolidating multiple clinics in one tour in the emergency delivery,
can be considered. This, however, leads to a VRP in the recourse, such that the ALNS presented
in this paper needs to be adjusted to solve a VRP in the recourse as well. Further, shelf life can be
considered. This is relevant when the routing and reorder points of, e.g., blood with an expiration
date of some days instead of medication need to be planned. Moreover, it can also be examined
what the best fleet mix for emergency deliveries might look like, taking into account fixed costs
and weather-related flight bans for drones.
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4 Drone fleet planning and battery allocation for
emergency resupply of pharmacies and ambulances

Alexander Rave, Pirmin Fontaine, Heinrich Kuhn

Abstract For patients’ treatments, pharmacies and ambulances are equipped with multiple drugs.
If there is a medication shortage, pharmacies are replenished via emergency deliveries, and ambu-
lances transport the patient to a nearby hospital. These processes result in delays in patients’
treatments, high costs, and emissions and can be improved by aerial drones as a new transport
vehicle for emergency delivery. Drones have great potential as only a few medications need to be
transported, and drones can travel fast at low variable costs and emissions.

We consider a wholesaler who is the supplier of multiple pharmacies and plans to integrate drones
for emergency delivery of medicines to serve both pharmacies and ambulances. We determine the
most economical and ecological number of drones, batteries, transport boxes, and the location of
spare batteries for emergency resupply, guaranteeing a certain supply rate and service level.

Based on a case study, we apply a management decision support framework proposed in the
literature to define and solve our drone fleet planning and spare battery allocation problem. We
perform a discrete-event simulation optimization that accounts for stochastic seasonal demands,
weather conditions, and daylight-dependent flight bans for drones. With unchanged demand, cost
savings of up to 19.6% are achieved with a supply rate and service level of at least 90%. If, on the
other hand, demand increases and drone properties are improved, costs can be reduced by up to
51.7% with a supply rate and service level of more than 99%.

URL (Working Paper): https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4569199
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4.1 Introduction

Pharmacies and ambulances must have an extensive selection of medical goods available at all
times. This makes it necessary that pharmacies and ambulances are appropriately equipped with
various medical goods to provide patients care (e.g., Volland et al. 2017). If a pharmacy has a
medication shortage, these drugs are replenished in an emergency delivery. For a pharmacy of
a medium-sized clinic, this results in, on average, one emergency delivery per week (Rave et al.
2023a). This emergency delivery is typically a road-based transport and is especially inefficient, as
a van is loaded with only a single drug for a commuting tour. As a result, high costs, emissions,
and delays due to road binding occur. In case of medication shortages in ambulances at service,
the ambulance transports the patient to a hospital, and the patient’s treatment takes place there,
leading to a decisive delay in the patient’s treatment that could threaten the patient’s welfare.
Now, aerial drones have the opportunity to improve patient care, as drones might transport a few
medications fast, environmentally friendly, and cost-efficient (e.g., Otto et al. 2018). Drone delivery
improves the patients’ service as each pharmacy or ambulance supplied by drones will be treated
faster. When ambulances place an order for the medical supplies expected to be needed while still en
route to the scene of the accident, it follows that ambulances also have the full range of medications
available for patients’ treatment.

We consider a wholesaler who is responsible for delivering medication to multiple pharmacies in
case of emergency and plans to integrate aerial drones for this delivery. In this way, the wholesaler,
on the one hand, improves the existing emergency delivery to pharmacies and, on the other hand,
opens up a new business model with direct deliveries to ambulances at service. The service of
ambulances requires a reliable delivery system, provided that external conditions (e.g., weather)
allow drones to fly. Integrating drones raises the question of how many drones, spare batteries, and
transport boxes to purchase and at which location to store spare batteries to guarantee a certain
supply rate or service level while being cost- and ecologically efficient. These are conflicting goals as
the acquisition of drones is associated with high fixed costs and causes CO2 equivalents (CO2 eq.).

Based on a real case of the project MEDinTime, where the pharmacy of a large German hospital
serves as a wholesaler for clinics’ pharmacies, we evaluate the drone fleet by applying the GUEST
framework of Perboli and Rosano (2019), which is a lean business approach. This GUEST framework
allows to give detailed insights on the connection between stakeholders, the delivery process, and
the simulation optimization in a structured way. We perform a discrete-event simulation study
and evaluate different drone fleets by comparing economic, ecological, and service-oriented key
performance indicators (KPIs). In addition, we use this simulation in a simulation-optimization
framework to determine the most economical or ecological drone fleet while guaranteeing a certain
supply rate and service level. This choice is driven by the stochasticity and seasonality of order
arrivals and flight bans for drones that impact both the utilization and availability of the drone
fleet components. This further leads to additional waiting times or unavailability of drones, which
must be compensated by standard truck deliveries. As a result, a formulation as a mixed-integer
linear program (MILP) is not capable of reflecting this complexity, and similar to other problem
settings, we choose the simulation as methodology (e.g., Cao et al. 2023, Zhang et al. 2020). On the
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contrary, a simple averaging method would neglect these components and lead to incorrect results.
We contribute to the literature as follows: First, we introduce a discrete-event simulation opti-

mization framework to determine the optimal drone fleet considering seasonal demands and flight
bans and also show the value added by the simulation. Second, we generate multiple managerial
insights for the case study based on the pharmacy of a large German hospital and in general by
varying the network structure, demands and drone properties, and prices. Third, we transfer the
GUEST framework to the drone fleet and spare battery allocation, identify stakeholders in the
delivery system of the emergency supply of clinics, ambulance depots, and ambulances at service,
and draw a business connection between them. Fourth, we present and analyze the supply chains
for emergency deliveries.

The structure of our paper is the following: In Section 4.2, we describe the problem setting in de-
tail. Second, we present the most relevant literature to differentiate our paper (Section 4.3). Then,
we describe the GUEST framework in Section 4.4. In Section 4.4.1, we show the relevant stake-
holders, and in Section 4.4.2, we draw their business connection and competition. In Section 4.4.3,
we present our chosen KPIs and give detailed information on relevant parameter settings. The
supply chain of clinics, ambulance depots, and ambulances at service is analyzed in Section 4.4.4.
In Section 4.5, we show multiple managerial insights for our case study, test certain assumptions,
and perform a sensitivity analysis. Last, Section 4.6 summarizes our results.

4.2 Problem setting

Network structure - status quo A wholesaler supplies multiple pharmacies regularly and in case
of emergency with medication. The wholesaler is the contracted sole supplier of the pharmacies. In
the status quo, ambulances are not supplied by the wholesaler. In case of medication shortage, an
ambulance transports the patient to a nearby clinic instead.

Network structure - new emergency delivery network The wholesaler plans to integrate aerial
drones as an alternative transportation mode for emergency delivery to serve pharmacies. Addi-
tionally, these drones shall serve ambulances. However, suppose the drone is unavailable or cannot
perform a flight due to weather or daylight-dependent flight bans, the deliveries are as in the status
quo: pharmacies are served via road-based transport, and ambulances are not served at all. In the
delivery context, there is an additional aerial-based delivery mode for pharmacy supply and a new
delivery mode for ambulance supply.

A drone can be used if a charged battery and a transport box suitable for the required medication
are also available - a distinction is made here between transport boxes with and without a cooling
function (Quantum Systems 2020). Drones can be made operational again more quickly if their
batteries are changed instead of being charged. Thus, storing extra batteries at the wholesaler or
the travel destination might be reasonable.

Figure 4.1 presents an example emergency delivery system for the status quo (left) and the
new emergency delivery network (right) for the supply of pharmacies and ambulances when the
wholesaler has one drone and sufficient batteries and transport boxes for delivery. The times show
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when an emergency order is placed at the one day considered. While in the status quo, all pharmacies
are supplied via road-based transport in case of emergency, but no ambulance is served at all; in
the new delivery network, a pharmacy and two ambulances can be served via drones. A second
pharmacy and a third ambulance cannot be supplied by drones since the drone is not available
at that time. For the supply of the second pharmacy, this means that it is served via road-based
transport instead. This results in opportunity costs due to the drone’s unused economic, ecological,
and delivery time advantages.Example Network Design – one drone at the wholesaler

11

Wholesaler Pharmacy Ambulance Emergency delivery Road-based transport Aerial-based transport

08:15 am

02:15 pm

08:15 am

10:25 am

10:40 am

02:15 pm

01:45 pm

Status Quo New emergency delivery network (one drone)

10:25 am

10:40 am

01:45 pm

Figure 4.1: Example supply for one day as in status quo (left) and after integrating one drone
(right).

Decision problem We decide on the most economical or ecological drone fleet and spare battery
locations that guarantee a certain supply rate and service level. In detail, we evaluate variations of
the following decisions on the drone network:

1. Vehicle fleet decision: How many drones, batteries, and different transport boxes to locate at
the wholesaler?

2. Location decision: At which pharmacies to store additional spare batteries?

Assumptions We consider real flight conditions for drones:

• Demand and supply:

– Pharmacies and ambulances have an independent stochastic demand in medication (e.g.,
Niakan and Rahimi 2015), and thus, stochasticity is also in their emergency order arrival
with a daily and weekly season. We show the impact of this seasonality in Section 4.5.2.3

– Orders are not consolidated.

– The wholesaler always has sufficient medication in stock.

• Deliveries:
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– The location of ambulances is generally uncertain and just known after an order is placed
and thus modeled via a stochastic flight duration.

– Drones only serve ambulances within a certain flight-time range. On the other hand, the
considered pharmacies are all in range of drones.

– Drones can only perform a flight if they are ready to launch within 30 minutes after the
order arrives.

– There is a preparation time before the transport starts.

– If a drone is not available for delivery, the trip is performed by a road-based transport
instead (pharmacy) or rejected (ambulance).

• Batteries:

– Batteries are charged when drones return to the wholesaler. We assume a sufficient
number of available battery chargers so that no waiting times occur until the charging
process for the drones starts.

– Placing an additional battery is only considered at the wholesaler and remotely located
pharmacies since one battery charge is otherwise sufficient for the return flight.

– Batteries are used if fully charged to ensure that no batteries with a too-low capacity are
used. Additionally, batteries need to have a rest capacity of at least 65% for the return
flight for legal reasons. Note that the battery always has sufficient rest capacity for the
flight-time range of serving ambulances.

• Transport boxes:

– Transport box without a cooling function: This transport box has a larger payload, but
only temperature-insensitive medicine can be transported.

– Transport box with a cooling function: This transport box has a smaller payload, but
also temperature-sensitive medication can be transported.

• Flight bans:

– There are weather-related flight bans, i.e., precipitation, fog, and wind (Ranquist et al.
2017). The weather is stochastic but known by the weather forecast and thus assumed
to be known for the full execution time of a delivery. In Section 4.5.2.2, we analyze the
impact of flight bans.

– There are daylight-dependent flight bans, i.e., no flights during the night. If the return
flight is at night, the drone waits at the served pharmacy until the flight conditions
fit again. The daylight has a yearly season. We show the impact of this seasonality in
Section 4.5.2.3.

• Prioritization:

– Drone delivery is prioritized compared to road-based transport.
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– Orders are processed following a first-come-first-serve (FCFS) rule. We vary this ass-
umption in Section 4.5.2.4 and prioritize ambulances and far-located pharmacies.

– The transport box, which results in lower costs, is prioritized if the drug fits.

4.3 Literature review

Drone delivery is a much-considered area in academia, with the focus of most publications on
operational route planning when trucks and drones interact (e.g., Sacramento et al. 2019). In
addition, tactical issues related to fleet planning in parcel delivery were studied by, e.g., Rave et al.
(2023b). However, the biggest expense in drone delivery problems is the consideration of routing,
which is not present in our problem setting. We, therefore, focus on the following on comparable
drone applications in healthcare and network design settings. We recommend the literature review
of Wang and Demeulemeester (2023) for an overview of simulation studies with application in
healthcare planning and the literature review of Otto et al. (2018) for an overview of civil drone
applications.

Drones as additional service option Chu et al. (2021) analyze the impact of drones transporting
defibrillators in case of an out-of-the-hospital heart attack. For this, the authors develop a machine-
learning-based dispatching rule. For the same case study, Boutilier and Chan (2022) present an
integrated location-queuing model that decides on the locations of drone bases, secondarily also
considering the total number of drones in the system.

Drones replacing road-based transports Asadi et al. (2022) present a Markov decision process for
a stochastic scheduling and allocation problem with the use case of the Zipline project in Rwanda,
Africa, where a central warehouse serves multiple hospitals with medication via drones. Dhote and
Limbourg (2020) formulate a mixed-integer linear program (MILP) for a deterministic pick-up and
delivery problem focusing on the transport of drugs based on a case study in Brussels. The authors
decide on the location of the origin base of the drones as well as recharging stations in case the travel
time exceeds the drone’s maximum endurance. Otero Arenzana et al. (2020) present a deterministic
facility location problem in the form of a MILP with integrated drone number selection for blood
transports between blood banks and hospitals based on a case study in London. Rave et al. (2023a)
model a cyclic inventory routing problem with stochastic demand and inventory control policies
with drones as emergency delivery options for clinic resupply in case of shortages. Compared to our
paper, the authors assume an unlimited drone fleet and do not include the supply of ambulance
depots and ambulances at service.

Network design settings in public transport and freight planning Sa et al. (2020) consider a long-
term airplane fleet planning problem, explore the stochastic demand in a Monte-Carlo simulation,
and determine the optimal fleet via a MILP, including assigning passenger flows between airports.

Militão and Tirachini (2021) optimize the vehicle size and the fleet size of human-driven and
automated vehicles in public transport. The authors present a simulation framework that minimizes
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operator and user costs. Perboli and Rosano (2019) analyze freight transportation with traditional
and green vehicles in urban areas. For this, the authors simulate and evaluate different fleet mixes
considering ecological and service-oriented KPIs. Fehn et al. (2023) combine parcel delivery and a
ride-pooling system. In a simulation study, the authors compare two integration approaches to the
status quo. Zwick et al. (2022) simulate ride-pooling systems considering driver shifts and evaluate
the efficiency of this public transport system by comparing it to on-demand systems. On-demand
systems are simulated and analyzed by Nguyen-Phuoc et al. (2023), where the authors evaluate
three stages of automation.

Assumptions Decisions Methodology

Drone Flight Different Location Fleet MILP Simu-
delivery bans KPIs planning planning lation

Paper considered evaluated

Dhote and Limbourg (2020) ! !∗ !∗ ! !

Otero Arenzana et al. (2020) ! ! ! !

Chu et al. (2021) !

Asadi et al. (2022) ! !

Boutilier and Chan (2022) ! ! ! ! !

Rave et al. (2023a) ! !

Perboli and Rosano (2019) ! ! !∗∗

Sa et al. (2020) ! ! ! !

Militão and Tirachini (2021) ! !

Zwick et al. (2022) ! !

Fehn et al. (2023) ! ! !

Nguyen-Phuoc et al. (2023) ! ! !

Our paper ! ! ! !∗∗∗ !∗∗∗∗ !∗∗

Table 4.1: Comparison of relevant literature.
∗ Only verbally in a SWOT analysis, ∗∗ GUEST framework,

∗∗∗ location of spare batteries, ∗∗∗∗ including required and additional hardware.

Table 4.1 distinguishes taken assumptions, the problem setting, and the methodology of our
paper from the literature discussed previously. Our contribution differs in particular by weather-
and daylight-dependent flight bans and a more detailed focus on the drone fleet, which is evaluated
using various KPIs in a simulation study. Moreover, regarding the network, we are the first to look
at the supply of both pharmacies and ambulances.

4.4 GUEST framework

We use the GUEST decision support framework to define and solve our drone fleet and spare battery
allocation problem for emergency resupply. Initially introduced by Perboli and Rosano (2019), the
GUEST framework is ideal for this purpose, as it allows to present detailed insights of the delivery
process and the stakeholders involved in a structured manner in a simulation study (e.g., Perboli
and Rosano 2019). A simulation study is useful to model the complex and stochastic processes
in the emergency supply of clinics (Wang and Demeulemeester 2023). The individual letters of
GUEST stand for process steps, which can be described as follows:
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Go We give a detailed analysis of stakeholders that are relevant to the emergency deli-
very system (Section 4.4.1). We also present a business model canvas (BMC) for the
wholesaler, which can be found in Appendix D.1.

Uniform We represent the stakeholders considered in a social business network and draw their
business connection and competition to each other (Section 4.4.2).

Evaluate We introduce relevant KPIs and give detailed information on parameter values that are
relevant for the emergency delivery process (Section 4.4.3).

Solve We draw the supply chain for the delivery to pharmacies and ambulance services that
we consider in a discrete-event simulation study (Section 4.4.4).

Test We analyze the results, test taken assumptions, and present further results to generalize
our findings (Section 4.5).

We use this GUEST framework for the case study of the MEDinTime project, in which the
pharmacy of a large German hospital serves as a wholesaler and is to be equipped with aerial drones.
The network structure and the generated insights can then be transferred to other wholesalers for
medical supplies.

Within the GUEST framework, we apply a discrete-event simulation study including a simulation
optimization to determine the drone fleet with the largest cost or emission savings that guarantees
a certain supply rate for pharmacies and service level for ambulances. The model accounts for
stochastic seasonal demands and weather conditions, as well as daylight-dependent flight bans for
drones. We chose the methodology of a simulation study because the utilization and availability
of drones, transport boxes, and spare batteries depend on the stochasticity and seasonality of
order arrivals and flight bans for drones. This leads to additional waiting times for drones and
thus to extended order delivery times or unavailability of drones, which must be compensated by
standard truck deliveries. A simple averaging method would neglect these additional waiting times
for drones and lead to incorrect results. Therefore, a deterministic optimization approach would
lead to inaccurate results, which is particularly problematic in the healthcare sector, as this area is
highly intolerant of faults (Young 2005). We show in Section 4.5.2.1 the necessity of a simulation
and further in Section 4.5.2.3 that seasonality impacts the drone fleet and the KPIs.

4.4.1 Go - detailed analysis of all stakeholder

The wholesaler, pharmacies, ambulances, and the truck service provider are stakeholders in the
emergency delivery system.

Wholesaler The wholesaler, the Ingolstadt Hospital’s pharmacy in our case study, is responsi-
ble for supplying pharmacies of surrounding clinics and ambulance depots and plans to supply
ambulances. On the other hand, the wholesaler is served by the medication manufacturer.

The wholesaler plans to operate a drone fleet for emergency deliveries but is not equipped with a
road-based vehicle fleet. For this, the wholesaler accesses a truck service provider instead because
it is cheaper to outsource transport due to unevenly distributed delivery trips on weekdays.
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A detailed analysis in the form of a BMC for the wholesaler can be found in Appendix D.1.
We have not created a BMC for the other stakeholders as it does not provide relevant additional
information.

Pharmacies Nine surrounding clinics’ pharmacies are supplied cyclically once or twice a week by
the wholesaler (e.g., every Tuesday and Friday) (Rave et al. 2023a). Additionally, there are three
ambulance depots’ pharmacies whose stock is replenished irregularly.

Ambulances Eleven ambulances (nine cars, one boat, and one helicopter) belong to the ambulan-
ce depots served by the wholesaler, except the helicopter that launches directly at the wholesaler’s
location. The ambulances do not belong to clinics but to support organizations, e.g., the fire depart-
ment or the Bavarian Red Cross. In case of emergency, an ambulance is launched from its depot
located in the city center and travels to the incident scene. If necessary, initial care is provided
at the destination of incidence for which medical equipment is required. Drone delivery may now
occur when urgently needed medical goods are not sufficiently in stock in the ambulance. After the
patient’s care, the ambulance then transports the patient to a hospital if necessary, hands the pati-
ent off to hospital staff, and then returns to its base station. However, it may be that no transport
is required. In this case, the ambulance returns directly to its base station, ready for the next call
(Henderson and Mason 2004). At the base station inventory of the ambulance is replenished.

Truck service provider The truck service provider takes over standard and emergency delivery to
pharmacies. There is a heterogeneous fleet of vehicles with different capacities for these transports.
Smaller transport vehicles or even passenger cars can be chosen for emergency deliveries, while
larger transport vehicles are used for standard medication delivery that includes many drugs. We
assume that for emergency delivery, electric-powered vehicles are chosen.

A key advantage of the truck service provider is that medicines can be transported reliably and
cost-effectively, as there are demand peaks in deliveries. Therefore, an extensive fleet of vehicles is
required, including personnel provided for this purpose. However, the truck service provider must
travel to the wholesaler before a transport is carried out. Consequently, there is a delay in delivery
time.

4.4.2 Uniform - social business network

The stakeholders introduced are commercially connected, and some compete with each other. Figu-
re 4.2 presents these connections and competitions in the form of a social business network before
(blue lines) and after integrating drone delivery (blue and red lines). Bold arcs represent a stronger
connection or competition.

Business connection The wholesaler is commercially connected to all stakeholders introduced.
The business connection with ambulances is weaker than pharmacies because drone delivery is just
an additional service option for them. The wholesaler commissions the truck service provider. Thus,
the truck service provider has no direct connection to pharmacies.
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GUEST: Go & Uniform

Alexander Rave
Competition Business connection

Wholesaler

Pharmacies

Truck service provider

Ambulances

Uniform - Social Business Network

GUEST

Figure 4.2: Social Business Network. Bold arcs represent a stronger connection or competition.
Blue lines indicate the network before integrating drones, and both blue and red lines

the network after integrating drones.

Competition The competition between the wholesaler and the truck service provider arises after
integrating drones as each emergency delivery performed by the drone is one less transport perfor-
med by the truck service provider. It follows that the utilization of the truck service provider gets
lower when integrating drone delivery. This lower utilization may in turn lead to an adjustment of
delivery prices by the truck service provider. We analyze this possible adjustment in a sensitivity
analysis in Section 4.5.3.3.

In our case, the wholesaler and the clinics’ pharmacies are competitors, as the wholesaler itself is
a clinic. Therefore, a patient treated at one clinic results in lost revenue at another clinic. Although
clinics maximize profits arising from patients’ treatments, patient care is a top priority. In addition,
a fundamental overload of clinics and ambulances in Germany ensures that competition is far less
prominent than in other industries. As a result, competition is weak.

To sum up, integrating drones leads to additional business connections with ambulances, but
also new competition arises between the wholesaler and the truck service provider.

4.4.3 Evaluate – definition of KPIs and analysis of relevant properties

This section gives detailed information on the cost and CO2 eq. structure, present the chosen
economic, ecological, and service-oriented KPIs, and provides further details on the road- and
aerial-based transport properties, the order arrivals of medication, flight bans, and delivery times.

Cost structure Drones, batteries, and boxes have high fixed costs, but only low variable costs
arise per traveled km, as the drone flies autonomously (e.g., Rave et al. 2023b). On the other
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hand, road-based delivery only leads to high costs per taken-over delivery since an external service
provider is commissioned for delivery. The road-based delivery costs depend on the travel distance,
but there is also a fixed component per delivery.

The dedicated drone is the Trinity F90+ (Quantum Systems 2023), a vertical takeoff and landing
tilt-rotor drone that can fly silently. This medium-sized drone perfectly fits the purpose of drug
delivery, as it can transport drugs quickly, efficiently, safely (Darvishpoor et al. 2020), and autono-
mously while being out of humans’ sight. In addition, a transport box with a cooling function has
been developed that only fits this drone. The relatively low transport capacity of the drone does
not pose a problem due to the volume of demand in emergency deliveries (Quantum Systems 2020).
This drone costs without battery and transport boxes 14,760€ to purchase and is expected to be
used for 500 complete emergency transports or up to three years. Both transport boxes cost 500€
to purchase, but the normal transport box can be used for 500 deliveries or three years, and the box
with cooling function only for 100 deliveries or 1.5 years. A battery costs 640€ and can be used for
1.5 years, or 150 charging cycles, which means it can be loaded 150 times. In addition, insurance
costs per year are approximated at 5% of the purchase price of the drone. Per minute traveled,
the drone incurs electricity costs of 0.0045e if loaded (outbound flight) and 0.0044e if unloaded
(return flight). A detailed calculation of variable costs can be found in Appendix D.2. To generalize
the findings, i.e., if a different drone is chosen, we vary the drone’s costs in Section 4.5.3.3.

CO2 equivalents The drone is made of different materials, which causes CO2 eq. during their
production and processing, resulting in 14.49kg for a drone (without battery and box), 2.70kg for
each battery, 0.033kg for each standard transport box, and 0.165kg of CO2 eq. for a transport
box with cooling function. More detailed information and the derivation on the CO2 eq. in drone
production can be found in Appendix D.3. Each flight results in no CO2 eq. since the clinics receive
only green electricity. This contrasts with road transport, which causes 0.136kg/km (Arar 2010).
Due to the low transport load of one medication package in emergency transport, no distinction
is made between outbound and return flights. From these data, it follows that drones are already
profitable from an ecological point of view after only a few tours.

KPIs We compare the following KPIs when introducing drones to the supply chain:

1. Cost savings of pharmacy supply compared to the status quo:
∆cost = 1− Čfix

drone
+Čvar

drone+Čtruck

Ctruck

2. CO2 eq. savings compared to the status quo:
∆CO2 = 1− Ěfix

drone
+Ětruck

Etruck

3. Share of performed pharmacy supply by drones (supply rate via drones):
αph. = Q̂ph.

Qph.

4. Share of supplied ambulances (service level):
αamb. = Q̂amb.

Qamb.
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For the computation of ∆cost, we consider both fixed (Čfix
drone) and variable (Čvar

drone) costs for
drones but for truck delivery only costs that arise per delivery (Čtruck). For the computation of
∆CO2, we take CO2 eq. during manufacture for drone hardware (Ěfix

drone) and emissions per traveled
km of the road-based transport (Ětruck) into account. Ctruck (Etruck) are the costs (CO2 eq.) for
truck delivery for the status quo, i.e., all pharmacy supply is carried out by truck. Qph. and Qamb.

quantify the total number of orders for emergency resupply by pharmacies and ambulances, respec-
tively, that can be performed by drones if the external flight conditions fit for drone delivery. Q̂ph.

and Q̂amb. define the deliveries actually performed by drones for emergency resupply to pharmacies
or ambulances, respectively.

For the status quo (no drones), it holds ∆cost = ∆CO2 = αph. = αamb. = 0. On the contrary,
if there is an unlimited number of drones, then αph. = αamb. = 1. Depending on fixed costs and
CO2 eq. of drones, ∆cost and ∆CO2 might be negative, which means there is an increase in costs or
CO2 eq., respectively, when using drones. Note that the closer the values of the KPIs are to 1, the
higher are the savings (∆cost and ∆CO2), the supply rate (αph.), and the service level (αamb.).

Within the network, all participating pharmacies and ambulances are interested in being supplied
with drones whenever suitable, i.e., prefer a higher supply rate or service level because of the drones’
significant travel time savings. This, however, leads to a conflict between these KPIs in purchasing
drones, batteries, and transport boxes. On the one hand, an increased number of drones, batteries,
or transport boxes can reduce the number of rejections for drone supply, as a drone is on the air
for up to multiple hours for just one delivery. On the other hand, the more drones, batteries, and
transport boxes are in the system, the higher the costs and CO2 eq. So, with an increasing drone
fleet, the supply rate and the service level rise monotonously, but the savings only to a certain
extent and then decrease. In particular, the cost savings are much more likely to fall due to the
data on costs and CO2 eq. It follows that in the simulation optimization, we either maximize ∆cost

or ∆CO2 subject to αph. > aph. and αamb. > aamb., where aph. is the target supply rate and aamb.

the target service level, e.g., aph. = aamb. = 90%.

Order arrivals There are, on average, 250 emergency orders from surrounding clinics, 15 from
ambulance depots, and 100 from ambulances per year. We model the arrivals via a schedule such
that the arrival rate, i.e., the probability of order arrivals at each time unit, changes with intervals
of 15 minutes.

Order arrivals of surrounding clinics Orders from pharmacies of surrounding clinics are subject to
a daily and weekly season. Figure 4.3 shows the probability of an order arrival for one surrounding
clinic that is supplied regularly on Tuesday and Friday. The probability that an order will arrive is
largest in the early afternoon (daily season). Emergency orders also include unpacked or unordered
but still required medications directly after a standard supply took place. As a result, emergency
deliveries are usually made a few hours after the standard delivery, which is in the afternoon. Vice
versa, an emergency delivery does typically not arise close (24 hours) before a standard delivery
as this needed medication - except in case of severe emergency - is transported in this standard
delivery. This is considered by a 25% reduced probability of order arrivals. Additionally, a weekly
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Figure 4.3: Probability of an order arrival for one surrounding clinic within a week, Monday to
Sunday, that is supplied regularly on Tuesday and Friday.

season arises due to the fluctuation of bed occupancy in clinics. In Germany, patients typically go
to the hospital at the beginning of a week and leave before the weekend (Rave et al. 2023a). We
consider this by multiplying the probability by seasonal factors for the week (Monday: 1.1, Tuesday:
1.2, Wednesday: 1.1, Thursday: 1.0, Friday: 0.9, Saturday: 0.7, Sunday: 0.7). Additionally, clinics
place orders during weekends on vary rare occasions as their pharmacy is sparsely staffed, i.e.,
during weekends the probability of an order arrival is just 25% compared to weekdays.

Order arrivals of ambulance depots Unlike clinics, ambulance depots are not served in a cyclic
repeating standard delivery but are only served with medication via standard delivery as needed.
In addition, we assume there is no weekly season but still a daily season with a higher probability
(15 minutes interval) for an order arrival in the early afternoon.

Order arrivals of ambulances The probability of emergency calls is normally distributed throug-
hout the day, with the peak in the early afternoon. Thus, there is a daily season for the order
arrivals of ambulances. Again, there is no weekly season (Henderson and Mason 2004).

Weather and daylight dependent flight bans Drone delivery is not permitted if the weather is
too bad, i.e., precipitation or wind with maximum speeds of more than 9 m/s. We differentiate here
between “sunny days“ (53.93% of all days), where the drone can fly the whole day, “rainy days“
(29.23% of all days), where the drone cannot fly the whole day, and “changeable days“ (16.84% of
all days), where the drone cannot fly in certain areas of the operation to a 50% chance. In case of
changeable days, the flight ban for each destination changes continuously. The probability values
are based on analyzing weather data in Bavaria for four years. No significant change within the
year can be observed (Bayerisches Landesamt für Umwelt 2022). Thus, the same probabilities are
assumed on each day.

93



4 Drone fleet planning for emergency resupply

Drone delivery is not permitted during the night. The drone can launch earliest after dawn and
must arrive latest before dusk. As daylight varies significantly within the year, we consider a yearly
season for daylight. The time change is neglected.

Transport boxes The payload of the transport box without cooling function is assumed to be
sufficiently large so that emergency deliveries always fit, as in emergency deliveries, only single pills
and not complete packages are transported (Rave et al. 2023a). On the other hand, the transport
box with the cooling function does not always fit the total requested demand as there is little space
left due to the cooling function. We assume that 20% exceeds the payload of the transport box
with cooling function and 30% need to be transported with cooling function.

Delivery time The considered drones travel at a speed of 17m/s for up to 90 minutes per battery
load in an Euclidean path that we correct by a detour factor as drones have to avoid certain
obstacles, e.g., settlements. The pharmacies have a (corrected) distance from 3 to 90 km to the
wholesaler. The battery load time lasts up to one hour, depending on the discharge state. Before
the drone returns, the battery needs a load of at least 65%. Thus, there are four clinics where the
battery must either be loaded or swapped with a loaded battery. We assume that a drone is used
for deliveries if it can be launched within 30 minutes for the supply of pharmacies or three minutes
for the supply of ambulances.

Road-based transport Aerial-based transport

Travel Average number of Variable CO2 Variable Delivery Time
destination emergency orders costs eq. costs time∗ savings ∗∗

[year] [e] [kg] [e] [min.] [%]

Pharmacy (C)-1 43 86.30 13.69 0.42 40.3 48
Pharmacy (C)-2 21 53.00 6.67 0.19 28.9 51
Pharmacy (C)-3 25 48.00 4.05 0.11 22.6 60
Pharmacy (C)-4 21 74.90 9.64 0.29 34.2 53
Pharmacy (C)-5 48 53.00 5.86 0.17 26.7 55
Pharmacy (C)-6 2 29.50 1.76 0.03 14.3 68
Pharmacy (C)-7 33 142.20 25.97 0.82 98.4 12
Pharmacy (C)-8 12 83.30 13.74 0.42 45.3 41
Pharmacy (C)-9 46 110.20 23.95 0.75 78.3 16
Pharmacy (AD)-1 5 29.50 1.76 0.03 13.9 68
Pharmacy (AD)-2 5 27.30 1.54 0.03 13.1 69
Pharmacy (AD)-3 5 51.50 6.62 0.19 31.6 46
Ambulances 100 - - 0.04 - 0.13 10 - 30 -

Table 4.2: Detailed information on demand, variable costs, CO2 eq., and delivery times for each
clinic’s pharmacy supply (C), ambulance depot’s pharmacy supply (AD), and

ambulance supply.
∗ Including drone preparation time , ∗∗ total time savings for drone delivery compared

to road-based transport.

Compared to road-based delivery, the drone has two advantages in delivery time: First, it is
already on site and only needs to be set up (approximately 10 minutes). Transport via delivery truck
requires the supplier to arrive first (about 20 - 30 minutes). Second, the drone flies independently of
roads and traffic. On the contrary, a drone might have a lower speed than a delivery truck traveling
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on a highway.
Table 4.2 shows for clinic supply (C), ambulance depot supply (AD), and ambulance supply the

demand, the costs for serving, delivery times, and CO2 eq. for the road- and aerial-based transport
in detail. For ambulances, there is a range, as the travel destination varies. The average time savings
in clinic deliveries demonstrate the advantage of the drone in terms of time. These refer to non-
rush-hour times for road-based transport, so the time savings could even be much greater due to
the drone’s independence from traffic.

4.4.4 Solve - analysis of the supply chains

In this section, we describe the emergency supply chain that starts with order placement and ends
with the release of drones, transport boxes, and batteries for the supply of pharmacies (Secti-
on 4.4.4.1) and ambulances (Section 4.4.4.2). The supply chains describe the emergency delivery
process after integrating drones. We simulate these supply chains for one week, starting on Monday
and ending on Sunday.

The times of dusk and dawn are determined once per week, as sunrise and sunset times only
differ slightly within a week. At the beginning of each day, it is determined if drone delivery is
permitted in the next 24 hours always (“sunny day“), never (“rainy day“), or with a chance of
50% (“changeable day“). If the drone needs to return from a pharmacy, but the flight is restricted
due to weather and daylight-dependent flight bans, it is checked once per hour to see if the flight
conditions fit for drone flights.

4.4.4.1 Supply of pharmacies

From the wholesaler’s perspective, the complete emergency supply chain for one pharmacy is mo-
deled in Figure 4.4. This model is repeated for each pharmacy served with the same resource pools
to represent the resupply of all pharmacies. It starts with an order of a drug and ends either with
the release of the used battery when a drone has been sent or with the dispatching of a road-based
transport. The colored background indicates where the process takes place.

After a drug is ordered, it is checked whether there is a drone, a transport box that fits the
medicine, and a battery available within a certain time limit. Whenever a standard box is suitable
for the medicine, this box is used first. Otherwise, the box with the cooling function is used.
Moreover, it is checked if the weather and the remaining time till dusk fit. Otherwise, the medicine
is transported via road-based transport.

If a drone carries out the delivery, the drone delivers the medicine to the pharmacy. In the next
step, it is checked if the battery has sufficient rest capacity for the return flight. If the capacity
is insufficient, the battery is either loaded or swapped depending on whether the pharmacy is
equipped with a spare battery. If the battery is loaded, this results in a longer presence time at
that pharmacy. Then, it is checked if weather and daylight enable drone flights, else the drone waits
until the weather brightens up or until dawn before the drone returns to the wholesaler. Arriving
at the wholesaler, the drone and the transport box are released directly, and the battery after it is
fully loaded.
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Figure 4.4: Detailed representation of the supply chain of emergency deliveries to pharmacies.

4.4.4.2 Supply of ambulances

The supply chain for ambulance resupply is modeled in Figure 4.5. This supply is similar to that of
pharmacies with the following simplifications: First, there is neither battery swapping nor loading
at the ambulance since ambulances are always in range for a complete outbound and return flight.
Second, there is no alternative road-based delivery process. If the drone cannot transport the
medication, the patient cannot be treated at the scene and must be transported directly to the
clinic, which results in a lower service level (αamb.). Third, the weather and daylight are checked
once and must fit for both the outbound and return flights.

1Alexander Rave
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Outbound & 
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Figure 4.5: Detailed representation of the supply chain of emergency deliveries to ambulances.
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4.5 Test – verification and analysis of results

In this section, we present the results of our case study, i.e., the pharmacy of a large German hospital
serves both pharmacies and ambulances. The simulation is implemented in AnyLogic version 8.8.1,
and one week and 520 replications are analyzed. According to a sequential test, the number of
replications is sufficient as a maximum desired deviation of 5% for all KPIs is not exceeded for a
confidence interval of 95%. Due to the problem setting (night flight ban, low demand at night, low
demand on weekends, low variable costs per flight), the simulation has no warm-up phase. Only on
very rare occasions a drone would not be located at the wholesaler on Monday mornings.

In Section 4.5.1, we present the results of the case study. In Section 4.5.2, we test the impact
of certain assumptions on the drone fleet and the KPIs. Last, we generalize our findings in Secti-
on 4.5.3.

4.5.1 Case results

In the following, we present the cost- and CO2 eq.-optimal drone fleet and spare battery locations to
guarantee a supply rate and service level of 90%. For further analysis, we demonstrate the impact
of different drone fleets on the defined KPIs. Table 4.3 presents these results. The first column
shows the number of drones, batteries, standard boxes, and boxes with cooling function in the
complete supply chain. The drone fleets that are found in the simulation optimization process are
gray-shaded. The last four columns show the expected values for the economic, ecologic, supply
rate, and service level related KPIs.

The table only reports reasonable combinations since the drone fleet has various design options.
In particular, the following holds: There is at least the same number of batteries and total transport
boxes as there are drones. Transport boxes with cooling functions fit more medicine on average,
and thus, there is at least the same number compared to standard transport boxes. If surrounding
pharmacies are equipped with a spare battery, all four surrounding pharmacies that are too far
away for a direct return flight have a spare battery each (noted with ∗/4 in the table). We start
with the most simple reasonable system of one drone, one battery, one standard transport box,
and one transport box with a cooling function, and we stop at three drones, as a supply rate and
service level of nearly 100% are reached. Additional hardware would, therefore, only have a negative
impact on the economic and ecological KPIs without increasing the supply rate or service level.

Findings The cost-optimal drone fleet that guarantees a supply rate and service level of at least
90% is (1, 2, 1, 1). This drone fleet reduces total delivery costs by 19.6%. On the contrary, signifi-
cantly more drones, batteries, and boxes are required with (3, 4, 2, 2) for the CO2 eq.-optimal drone
fleet. This fleet reduces total CO2 eq. for delivery by 48.9% which is only slightly larger than a
fleet of (1, 2, 1, 1) has. A supply rate and service level of nearly or even 100% are achieved with
a fleet (3, 4, 2, 2) or (3, 4/4, 2, 2), respectively. If the wholesaler targets a higher supply rate and
service level of 95%, a drone fleet of at least (2, 2, 1, 1) needs to be chosen, resulting in a significant
reduction and nearly elimination of all cost benefits.

We find that the major decision for the drone fleet is the number of drones, as this decision varies,
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Drone fleet KPIs

(#Drones, #Batteries, #Std. Boxes, #Cool Boxes) ∆cost [%] ∆CO2 [%] αph. [%] αamb. [%]

(1, 1, 1, 1) 18.4 44.7 89.2 87.5
(1, 2, 1, 1) 19.6 46.6 92.8 91.4

(1, 2/4, 1, 1) 10.9 46.6 94.5 91.2
(2, 2, 1, 1) 1.9 47.8 97.6 97.6
(2, 3, 1, 1) -0.4 47.8 97.8 98.0
(2, 3, 1, 2) -0.8 48.6 99.1 98.3

(2, 3/4, 1, 1) -8.4 47.8 98.1 97.7
(3, 4, 1, 2) -22.0 48.2 99.1 98.5
(3, 4, 2, 2) -21.3 48.9 99.9 99.8

(3, 4/4, 1, 2) -30.1 48.1 99.4 98.5
(3, 4/4, 2, 2) -29.9 48.8 99.8 100.0

Table 4.3: KPIs for different drone fleets. The found fleets in simulation optimization are gray
shaded and the best values for KPIs are in bold. Note that a negative value for ∆cost

means that there is an increase in costs.
∗/4 One battery is located at four surrounding pharmacies each.

e.g., the cost savings, by nearly 20 percentage points per drone. However, the aligned decision on
the number of boxes and batteries and the location of batteries might also have a significant impact.
So, for example, cost savings might decrease by up to eight percentage points if spare batteries are
added at surrounding clinics.

In Table 4.3, expected values for the KPIs are reported. The variance, on the other hand, increases
for ∆cost and ∆CO2 or decreases for αph. and αamb., when drones, batteries, or boxes are added to
the system. So, the variance for ∆cost by a factor of up to 5.2 comparing (1, 1, 1, 1) to (3, 4/4, 2, 2)
because the number of emergency deliveries per week and the number of deliveries taken over
by drone vary significantly in each replication, but the fixed costs stay the same. Thus, a fleet
of (1, 2, 1, 1) is, on average, more cost-efficient than (1, 1, 1, 1) but at higher risks. Contrarily, the
variance for both the supply rate and the service level is reduced by nearly 100% when considering
more extensive fleets.

If we consider the most economic fleet of (1, 2, 1, 1) in more detail, drones lead to a cost reduction
of emergency deliveries to pharmacies of 4,063e annually. Then, a supply of ambulances costs
42.70e per trip on average. In total, CO2 eq. can be reduced by 1.668t per year.

4.5.2 Impact of assumptions

In this section, we test the impact of assumptions on the drone fleet and the KPIs.

4.5.2.1 Comparison to simple averaging

Given the data, the average share of flight bans can be computed based on the order arrival: the
drone cannot fly in 37.7% of all cases due to bad weather and in 17.7% of all cases due to the
night flight ban. Considering in total 365 orders per year, the drone can perform an average of
188.7 flights, resulting in cost savings of 24.8% for a (1, 1, 1, 1) fleet. These are higher than our
results from the simulation since the number of drone flights is overestimated by 20.8%. This has
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multiple reasons like no consideration of waiting times, which might shift a flight into a night
flight ban, or no consideration of annual cycles of night flight bans. However, the main reason for
this overestimation is the unknown availability of the drone. The supply rate and the service level
are, therefore, difficult to estimate, resulting in an assumption to be set as 100%. This might be
a reasonable assumption since, on average, less than one order is placed per day. It follows that
a larger fleet only results in higher costs since the supply rate and the service level are always
100%. Using simple averaging, the waiting times of drones are neglected, so their availability is
overestimated compared to real-world conditions.

4.5.2.2 Impact of external flight conditions

Ignoring weather-related and daylight-dependent flight bans for drones, then a fleet of (2, 3, 1, 1)
has significantly better KPI values (all KPIs) than (1, 2, 1, 1), with expected cost savings of ∆cost =
47.3%. As a result, a fleet of (2, 3, 1, 1) is Pareto-superior to a fleet of (1, 2, 1, 1), which is not the case
when considering these flight bans. Thus, weather and daylight-dependent flight bans significantly
influence the drone fleet and the KPIs.

4.5.2.3 Impact of seasonality

We analyze the impact of the seasonality of order arrivals (daily and weekly seasonality) and
daylight-dependent flight bans (annual seasonality).

Daily/weekly seasonality When ignoring the seasonality of order arrivals, i.e., all orders arrive
uniformly within the day and week, the cost-optimal drone fleet is (1, 1, 1, 1) with lower cost savings
of 6.1% and CO2 eq. savings of 30.6%. Contrary, αph. and αamb. increase to 95.5% and 92.7%,
respectively. The orders are more likely to arrive during the night, but on the other hand, the
orders arrive less aggregated within the day and week. It follows that drone delivery is more rejected
due to daylight-dependent flight bans but less rejected due to unavailable hardware. Fewer drone
deliveries have a negative impact on ∆cost and ∆CO2. But fewer rejected orders due to unavailable
hardware positively impact αph. and αamb.. It follows that the daily and weekly seasonality of order
arrivals have a large influence on the KPIs and the chosen drone fleet itself.

Annual seasonality When considering the seasonality of the daylight-dependent flight bans, i.e.,
dusk and dawn arise at different times within a year, drone utilization in summer is higher than
in winter. For a fleet of (1, 2, 1, 1), this results in 15% more rejected drone deliveries in summer
compared to winter, and, thus, the supply rate and service level in summer are lower than in winter.
When ignoring this annual seasonality, the cost-optimal drone fleet stays (1, 2, 1, 1) with slightly
increased ∆cost and ∆CO2 but lower supply rate and service level, as the number of orders that
arrive during daylight increases by 4.2%. On the other hand, drone utilization within the year does
not vary. It follows that a fleet of (1, 1, 1, 1) is in greater competition in terms of costs compared
to a fleet of (1, 2, 1, 1). Thus, the annual seasonality of daylight-dependent flight bans has a minor
influence on the KPIs and the drone fleet.
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4.5.2.4 Impact of priorities

While previously, all orders are served in an FCFS rule, we now relax this assumption and prioritize
orders from pharmacies according to the distance to the wholesaler. Additionally, ambulances are
in the first position, as they are most urgent in supply. This distance-based prioritization is chosen
as it might increase cost savings as far-located pharmacies are costlier to be served by road-based
transport.

Considering a (1, 2, 1, 1) fleet, we find that this prioritization, however, does not lead to any
change in values for the KPIs. This can be explained by the rare occasion of orders of, on average,
about seven per week and the maximum time (30 minutes for pharmacy supply, three minutes for
ambulances) until a drone has to launch. It follows that prioritizing certain pharmacies does not
impact the drone fleet and the KPIs.

4.5.3 Generalization of findings

In this section, we give managerial insights on the drone fleet when varying the network structure,
number of orders and drone properties, and cost structure.

4.5.3.1 Varying network structure

We present the cost-optimal drone network (Table 4.4) without any service level and supply rate
constraints, and the cost-optimal drone network that guarantees a supply rate and service level of
at least 95% (Table 4.5) when varying the network structure, i.e., the average traveled distance to
a pharmacy is reduced or increased. The distance of ambulances is not varied. While the traveled
distances and thus also the variable costs for drone flights are reduced linearly, the costs for road-
based transport are only partly reduced, as the price of each road-based transport has a fixed term.
Considering large distances, we assume in this analysis that all pharmacies are still within range
of the drone.

Average Cost-optimal KPIs

distance drone fleet ∆cost [%] ∆CO2 [%] αph. [%] αamb. [%]

9.5 (1, 1, 1, 1) -19.6 46.7 97.7 92.4
19.0 (1, 1, 1, 1) 4.1 47.5 94.3 91.2
28.6 (1, 2, 1, 1) 13.9 46.8 94.1 91.4
38.1 (basic scenario) (1, 2, 1, 1) 19.6 46.6 92.8 91.4
57.1 (1, 2, 1, 1) 25.0 44.8 89.0 87.5
76.2 (1, 2, 1, 1) 27.7 44.0 85.3 87.8

Table 4.4: Cost-optimal drone fleets and KPIs for different distances. Note that the average
distance of 38.1 is as in the case study.

Findings Table 4.4 shows that integrating drones becomes more profitable with increasing distance
to pharmacies, but CO2 eq. savings, the supply rate, and the service level decrease as drones are
not available for longer times. To counteract this, one battery is added to the drone fleet. It follows
that cost savings of up to 27.7% can be achieved with the largest average distance to travel. On
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the contrary, if the average distance to travel is too low, any drone fleet is not profitable. In this
case, drones take over most deliveries with even the smallest reasonable drone fleet, but the low
costs of road-based transport only offset their fixed costs.

When providing a supply rate and service level of at least 95% (Table 4.5), a second drone and,
for the largest distance, a second transport box with a cooling function must be deployed. It follows
that the cost savings are significantly lower and not even profitable when the average distance to
travel is 28.6km or less. For larger distances, the utilization of the second drone rises, and thus, the
cost savings are not reduced that strongly. Additionally, the CO2 eq. savings are higher if a supply
rate and a service level of 95% is targeted than if the cost-optimal drone fleet is chosen.

Average Cost-optimal drone fleet KPIs

distance with αph., αamb. ≥ 95% ∆cost [%] ∆CO2 [%] αph. [%] αamb. [%]

9.5 (2, 2, 1, 1) -70.7 46.7 99.3 99.6
19.0 (2, 2, 1, 1) -27.5 48.8 98.3 98.3
28.6 (2, 2, 1, 1) -9.7 47.0 97.5 97.4
38.1 (basic scenario) (2, 2, 1, 1) 1.9 47.8 97.6 97.6
57.1 (2, 2, 1, 1) 14.6 47.8 96.8 96.6
76.2 (2, 2, 1, 2) 21.3 48.4 96.3 95.9

Table 4.5: Cost-optimal drone fleets that provide a supply rate and a service level of at least 95%
and KPIs for different distances. Note that the average distance of 38.1 is as in the

case study.

4.5.3.2 Increased number of orders and improved drone properties

We analyze how the drone fleet varies when the number of emergency orders increases and dro-
ne properties are improved. The number of emergency orders from pharmacies and ambulances
is expected to increase. For example, Rave et al. (2023a) have shown that hospitals can achieve
substantial cost savings by reducing inventory if, instead, the number of emergency deliveries incre-
ases. Additionally, drones may become more and more weather-resistant, reliable, and safer to fly
at night. Thus, we demonstrate both the effect of increased medication orders for both pharmacies
and ambulances and improved drone parameters. We compare the following four scenarios:

Scenario 1: Total order arrivals are (uniformly) increased by 100% to 530 deliveries per year
and of ambulances to 200 per year on average. Drone parameters remain unchanged.

Scenario 2: Total order arrivals of pharmacies are (uniformly) increased by 200% to 795 deliveries
per year and of ambulances to 300 per year on average. Drone parameters remain unchanged.

Scenario 3: Order arrivals as in Scenario 2, but drones are 50% more weather resistant, i.e.,
there are 50% fewer weather-related delivery losses and can fly during dusk and dawn.

Scenario 4 Order arrivals as in Scenario 2, but drone flights are independent of the weather and
are able to fly during the night.

Table 4.6 shows the cost-optimal drone fleet for the basic scenario as in the case study and for
Scenarios 1-4. Moreover, the expression of each of the four KPIs is reported.
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Scenario Drone KPIs

fleet ∆cost [%] ∆CO2 [%] αph. [%] αamb. [%]

Basic scenario (1, 2, 1, 1) 19.6 46.6 92.8 91.4
Scenario 1 (2, 3, 1, 1) 21.8 48.0 95.4 95.2
Scenario 2 (3, 4, 2, 2) 22.8 50.3 99.3 98.9
Scenario 3 (3, 4, 2, 2) 37.2 73.8 99.2 99.0
Scenario 4 (3, 4/4, 2, 2) 51.7 98.8 99.5 99.5

Table 4.6: Cost-optimal drone fleet and KPIs for the considered scenarios. The basic scenario is
as in the case study.

∗/4 One battery is located at four surrounding pharmacies each.

Findings With increased demand and improved drone properties, the cost-optimal numbers of
drones, batteries, and boxes increase. Especially, storing spare batteries at surrounding clinics is
profitable from an economic point of view from Scenario 4 on, from a service-oriented point of
view, always anyway. In Scenario 1 and Scenario 2, the cost savings that can be achieved are
slightly higher compared to the basic scenario because about half of all trips are still inefficient
road-based transports. In contrast, ∆cost increases significantly by up to 32.1 percentage points
if drones become more weather-resistant. The same applies to CO2 eq. savings of nearly 100% in
Scenario 4. Thus, to reduce emergency delivery costs, drone properties should be improved rather
than convincing clinics (e.g., by using pooling effects) to order more frequently, provided that there
is a certain basic demand for emergency delivery.

4.5.3.3 Variation of cost structure

As in Section 4.4.2 analyzed, the wholesaler competes with the truck service provider by building
up its own drone fleet. This competition could make cooperation more difficult. As a result, there
are two possible scenarios: On the one hand, lower utilization of the truck service provider’s fleet
could lead to a price increase per trip. On the other hand, competition between the wholesaler
and the truck service provider leads to a decrease in the price per road-based transport. On the
contrary, fixed costs for drones might sink as well if a more affordable drone is chosen.

To analyze the variation of costs on the drone fleet, the costs of road-based transport are mul-
tiplied by the cost factor δ. The costs are affected linearly, including the case if drone costs vary.
The cost structure does not have an influence on the supply chain, but only the resulting KPI for
cost savings, so the supply rate, the service level, and the CO2 eq. savings do not vary and are the
same as in Table 4.3. We can observe that drones are cost-efficient if δ > 0.54 with (1, 2, 1, 1), i.e.,
drones are cost-efficient, as long as the truck service provider does not nearly halve their prices. The
drone fleet (1, 2, 1, 1) is the cost-optimal drone fleet as long as δ < 9.43, switching to (2, 3, 1, 2). If
δ < 0.39, (1, 1, 1, 1) would be the cost-optimal drone fleet. In this case, however, drones are costlier
than road-based transport.
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4.6 Conclusion

This paper considers the drone fleet planning and spare battery allocation for emergency supply of
pharmacies and ambulances at service with medication. We use the GUEST framework by Perboli
and Rosano (2019) and give detailed insights on relevant stakeholders within the considered supply
chain and their business connection to each other. We implement a discrete-event simulation study
and evaluate different fleets with conflicting economic, ecological, and service-oriented KPIs. In a
simulation optimization, we determine the cost-optimal fleet that guarantees a certain supply rate
and service level. Last, we test assumptions and give multiple managerial insights for a real-life
case study. We find that the assumptions of seasonality and flight bans significantly impact the
fleet and the KPIs.

In the case study, we show that the drone fleet of one drone and two batteries can lead to cost
savings of 19.6% compared to the status quo with a supply rate and service level of at least 90%.
Contrary, if a supply rate and service level of at least 95% is targeted, nearly all cost benefits vanish.
In a sensitivity analysis, we show that drone delivery becomes more cost-efficient if pharmacies are
far located. Moreover, considering an increase in orders and drone parameters, cost savings of up
to 51.7% and emissions savings of as much as 98.8% can be achieved while maintaining a supply
rate for pharmacies and a service level for ambulances of more than 99%. Placing spare batteries
at surrounding clinics is only relevant from an economic point of view if both demand increases
and the drones become more resistant regarding weather and daylight-dependent flight bans.

Further research could examine the additional positioning of drones at some pharmacies to allow
pharmacies to supply each other, which increases the speed of resupply and, thus, the patients’
service. However, this requires the simultaneous consideration of inventories of medication, as these
are not always sufficiently available at surrounding small pharmacies. In addition, inventory optimi-
zation of ambulances could also be considered, as they always have access to a complete pharmacy
due to the high service level provided by drone deliveries.
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A.1 Large instances

Scenario T DT DM DCDC used microdepots Cbest Cavg σ[%]

54.5.15 1 2 0 0 216.8 216.8 0.02
56.5.13 1 3 0 0 215.5 215.9 0.16
59.5.14 1 3 1 0 M3 230.8 232.0 0.55
61.5.16 1 2 1 0 M3 227.9 229.7 0.77
66.5.15 1 2 2 0 M2 M5 248.6 249.3 0.29
78.5.20 1 1 2 0 M2 M5 240.9 242.6 0.73
81.5.20 1 0 2 1 M2 M5 280.2 280.2 0.00
83.5.23 1 0 2 1 M2 M5 266.0 266.0 0.00
96.5.26 1 0 2 1 M2 M5 279.2 279.4 0.10
97.5.25 1 0 2 1 M2 M5 291.1 291.1 0.00
105.5.19 1 0 2 1 M2 M5 295.1 295.2 0.03
110.5.27 1 0 2 1 M2 M5 303.1 303.1 0.00
112.5.32 1 0 2 1 M2 M5 287.7 288.1 0.15
116.5.22 1 0 3 1 M2 M3 M5 281.8 281.8 0.00
123.5.26 1 0 3 1 M2 M3 M5 290.3 290.4 0.01
125.5.30 2 0 3 1 M1 M2 M5 353.3 355.0 0.47
132.5.30 2 0 4 0 M1 M2 M3 M5 379.7 379.7 0.00
139.5.28 2 0 4 1 M1 M2 M3 M5 365.0 365.1 0.03
141.5.38 2 0 4 0 M1 M2 M3 M5 366.3 366.3 0.00
142.5.31 2 0 4 0 M1 M2 M3 M5 383.1 383.1 0.00
147.5.31 2 0 4 0 M1 M2 M3 M5 367.2 367.2 0.00
153.5.31 2 0 4 0 M1 M2 M3 M5 356.5 357.0 0.12
157.5.30 2 0 4 0 M1 M2 M3 M5 357.8 359.3 0.40
163.5.36 2 0 4 0 M1 M2 M3 M5 372.7 373.8 0.29
171.5.46 2 0 4 0 M1 M2 M3 M5 430.7 431.2 0.12
177.5.50 2 0 4 0 M1 M2 M3 M5 454.8 457.2 0.52
180.5.51 2 0 4 1 M1 M2 M3 M5 464.1 467.5 0.72
185.5.38 2 0 4 1 M1 M2 M3 M5 429.4 429.4 0.00
194.5.42 2 0 4 1 M1 M2 M3 M5 414.1 414.2 0.04
196.5.45 2 0 4 1 M1 M2 M3 M5 425.1 428.0 0.67

Table A.1: Results for our numerical setup with varying demand of large instances.

A.2 VRPD benchmark

Demand Sacramento et al. (2019) Euchi and Sadok (2021) Own results

class Cbest Cavg σ[%] Cbest Cavg σ[%] Cbest Cavg σ[%] σBKS [%]

6.5.1 1.0982 1.0982 0.00 1.0982 1.0982 0.00 1.0982 1.0982 0.00 0.00
6.5.2 0.8422 0.8422 0.00 0.8422 0.8422 0.00 0.8422 0.8422 0.00 0.00
6.5.3 1.2114 1.2114 0.00 1.2114 1.2114 0.00 1.2114 1.2114 0.00 0.00
6.5.4 0.9460 0.9460 0.00 0.9460 0.9460 0.00 0.9460 0.9460 0.00 0.00
6.10.1 2.4061 2.4061 0.00 2.4061 2.4061 0.00 2.4061 2.4061 0.00 0.00
6.10.2 1.6793 1.6793 0.00 1.6793 1.6793 0.00 1.6793 1.6793 0.00 0.00

Continued on next page
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6.10.3 1.3255 1.3255 0.00 1.3255 1.3255 0.00 1.3255 1.3255 0.00 0.00
6.10.4 1.4431 1.4431 0.00 1.4431 1.4431 0.00 1.4431 1.4431 0.00 0.00
6.20.1 2.6776 2.6776 0.00 2.6776 2.6776 0.00 2.6776 2.6776 0.00 0.00
6.20.2 4.3196 4.3196 0.00 4.3196 4.3196 0.00 4.3196 4.3196 0.00 0.00
6.20.3 3.8248 3.8248 0.00 3.8248 3.8248 0.00 3.8248 3.8247 0.00 0.00
6.20.4 3.6787 3.6787 0.00 3.6787 3.6787 0.00 3.6787 3.6787 0.00 0.00
10.5.1 1.6556 1.6556 0.00 1.6556 1.6556 0.00 1.6556 1.6556 0.00 0.00
10.5.2 1.4519 1.4519 0.00 1.4519 1.4519 0.00 1.4519 1.4519 0.00 0.00
10.5.3 1.4736 1.4736 0.00 1.4736 1.4736 0.00 1.4736 1.4736 0.00 0.00
10.5.4 1.2849 1.2849 0.00 1.2849 1.2849 0.00 1.2849 1.2849 0.00 0.00
10.10.1 2.3265 2.3265 0.00 2.3265 2.3265 0.00 2.3265 2.3265 0.00 0.00
10.10.2 3.1586 3.1586 0.00 3.1586 3.1586 0.00 3.1586 3.1586 0.00 0.00
10.10.3 2.5527 2.5527 0.00 2.5527 2.5527 0.00 2.5527 2.5527 0.00 0.00
10.10.4 2.5393 2.5393 0.00 2.5393 2.5393 0.00 2.5393 2.5393 0.00 0.00
10.20.1 4.4524 4.4524 0.00 4.4524 4.4524 0.00 4.4524 4.4524 0.00 0.00
10.20.2 6.1678 6.1678 0.00 6.1678 6.1678 0.00 6.1678 6.1678 0.00 0.00
10.20.3 4.5463 4.5463 0.00 4.5463 4.5463 0.00 4.5463 4.5463 0.00 0.00
10.20.4 6.1536 6.1536 0.00 6.1536 6.1536 0.00 6.1536 6.1668 0.21 0.00
12.5.1 1.3738 1.3738 0.00 1.3738 1.3738 0.00 1.3738 1.3738 0.00 0.00
12.5.2 1.0590 1.0590 0.00 1.0590 1.0590 0.00 1.0590 1.0590 0.00 0.00
12.5.3 1.4477 1.4477 0.00 1.4477 1.4477 0.00 1.4477 1.4477 0.00 0.00
12.5.4 1.5810 1.5810 0.00 1.5810 1.5810 0.00 1.5810 1.5810 0.00 0.00
12.10.1 2.6810 2.6810 0.00 2.6810 2.6810 0.00 2.6810 2.6810 0.00 0.00
12.10.2 2.6842 2.6842 0.00 2.6842 2.6842 0.00 2.6842 2.6842 0.00 0.00
12.10.3 2.8805 2.8805 0.00 2.8805 2.8805 0.00 2.8805 2.8805 0.00 0.00
12.10.4 2.3142 2.3142 0.00 2.3142 2.3142 0.00 2.3142 2.3142 0.00 0.00
12.20.1 5.7776 5.7776 0.00 5.7776 5.7776 0.00 5.7776 5.7776 0.00 0.00
12.20.2 8.2725 8.2725 0.00 8.2725 8.2725 0.00 8.2725 8.2725 0.00 0.00
12.20.3 4.1669 4.1669 0.00 4.1669 4.1669 0.00 4.1669 4.1669 0.00 0.00
12.20.4 6.0886 6.0886 0.00 6.0886 6.0886 0.00 6.0886 6.0886 0.00 0.00
20.5.1 1.7935 1.7935 0.00 1.3585 1.5789 13.96 1.7935 1.7935 0.00 24.25
20.5.2 1.9540 1.9540 0.00 1.3579 1.5789 14 1.8221 1.8221 0.00 25.48
20.5.3 1.4866 1.4866 0.00 1.5789 1.5893 0.65 1.4866 1.4866 0.00 0.00
20.5.4 1.3789 1.3789 0.00 1.3079 1.5811 17.32 1.3789 1.3789 0.00 5.15
20.10.1 3.2525 3.2525 0.00 2.9814 3.2816 9.15 3.2525 3.2525 0.00 8.34
20.10.2 3.0894 3.0894 0.00 3.0600 3.0600 0.00 3.0894 3.0894 0.00 0.95
20.10.3 3.7023 3.7258 0.63 3.2981 3.2981 0.00 3.7023 3.7023 0.00 10.92
20.10.4 3.3089 3.3137 0.14 3.0981 3.0981 0.00 3.1966 3.1966 0.00 3.08
20.20.1 7.3445 7.3512 0.09 6.6428 7.0600 5.91 7.3230 7.3291 0.08 9.29
20.20.2 7.5489 7.5489 0.00 7.6000 7.8702 3.43 7.5489 7.5607 0.16 0.00
20.20.3 7.4610 7.4746 0.18 7.4110 7.4957 1.13 7.4610 7.4610 0.00 0.67
20.20.4 7.0133 7.0133 0.00 6.9043 6.9043 0.00 7.0133 7.0133 0.00 1.55
50.10.1 5.8613 5.8613 0.00 5.7342 5.8923 2.68 5.8614 5.9408 1.34 2.17
50.10.2 5.5849 5.6210 0.64 5.4416 5.4743 0.60 5.5849 5.5849 0.00 2.57
50.10.3 5.4224 5.4255 0.06 5.1802 5.2755 1.81 5.4888 5.7062 3.81 5.62
50.10.4 5.2083 5.3526 2.70 5.0731 5.1981 2.41 5.1405 5.4827 6.24 1.31
50.20.1 10.4553 10.4564 0.01 10.0822 10.2636 1.77 10.4566 10.6110 1.46 3.58
50.20.2 10.0561 10.0561 0.00 10.0289 10.0461 0.17 10.0561 10.0820 0.26 0.27
50.20.3 10.5425 10.6570 1.07 10.5087 10.5567 0.45 10.5425 10.7049 1.52 0.32
50.20.4 10.6642 11.0008 3.06 9.3591 9.7042 3.56 11.0395 11.1409 0.91 15.22
50.30.1 15.8179 15.8179 0.00 15.7235 15.7380 0.09 15.8179 15.9497 0.83 0.60
50.30.2 15.0148 15.4636 2.90 14.9088 14.9926 0.56 14.9795 15.0286 0.33 0.47
50.30.3 16.7690 16.7713 0.01 16.1284 16.4681 2.06 16.7796 16.8633 0.50 3.88
50.30.4 18.2875 18.2875 0.00 18.3802 18.9568 3.04 18.2875 18.3780 0.49 0.00
50.40.1 20.3751 21.1771 3.79 20.3019 20.3019 0.00 20.0882 21.2848 5.62 -1.06
50.40.2 20.6262 20.6262 0.00 20.5623 20.5623 0.00 20.6262 20.6790 0.26 0.31
50.40.3 22.6452 22.7053 0.26 22.6328 22.9932 1.57 22.6657 22.9102 1.07 0.15
50.40.4 22.3371 22.7891 1.98 22.3481 22.9461 2.61 22.3371 22.3371 0.00 0.00
100.10.1 6.8574 6.8902 0.48 6.3633 6.3859 0.35 6.8931 7.0288 1.93 7.69
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100.10.2 7.5851 7.6781 1.21 7.3796 7.4512 0.96 7.5547 7.6083 0.70 2.32
100.10.3 7.1835 7.3055 1.67 8.1195 8.2266 1.30 7.2405 7.3730 1.80 0.79
100.10.4 7.4568 7.5459 1.18 6.8926 7.0440 2.15 7.4689 7.5310 0.82 7.72
100.20.1 13.6067 13.7946 1.36 12.5410 13.2443 5.31 13.9798 13.9986 0.13 10.29
100.20.2 14.1340 14.5375 2.78 14.0118 14.5979 4.01 14.1667 14.4054 1.66 1.09
100.20.3 13.7099 13.7672 0.42 12.4879 12.5325 0.36 14.0065 14.4508 3.07 10.84
100.20.4 13.8494 14.1976 2.45 12.1350 12.2157 0.66 13.6085 13.8257 1.57 10.83
100.30.1 22.5882 23.6364 4.43 23.4927 23.4929 0.00 22.1278 22.3138 0.83 -2.08
100.30.2 22.3143 22.3846 0.31 22.0396 22.1350 0.43 22.6947 22.8905 0.86 2.89
100.30.3 23.7195 23.9094 0.79 23.2988 23.5033 0.87 23.3769 23.5578 0.77 0.33
100.30.4 22.3701 22.6585 1.27 22.1495 22.5052 1.58 22.7022 22.9554 1.10 2.43
100.40.1 29.1397 30.1807 3.45 29.1397 29.5463 1.38 28.9907 29.3766 1.31 -0.51
100.40.2 30.9900 31.2092 0.70 30.3610 30.4129 0.17 31.1576 31.3523 0.62 2.56
100.40.3 29.0248 29.6653 2.16 29.0112 29.0635 0.18 29.3583 30.1569 2.65 1.18
100.40.4 28.9735 29.2049 0.79 28.5904 28.6360 0.16 29.2673 29.4952 0.77 2.31
150.10.1 8.7903 8.9351 1.62 8.5865 9.6364 10.90 8.8329 9.0109 1.98 2.79
150.10.2 8.2591 8.4160 1.87 8.1462 10.9009 25.27 8.3217 8.4821 1.89 2.11
150.10.3 8.4960 9.0207 5.82 9.7052 9.8430 1.40 8.4138 8.6962 3.25 -0.98
150.10.4 8.8373 9.0398 2.24 10.8302 10.9725 1.30 8.8469 8.9152 0.77 0.11
150.20.1 17.3194 17.5964 1.57 17.0099 17.6175 3.45 17.4518 17.7115 1.47 2.53
150.20.2 16.6341 17.4507 4.68 16.1837 16.6333 2.70 16.6581 16.7896 0.78 2.85
150.20.3 17.4058 18.3447 5.12 16.9830 16.9830 0.00 17.6484 18.2769 3.44 3.77
150.20.4 16.8752 17.4774 3.45 16.8102 16.8102 0.00 16.8430 17.0358 1.13 0.19
150.30.1 25.9854 26.5488 2.12 25.8524 25.8524 0.00 25.5617 25.7346 0.67 -1.14
150.30.2 26.2055 26.7411 2.00 26.1370 26.1370 0.00 27.0083 27.4973 1.78 3.23
150.30.3 25.3164 26.1137 3.05 25.0101 25.0101 0.00 25.5945 26.2195 2.38 2.28
150.30.4 26.1027 27.2923 4.36 25.9812 25.9812 0.00 25.9322 26.1393 0.79 -0.19
150.40.1 34.0121 35.4534 4.07 29.4683 29.8651 1.33 33.8560 34.1849 0.96 12.96
150.40.2 36.5616 38.2965 4.53 35.2343 45.9885 23.38 37.3489 39.7175 5.96 5.66
150.40.3 36.6574 38.2955 4.28 36.8769 36.8769 0.00 36.2182 36.4779 0.71 -1.21
150.40.4 35.0156 36.0662 2.91 35.5854 35.7586 0.48 34.8401 35.3078 1.32 -0.50
200.10.1 10.0945 10.4050 2.98 10.0956 10.1574 0.61 9.8962 9.9743 0.78 -2.00
200.10.2 10.4226 10.6149 1.81 10.2855 10.5303 2.33 10.0557 10.1145 0.58 -2.29
200.10.3 9.7990 9.9235 1.25 9.1050 9.1050 0.00 9.7359 9.8236 0.89 6.48
200.10.4 10.3553 10.6400 2.68 10.1251 10.1251 0.00 10.3061 10.3850 0.76 1.76
200.20.1 21.2151 21.4601 1.14 21.2185 21.2185 0.00 20.9326 21.2115 1.31 -1.35
200.20.2 21.4585 22.0461 2.67 21.0193 21.1948 0.83 21.6359 21.7961 0.73 2.85
200.20.3 20.8522 21.0604 0.99 19.0312 19.0312 0.00 20.8347 20.9688 0.64 8.66
200.20.4 19.2350 20.1804 4.68 18.8840 19.1840 1.56 19.2561 19.6779 2.14 1.93
200.30.1 30.3602 31.7826 4.48 30.0730 30.6830 1.99 29.9292 30.2124 0.94 -0.48
200.30.2 32.8128 33.2164 1.22 32.0915 32.0915 0.00 31.5970 31.8373 0.75 -1.57
200.30.3 32.2535 32.7373 1.48 32.0835 32.0967 0.04 31.1024 31.3947 0.93 -3.15
200.30.4 32.0931 32.7638 2.05 32.0375 32.0375 0.00 31.7090 33.3396 4.89 -1.04
200.40.1 41.4980 42.3048 1.91 41.2954 41.5796 0.68 41.9058 44.9005 6.67 1.46
200.40.2 43.2502 44.2211 2.20 43.0717 43.1256 0.13 42.9621 43.5546 1.36 -0.26
200.40.3 43.3375 44.2613 2.09 43.1857 43.1857 0.00 43.6542 44.2726 1.40 1.07
200.40.4 42.0579 43.3370 2.95 42.0313 42.0313 0.00 39.7972 40.1223 0.81 -5.61

Table A.2: Detailed results of VRPD instances from Sacramento et al. (2019).
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Anhang B Appendix for Two-indexed formulation of the TSPmD

B.1 Benchmark results for instances of Murray and Chu (2015)

The following two tables present results for the instances of Murray and Chu (2015) for the endu-
rance of e = 20 and e = 40. The instance names are similar to Dell’Amico et al. (2021a).

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

20140810T123437v1 54.3926 12 - 51.3825 2 - 51.3825 2 -
20140810T123437v2 51.6111 12 - 51.6111 7 - 51.6111 6 -
20140810T123437v3 54.0684 15 - 52.8225 10 - 52.8225 8 -
20140810T123437v4 66.8684 9 - 65.6225 11 - 65.6225 8 -
20140810T123437v5 45.3353 326 - 32.0655 10 - 24.4390 2 -
20140810T123437v6 43.9153 210 - 28.9400 7 - 24.0264 1 -
20140810T123437v7 46.5813 18 - 43.2069 9 - 39.8664 7 -
20140810T123437v8 59.3813 34 - 57.7700 12 - 53.1454 7 -
20140810T123437v9 39.2035 821 - 24.9912 6 - 21.8536 1 -
20140810T123437v10 36.9077 343 - 25.7710 11 - 21.9720 2 -
20140810T123437v11 39.3002 107 - 33.7779 7 - 32.3077 2 -
20140810T123437v12 51.5645 61 - 47.7507 8 - 45.1077 3 -
20140810T123440v1 46.4304 52 - 43.8455 6 - 43.8455 6 -
20140810T123440v2 49.3737 56 - 46.2455 11 - 46.2455 14 -
20140810T123440v3 53.6616 13 - 51.6277 8 - 51.6277 7 -
20140810T123440v4 66.4616 14 - 64.4277 6 - 64.4277 10 -
20140810T123440v5 39.7498 115 - 32.2263 3 - 31.6066 1 -
20140810T123440v6 40.3790 91 - 34.0066 2 - 34.0066 1 -
20140810T123440v7 43.3126 21 - 40.7304 2 - 40.7304 2 -
20140810T123440v8 55.7960 20 - 53.5304 2 - 53.5304 1 -
20140810T123440v9 35.5331 14 - 31.6066 1 - 31.6066 0 -
20140810T123440v10 36.0764 10 - 34.0066 1 - 34.0066 1 -
20140810T123440v11 40.7304 4 - 40.7304 1 - 40.7304 1 -
20140810T123440v12 53.5304 7 - 53.5304 1 - 53.5304 1 -
20140810T123443v1 69.5865 8 - 69.5865 4 - 69.5865 7 -
20140810T123443v2 72.0639 5 - 71.7473 3 - 71.5839 3 -
20140810T123443v3 76.1447 4 - 76.0673 1 - 75.9039 1 -
20140810T123443v4 89.1839 2 - 88.8673 2 - 88.7039 2 -
20140810T123443v5 54.7521 236 - 42.2634 3 - 39.7845 3 -
20140810T123443v6 55.1268 112 - 45.0943 11 - 43.9992 5 -
20140810T123443v7 62.2491 36 - 60.8333 5 - 60.8333 5 -
20140810T123443v8 80.0971 34 - 76.3401 27 - 73.8724 5 -
20140810T123443v9 41.9314 749 - 27.6100 1 - 24.5760 1 -
20140810T123443v10 42.9348 153 - 30.9760 1 - 30.9760 1 -
20140810T123443v11 51.4056 17 - 43.7760 3 - 43.7760 2 -
20140810T123443v12 62.6175 9 - 56.5760 1 - 56.5760 1 -

Table B.1: Results for instances of Murray and Chu (2015) with an endurance of 20.
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m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

20140810T123437v1 49.1189 3369 - 35.5186 23 - 33.8109 8 -
20140810T123437v2 46.3113 442 - 35.3759 29 - 32.6510 7 -
20140810T123437v3 52.6868 248 - 49.2858 87 - 40.9090 28 -
20140810T123437v4 65.4868 272 - 62.5748 112 - 54.5333 56 -
20140810T123437v5 42.8354 2663 - 28.4013 31 - 24.4390 2 -
20140810T123437v6 41.6015 1344 - 28.4688 10 - 24.0264 3 -
20140810T123437v7 43.3913 173 - 36.4363 13 - 35.8290 8 -
20140810T123437v8 56.1913 267 - 50.5161 13 - 48.6273 7 -
20140810T123437v9 37.8082 3600 12.2% 24.9912 12 - 21.8536 1 -
20140810T123437v10 36.9077 635 - 25.7710 15 - 21.9720 2 -
20140810T123437v11 39.3002 312 - 29.3975 19 - 26.4022 1 -
20140810T123437v12 51.2536 115 - 40.7507 7 - 37.3724 1 -
20140810T123440v1 45.1029 686 - 35.5331 29 - 32.3895 1 -
20140810T123440v2 44.4461 866 - 37.2360 60 - 34.0066 1 -
20140810T123440v3 52.3083 421 - 45.3532 16 - 45.3532 7 -
20140810T123440v4 66.3969 581 - 58.9284 14 - 58.1532 7 -
20140810T123440v5 39.7498 310 - 32.2263 3 - 31.6066 0 -
20140810T123440v6 39.6581 207 - 34.0066 1 - 34.0066 1 -
20140810T123440v7 43.3126 58 - 40.7304 1 - 40.7304 1 -
20140810T123440v8 55.7960 40 - 53.5304 1 - 53.5304 1 -
20140810T123440v9 35.5331 13 - 31.6066 1 - 31.6066 1 -
20140810T123440v10 36.0764 9 - 34.0066 1 - 34.0066 1 -
20140810T123440v11 40.7304 5 - 40.7304 1 - 40.7304 1 -
20140810T123440v12 53.5304 5 - 53.5304 1 - 53.5304 1 -
20140810T123443v1 54.0129 1121 - 37.5843 7 - 37.4695 2 -
20140810T123443v2 56.5729 2149 - 38.5950 11 - 35.1953 1 -
20140810T123443v3 66.1746 298 - 54.6474 11 - 47.4513 1 -
20140810T123443v4 81.4603 350 - 69.2538 13 - 65.6295 3 -
20140810T123443v5 49.0759 3600 25.0% 31.2183 19 - 24.2916 0 -
20140810T123443v6 48.4864 2640 - 35.0597 12 - 30.0160 0 -
20140810T123443v7 56.8793 777 - 44.3748 3 - 42.8160 0 -
20140810T123443v8 68.3988 225 - 56.5760 1 - 55.6160 0 -
20140810T123443v9 41.9314 3600 6.3% 27.6100 3 - 23.6160 0 -
20140810T123443v10 42.9348 240 - 30.9760 1 - 30.0160 0 -
20140810T123443v11 51.3950 38 - 42.8160 0 - 42.8160 0 -
20140810T123443v12 62.6175 7 - 55.6160 0 - 55.6160 0 -

Table B.2: Results for instances of Murray and Chu (2015) with an endurance of 40.

B.2 Benchmark results for instances of Bouman et al. (2018)

The following five tables present the results for the instances of Bouman et al. (2018). The instance
names are similar to El-Adle et al. (2021) and the results are split up for each considered number
of nodes.
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|I0| = 16

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

Uniform-61-n20 347.0919 74 - 346.9223 27 - 346.9223 75 -
Uniform-62-n20 353.7019 2 - 353.7019 2 - 353.7019 4 -
Uniform-63-n20 372.9289 2 - 370.1349 2 - 370.1349 1 -
Uniform-64-n20 357.9113 10 - 357.9113 11 - 357.9113 9 -
Uniform-65-n20 368.6511 5 - 368.6511 4 - 368.6511 4 -
Uniform-66-n20 426.5167 2 - 426.5167 2 - 426.5167 2 -
Uniform-67-n20 372.7803 2 - 372.7803 1 - 372.7803 1 -
Uniform-68-n20 423.3365 2 - 423.3365 2 - 423.3365 3 -
Uniform-69-n20 363.4143 7 - 363.4143 6 - 363.4143 5 -
Uniform-70-n20 410.1439 8 - 410.1439 4 - 410.1439 8 -

Table B.3: Results for instances of Bouman et al. (2018) with 16 nodes.

|I0| = 20

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

Uniform-61-n20 351.5212 588 - 351.4622 1526 - 351.4622 399 -
Uniform-62-n20 374.1195 431 - 374.1195 481 - 374.1195 1308 -
Uniform-63-n20 394.5000 34 - 391.7060 31 - 391.7060 78 -
Uniform-64-n20 368.7314 575 - 368.7314 506 - 368.7314 581 -
Uniform-65-n20 390.5601 224 - 381.0652 52 - 381.0652 67 -
Uniform-66-n20 436.2728 166 - 435.1632 62 - 433.3361 101 -
Uniform-67-n20 391.4744 46 - 391.4744 34 - 391.4744 53 -
Uniform-68-n20 435.6068 25 - 435.6068 29 - 435.6068 36 -
Uniform-69-n20 380.4329 336 - 380.4329 181 - 380.4329 525 -
Uniform-70-n20 422.6549 42 - 422.6549 84 - 422.6549 42 -

Table B.4: Results for instances of Bouman et al. (2018) with 20 nodes.

|I0| = 24

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

Uniform-71-n50 415.8466 1059 - 415.8466 1449 - 415.8466 1219 -
Uniform-72-n50 410.1562 28 - 410.1562 30 - 410.1562 29 -
Uniform-73-n50 394.5155 495 - 391.3396 324 - 391.3564 316 -
Uniform-74-n50 467.6828 865 - 467.6828 502 - 467.6828 552 -
Uniform-75-n50 463.6015 1072 - 463.6015 863 - 463.6015 1742 -
Uniform-76-n50 394.2924 3600 2.7% 394.2924 3600 4.8% 394.2924 3600 2.8%
Uniform-77-n50 458.7309 565 - 452.9030 98 - 452.9030 106 -

Continued on next page
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Uniform-78-n50 412.8484 1428 - 410.8227 1263 - 410.8227 1217 -
Uniform-79-n50 412.1437 554 - 412.1437 1460 - 412.1437 1492 -
Uniform-80-n50 397.2048 3600 4.6% 391.7442 3600 2.8% 391.7442 3600 2.7%

Table B.5: Results for instances of Bouman et al. (2018) with 24 nodes.

|I0| = 28

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

Uniform-71-n50 446.9016 3600 6.7% 441.6016 3600 4.8% 441.6016 3600 3.2%
Uniform-72-n50 449.6584 541 - 449.6584 645 - 449.6584 412 -
Uniform-73-n50 449.0387 3600 2.6% 445.8796 3600 2.6% 445.8628 3600 1.2%
Uniform-74-n50 470.8468 3600 1.0% 470.8405 3600 1.3% 470.8468 3600 1.7%
Uniform-75-n50 473.0050 3600 4.0% 473.0050 3600 5.9% 473.0050 3600 6.8%
Uniform-76-n50 407.7456 3600 9.2% 407.4875 3600 8.8% 407.7456 3600 9.5%
Uniform-77-n50 485.5172 3600 2.6% 480.5688 3600 1.0% 480.5687 3159 -
Uniform-78-n50 462.1742 3600 1.5% 459.4857 3600 1.2% 459.4857 3600 2.1%
Uniform-79-n50 447.7367 3600 7.9% 447.7367 3600 8.6% 447.7367 3600 10.3%
Uniform-80-n50 454.8248 3600 9.1% 450.3997 3600 8.4% 449.3641 3600 8.9%

Table B.6: Results for instances of Bouman et al. (2018) with 28 nodes.

|I0| = 32

m = 1 m = 3 m =∞

Instance τ∗ CPU [s] Gap τ∗ CPU [s] Gap τ∗ CPU [s] Gap

Uniform-71-n50 483.6558 3600 7.5% 478.3559 3600 7.7% 478.3559 3600 6.5%
Uniform-72-n50 493.0942 3600 3.4% 493.0942 3600 3.6% 493.0942 3600 3.6%
Uniform-73-n50 497.0019 3600 7.5% 490.4027 3600 6.9% 490.4758 3600 7.3%
Uniform-74-n50 484.4209 3600 15.1% 479.3757 3600 14.1% 492.1320 3600 17.6%
Uniform-75-n50 502.6546 3600 12.5% 502.5212 3600 12.0% 504.6453 3600 12.6%
Uniform-76-n50 494.6067 3600 19.5% 474.7205 3600 15.6% 483.1039 3600 19.0%
Uniform-77-n50 521.4612 3600 7.2% 511.1739 3600 4.9% 511.1739 3600 4.7%
Uniform-78-n50 507.7490 3600 7.3% 504.8168 3600 5.3% 505.4795 3600 5.5%
Uniform-79-n50 483.3885 3600 16.1% 452.3963 3600 10.4% 459.7861 3600 12.1%
Uniform-80-n50 473.7993 3600 21.9% 445.4466 3600 16.9% 451.4449 3600 19.0%

Table B.7: Results for instances of Bouman et al. (2018) with 32 nodes.
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C.1 Small instances

CPLEX ALNS

Inst. |Ĉ| p ∈ P |Ω| Costs Gap [%] Time [s] Best costs Avg. costs σ [%] Time [s] ∆ [%]

M-1 4 1 5 2.4330 - 37 2.4330 2.4330 - 27 -
R1-2 4 1 5 2.9737 - 43 2.9737 2.9737 - 1 -
R2-3 4 1 5 2.1938 - 1 2.1938 2.1938 - 0 -
R3-4 4 1 5 2.7103 - 1 2.7103 2.7103 - 28 -
M-5 4 2 5 5.9270 - 841 5.9271 5.9564 0.49 300 -
R1-6 4 2 5 3.8962 - 41 3.8962 3.8962 - 35 -
R2-7 4 2 5 4.5830 - 3 4.5830 4.6248 0.90 120 -
R3-8 4 2 5 4.8799 - 6 4.8799 4.8869 0.14 173 -
M-9 4 3 5 4.6614 - 3 4.6614 4.6621 0.01 63 -
R1-10 4 3 5 7.0386 - 2 7.0386 7.0386 - 7 -
R2-11 4 3 5 5.6938 - 3 5.6938 5.7741 1.39 181 -
R3-12 4 3 5 6.3950 - 5 6.3950 6.3950 - 0 -
M-13 4 1,2 5 10.2422 28 3600 9.8354 9.8354 - 300 -3.97
R1-14 4 1,2 5 7.8025 - 2052 7.8025 7.8117 0.12 179 -
R2-15 4 1,2 5 7.2629 - 118 7.2629 7.2629 - 0 -
R3-16 4 1,2 5 8.1623 - 91 8.1623 8.1900 0.34 253 -
M-17 4 1,2,3 5 17.2051 21 3600 16.2412 16.2412 - 300 -5.6
R1-18 4 1,2,3 5 16.9167 27 3600 16.9167 16.9430 0.15 300 -
R2-19 4 1,2,3 5 14.6688 - 377 14.6688 14.6688 - 0 -
R3-20 4 1,2,3 5 18.0214 14 3600 18.1574 18.1712 0.08 300 0.75
M-21 7 1 2 3.9107 29 3600 3.7736 3.7736 - 300 -3.51
R1-22 7 1 2 5.5495 12 3600 5.3368 5.3368 - 300 -3.83
R2-23 7 1 2 4.7262 20 3600 4.6513 4.6523 0.02 300 -1.58
R3-24 7 1 2 6.4221 30 3600 6.1125 6.1125 - 300 -4.82
M-25 7 2 2 6.3795 - 657 6.3795 6.3795 - 0 -
R1-26 7 2 2 7.6421 19 3600 7.6421 7.6421 - 300 -
R2-27 7 2 2 4.7228 - 24 4.7228 4.7240 0.03 142 -
R3-28 7 2 2 7.9691 15 3600 7.9691 7.9691 - 300 -
M-29 7 3 2 7.2791 - 397 7.2791 7.2791 - 0 -
R1-30 7 3 2 4.3390 - 2 4.3390 4.3390 - 0 -
R2-31 7 3 2 6.8301 - 127 6.8301 7.0485 3.10 240 -
R3-32 7 3 2 9.5096 - 476 9.5628 9.6539 0.94 300 0.56
M-33 7 1,2 2 16.3952 57 3600 12.2557 12.2603 0.04 300 -25.25
R1-34 7 1,2 2 15.1775 55 3600 12.9558 12.9743 0.14 300 -14.64
R2-35 7 1,2 2 10.9020 37 3600 10.3046 10.3046 - 300 -5.48
R3-36 7 1,2 2 15.3906 20 3600 14.4562 14.4833 0.19 300 -6.07
M-37 7 1,2,3 2 33.9267 64 3600 22.4928 22.5572 0.29 300 -33.7
R1-38 7 1,2,3 2 51.5159 78 3600 21.7242 21.8438 0.55 300 -57.83
R2-39 7 1,2,3 2 22.0797 40 3600 19.7454 19.7859 0.20 300 -10.57
R3-40 7 1,2,3 2 53.5479 70 3600 27.4347 27.5259 0.33 300 -48.77
M-41 10 1 1 5.1196 - 342 5.1196 5.1196 - 3 -
R1-42 10 1 1 5.7673 44 3600 4.8426 4.8524 0.20 300 -16.03
R2-43 10 1 1 4.5026 16 3600 4.5026 4.5127 0.22 300 -
R3-44 10 1 1 5.7289 20 3600 5.7289 5.7289 - 300 -
M-45 10 2 1 7.6590 22 3600 7.6201 7.6244 0.06 300 -0.51
R1-46 10 2 1 7.0747 17 3600 7.0747 7.0747 - 300 -
R2-47 10 2 1 5.3971 - 33 5.3971 5.3971 - 0 -
R3-48 10 2 1 8.1021 38 3600 7.7737 7.7737 - 300 -4.05
M-49 10 3 1 9.5964 20 3600 9.5964 9.6423 0.48 300 -
R1-50 10 3 1 4.8449 - 5 4.8449 4.8449 - 22 -
R2-51 10 3 1 5.4927 - 7 5.4927 5.4927 - 0 -
R3-52 10 3 1 10.3821 - 128 10.3821 10.3821 - 51 -
M-53 10 4 1 7.4996 - 6 7.4996 7.6642 2.15 198 -
R1-54 10 4 1 13.2423 - 325 13.2423 13.2423 - 112 -

Continued on next page
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R2-55 10 4 1 12.4876 8 3600 12.4876 12.4876 - 300 -
R3-56 10 4 1 16.1072 - 63 16.1071 16.4444 2.05 218 -
M-57 10 5 1 13.7504 - 5 13.7504 13.7504 - 25 -
R1-58 10 5 1 11.7721 - 2 11.7721 11.7721 - 84 -
R2-59 10 5 1 11.6002 - 2 11.6002 11.6002 - 39 -
R3-60 10 5 1 13.6624 - 3 13.6624 13.6624 - 0 -
M-61 10 6 1 17.6657 - 23 17.6657 18.0118 1.92 184 -
R1-62 10 6 1 24.8828 - 23 24.8828 24.8828 - 27 -
R2-63 10 6 1 9.5174 - 1 9.5174 9.5174 - 0 -
R3-64 10 6 1 21.4008 - 4 21.4008 21.4008 - 49 -
M-65 10 7 1 17.1729 - 1 17.1729 17.1729 - 47 -
R1-66 10 7 1 41.5341 - 4 41.5341 41.5341 - 29 -
R2-67 10 7 1 38.1420 28 3600 38.1420 38.1420 - 300 -
R3-68 10 7 1 28.1036 - 1 28.1036 28.1036 - 14 -
A-69 15 1 1 15.9818 - 1265 15.9818 15.9919 0.06 107 -
A-70 15 1 1 16.4826 - 761 16.4826 16.608 0.75 269 -
A-71 15 1 1 16.2164 6 3600 16.2164 16.4751 1.57 300 -
A-72 15 1 1 16.7131 4 3600 16.7131 17.3854 3.87 300 -
A-73 15 1 1 17.6030 4 3600 17.6030 17.6117 0.05 300 -
A-74 15 1 1 27.8470 42 3600 27.4362 27.6236 0.68 300 -1.50
A-75 15 1 1 27.3037 42 3600 26.6746 27.2452 2.09 300 -2.36
A-76 15 1 1 16.2097 5 3600 16.0320 16.3224 1.78 300 -1.11
A-77 15 1 1 27.9306 42 3600 27.4960 27.8916 1.42 300 -1.58
A-78 15 1 1 51.2633 70 3600 28.6530 28.9684 1.09 300 -78.91

Table C.1: Detailed performance analysis for small instances (∗ optimal solution). The clinics
have the locations as in our case study (“M“), or three random locations

(“R1“,“R2“,“R3“), or as in Archetti et al. (2007) (“A“) for all clinics all with a hyphen
separated consecutive numbering.

C.2 Large instances

Our ALNS
Instance name |C| Opt. costs Best costs Avg. costs σ [%] GAP [%]
abs1n5.dat 5 5942.82 5942.82 5971.83 0.49 -
abs2n5.dat 5 5045.91 5045.91 5050.06 0.08 -
abs3n5.dat 5 6956.28 6956.28 6965.98 0.14 -
abs4n5.dat 5 5163.42 5163.42 5243.96 1.54 -
abs5n5.dat 5 4581.66 4581.66 4632.16 1.09 -
abs1n10.dat 10 8870.15 8953.86 9138.19 2.02 0.93
abs2n10.dat 10 8569.73 8634.30 8847.42 2.41 0.75
abs3n10.dat 10 8509.81 8509.81 8726.34 2.48 -
abs4n10.dat 10 8792.29 8792.29 9287.04 5.33 -
abs5n10.dat 10 9620.07 9627.07 9990.98 3.64 0.07
abs1n15.dat 15 12118.83 12228.00 12474.10 1.97 0.89
abs2n15.dat 15 11932.10 12107.00 12273.00 1.35 1.44
abs3n15.dat 15 13554.15 13569.20 14101.50 3.77 0.11
abs4n15.dat 15 10618.55 10686.50 10889.20 1.86 0.64
abs5n15.dat 15 10385.54 10468.60 10834.20 3.37 0.79
abs1n20.dat 20 14702.95 14775.10 14833.60 0.39 0.49
abs2n20.dat 20 14646.96 14870.50 14999.30 0.86 1.50
abs3n20.dat 20 14532.91 14606.70 14889.90 1.90 0.51

Continued on next page

122



Anhang C Appendix for Cyclic SIRP with reorder points and recourse decision

Table C.2 – Continued from previous page

abs4n20.dat 20 14539.72 14777.30 15149.50 2.46 1.61
abs5n20.dat 20 15896.71 16002.00 16224.30 1.37 0.66
abs1n25.dat 25 15581.47 15908.80 16250.30 2.10 2.06
abs2n25.dat 25 16823.16 17044.70 17256.90 1.23 1.30
abs3n25.dat 25 18098.02 18222.60 18774.10 2.94 0.68
abs4n25.dat 25 16303.69 17042.20 17269.10 1.31 4.33
abs5n25.dat 25 19047.70 19178.50 19290.70 0.58 0.68
abs1n30.dat 30 23183.99 23507.40 23675.20 0.71 1.38
abs2n30.dat 30 20090.29 20382.00 20813.60 2.07 1.43
abs3n30.dat 30 23382.73 23679.20 24064.30 1.60 1.25
abs4n30.dat 30 17649.53 17941.20 18339.70 2.17 1.63
abs5n30.dat 30 18979.93 19108.20 19322.30 1.11 0.67

Table C.2: Detailed performance analysis for benchmark instances of Archetti et al. (2007).
Instance names are as in Archetti et al. (2007).

123



Anhang D

Appendix for Drone fleet planning and battery allocation
for emergency resupply of pharmacies and ambulances

124



Anhang D Appendix for Drone fleet planning for emergency resupply

D.1 Business Model Canvas

Developed by Osterwalder and Pigneur (2010), we present a BMC for the wholesaler, i.e., the
pharmacy of a large German hospital (Figure D.1), to show in detail how the wholesaler generates,
provides, and acquires value. The BMC includes both the status quo and the new business model
with emergency resupply via drones (“New“). It shows the partners, activities, resources, its value
creation, customer relationships and segments, and channels and also provides information on the
wholesaler’s costs and revenue structure.

Key Partners Key Activities Value Propositions Customer Relationships Customer Segments 
• Manufacturer 
• Wholesaler  

(The pharmacy of Ingolstadt 
Hospital itself is served by a 
wholesaler to prevent shortages) 

• Truck service provider 
• Pharmacies of clinics 
• Pharmacies of ambulance depots 
• New: Ambulances at service 

 

• Procurement, stocking, and 
distribution of drugs 

• New: Drone operation and 
maintenance 

 
 

• Efficient dispensing of 
medication for own patients 
and pharmacies to serve  

• New: Fast and efficient 
emergency delivery 

 

• Staff availability for resupply 
in case of emergency 

• New: Fast resupply via drones 
in case of emergency 

 

• Patients of 
their hospital 

• Pharmacies of 
surrounding 
clinics 

• Pharmacies of 
ambulance 
depots 

• New: 
Ambulances at 
service 

 

Key Resources Channels 
• Medical goods 
• New: Drones, batteries, transport 

boxes 
 
 

 

• Supply only of contractual 
partners 

• Order digitally in the e-shop of 
the pharmacy, truck service 
provider is then 
commissioned by fax, phone, 
or mail 

 
 

Cost Structure Revenue Streams 
• Procurement and stocking of medication 
• Insurance fees 
• Transportation costs (road-based transport) 
• New: Costs for drone usage 

 

• Sale of medication to pharmacies 
• Fee for transportation (road-based transport) 
• New: Price for drone delivery 

  

 

Figure D.1: BMC for the wholesaler, i.e., a pharmacy of a large German hospital.

D.2 Variable costs for drone delivery

The approximated variable costs per minute for outbound and return flights are based on the
formula of D’Andrea (2014) for variable costs per km, which has also been conducted by e.g.,
Dhote and Limbourg (2020). Variable costs are approximated by c

e ·
(

mp+mv

370·η·r + p
v

)
, where

• c = 0.3714: costs in e/kWh (BDEW 2022)

• e = 0.8: charging efficiency

• mp = 4.28: mass of the considered drone in kg

• mv = 0.1: avg. mass of a transported drug in kg

• η = 0.5: power transmission efficiency (motor and propeller)

• r = 3: lift-to-drag ratio

• p = 0.1: power consumption of electronics in kW

• v = 61.2: speed of the considered drone in km/h
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We do not have information on e, η, r, and p for the considered drone, and thus, similar to Dhote
and Limbourg (2020), we consider the same values as D’Andrea (2014) did. It follows that a loaded
drone costs 0.0044e per km and unloaded 0.0043e per km, and thus with the considered drone
speed 0.0045e or 0.0044e per minute, respectively.

D.3 CO2 eq. in the life cycle of a drone

Table D.1 gives information on the used material for the drone and its components and the resulting
CO2 eq. during its life cycle. Based on the material and weight, the proportional CO2 eq. are
calculated. The drone, without its battery and transport box, weighs 2.930kg.

Material weight [kg] CO2 eq. [kg]

Different plastics (Jeswani et al. 2021) 1.660 7.770
Drone Metals & electronics (Clemence 2019) 1.270 6.716∑

2.930 14.486
Battery Lithium-Ion battery (Melin 2019) 1.150 2.697

Table D.1: Detailed information on CO2 eq. of a drone and its battery.

The CO2 eq. for the transport boxes are based on assumptions due to missing information. We
consider that the transport box weighs 200g and is made of thin plastic. In contrast, the transport
box with cooling function is made of thicker plastic, including electronics resulting in their assumed
CO2 eq. of 0.033kg and 0.165kg, respectively.
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