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We provide a solution to Perelomov’s 1972 problem concerning 
the existence of a phase transition (known in signal analysis 
as ‘Nyquist rate’) determining the basis properties of certain 
affine coherent states labelled by Fuchsian groups. As suggest-
ed by Perelomov, the transition is given according to the 
hyperbolic volume of the fundamental region. The solution 
is a more general form (in phase space) of the PSL(2, R)
variant of a 1989 conjecture of Kristian Seip about wavelet 
frames, where the same value of ‘Nyquist rate’ is obtained 
as the trace of a certain localization operator. The proof 
consists of first connecting the problem to the theory of 
von Neumann algebras, by introducing a new class of 
projective representations of PSL(2, R) acting on non-
analytic Bergman-type spaces. We then adapt to this setting a 
new method for computing von Neumann dimensions, due to 
Sir Vaughan Jones. Our solution contains necessary conditions 
in the form of a ‘Nyquist rate’ dividing frames from Riesz 
sequences of coherent states and sampling from interpolating 
sequences. They hold for an infinite sequence of spaces of 
polyanalytic functions containing the eigenspaces of the Maass 
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operator and their orthogonal sums. Within mild boundaries, 
we show that our result is best possible, by characterizing our 
sequence of function spaces as the only invariant spaces under 
the non-analytic PSL(2, R)-representations.

© 2022 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

When the measure of successive dilations of a given compact set displays exponential 
growth, one often faces severe obstructions in problems involving basis properties or zeros 
of functions with membership in the associated function spaces. The exponential growth 
is characteristic for the disc and half-plane hyperbolic space models, for the affine group, 
and for more general hyperbolic spaces and non-unimodular groups. The obstructions 
posed by the exponential growth have been removed for Bergman spaces in [35,45], but 
the methods fully depend on tools for analytic functions.

In the present paper, we study completeness and basis properties of non-analytic func-
tions indexed by Fuchsian groups, naturally associated with Maass forms and wavelet 
representations (coefficients of the non-unimodular affine group). Our results provide 
a solution of Perelomov’s 1972 problem [36] about basis properties of discrete co-
herent states for a whole class of PSL(2, R)-invariant coherent states, and include a 
proof that the solution is best possible within natural assumptions, by characterizing 
all function spaces which are invariant under the action of a new class of projective 
PSL(2, R)-representations, introduced in this paper for non-analytic Bergman spaces. 
The arguments, based on the interplay of ideas from signal analysis, number theory, and 
von Neumann algebras, build on a recent method of Sir Vaughan Jones [25], to whose 
memory this paper is dedicated.

1.1. The Nyquist rate

There is a general ‘folk theorem’ in signal analysis claiming the existence of a critical 
density, the so called ‘Nyquist rate’, which must be exceeded for the complete repre-
sentation of signals. The ‘stable’ version of the problem, where a lower bound on the 
�2-norm of the discrete coefficients leads to the formulation in terms of frames achieved 
a notorious mainstream status at the crossroads of pure and applied mathematics. For 
spaces of functions whose Fourier transform is supported in a general measurable set, a 
theorem of Landau [30], and a version for radial functions [2] turn these heuristics into 
a precise result. In Gabor analysis, a similar condition for lattices in the time-frequency 
plane follows from the work of Rieffel [39] and has been extended to general sets by Ra-
manathan and Steger [38,9] (interestingly enough, Rieffel’s proof depends on arguments 
using the coupling constant of von Neumann algebras; developments with a more explicit 
link to signal representations can be found in [11, Section 6], or in [8,19]). An overview 

http://creativecommons.org/licenses/by/4.0/
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of these and other results is given in [22] as a historical recollection, and in [14] and [32]
as a technical survey exploring the limits of existing operator theory methods. It is clear 
from these contributions that groups of exponential growth like the ‘ax + b’-group are 
beyond the scope of the methods available.

1.2. The affine density problem

No known concept of density has been able to capture the ‘folk theorem’ in the case 
of wavelets with positive frequencies, defined as the coefficients of the ‘ax + b’-group 
representation acting on a function ψ on the Hardy space H2(C+) of analytic functions 
on the upper half-plane C+ with finite norm

‖f‖2 = sup
s>0

⎛⎝∫
R

|f(x + is)|2dx

⎞⎠1/2

,

and originally introduced in physics as affine coherent states. The origin of the problem 
can be traced back to the work of Perelomov in the early 70’s [35]. In [35], a complete 
description of the completeness properties of affine coherent states indexed by Fuchsian 
groups with automorphic cusp forms has been obtained for the vector of least weight. 
This corresponds to the Cauchy wavelet ψα

0 (t) = (t + i)−α−1, whose phase space is a 
weighted Bergman space. The question of a more general result has been raised in [36].

For band-limited functions with band-width W , a comparison between the number of 
eigenvalues of the Toeplitz operator T I

Ω = PWχIPW , where χI is the indicator function 
of a region I ⊂ R and PW is the orthogonal projection onto the Paley-Wiener space 
of band-limited functions, and the number of sampling and interpolation points on the 

same region suffices to establish that the Nyquist rate is given by 
trace

(
T I

Ω

)
|I| , see [30]. 

Let Wψ denote the wavelet transform with mother wavelet ψ as defined in (3.1) and set 
Wψ := Wψ(H2(C+)). In [42], reasoning in analogy with the aforementioned situation, 
Seip conjectured that the same thing should be true for wavelets, suggesting that the 
quantity Cψ

‖ψ‖2
2

could stand as a Nyquist rate for wavelet systems. An analysis of the 
eigenvalue profile of the wavelet Toeplitz operator corresponding to the Cauchy wavelet 
T I
ψα

0
= PWψα

0
χIPWψα

0
made by Daubechies and Paul [12] has shown that the analogies 

with the euclidean problem solved by Landau were misleading, since the error resulting 
from the difference between the first two moments of T I

ψα
0

(inherited from the exponential 
growth of the ‘ax + b’-group) has precisely the same asymptotic behaviour as the trace 
itself, when the region I ⊂ C+ is dilated to approach the whole upper half plane C+. The 
same thing happens for general wavelets [13]. Nevertheless, Seip pursued the problem 
further in a body of research that culminated in a complete description of sampling and 
interpolation sequences in Bergman spaces [45], an elegant adaptation of a scheme of 
Beurling where several ideas from Korenblum’s ‘hyperbolic Nevanlinna theory’ [28] have 
been put in use and refined. Unfortunately, the methods of [45] seem to fully depend on 
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the holomorphic structure of the space and, as recently proved [23], the only choice of ψ
lending itself to analytic phase spaces is (up to a chirp) the Cauchy wavelet ψα

0 (t) = (t +
i)−α−1. After 30 years of research activity on wavelet frames (mostly concentrated in the 
period 1990-2010), and despite the participation of a significant group of mathematicians 
who introduced new ideas and found several interesting partial results (we refer to [20,
29,21] for a sample of this activity), a full solution of the problem (i.e., generic wavelets 
and sampling sets) has been assigned a status between ‘impossible’ and ‘hopeless’ (see 
[29] for a detailed explanation of the technical and conceptual obstructions).

1.3. Von Neumann dimension

Let us define the functions ψα
n ∈ H2(C+), n ∈ N0, via the Fourier transform of 

generalized Laguerre polynomials

(Fψα
n)(ξ) := ξ

α
2 e−ξLα

n(2ξ), ξ > 0, with Lα
n(t) =

n∑
k=0

(−1)k
(
n + α

n− k

)
tk

k! , (1.1)

where we follow the convention

Ff(ξ) =
∫
R

f(t)e−iξtdt.

In the present paper, we show that, at least for the orbits Γ(z), z ∈ C+, of a Fuchsian 
group Γ and mother wavelets chosen from the family {ψα

n}n∈N0 , there is indeed a Nyquist 
rate separating frames from Riesz sequences and sampling from interpolating sets for all 
possible coherent states defined on the phase space of Wψα

n
. And such a Nyquist rate 

is provided by the quantity 
Cψα

n

‖ψα
n‖2

2
, in perfect agreement with Seip’s 1989 conjecture 

[42,43]. The technical reason for the accuracy of this prediction is the following. Our 
main contribution for the theory of von Neumann algebras is a dimension computation 
associated with a projective unitary group representation of PSL(2, R) on L2(C+, μ)
for an infinite family of non-analytic reproducing kernel Hilbert spaces indexed by n. 
This relies on Jones’ new method [25] which, according to the author, incorporates a 
suggestion of McMullen and is inspired by Atiyah’s setting for the covering space index 
theorem [5] and boils down to the computation of the trace of the same operator that 
Seip considered [42,43]. Note that our approach extends Radulescu’s computation [37]
to general n.

This new approach seems to be more elementary than Bekka’s [8] (for the analytic 
case n = 0), where the computation of the von Neumann dimension follows a scheme 
inspired by the derivation of Atiyah-Schmid’s formula [6] and also than Radulescu’s [37]. 
It allows us to derive a Nyquist rate for phase spaces of the wavelet transform (see 
Theorem 2.1) and for super wavelet systems (see Corollary 2.7) using mother wavelets 
associated to the eigenspaces of the Maass operator.
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1.4. Outline

This paper is simply organized as follows: a section with the statements of the main re-
sults and the important special cases of Bergman and Maass spaces, and a ‘Background’ 
section with the essential material on wavelets, Fuchsian groups and von Neumann al-
gebras is followed by a section with the proofs of the main results.

2. Results

Let us define the projective unitary representation ταn of PSL(2, R) on L2(C+, μ) by

ταn (γ)F (z) :=
(
|cz + d|
cz + d

)2n+α+1

F (γ(z)), (2.1)

where dμ(w) = Im(w)−2dw, F ∈ L2(C+, μ), γ ∈ PSL(2, R), and z ∈ C+. Note that 
ταn differs from the classical representation of PSL(2, R) as considered for example in 
[8,15,37] by the phase factor 

( |cz+d|
cz+d

)2n+α+1, and that, as we show later, ταn leaves Wψα
n

invariant.
For the definition of frames, Riesz sequences, uniqueness sets and sampling and inter-

polating sequences, we refer to Section 3.2.

Theorem 2.1. Let Γ ⊂ PSL(2, R) be a Fuchsian group with fundamental domain Ω ⊂ C+

(of finite volume) and F ∈ Wψα
n
. If {ταn (γ)F}γ∈Γ is a frame for Wψα

n
, then Ω is compact 

and

|Ω| ≤
Cψα

n

‖ψα
n‖2

2
= 2

α
, (2.2)

where |Ω| is calculated via the measure μ.
If {ταn (γ)F}γ∈Γ is a Riesz sequence for Wψα

n
, then

|Ω| ≥
Cψα

n

‖ψα
n‖2

2
= 2

α
. (2.3)

Remark 2.2. Given a Hilbert space H and a notion of density of points, a Nyquist rate 
can be formally defined as a precise value of density which must be exceeded for the 
existence of frames for H, and cannot be exceeded for the existence of Riesz sequences 
for H. There are several notions of affine density (see those in [29] and [45]), all of them 
essentially defined as the large r limit of the ratio between the number of points in a 
hyperbolic ball of radius r and the measure of the hyperbolic ball. For a Fuchsian group 
Γ one can use the hyperbolic geodesic distance d(z, w) with z, w ∈ C+ to define the 
counting function nr(z, w) = #{γ ∈ Γ : d(w, γ(z)) < r} and the hyperbolic ball Br. 
Then a result of Patterson [34] gives
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lim
r→∞

nr(z, w)
|Br|

= 1
|Ω| .

Thus, Theorem 2.1 says that α/2 is a Nyquist rate for all the Hilbert spaces Wψα
n
, n ∈ N0.

Applying the inverse wavelet transform to the function ταn (γ)F , a Nyquist condition 
for a particular family of vectors in H2(C+) follows.

Corollary 2.3. Let Γ ⊂ PSL(2, R) be a Fuchsian group with fundamental domain Ω ⊂ C+

(of finite volume), Φ ∈ L2(C+, μ), and the family of vectors {ϕγ}γ∈Γ be weakly defined 
by

ϕγ :=
∫
C+

Φ(z)
(

cz + d

|cz + d|

)2n+α+1

π(γ(z))ψα
ndμ(z). (2.4)

If {ϕγ}γ∈Γ is a frame for H2(C+), then Ω is compact and (2.2) holds, and if {ϕγ}γ∈Γ
is a Riesz sequence for H2(C+), then (2.3) holds.

If we choose F in Theorem 2.1 to be the reproducing kernel kψα
n
(z, ·) of the space 

Wψα
n
, then we can state the Nyquist condition for wavelet systems generated by Fuchsian 

groups and wavelets ψα
n . As recently observed by Romero and Velthoven in a different 

formulation [41], the following result can actually be obtained from the analytic case 
n = 0 of Theorem 2.1 above, using Radulescu’s extension of the dimension computation 
in the projective case (non-integer α) for n = 0 [37].

Corollary 2.4. Let Γ ⊂ PSL(2, R) be a Fuchsian group with fundamental domain Ω ⊂ C+

(of finite volume), and z ∈ Ω. If the family {π(γ(z))ψα
n}γ∈Γ is a wavelet frame for 

H2(C+) (equivalently, if Γ(z) is a sampling sequence for Wψα
n
), then Ω is compact and 

(2.2) holds.
Condition (2.2) is also necessary if Γ(z) is a uniqueness set for the wavelet space Wψα

n
. 

Thus, if (2.3) holds, then there exists a function in the wavelet space Wψα
n

vanishing on 
Γ(z).

If {π(γ(z))ψα
n}γ∈Γ is a wavelet Riesz sequence (equivalently, if Γ(z) is an interpolating 

sequence for Wψα
n
), then (2.3) holds.

While Ω needs to be compact for the existence of frames, this is not the case for 
uniqueness sets (see the discussion in [27, Section 5]).

Observe that the above results leave |Ω| = Cψα
n
/‖ψα

n‖2
2 as the only possibility for 

{π(γ(z))ψα
n}γ∈Γ to be a wavelet Riesz basis for H2(C+). In the case n = 0, we are led 

to analytic Bergman spaces, which contain no sampling and interpolation sequences: 
given Γ interpolating, pick f vanishing on the orbit of Γ − {γ0} for some γ0 ∈ Γ with 
f(γ0(z)) = i, and then turn Γ into a zero sequence setting F (w) = w−i

w+if(w); thus 
interpolating sequences cannot be sampling. For other values of n, the spaces do not 
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seem to be closed under shift multipliers and nothing is known about the existence of 
such sequences. The perturbation argument used in [44] also does not seem to work 
here since, at least for subgroups of PSL(2, Z), a ‘small’ perturbation of the parameters 
would change the group structure. We leave this as an interesting research question. So 
far, the only space known to have sampling and interpolating sequences is the Paley-
Wiener space, where the multiplier algebra is trivial (see [46] for an engrossing discussion 
about this).

We show that the choice (1.1) is, within some boundaries, the only family leading to 
a well-defined problem. This can be seen as a converse of the first step in the proof of 
the above results, where we show that the specific wavelet spaces are invariant under 
the action of Fuchsian groups which is not the case for general wavelets. In particular, 
we show that these are the only wavelet spaces invariant under representations of the 
form (2.1) if we assume reasonable restrictions on ψ. To be precise, let A ⊂ H2(C+) be 
defined as

A :=
{
f ∈ H2(C+) : f̂(ξ) ∈ R, f̂ f̂ ′, ξf̂ f̂ ′′ ∈ L1(R+)

}
. (2.5)

The situation is depicted in the next result, which may be of independent interest.

Theorem 2.5. If F ∈ Wψα
n
, then ταn (g)F ∈ Wψα

n
for every g ∈ PSL(2, R). Conversely, let 

σs be a projective unitary group representation of PSL(2, R) on L2(C+, μ) of the form

σs(g)F (z) =
(
|cz + d|
cz + d

)s

F (g(z)).

If ψ ∈ A and σs leaves Wψ invariant, then for some n ∈ N0 and C ∈ C\{0} we have

ψ = Cψα
n ,

where α = s − 2n − 1.

The first statement of Theorem 2.5 is crucial for the proof of Theorem 2.1 and its 
corollaries as well as for Theorem 2.8.

Remark 2.6. Theorem 2.1 is an extension of Perelomov’s result [35] for general PSL(2, R)
coherent states in terms of |Ω|, as suggested in [36], but it still lacks a sufficient condition 
for a given F ∈ Wψα

n
to be complete, since the classes of incomplete and Riesz sequences 

may or may not be disjoint. However, the observations in the proof of Theorem 2.1
combined with the other implication of Theorem 3.1 allow to state a sufficient condition 
in the following sense: if |Ω| ≤ Cψα

n

‖ψα
n‖2

2
= 2

α then, for every n ≥ 0, there exists F ∈ Wψα
n
, 

such that {ταn (γ)F}γ∈Γ is complete for Wψα
n
.

An interesting special case of the above result follows from the choice α = 2(B−n) −1
(this leads to a finite sequence of orthogonal spaces W 2(B−n)−1 , while the spaces Wψα
ψn n
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are in general not orthogonal) considered by Mouayn [33] to attach coherent states to 
hyperbolic Landau levels. Let us consider the Maass operator

HB := −(z − z)2 ∂2

∂z∂z
−B(z − z)

(
∂

∂z
− ∂

∂z

)
= −s2

(
∂2

∂x2 + ∂2

∂s2

)
+ 2iBs

∂

∂x
.

The spectrum of HB consists of a continuous part [1/4,+∞[ and a finite number of 
eigenvalues. To each eigenvalue λB

n = (B − n) (B − n− 1), for n = 0, 1, ..., �B − 1
2	, 

corresponds an infinite dimensional reproducing kernel Hilbert eigenspace AB
n (C+, μ) ⊂

L2(C+, μ). By computing the reproducing kernels (see Section 3.3) we can identify the 
spaces W

ψ
2(B−n)−1
n

= AB
n (C+, μ). From Corollary 2.4 it then follows:

Corollary 2.7. Let n ≤ �B− 1
2	. If Γ(z) is a sampling sequence for the space AB

n (C+, μ), 
then Ω is compact and

|Ω| ≤ 1
B − n− 1/2 .

If Γ(z) is an interpolating sequence for the space AB
n (C+, μ), then

|Ω| ≥ 1
B − n− 1/2 .

It follows from the result above that, if |Ω| > 1
B−n−1/2 , then one can find F ∈

AB
n (C+, μ) vanishing on Γ(z). While in [25] explicit examples of functions in AB

0 (C+, μ)
vanishing on Γ(z) are provided by (analytic) automorphic forms, explicit examples of 
functions in AB

n (C+, μ) (which are only real analytic and polyanalytic) are provided by 
the theory of Maass forms [31,40]. Thus, it may be possible to use Maass cusp forms to 
adapt the construction in [25, Section 7], but we will not pursue this topic in the present 
paper.

There is more to be said here. If we define

AB
N

(
C+, μ

)
:=

N−1⊕
n=0

AB
n

(
C+, μ

)
=

N−1⊕
n=0

W
ψ

2(B−n)−1
n

, (2.6)

then there also exist a Nyquist rate for AB
N (C+, μ) separating sampling and interpolation 

sequences:

Theorem 2.8. Let N ∈ {1, . . . , �B − 1
2	}. If Γ(z) is a sampling sequence for the space 

AB
N (C+, μ), then Ω is compact and

|Ω| ≤ 2
N(2B −N) . (2.7)

If Γ(z) is an interpolating sequence for the space AB
N (C+, μ), then
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|Ω| ≥ 2
N(2B −N) . (2.8)

An equivalent interpretation of Theorem 2.8 (in the spirit of the second iden-
tity of (2.6)) is that (2.7) is a necessary condition for the vector valued system 
{π(γ(z))φB

N}γ∈Γ ⊂ H2(C+, CN ), where

φB
N :=

(
ψ2B−1

0 , ψ2B−3
1 , ..., ψ

2(B−N)+1
N−1

)
,

to be a wavelet superframe for H2(C+, CN ), see e.g. [1] for further information on super 
frames. In particular, we get the following result.

Corollary 2.9. Let N ∈ {1, . . . , �B− 1
2	}. If {π(γ(z))φB

N}γ∈Γ is a wavelet superframe for 
H2(C+, CN ), then Ω is compact and

|Ω| ≤ 2
N(2B −N) . (2.9)

Note that a similar necessary condition for super-wavelet frames generated by mother 
wavelets connected to the true polyanalytic Bergman spaces and the hyperbolic lattice 
was shown in [1]. We also refer to [18] for a result by Gröchenig and Lyubarskii in the 
context of Gabor superframes with Hermite windows and of Balan [7] providing necessary 
conditions for general Gabor superframes.

As a final remark, we outline the physical relevance of the results. The Maass op-
erator has been considered [3,10] as an alternative model for the formation of Landau 
levels, an important model in the physics of the Quantum-Hall effect. Here, a constant 
magnetic field of intensity B acts on the open hyperbolic plane realized as the Poincaré 
upper half-plane C+, leading to the formation of a mixed spectrum with a discrete part 
corresponding to bound states (hyperbolic Landau levels), and a continuous part cor-
responding to scattering states. The finite number of the levels, which depends on the 
strength of the magnetic field is, in principle, a physical advantage of such a model. In [3]
the first bounds on the size of the fundamental region, which correspond to a ‘cell’ (Pauli 
exclusion principle allows only one electron per cell), have been obtained. Note that the 
above improves the main result of [3] by a factor of n + 1. Given a sample modelled by 
a bounded region Δ ⊂ C+ in a hyperbolic Landau level, assuming the Pauli exclusion 
principle, Corollary 2.4 provides estimates for the number of particles distributed by the 
model on such a region.

3. Background

3.1. Wavelets on the Hardy space

The affine group Ga = R ×R+ is defined by the group law [17]

(b, a) · (x, s) = (ax + b, as), (b, a), (x, s) ∈ Ga.
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Here, we identify Ga with the upper half plane C+ and note that the left-invariant Haar 
measure on the affine group is given by

dμ(z) := dxdy

s2 , where z = x + is ∈ C+.

Let us define a unitary representation of Ga on the Hardy space H2(C+) by

π(z)ψ(t) := TxDsψ(t) = 1√
s
ψ

(
t− x

s

)
, z = x + is ∈ C+.

The wavelet transform of a function f ∈ H2(C+) using the mother wavelet ψ ∈ H2(C+)
is then defined as

Wψf(z) := 〈f, π(z)ψ〉 =
∫
R

f(t)TxDsψ(t)dt =
√
s

∞∫
0

f̂(ξ)ĝ (sξ)eixξdξ, (3.1)

where ψ satisfies the admissibility condition

Cψ :=
∫
R+

|ψ̂(ω)|2 dω|ω| < ∞.

For f1, f2 ∈ H2(C+) and ψ admissible, the following orthogonality relation holds∫
C+

Wψf1(z)Wψf2(z)dμ(z) = Cψ〈f1, f2〉. (3.2)

In particular, if we set f2 = π(z)ψ, then for every f ∈ H2(C+) one has

Wψf(z) = 1
Cψ

∫
C+

Wψf(w)〈π(w)ψ, π(z)ψ〉dμ(z), z ∈ C+. (3.3)

This reproducing formula then implies that the range of the wavelet transform

Wψ :=
{
F ∈ L2(C+, μ) : F = Wψf, f ∈ H2(C+)

}
is a reproducing kernel subspace of L2(C+, μ) with kernel

kψ(z, w) = 1
Cψ

〈π(w)ψ, π(z)ψ〉, and kψ(z, z) = ‖ψ‖2
2

Cψ
.

Moreover, kψ is the integral kernel of the projection operator Pψ : L2(C+, μ) → Wψ. 
The reproducing kernel of Wψ can easily be computed using the Fourier transform F :
H2(C+) → L2(0, ∞) as follows
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〈π(w)g, π(z)g〉 = 〈F(π(w)g),F(π(z)g)〉L2(0,∞)

= (ss′)
1
2

∞∫
0

ĝ(s′ξ)ĝ (sξ)ei(x−x′)ξdξ.
(3.4)

3.2. Wavelet frames and Riesz sequences

Let H be a separable Hilbert space and I be a discrete index set. The family of vectors 
{ψk}k∈I is called a frame if there exist constants A, B > 0 such that, for every f ∈ H, 
one has

A‖f‖2 ≤
∑
k∈I

| 〈f, ψk〉 |2 ≤ B‖f‖2. (3.5)

If, on the other hand, there exist constants A, B > 0 such that, for every c ∈ �2(I)

A‖c‖2
�2(I) ≤

∥∥∥∑
k∈I

ckψk

∥∥∥2
≤ B‖c‖2

�2(I), (3.6)

then {ψk}k∈I is called a Riesz sequence. A Riesz sequence that is also a frame is called 
a Riesz basis.

Let Γ ⊂ C+ be a discrete set and ψ ∈ H2(C+) be admissible. We call {π(γ)ψ}γ∈Γ a 
wavelet frame (resp. wavelet Riesz sequence) if it is a frame (resp. Riesz sequence) for 
H2(C+). Using (3.3) we can observe that {π(γ)ψ}γ∈Γ is a frame for H2(C+) if and only 

if 
{
kψ(γ, ·)

}
γ∈Γ

is a frame for Wψ. In particular, 
{
kψ(γ, ·)

}
γ∈Γ

is dense in Wψ.
We say that Γ is a sampling sequence for the wavelet space Wψ if there exist constants 

A, B > 0 such that for every F ∈ Wψ

A‖F‖2 ≤
∑
γ∈Γ

|F (γ)|2 ≤ B‖F‖2,

and Γ is called a uniqueness set for Wψ if F (γ) = 0, for every γ ∈ Γ implies F = 0. 
Likewise, we say that Γ is an interpolating sequence if 

{
kψ(γ, ·)

}
γ∈Γ

is a Riesz sequence 

for Wψ.
For f = (f0, f1, ..., fN−1), ψ = (ψ0, ψ1, ..., ψN−1) ∈ H2(C+, CN ) we define

Wψf(z) :=
N−1∑
n=0

Wψfn(z), z ∈ C+,

and say that {π(γ(z))ψ}γ∈Γ is a wavelet superframe if there exist A, B > 0 such that 
for every f ∈ H2(C+, CN )

A‖f‖2
H2(C+,CN ) ≤

∑
|Wψf(γ)|2 ≤ B‖f‖2

H2(C+,CN ).

γ∈Γ
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3.3. The Laguerre functions

Throughout this contribution we are interested in analyzing wavelets ψα
n which are 

defined via their Fourier transform in terms of the generalized Laguerre polynomials Lα
n

as

(Fψα
n)(ξ) := ξ

α
2 e−ξLα

n(2ξ), with Lα
n(ξ) =

n∑
k=0

(−1)k
(
n + α

n− k

)
ξk

k! .

The orthogonality relation for generalized Laguerre polynomials reads

∞∫
0

tαe−tLα
n(t)Lα

m(t)dt = Γ(n + α + 1)
n! δn,m.

From [47, Equation (4)], it follows that

∞∫
0

tα−1e−tLα
n(t)2dt = Γ(n + α + 1)

n!α . (3.7)

Consequently,

Cψα
n

‖ψα
n‖2

2
= 2

α
. (3.8)

For z = x + is, w = y + iv ∈ C+, the reproducing kernel of Wψα
n

is given by

kψα
n
(z, w) = 2αα

(
z − w

z − w

)n ( √
sv

−i(z − w)

)α+1

P (α,0)
n

(
1 − 8sv

|z − w|2
)
, (3.9)

where P (α,β)
n denotes the Jacobi polynomial

P (α,β)
n (t) = Γ(α + n + 1)

n!Γ(α + β + n + 1)

n∑
k=0

(
n

k

)
Γ(α + β + n + k + 1)

Γ(α + k + 1)

(
t− 1

2

)k

.

Note that (3.9) can be derived using (3.4) and [16, p. 809, 7.414 (4)].

3.4. A particular representation of PSL(2, R) and Fuchsian groups

Let I be the identity matrix in R2. The quotient group

PSL(2,R) := SL(2,R)/{±I}
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is also known as the group of Moebius transformations and can be identified with the 
Poincaré half plane C+. The element g =

(
a b
c d

)
∈ PSL(2, R) acts on C+ as

g(z) := az + b

cz + d
.

Note that the measure μ is invariant under the action of g ∈ PSL(2, R). Let us define 
j : PSL(2, R) ×C+ → C\{0} by

j(g, z) = (cz + d)−1.

It is easy to check that j satisfies the cocycle condition

j(gh, z) = j(g, h(z))j(h, z).

Hence, if we use the principal branch of the argument (i.e. arg(z) ∈ (−π, π]) to define 
zν , we have

j(gh, z)ν = λ(g, h, ν)j(g, h(z))νj(h, z)ν ,

for a unimodular function λ. It then immediately follows that ταn : PSL(2, R) →
U(L2(C+, μ)) given by

ταn (g)F (z) :=
(
|cz + d|
cz + d

)2n+α+1

F (g(z)), (3.10)

defines a projective unitary group representation of PSL(2, R) on L2(C+, μ). Note that 
ταn reduces to the standard representation in the analytic case (n = 0).

Following Jones [25, Sect. 4] (the finite area condition is not included by all authors), 
we define a Fuchsian group Γ as a discrete subgroup of PSL(2, R) for which there exists 
a fundamental domain with finite hyperbolic area (finite co-volume).

A fundamental domain Ω for Γ is a closed subset of C+ such that the images of Ω
under Γ cover C+, Ω is the closure of its interior Ω0, and for each two distinct γ1, γ2 ∈ Γ
one has γ1(Ω)0 ∩ γ2(Ω)0 = ∅.

3.5. Von Neumann algebras

In this section, we closely follow the brief exposition of the topic in [25] and repeat 
the results that are necessary for our arguments. For a thorough introduction to von 
Neumann algebras we refer for example to [26].

A von Neumann algebra M is a ∗-closed unital algebra of bounded operators on a 
(complex) Hilbert space H which is closed under the topology of pointwise convergence 
on H. A vector ψ ∈ H is called cyclic if Mψ is dense in H and ψ is called separating if 
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T �→ Tψ, T ∈ M , is injective. If there exists a trace functional tr : M → C, such that 
tr(AB) = tr(BA), A, B ∈ M , and tr(I) = 1, then M is called finite and we define the 
space L2(M) as the completion of M with respect to the pre-Hilbert space inner product 
〈A, B〉 = tr(B∗A).

It is a standard result on von Neumann algebras that if H is any Hilbert space on 
which M acts, then there is an M -linear isometry

U : H →
∞⊕

n=1
L2(M).

On 
∞⊕

n=1
L2(M), the commutant M ′ of M admits a trace TrL2 which is canonically nor-

malized such that the trace of any projection onto one of the L2(M)’s is equal to 1. With 
that convention, we define the von Neumann dimension by

dimM H = TrL2(UU∗).

The following elementary results on the von Neumann dimension will be the key com-
ponent in our arguments.

Theorem 3.1. There is a cyclic vector for M if and only if dimMH ≤ 1.

Theorem 3.2. There is a separating vector for M if and only if dimMH ≥ 1.

Definition 3.3. Let Γ be a (countable) discrete group. The von Neumann algebra of Γ, 
which we denote by vN(Γ), is the von Neumann algebra on �2(Γ) generated by the left 
regular representation γ �→ λγ , where λγ(f)(γ′) = f(γ−1γ′).

More generally, if ω : Γ ×Γ → T is a unit circle valued 2-cocycle, vNω(Γ) is generated 
on �2(Γ) by the unitaries λω

γ where λω
γ f(γ′) = ω(γ, γ′)f(γ−1γ′).

The subsequent proposition allows us to explicitly calculate the von Neumann di-
mension in the particular case that the von Neumann algebra is generated by a group 
representation of a discrete, infinite conjugacy class (ICC) group. The results can be 
found in [25, Proposition 3.6 & Corollary 3.7], but similar calculations have already 
appeared in the proof of [15, Theorem 3.3.2].

Proposition 3.4. Let Γ be a discrete ICC group and γ �→ τ(γ) a projective group repre-
sentation on H with 2-cocycle ω. Suppose there is a projection Q on H such that

τ(γ−1)Qτ(γ) ⊥ Q, for γ ∈ Γ − {e}, and
∑
γ∈Γ

τ(γ−1)Qτ(γ) = I.

Then the following statements hold:
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(i) There is a Γ-linear unitary map U : H → �2(Γ) ⊗QH with Uτ(γ)U−1 = λω
γ ⊗ Id, 

for γ ∈ Γ.
(ii) The action of Γ on H makes it into a vNω(Γ)-module.

(iii) If P is another projection on H that commutes with τ(γ) for every γ ∈ Γ, then

dimvNω(Γ) PH = traceB(H)(QPQ),

where traceB(H) denotes the usual trace.

Note that (iii) is not explicitly formulated in this form in [25, Corollary 3.7] but it 
appears in the last line of the proof.

4. Proof of the main results

4.1. Proof of Theorem 2.5

First, we observe that the wavelet space Wψα
n

is invariant under the action of ταn , the 
projective unitary group representation of PSL(2, R) on L2(C+, μ) defined in Section 3.4.

Lemma 4.1. If F ∈ Wψα
n
, then ταn (g)F ∈ Wψα

n
for every g ∈ PSL(2, R).

Proof. Let F ∈ Wψα
n
. As Wψα

n
is a reproducing kernel Hilbert space, it follows that 

ταn (γ)F ∈ Wψα
n

if and only if for every z ∈ C+

ταn (g)F (z) =
∫
C+

ταn (g)F (w)kψα
n
(z, w)dμ(w).

Let us now establish an identity for kψα
n

that allows us to verify the previous condition. 
Note that

Im(g(z)) = Im(z)
|cz + d|2 , and g−1 =

(
d −b
−c a

)
.

It is then straightforward to show the following relations

Im(g(z))Im(w)
|g(z) − w|2 =

Im(z)Im
(
g−1(w)

)∣∣∣z − g−1(w)
∣∣∣2 , (4.1)

|cz + d|
cz + d

√
Im(g(z))Im(w)
−i

(
g(z) − w

) = −cw + a

| − cw + a|

√
Im(z)Im(g−1(w))
−i

(
z − g−1(w)

) , (4.2)

(
|cz + d|
cz + d

)2
g(z) − w

g(z) − w
=

(
−cw + a

| − cw + a|

)2
z − g−1(w)
z − g−1(w)

. (4.3)
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Plugging equations (4.1)-(4.3) into the explicit expression for kψα
n

from (3.9) yields

(
|cz + d|
cz + d

)2n+α+1

kψα
n
(g(z), w) =

(
−cw + a

| − cw + a|

)2n+α+1

kψα
n
(z, g−1(w)). (4.4)

Since we assumed that F ∈ Wψα
n
, this shows

ταn (g)F (z) =
(
|cz + d|
cz + d

)2n+α+1

F (g(z))

=
(
|cz + d|
cz + d

)2n+α+1 ∫
C+

F (w)kψα
n
(g(z), w)dμ(w)

=
∫
C+

F (w)
(

−cw + a

| − cw + a|

)2n+α+1

kψα
n
(z, g−1(w))dμ(w)

=
∫
C+

F (g(w))
(

−cg(w) + a

| − cg(w) + a|

)2n+α+1

kψα
n
(z, w)dμ(w)

=
∫
C+

F (g(w))
(
|cw + d|
cw + d

)2n+α+1

kψα
n
(z, w)dμ(w)

=
∫
C+

ταn (g)F (w)kψα
n
(z, w)dμ(w),

(4.5)

where we used the cocycle relation j(g−1, g(w)) = j(g, w)−1 to derive the second to last 
identity. �

We now prove the second statement of Theorem 2.5, which characterizes the functions 
invariant under the kind of projective unitary group representation of PSL(2, R) on 
L2(C+, μ) we are using.

Lemma 4.2. Let A be given by (2.5) and σs be a projective unitary group representation 
of PSL(2, R) on L2(C+, μ) of the form

σs(g)F (z) =
(
|cz + d|
cz + d

)s

F (g(z)).

If ψ ∈ A and σs leaves Wψ invariant, then for some n ∈ N0 and C ∈ C\{0} we have

ψ = Cψα
n ,

where α = s − 2n − 1.
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Proof. If σs leaves Wψ invariant, then

σs(g)F (z) =
∫
C+

(
|cw + d|
cw + d

)s

F (g(w))kψ(z, w)dμ(w)

=
∫
C+

F (w)
(

−cw + a

| − cw + a|

)s

kψ(z, g−1(w))dμ(w).

On the other hand, one has

σs(g)F (z) =
∫
C+

F (w)
(
|cz + d|
cz + d

)s

kψ(g(z), w)dμ(w).

Combining the two preceding identities, it follows that(
|cz + d|
cz + d

)s

kψ(g(z), w) =
(

−cw + a

| − cw + a|

)s

kψ(z, g−1(w)), (4.6)

for every g ∈ PSL(2, R) and every z, w ∈ C+. Consequently, setting g = gθ =(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ [0, 2π), and w = i yields the necessary condition

(
|z sin θ + cos θ|
z sin θ + cos θ

)s

Wψψ(gθ(z)) = eiθsWψψ(z).

Now, multiply both sides by eiθsIm(z)−s/2 to show(
eiθ

z sin θ + cos θ

)s

W s
ψψ(gθ(z)) = W s

ψψ(z),

where W s
ψf(z) := Im(z)−s/2Wψf(z). Thus, W s

ψf(z) is SO(2)-invariant in the sense of 
[24]. From [24, Theorem 2.1] it then follows that ψ is given in the Fourier domain by

ψ̂(ξ) = Cξ
s−1−2n

2 e−ξLs−1−2n
n (2ξ), ξ > 0,

for some C ∈ C\{0}, and n ∈ N0 with n < s−1
2 . If we set α = s − 1 − 2n and solve for 

s, then we get ψ = Cψα
n together with σs = ταn . �

4.2. Some preparatory results

Let now Γ be a Fuchsian group with fundamental domain Ω ⊂ C+, and ψα
n as defined 

in Section 3.3. Note that every Fuchsian group is ICC [4].
With a slight abuse of notation we now consider ταn : Γ → U(Wψα

n
) to be the restriction 

of ταn to Γ and Wψα
n

which is a projective representation of Γ.
In the next Lemma, we verify the conditions of Proposition 3.4.
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Lemma 4.3. Let Γ ⊂ PSL(2, R) be a Fuchsian group with fundamental domain Ω ⊂ C+, 
PWψα

n
: L2(C+, μ) → Wψα

n
be the projection onto Wψα

n
, and

QΩ : L2(C+, μ) → L2(C+, μ), QΩf(z) := χΩ(z)f(z),

where χΩ denotes the characteristic function of Ω. Then ταn (γ)QΩτ
α
n (γ−1)⊥QΩ, for every 

γ ∈ Γ − {e}, ∑
γ∈Γ

ταn (γ)QΩτ
α
n (γ−1) = IL2(C+,μ),

and PWψα
n

commutes with ταn (γ) for every γ ∈ Γ.

Proof. First, we have that ταn (γ)QΩτ
α
n (γ−1) = Qγ−1(Ω)⊥QΩ, for γ �= e, since

ταn (γ)QΩτ
α
n (γ−1)F (z) = ταn (γ)

(
χΩ(z) ·

(
| − cz + a|
−cz + a

)2n+α+1

F (γ−1(z))
)

= χΩ(γ(z)) · F (z)

= χγ−1(Ω)(z)F (z) = Qγ−1(Ω)F (z),

and Ω0 ∩ γ−1(Ω)0 = ∅. The second property then immediately follows as∑
γ∈Γ

ταn (γ)QΩτ
α
n (γ−1) =

∑
γ∈Γ

Qγ−1(Ω) =
∑
γ∈Γ

χγ−1(Ω) = χC+ = IL2(C+,μ).

Repeating the arguments that we used to derive (4.5) for F = PWψ
G, G ∈ L2(C+, μ), 

then shows that PWψα
n
ταn (γ) = ταn (γ)PWψα

n
. �

Combining this with Proposition 3.4, we obtain

dimvNω(Γ)Wψα
n

= dimvNω(Γ)PWψα
n
L2(C+, μ) = traceB(L2(C+,μ))(QΩPWψα

n
QΩ),

which enables us to compute the von Neumann dimension of the wavelet spaces in terms 
of the trace of the trace class integral operator QΩPWψα

n
QΩ.

Proposition 4.4. Let Γ, Ω, QΩ and PWψα
n

as in Lemma 4.3. Then

traceB(L2(C+,μ))(QΩPWψα
n
QΩ) = |Ω| ‖ψ

α
n‖2

2
Cψα

n

.

Proof. First, observe that P̃ := QΩPWψα
n
QΩ is an integral operator with integral kernel

Kα
n (z, w) := χΩ(z)kψα(z, w)χΩ(w).
n
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If we show that P̃ is trace class, then the result follows from

traceB(H)(P̃ ) =
∫
C+

Kα
n (z, z)dμ(z) =

∫
Ω

kψα
n
(z, z)dμ(z) = |Ω| ‖ψ

α
n‖2

2
Cψα

n

.

Note that the operator QΩPWψα
n

is Hilbert-Schmidt since

‖QΩPWψα
n
‖2
HS =

∫
C+

∫
C+

|χΩ(z)kψα
n
(z, w)|2dμ(w)dμ(z)

=
∫
Ω

∫
C+

1
Cψα

n

|〈π(z)ψα
n , π(w)ψα

n〉|2dμ(w)dμ(z)

=
∫
Ω

‖π(z)ψα
n‖2

2dμ(z) = |Ω|‖ψα
n‖2

2 < ∞.

It thus follows, that P̃ is trace class as the product of two Hilbert-Schmidt operators. �
With everything in place, the proofs of our main results take only a few lines.

4.3. Proof of Theorem 2.1

If {ταn (γ)F}γ∈Γ is a frame for Wψα
n
, then, as shown in [27, Section 5], this requires 

Ω to be compact. Moreover, as {ταn (γ)F}γ∈Γ is in particular complete, we have that 
vNω(Γ)F is dense in Wψα

n
. In other words, F is a cyclic vector for vNω(Γ). Theorem 3.1

thus shows that

dimvNω(Γ)Wψα
n
≤ 1.

On the other hand, Proposition 4.4 yields

dimvNω(Γ)Wψα
n

= ‖ψα
n‖2

2
Cψα

n

|Ω|.

We conclude that

|Ω| ≤
Cψα

n

‖ψα
n‖2

2
.

If {ταn (γ)F}γ∈Γ is a Riesz sequence for Wψα
n
, then by [41, Proposition 5.2] (the statement 

assumes Kleppner’s condition, which is implied by the ICC condition), F is separating 
for vNω(Γ). Theorem 3.2 now shows that

dimvNω(Γ)Wψα
n
≥ 1.

We then conclude as before. �
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4.4. Proof of Corollary 2.3

By the orthogonality relation (3.2) we have that {ϕγ}γ∈Γ is a frame (resp. Riesz 
sequence) for H2(C+) if and only if {Wψα

n
ϕγ}γ∈Γ is a frame (resp. Riesz sequence) for 

Wψα
n
. Using the definition of ϕλ in (2.4) to calculate Wψα

n
ϕγ we find

Wψα
n
ϕγ(z) =

∫
C+

Φ(w)
(

cw + d

|cw + d|

)2n+α+1

〈π(γ(w))ψα
n , π(z)ψα

n〉dμ(w)

=
(
| − cz + a|
−cz + a

)2n+α+1 ∫
C+

Φ(w)〈π(w)ψα
n , π(γ−1(z))ψα

n〉dμ(w)

=
(
| − cz + a|
−cz + a

)2n+α+1

PWψα
n
Φ(γ−1(z))

= ταn (γ−1)PWψα
n
Φ(z),

by (4.4). Hence, PWψα
n
Φ is a cyclic (resp. separating) vector for Wψα

n
and the result 

follows from Theorem 2.1. �
4.5. Proof of Corollary 2.4

If {π(γ(z))ψα
n}γ∈Γ is a wavelet frame (resp. Riesz sequence) for H2(C+), then {

kψα
n
(γ(z), ·)

}
γ∈Γ

generates a frame (resp. Riesz sequence) for Wψα
n
. Moreover, since 

Γ is a subgroup of PSL(2, R), it follows from (4.4) that

{
ταn (γ)kψα

n
(z, ·)

}
γ∈Γ

=
{(

cz + d

|cz + d|

)2n+α+1

kψα
n
(γ(z), ·)

}
γ∈Γ

.

As the factor in front of kψα
n
(γ(z), w) is unimodular, and independent of w, it follows that 

kψα
n
(z, ·) is a cyclic (resp. separating) vector for vNω(Γ) and the first and third statements 

follow from Theorem 2.1. For the second statement, assume that |Ω| > Cψα
n
/‖ψα

n‖2
2, then 

there exist no cyclic vector in Wψα
n
. In particular, there exist F ∈ Wψα

n
that is orthogonal 

to vNω(Γ)kψα
n
(z, ·), i.e. for every γ ∈ Γ

0 = 〈F, ταn (γ)kψα
n
(z, ·)〉 = 〈ταn (γ−1)F, kψα

n
(z, ·)〉 = ταn (γ−1)F (z),

which in turn implies F (γ(z)) = 0 for every γ ∈ Γ. �
4.6. Proof of Theorem 2.8

For the choice α = 2(B − n) − 1 we have that the exponent of the phase factor in 
(3.10) is given by 2B (i.e., it is independent of n = 0, 1, ..., �B− 1	). By Lemma 4.1, each 
2
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space AB
n (C+, μ) is invariant under the projective representation σ2B. Consequently, the 

orthogonal sum AB
N (C+, μ) =

⊕N−1
n=0 AB

n (C+, μ) is also invariant under σ2B. One can 
then proceed in a similar fashion as in the proofs of Theorem 2.1. In particular, the 
reproducing kernel of AB

N (C+, μ) is given by kB
N =

∑N−1
k=0 k

ψ
2(B−n)−1
n

with diagonal

kB
N (z, z) =

N−1∑
n=0

k
ψ

2(B−n)−1
n

(z, z) =
N−1∑
n=0

2(B − n) − 1
2 = N(2B −N)

2 , z ∈ C+.

It remains to note that (as in Lemma 4.3) the projection PAB
N (C+,μ) commutes with 

σ2B(γ), for every γ ∈ Γ, which implies (using the same steps as in the proof of Proposi-
tion 4.4) that

dimvNω(Γ)A
B
N (C+, μ) = |Ω|kB

N (i, i) = |Ω|N(2B −N)
2 . �
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